Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."  

DOE Green Energy (OSTI)

The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

Dever, Thomas J.

2011-11-29T23:59:59.000Z

2

Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment ...  

NLE Websites -- All DOE Office Websites (Extended Search)

over 90,000 hours of fuel cell operation by June * 30, 2012. Purchasing 29,240 kilograms of hydrogen by June 30, * 2012. Monitoring operating costs and reliability of * 40...

3

Fuel Cell Power Electronics – Status & Challenges Tejinder ...  

Science Conference Proceedings (OSTI)

... Fuel cell powered critical refrigeration loads, preventing ... Ref. CL&P Connecticut Outage Map for October 2011 Fuel Cells: Power Through the Storm ...

2012-07-27T23:59:59.000Z

4

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

5

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

6

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

7

Fuel cell powered irrigation system  

SciTech Connect

Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

Jacobi, E.F.; Madden, M.R.

1982-01-12T23:59:59.000Z

8

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

9

Fuel-cell-powered golf cart  

DOE Green Energy (OSTI)

The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

1980-01-01T23:59:59.000Z

10

Fuel Cell Power (FCPower) Model | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Power (FCPower) Model Fuel Cell Power (FCPower) Model Jump to: navigation, search Tool Summary Name: Fuel Cell Power (FCPower) Model Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.hydrogen.energy.gov/fc_power_analysis.html Cost: Free OpenEI Keyword(s): EERE tool Fuel Cell Power (FCPower) Model Screenshot References: DOE Fuel Cell Power Analysis[1] Logo: Fuel Cell Power (FCPower) Model The Fuel Cell Power (FCPower) Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. "The Fuel Cell Power (FCPower) Model is a financial tool for analyzing

11

Solid Oxide Fuel Cell Power Generation Systems  

Science Conference Proceedings (OSTI)

An increasing worldwide demand for premium power, emerging trend towards electric utility deregulation and distributed power generation, global environmental concerns and regulatory controls have accelerated the development of advanced fuel cell based power generation systems. Fuel cells convert chemical energy to electrical energy through electrochemical oxidation of gaseous and/or liquid fuels ranging from hydrogen to hydrocarbons. Electrochemical oxidation of fuels prevents the formation of Nox, while the higher efficiency of the systems reduces carbon dioxide emissions (kg/kWh). Among various fuel cell power generation systems currently being developed for stationary and mobile applications, solid oxide fuel cells (SOFC) offer higher efficiency (up to 80% overall efficiency in hybrid configurations), fuel flexibility, tolerance to CO poisoning, modularity, and use of non-noble construction materials of low strategic value. Tubular, planar, and monolithic cell and stack configurations are currently being developed for stationary and military applications. The current generation of fuel cells uses doped zirconia electrolyte, nickel cermet anode, doped Perovskite cathode electrodes and predominantly ceramic interconnection materials. Fuel cells and cell stacks operate in a temperature range of 800-1000 *C. Low cost ($400/kWe), modular (3-10kWe) SOFC technology development approach of the Solid State Energy Conversion Alliance (SECA) initiative of the USDOE will be presented and discussed. SOFC technology will be reviewed and future technology development needs will be addressed.

Singh, Prabhakar; Pederson, Larry R.; Simner, Steve P.; Stevenson, Jeffry W.; Viswanathan, Vish V.

2001-05-12T23:59:59.000Z

12

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party Fuel Cell Powers Up Festivities at Secretary Chu's Holiday Party December 16, 2011 - 11:25am Addthis A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. A clean, efficient fuel cell powered the tree lights at the 2011 Energy Department holiday party. | Energy Department file photo. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program How does it work? Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. Employees at the Energy Department's annual holiday party were greeted with many familiar sights - festive decorations, sugar cookies, and a

13

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

14

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

1987-01-01T23:59:59.000Z

15

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

1987-04-14T23:59:59.000Z

16

Design considerations for vehicular fuel cell power plants  

DOE Green Energy (OSTI)

Fuel cells show great promise as an efficient, nonpolluting vehicular power source that can operate on nonpetroleum fuel. As with other power sources, design tradeoffs can be made that either improve vehicle performance or reduce the size and cost of the fuel cell power system. To evaluate some of these tradeoffs, a number of phosphoric acid fuel cell power plant designs have been studied to determine the performance level they would provide, both for a compact passenger vehicle and a 40-ft city bus. The fuel is steam reformed methanol. The analyses indicate that 1978 fuel cell technology can provide a 22 to 50% improvement in fuel economy over the 1980 EPA estimate for the conventionally powered General Motors X car. With this technology the city bus can meet the DOT acceleration, gradability, and top speed requirements. A reasonable advance in fuel cell technology improves performance and fuel consumption of both vehicles substantially.

Lynn, D.K.; McCormick, J.B.; Bobbett, R.E.; Srinivasan, S.; Huff, J.R.

1981-03-31T23:59:59.000Z

17

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

18

Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

Steward, D.; Penev, M.

2010-03-30T23:59:59.000Z

19

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

1998-04-01T23:59:59.000Z

20

A Fuel Cell Power Supply for Long Duration Balloon Flights Using Stored Cryogens  

E-Print Network (OSTI)

LBNL-40618 A FUEL CELL POWER SUPPLY FOR LONG DURATIONCA, (1966) LBNL-40618 A FUEL CELL POWER SUPPLY FOR LONG21 days. A hydrogen-oxygen fuel cell is an attractive option

Green, Michael A.; Manikowski, A.; Noland, G.; Golden, R.L.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel cell powered propulsion systems for highway vehicles  

SciTech Connect

Over the past thirty-five years, the transportation sector has accounted for approx.25% of the total gross energy consumption in the US. Transportation's share of petroleum use in this time frame has ranged from 50 to 55%. Therefore, the use of fuel cell power plants that could possibly operate more efficiently than internal combustion engines in this type of application has been examined. In addition, these fuel cell power plants can operate on methanol produced from indigenous, non-petroleum sources and thereby reduce US dependency on petroleum resources. Fuel cell power plant use in city buses and automobiles has been explored and feasibility determined from both performance and cost viewpoints. Fuel cell systems for transportation applications have been selected on the basis of state-of-development, performance (both present and projected), and fuel considerations. In the last 25 years, most of the development work by research organizations and industrial firms has focused on five types of fuel cells, classified according to the electrolyte used. In terms of the overall state-of-development of systems, the ranking is as follows: (1) phosphoric acid, (2) alkaline, (3) proton exchange membrane, (4) molten carbonate, and (5) solid oxide.

Huff, J.R.; Vanderborgh, N.E.; Roach, J.F.; Murray, H.S.

1987-01-01T23:59:59.000Z

22

Fuel Cell Power Plants Biofuel Case Study - Tulare, CA  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Growing Market Presence 180 MW installed and in backlog Over 80 Direct FuelCell® plants generating power at more than 50 sites globally Providing:

23

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

24

Fuel effects on flame lift-off under diesel conditions  

SciTech Connect

An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

Persson, Helena; Andersson, Oeivind; Egnell, Rolf [Lund University (Sweden). Dept. of Energy Sciences

2011-01-15T23:59:59.000Z

25

Fuel Cell Power Model for CHHP System Economics and Performance Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation about Fuel Cell Power (FCPower) Model used to analyze the economics and performance of combined heat, hydrogen, and power (CHHP) systems.

Steward, D.

2009-11-16T23:59:59.000Z

26

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

27

Catalysts and materials development for fuel cell power generation  

E-Print Network (OSTI)

Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

Weiss, Steven E

2005-01-01T23:59:59.000Z

28

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. ” Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

29

NETL: News Release - Fuel Cell-Powered Ice Resurfacer Smoothes...  

NLE Websites -- All DOE Office Websites (Extended Search)

power-generation system. Fuel cells have the potential to provide America with greater energy security, extend our fossil fuel reserves, and reduce our dependence on imported...

30

Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Refuse Haulers Do CNG Refuse Haulers Do Heavy Lifting in New York to someone by E-mail Share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Facebook Tweet about Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Twitter Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Google Bookmark Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Delicious Rank Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on Digg Find More places to share Alternative Fuels Data Center: CNG Refuse Haulers Do Heavy Lifting in New York on AddThis.com... Nov. 13, 2010 CNG Refuse Haulers Do Heavy Lifting in New York W atch how Smithtown uses compressed natural gas trash haulers to combat the

31

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

and standardized. Hydrogen fuel filling stations generallyat local hydrogen fill stations it was decided that filling

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

32

Heat exchanger for fuel cell power plant reformer  

DOE Patents (OSTI)

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

33

No more electrical infrastructure: towards fuel cell powered data centers  

Science Conference Proceedings (OSTI)

We consider the use of fuel cells for powering data centers, based on benefits in reliability, capital and operational costs, and reduced environmental emissions. Using fuel cells effectively in data centers introduces several challenges and we highlight ...

Ana Carolina Riekstin, Sean James, Aman Kansal, Jie Liu, Eric Peterson

2013-11-01T23:59:59.000Z

34

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

35

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

a proof of concept SOFC APU. [9] This demonstration wasof which was to demonstrate SOFC technology was chosen forthe ability of the SOFC to utilize liquid hydrocarbon fuels,

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

36

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

37

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

38

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

39

reliable, efficient, ultra-clean Fuel Cell Power Plant Experience  

E-Print Network (OSTI)

Shore Capacity - Low Profile, Easy Siting Connects to existing electricity and fuel infrastructure System Operation · Over 300 Hours of Operation on Load with Water Recovery · Power Output up to 125 k

40

Fuel Cell Power Model for CHHP System Economics and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat production (assuming 75% total efficiency for fuel cell) kWhdaycow 4 Finished compost Cubic yardsyear cow 3.32 Electricity required for digester operation kWhcowday 1...

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: News Release - World's First Coal Mine Methane Fuel Cell Powers Up in  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2003 22, 2003 World's First Coal Mine Methane Fuel Cell Powers Up in Ohio New Technology Mitigates Coal Mine Methane Emissions, Produces Electricity HOPEDALE, OH - In a novel pairing of old and new, FuelCell Energy of Danbury, Conn., has begun operating the world's first fuel cell powered by coal mine methane. Funded by the Department of Energy, the demonstration harnesses the power of a pollutant - methane emissions from coal mines - to produce electricity in a new, 21st Century fuel cell. MORE INFO Remarks by DOE's James Slutz FuelCell Energy Web Site "We believe this technology can reduce coal mine methane emissions significantly while producing clean, efficient, and reliable high-quality power," Secretary of Energy Spencer Abraham said. "This has the dual

42

Fuel cell power systems for remote applications. Phase 1 final report and business plan  

DOE Green Energy (OSTI)

The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

NONE

1998-02-01T23:59:59.000Z

43

Overview of commercialization of stationary fuel cell power plants in the United States  

DOE Green Energy (OSTI)

In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.

Hooie, D.T.; Williams, M.C.

1995-07-01T23:59:59.000Z

44

Fuel cell power plant coolant cleaning system and method  

Science Conference Proceedings (OSTI)

In a process for deaerating and purifying both the water which is recirculated in a coolant loop through a stack of fuel cells and the make-up water for the coolant loop, a portion of the water from the coolant loop is blown down into a deaerator water reservoir to which make-up water is added as required by the coolant loop. Water is withdrawn from the reservoir, purified, and then introduced into the coolant loop at a rate sufficient to maintain the desired amount of water circulating in the coolant loop. The blowdown provides some of the heat for deaerating the water; and the rate of blowdown flow into the reservoir is sufficient to maintain an acceptable level of impurities in the recirculating coolant loop water. Preferably, the blowdown flow rate is controlled as a function of the amount of make-up water required to be added to the coolant loop.

Grasso, A.P.

1982-08-17T23:59:59.000Z

45

METAL INTERCONNECTS FOR SOLID OXIDE FUEL CELL POWER SYSTEMS  

DOE Green Energy (OSTI)

Interconnect development is identified by the U.S. Department of Energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm{sup 2} at 750 C in air. The oxide scale was found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm{sup 2} in humidified hydrogen at 750 C, and was stable through multiple thermal cycles. Analysis of the scale after exposure to various atmospheres showed the presence of a stable composition. When exposed to a dual (air and hydrogen) atmosphere however, the scale composition contains a mixture of phases. Based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

S. Elangovan; S. Balagopal; M. Timper; I. Bay; D. Larsen; J. Hartvigsen

2003-10-01T23:59:59.000Z

46

ERC product improvement activities for direct fuel cell power plants  

DOE Green Energy (OSTI)

This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

Maru, H.C.; Farooque, M.; Bentley, C. [and others

1995-12-01T23:59:59.000Z

47

Economic and Environmental Analysis of Fuel Cell Powered Materials Handling Equipment  

Science Conference Proceedings (OSTI)

This technical update describes an analysis of the economic and environmental attributes of forklift fleets powered by battery and fuel cell power plants. The report first provides background on the fuel cell forklift technology. The fuel cell forklift is then compared to three other technology options: conventional battery-powered forklifts, fast-charge forklifts at 15 kW of charging power, and fast-charge forklifts at 20 kW of charging power. This study develops models of the infrastructure and equipme...

2010-12-31T23:59:59.000Z

48

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

49

New approaches to improve the performance of the PEM based fuel cell power systems  

E-Print Network (OSTI)

Fuel cells are expected to play an important role in future power generation. However, significant technical challenges remain and the commercial breakthrough of fuel cells is hindered by the high price of fuel cell components. As is well known, the fuel cells do not provide the robust source characteristics required to effectively follow the load during significant load steps and they have limited overload-handling capability. Further, the performance of the fuel cell is significantly degraded when the CO (Carbon Monoxide) is contained in the hydrogen fuel. In this thesis several new approaches to improve the performance of PEM based fuel cell power systems are discussed. In the first section an impedance model of the Proton Exchange Membrane Fuel Cell Stack (PEMFCS) is first proposed. This equivalent circuit model of the fuel cell stack is derived by a frequency response analysis (FRA) technique to evaluate the effects of the ripple current generated by the power-conditioning unit. Experimental results are presented to show the effects of the ripple currents. In the second section, a fuel cell powered UPS (Uninterruptible Power Supply) system is proposed. In this approach, two PEM Fuel Cell modules along with suitable DC/DC and DC/AC power electronic converter modules are employed. A Supercapacitor module is also employed to compensate for instantaneous power fluctuations including overload and to overcome the slow dynamics of the fuel processor such as reformers. A complete design example for a 1-kVA system is presented. In the third section, an advanced power converter topology is proposed to significantly improve the CO tolerance on PEM based fuel cell power systems. An additional two-stage dc-dc converter with a supercapacitor module is connected to the fuel cell to draw a low frequency (0.5Hz) pulsating current of the specific amplitude (20-30[A]) from the fuel cell stack. CO on the catalyst surface can be electro-oxidized by using this technique, and thereby the CO tolerance of the system can be significantly improved. Simulation and experimental results show the validity and feasibility of the proposed scheme.

Choi, Woojin

2004-08-01T23:59:59.000Z

50

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

51

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel CellsPowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

52

Analysis and design of high frequency link power conversion systems for fuel cell power conditioning  

E-Print Network (OSTI)

In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a new soft switching technique for the phase-shift controlled bi-directional dc-dc converter. The described dc-dc converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. The proposed new soft switching technique guarantees soft switching over wide range from no load to full load without any additional circuit components. The load range for proposed soft switching technique is analyzed by mathematical approach with equivalent circuits and verified by experiments. The second study describes a boost converter cascaded high frequency link direct dc-ac converter suitable for fuel cell power sources. A new multi-loop control for a boost converter to reduce the low frequency input current harmonics drawn from the fuel cell is proposed, and a new PWM technique for the cycloconverter at the secondary to reject the low order harmonics in the output voltages is presented. The performance of the proposed scheme is verified by the various simulations and experiments, and their trade-offs are described in detail using mathematical evaluation approach. The third study proposes a current-fed high frequency link direct dc-ac converter suitable for residential fuel cell power systems. The high frequency full-bridge inverter at the primary generates sinusoidally PWM modulated current pulses with zero current switching (ZCS), and the cycloconverter at the secondary which consists of only two bidirectional switches and output filter capacitors produces sinusoidally modulated 60Hz split single phase output voltage waveforms with near zero current switching. The active harmonic filter connected to the input terminal compensates the low order input current harmonics drawn from the fuel cell without long-term energy storage devices such as batteries and super capacitors.

Song, Yu Jin

2004-08-01T23:59:59.000Z

53

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

DOE Green Energy (OSTI)

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

54

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

SciTech Connect

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

55

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

56

GENCO Fuel Cell-Powered Lift Truck Fleet Deployment - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jim Klingler GENCO Infrastructure Solutions 100 Papercraft Park Pittsburgh, PA 15238 Phone: (412) 820-3718 Email: klinglej@genco.com DOE Managers HQ: Sara Dillich Phone: (202)...

57

Technology development goals for automotive fuel cell power systems. Final report  

Science Conference Proceedings (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

58

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

59

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

DOE Green Energy (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

60

MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT LADWP MAIN STREET SERVICE CENTER  

DOE Green Energy (OSTI)

The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of September 2004 was not available at the time this report was prepared. An addendum to this report will be prepared and transmitted to the Department of Energy once this data becomes available. This fuel cell power plant was originally intended to be installed at an American Airlines facility located at Los Angeles International Airport, however, due to difficulties in obtaining a site, the plant was ultimately installed at the LADWP's Distributed Generation Test Facility at it's Main Street Service Center.

William W. Glauz

2004-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

62

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

of fuel cell/battery/supercapacitor hybrid power source for479 7. Soonil Jeon, Hyundai Supercapacitor Fuel Cell Hybridtechnology, fuel cell/supercapacitor hybrid fuel cell

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

63

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Direct hydrogen fuel cell vehicles without energy storage.hydrogen fuel cell vehicles (FCVs) without energy storage (hydrogen fuel cell vehicles (FCVs) without energy storage

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

64

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

Economy Improvemen t Battery Capacity (Ah) Figure 7 FuelFuel Economy Improvemen t Battery Capacity (Ah) Figure 15Fuel Economy Improvemen t Battery Capacity (Ah) Figure 16

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

65

Investigation of anti-islanding schemes for utility interconnection of distributed fuel cell powered generations  

E-Print Network (OSTI)

The rapid emergence of distributed fuel cell powered generations (DFPGs) operating in parallel with utility has brought a number of technical concerns as more DFPGs are connected to utility grid. One of the most challenging problems is known as islanding phenomenon. This situation occurs when a network is disconnected from utility grid and is energized by local DFPGs. It can possibly result in injury to utility personnel arriving to service isolated feeders, equipment damage, and system malfunction. In response to the concern, this dissertation aims to develop a robust anti-islanding algorithm for utility interconnection of DFPGs. In the first part, digital signal processor (DSP) controlled power electronic converters for utility interconnection of DFPGs are developed. Current control in a direct-quadrature (dq) synchronous frame is proposed. The real and reactive power is controlled by regulating inverter currents. The proposed digital current control in a synchronous frame significantly enhances the performance of DFPGs. In the second part, the robust anti-islanding algorithm for utility interconnection of a DFPG is developed. The power control algorithm is proposed based on analysis of a real and reactive power mismatch. It continuously perturbs (±5%) the reactive power supplied by the DFPG while monitoring the voltage and frequency. If islanding were to occur, a measurable frequency deviation would take place, upon which the real power of the DFPG is further reduced to 80%; a drop in voltage positively confirms islanding. This method is shown to be robust and reliable. In the third part, an improved anti-islanding algorithm for utility interconnection of multiple DFPGs is presented. The cross correlation method is proposed and implemented in conjunction with the power control algorithm. It calculates the cross correlation index of a rate of change of the frequency deviation and (±5%) the reactive power. If this index increases above 50%, the chance of islanding is high. The algorithm initiates (±10%) the reactive power and continues to calculate the correlation index. If the index exceeds 80%, islanding is now confirmed. The proposed method is robust and capable of detecting islanding in the presence of several DFPGs independently operating. Analysis, simulation and experimental results are presented and discussed.

Jeraputra, Chuttchaval

2004-12-01T23:59:59.000Z

66

AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS  

SciTech Connect

Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

2003-11-03T23:59:59.000Z

67

AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS  

DOE Green Energy (OSTI)

Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

2003-11-03T23:59:59.000Z

68

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

May 13 - 16, Appendix I Fuel cell hybrid vehicles with load510 cm 2 ) Appendix II Fuel cell vehicles with power assistcm 2 ) Appendix III Fuel cell vehicles with load leveling

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

69

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

70

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

16, Appendix I Fuel cell hybrid vehicles with load levelingfuel cell/battery hybrid vehicles, Journal of Power Sourcesfor a PEM Fuel Cell Hybrid Vehicle, Transactions of the

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

71

Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems  

DOE Green Energy (OSTI)

Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

S. D. Vora

2008-02-01T23:59:59.000Z

72

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network (OSTI)

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

73

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

74

Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2  

DOE Green Energy (OSTI)

Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

Thomas, C.E.; James, B.D.

1995-07-01T23:59:59.000Z

75

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

76

Generator module architecture for a large solid oxide fuel cell power plant  

DOE Patents (OSTI)

A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

2013-06-11T23:59:59.000Z

77

Testing and Evaluation of Batteries for a Fuel Cell Powered Hybrid Bus  

SciTech Connect

Argonne National Laboratory conducted performance characterization and life-cycle tests on various batteries to qualify them for use in a fuel cell/battery hybrid bus. On this bus, methanol-fueled, phosphoric acid fuel cells provide routine power needs, while batteries are used to store energy recovered during bus braking and to produce short-duration power during acceleration. Argonne carried out evaluation and endurance testing on several lead-acid and nickel/cadmium batteries selected by the bus developer as potential candidates for the bus application. Argonne conducted over 10,000 hours of testing, simulating more than 80,000 miles of fuel cell bus operation, for the nickel/cadmium battery, which was ultimately selected for use in the three hybrid buses built under the direction of H-Power Corp.

Miller, J.F.; Webster, C.E.; Tummillo, A.F.; DeLuca, W.H.

1997-05-01T23:59:59.000Z

78

Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing  

Science Conference Proceedings (OSTI)

PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means of accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

Brian Wells

2008-11-30T23:59:59.000Z

79

MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT  

DOE Green Energy (OSTI)

The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

William W. Glauz

2004-09-01T23:59:59.000Z

80

Develop and test fuel cell powered on-site integrated total energy systems  

DOE Green Energy (OSTI)

This report describes the design, fabrication and testing of a 25kW phosphoric acid fuel cell system aimed at stationary applications, and the technology development underlying that system. The 25kW fuel cell ran at rated power in both the open and closed loop mode in the summer of 1988. Problems encountered and solved include acid replenishment leakage, gas cross-leakage and edge-leakage in bipolar plates, corrosion of metallic cooling plates and current collectors, cooling groove depth variations, coolant connection leaks, etc. 84 figs., 7 tabs.

Kaufman, A.; Werth, J.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

DOE Green Energy (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

82

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

83

System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings  

DOE Green Energy (OSTI)

The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

Joe Ferrall, Tim Rehg, Vesna Stanic

2000-09-30T23:59:59.000Z

84

Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing  

DOE Green Energy (OSTI)

The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.

Brian Wells

2008-11-30T23:59:59.000Z

85

A solid oxide fuel cell power system: 1992--1993 field operation  

DOE Green Energy (OSTI)

Westinghouse has deployed fully integrated, automatically controlled, packaged solid oxide fuel cell (SOFC) power generation systems in order to obtain useful customer feedback. Recently, Westinghouse has deployed 20 kW class natural gas fueled SOFC generator modules integrated into two 25 kW SOFC systems, the first with The UTILITIES, a Japanese consortium. The UTILITIES 25 kW SOFC system is the focus of this paper. The unit was shipped to the Rokko Island Test Center for Advanced Energy Systems (near Kobe, Japan) operated by Kansai Electric Power Co.; testing was initiated February 1992. Module A operated for 2601 hours at an ave output 16.6 kW dc; final shutdown was induced by current stability problems with dissipator (restart not possible because of damaged cells). Module B operated for 1579 hours at ave output 17.8 kWdc. The unit was damaged by operation at excessively high fuel utilization > 91%. It was rebuilt and returned to Rokko Island. This module B2 operated for 1843 hours on PNG; shutdown was cuased by air supply failure. After a new blower and motor were installed July 1993, the system was restarted August 5, 1993 and operated continuously until November 10, 1993, when an automatic shutdown was induced as part of a MITI licensing inspection. After restart, the unit passed 6000 hours of operation on desulfurized PNG on January 25, 1994. Westinghouse`s future plans are outlined.

Veyo, S.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Kusunoki, A.; Takeuchi, S. [Kansai Electric Power Co., Inc., Osaka (Japan); Kaneko, S. [Tokyo Gas Co. Ltd. (Japan); Yokoyama, H. [Osaka Gas Co. Ltd. (Japan)

1994-05-01T23:59:59.000Z

86

CLIMATE CHANGE FUEL CELL PROGRAM 200 kW - PC25C FUEL CELL POWER PLANT FOR THE ST.-AGNES-HOSPITAL, BOCHOLT, GERMANY  

DOE Green Energy (OSTI)

Since the beginning of the Year 2001, the Saint-Agnes-Hospital in Bocholt, Germany, operates a phosphoric acid fuel cell (PAFC) to provide the base load of electrical power as well as heat in Winter and air conditioning in Summer. The project was made possible by federal funding from the U.S. Department of Energy as well as by a strategic alliance with the local utility company, the Bocholter Energie- und Wasserversorgung GmbH (BEW), and with the gas supplier of BEW, the Thyssengas GmbH. The fuel cell power plant is combined with an absorption chiller. It is highly efficient and has an excellent power to heat ratio. The operation during the first Year went smoothly and nearly free of trouble.

Dipl.-Ing. Knut Stahl

2002-01-31T23:59:59.000Z

87

Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules  

DOE Green Energy (OSTI)

According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.

Ozpineci, B.

2004-12-03T23:59:59.000Z

88

The Inforum LIFT Model  

U.S. Energy Information Administration (EIA) Indexed Site

personal consumption transportation energy use (gasoline and oil). Electric power - Fossil fuels consumption by electric utilities. Ratios are used to relate LIFT...

89

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

DOE Green Energy (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

90

An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads  

DOE Green Energy (OSTI)

Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

Sudip K. Mazumder

2005-12-31T23:59:59.000Z

91

Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project  

DOE Green Energy (OSTI)

The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

1998-09-30T23:59:59.000Z

92

King County Carbonate Fuel Cell Demonstration Project: Case Study of a 1MW Fuel Cell Power Plant Fueled by Digester Gas  

Science Conference Proceedings (OSTI)

This case study documents the first-year demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resource planning efforts an...

2005-03-30T23:59:59.000Z

93

Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies  

E-Print Network (OSTI)

This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

Strawser, Daniel DeWitt

2012-01-01T23:59:59.000Z

94

Thin film battery/fuel cell power generating system. Second quarterly report, July 1, 1978-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on the development of the high-temperature solid-oxide electrolyte fuel cell. Oxygen loss behavior in the lanthanum chromite interconnection material was investigated by the microweighing technique. RF sputtered interconnection bands have been produced that display suitable density to permit the technique to be used in the construction of cell stacks. Electrochemical vapor deposition equipment has been modified to enable preparation of 20 cell fuel cell stack fabrication to proceed. The fuel electrode process and equipment have been improved to permit fabrication of long (0.3 m) tube segments, showing good mechanical and electrical properties. Long tube sections have been used to fabricate air electrodes, having desired porosity without loss of conductivity. Porous support tube work (involving equipment and fabrication techniques) is being extended to the fabrication of 0.3 m long tubes, needed for the fabrication of the 20 cell stacks. Work continues on the construction of the 5 station fuel cell stack life test facility. Theoretical interpretations of fuel cell stack polarization losses have been compared with actual measured losses in the 5 cell fuel cell stack previously tested in the program. Analyses of the intercell leakage current in the five cell fuel cell stack that was life tested for 700 hours were conducted. (WHK)

Feduska, W.

1978-10-25T23:59:59.000Z

95

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume II: Full Scale Landfill Gas Cleanup for Carbonate Fuel Cell Power Plants (Proprietary)  

Science Conference Proceedings (OSTI)

This document is a proprietary version of section 5 of EPRI technical report TR-108043-V1. The volume contains detailed design information and operating conditions for a full-scale, low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1998-02-27T23:59:59.000Z

96

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume 1: Field Test Results  

Science Conference Proceedings (OSTI)

This report presents results of an effort to develop a low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1997-11-26T23:59:59.000Z

97

Thin film battery/fuel cell power generating system. Final report, Task E-4, April 1976-April 1978  

DOE Green Energy (OSTI)

A two-year researth program to design and demonstrate the technical feasibility of a high-temperature solid-electrolyte fuel cell is described in detail. A rare-earth chromite, in particular, La /sub 95/Mg /sub 05/Cr /sub 75/Al /sub 25/0/sub 3/ was identified, synthesized by RF-sputtering tested for resistivity, thermal expansion and inertness in contact with yttria-stabilized zirconia, and was found promising as a candidate interconnection material. Films of these interconnection materials have been successfully deposited onto stabilized zirconia tubes by electrochemical vapor deposition (EVD) and the technique has been used to fabricate such films in building fuel cell stacks. Tin-doped indium oxide and antimony-doped tin oxide air electrode current collector materials have been successfully (CVD) chemically vapor deposited, as thin films, onto zirconia tubes. Fabrication procedures for the preparation of thin films of the nickel-cermet fuel electrode and yttria-stabilized zirconia solid electrolyte have been re-verified and improved for use in preparing unit cells and cell stacks on the program. An in-house extrusion technology for porous calcia-stabilized zirconia tubes has been developed and has been used to provide suitable support tubes for component combination samples, unit cell and cell stack sample preparation. Test concepts for component combinations and for unit cells and cell stacks have been evolved, particularly, the crossed electrode technique, and test equipment has been designed, built and used to evaluate fuel cell components and their interfaces. A five-cell fuel cell stack has been fabricated and operated for 700 hours at 200 mA/cm/sup 2/ at 950 to 980/sup 0/C and was subjected to three temperature cycles during the testing. Three series connected cells of this five cell stack met the 80% voltage efficiency final target objective of the program (less than 10% voltage degradation in 700 hours - with only 300 hours required.)

Feduska, W.

1978-03-31T23:59:59.000Z

98

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

99

Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.  

DOE Green Energy (OSTI)

Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.

Som, S; Longman, D. E.; Luo, Z; Plomer, M; Lu, T; Senecal, P.K.; Pomraning, E (Energy Systems); (Univ. of Connecticut); (CONVERGENT Science)

2012-01-01T23:59:59.000Z

100

Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)  

DOE Green Energy (OSTI)

Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

Not Available

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT  

DOE Green Energy (OSTI)

Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

Berry, JB

2005-05-06T23:59:59.000Z

102

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

103

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 12, 2011 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles. December 1, 2011 Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Fuel Cell Lift Trucks: A Grocer's Best Friend How fuel cell powered lift trucks are helping companies like Baldor Specialty Foods ensure that their customers have access to the freshest seasonal produce.

104

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

105

Thin film battery/fuel cell power generating system. Final report of the continuation contract (Tasks 1-4), April 1, 1978-March 31, 1980  

DOE Green Energy (OSTI)

Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are now being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)

Not Available

1980-06-30T23:59:59.000Z

106

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

107

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 5, October 1, 1980-December 31, 1980  

DOE Green Energy (OSTI)

The overall objective of this program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneratin power plants. During this quarter, activity continued in all four task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas.

Not Available

1980-01-01T23:59:59.000Z

108

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 9, October 1, 1981-December 31, 1981  

DOE Green Energy (OSTI)

The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, activity continued in three of the four task areas: Task 2-cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - development of the capability to operate stacks on coal-derived gas. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

109

Thin film battery/fuel cell power generating system. Sixth quarterly report, July-September 1977. [LaMgCrAlO/sub 3/  

DOE Green Energy (OSTI)

The purpose of this research program is the demonstration of the technical feasibility of a high-temperature, solid-electrolyte fuel cell, building on the presently-existing technological base. The bulk of the work consists of identifying and selecting candidate component materials, fabricating cells and cell stacks from these materials, and testing these cells and cell stacks under conditions which might be expected in operation. The major emphasis is on the invention and fabrication of an interconnection film, which has the following properties at 1000/sup 0/C, the proposed temperature of stack operation: (1) chemical stability in air and fuel gas; (2) electronic resistivity in the working environment of less than 50 ohm-cm; (3) thermal expansion characteristics compatible with other components; and (4) non-reactivity with adjoining components. Emphasis is also being placed on the fabrication of porous support tubes of calcia-stabilized zirconia, to the desired specifications of tensile strength, porosity, surface finish, and purity. Concurrently, tubes will be prepared in-house and also will be purchased from commercial suppliers and evaluated for compliance with the following specifications: (1) tensile strength of 5000 to 10,000 psi; (2) open porosity of 25 to 30 volume percent; and (3) no surface pore greater than 10 ..mu..m in diameter. Progress is reported. (WHK)

Not Available

1977-10-07T23:59:59.000Z

110

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

111

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVII-1 XVII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama V.F.5 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 V.F.5 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 Arizona VI.3 Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-17 Arkansas XII.4 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .

112

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

113

Hoisting & Rigging Lift Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Authorized Personnel (attach more sheets if necessary) Printed name Signature Date SSRL Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005...

114

Catwalk grate lifting tool  

DOE Patents (OSTI)

A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

Gunter, L.W.

1992-08-11T23:59:59.000Z

115

Catwalk grate lifting tool  

DOE Patents (OSTI)

A device for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate.

Gunter, Larry W. (615 Sandpit Rd., Leesville, SC 29070)

1992-01-01T23:59:59.000Z

116

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights from U.S. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects specialty vehicle applications (i.e., lift trucks). This fund- ing has supported the deployment of over 1,000 fuel cell systems. These efforts are accelerating the potential of fuel cells to provide power in stationary, portable, and specialty vehicle applications; and to cut carbon emissions, create jobs, and broaden our nation's clean energy technology portfolio. Recovery Act and Market Transformation Activities DOE supported projects have spurred companies to order >3,000 fuel cell powered lift trucks with no DOE funding. Approximately 200 jobs were created or retained as a result of these Recovery Act projects.* *Includes supply chain and other indirect jobs. Recovery.gov reports that

117

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

DOE Green Energy (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

118

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

119

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

120

Handicapped car lifting seat  

E-Print Network (OSTI)

Currently there is a lack of assistance in automobile usage for the older people of our society. In an attempt to combat this problem, this thesis designs and builds a working conceptual model of a handicapped car lifting ...

Schoenmakers, Sean A

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FREIGHT CONTAINER LIFTING STANDARD  

Science Conference Proceedings (OSTI)

This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

POWERS DJ; SCOTT MA; MACKEY TC

2010-01-13T23:59:59.000Z

122

Smart Energy Management of Multiple Full Cell Powered Applications  

DOE Green Energy (OSTI)

In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

Mohammad S. Alam

2007-04-23T23:59:59.000Z

123

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

124

Wind lift generator  

SciTech Connect

A wind lift generator includes a housing structure formed by a pair of spaced apart plates mounted on support structure for pivotal rotation about a vertical axis at the forward end thereof for orienting into the wind, and said plates supporting a plurality of coaxially disposed sprockets arranged to support a pair of spaced apart drive chains in a quadrilateral configuration with lift foils connected and supported between the chains with the quadrilateral chain configuration supporting the chain for an initial lift mode at the forward end of the housing, followed by a direct impact mode extending from the front of the housing upward and backward to the rear of the housing and a negative lift mode extending from the top rear of the housing to the bottom with the vanes returning via a neutral mode to the front of the housing for repeating the lift cycle. A suitable electrical generator is driven from one or more shafts of the assembly driven by the drive chains.

Herman, G. R.; Martin, W. A.

1985-08-20T23:59:59.000Z

125

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

126

Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature  

Science Conference Proceedings (OSTI)

The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

2010-12-15T23:59:59.000Z

127

Systems Analysis Sub-Program Overview - DOE Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Displaced Technology-Related Total 2009 2010 2011 - PRELIMINARY ANALYSIS - Including Backup Power Fuel Cells and Fuel Cell-Powered Forklifts Employment Impacts of ARRA Fuel Cell...

128

Hoisting & Rigging Lift Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoisting & Rigging Lift Plan Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 1 of 3 General Information Lift Plan Document # Plan prepared by: Describe the load or items to be lifted: Could the load, if dropped, release hazardous materials or radioactivity? No Yes (describe) Is the load irreplaceable or would it be very costly to replace if damaged? No Yes (describe) Brief description of lift activities (specify if rolling or flipping involved) Equipment Information Equipment ID: Equipment custodian: Rated capacity: Operator capacity : Personnel Protective Equipment (PPE) Steel-toed shoes Required for all personnel involved with lift activity to protect from crushing of feet/toes

129

APPROXIMATE CONE FACTORIZATIONS AND LIFTS OF ...  

E-Print Network (OSTI)

a lift or extended formulation of C . The standard way to express such a lift is as ... this lift is highly non-robust, and small perturbations of A make the right hand.

130

Gas Cylinder Lifting at the NCNR  

Science Conference Proceedings (OSTI)

... Gas Cylinder Lifting at the NCNR. ... We have recently made a gas cylinder lifting cage so that this transfer can be done in a safe manner. ...

131

Manufacturing R&D of PEM Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

established industry. Engaging the power conditioner industry into transportation fuel cell applications is a pathway for advancing fuel cell power conditioning. System Controls...

132

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

133

Mist lift analysis summary report  

DOE Green Energy (OSTI)

The mist flow open-cycle OTEC concept proposed by S.L. Ridgway has much promise, but the fluid mechanics of the mist flow are not well understood. The creation of the mist and the possibility of droplet growth leading to rainout (when the vapor can no longer support the mist) are particularly troublesome. This report summarizes preliminary results of a numerical analysis initiated at SERI in FY79 to study the mist-lift process. The analysis emphasizes the mass transfer and fluid mechanics of the steady-state mist flow and is based on one-dimensional models of the mist flow developed for SERI by Graham Wallis. One of Wallis's models describes a mist composed of a single size of drops and another considers several drop sizes. The latter model, further developed at SERI, considers a changing spectrum of discrete drop sizes and incorporates the mathematics describing collisions and growth of the droplets by coalescence. The analysis results show that under conditions leading to maximum lift in the single-drop-size model, the multigroup model predicts significantly reduced lift because of the growth of droplets by coalescence. The predicted lift height is sensitive to variations in the mass flow rate and inlet pressure. Inclusion of a coasting section, in which the drops would rise ballistically without change in temperature, may lead to increased lift within the existing range of operation.

Davenport, R.L.

1980-09-01T23:59:59.000Z

134

How plunger lift affects production  

SciTech Connect

Plunger lift is finding an increasing marketplace for application in the US. The system is advantageous in many circumstances because of low inital cost, little maintenance, and because it generally requires no external energy source. Typical applications for plunger lift are removal of liquids from a gas well, high-ratio oil well production, paraffin and hydrate control, and increased efficiency of intermittent gas lift wells. Main advantage of using a plunger to produce a well is economics. An industry-wide average installation will cost $3500 plus some service, which depends on the company furnishing the equipment. Compare this to a pumping unit to do the same job ($28,000) or a small compressor ($32,000). Also, there is no power consumption such as electricity (high initial cost to run to the lease) or gas consumed (at $2.40/mcf). All the energy is furnished by the well, including instrument gas.

Beauregard, E.M.; Ferguson, P.L.

1981-07-01T23:59:59.000Z

135

A fuel cell overview  

SciTech Connect

This paper is an overview of the fuel cell as an efficient and environmentally benign energy conversion technology. The topics of the paper include their physical arrangement, types of fuel cells, status of commercial development, applications of the fuel cell power plants and comparison with existing alternatives, and good design practice for fuel cell safety.

Krumpelt, M. [Argonne National Lab., IL (United States); Reiser, C.

1994-10-01T23:59:59.000Z

136

The Lidars in Flat Terrain (LIFT) Experiment  

Science Conference Proceedings (OSTI)

The authors describe and present early results from the July_August 1996 Lidars in Flat Terrain (LIFT) experiment. LIFT was a boundary layer experiment that made use of recently developed Doppler, aerosol backscatter, and ozone lidars, along with ...

Stephen A. Cohn; Shane D. Mayor; Christian J. Grund; Tammy M. Weckwerth; Christoph Senff

1998-07-01T23:59:59.000Z

137

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

climate control and electrical power necessary in order to°C (°F) Table 5 – Stock Heating Performance Electrical PowerThe electrical power needed for an APU system can be broken

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

138

Water rocket - Electrolysis propulsion and fuel cell power  

DOE Green Energy (OSTI)

Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H

1999-07-24T23:59:59.000Z

139

Photo-Activated Low Temperature, Micro Fuel Cell Power Source  

DOE Green Energy (OSTI)

A Key objective of this program is to identify electrodes that will make it possible to significantly reduce the operating temperature of micro-SOFC and thin film-based SOFCs. Towards this end, efforts are directed towards: (a) identifying the key rate limiting steps which limit presently utilized electrodes from performing at reduced temperatures, as well as, (b) investigating the use of optical, as opposed to thermal energy, as a means for photocatalyzing electrode reactions and enabling reduced operating temperatures. During Phase I, the following objectives were achieved: (a) assembly and testing of our unique Microprobe Thin Film Characterization System; (b) fabrication of the model cathode materials system in thin film form by both PLD and ink jet printing; and (c) the successful configuration and testing of the model materials as cathodes in electrochemical cells. A further key objective (d) to test the potential of illumination in enhancing electrode performance was also achieved.

Harry L. Tuller

2007-03-30T23:59:59.000Z

140

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen Storage Materials for Fuel Cell-Powered Vehicles - DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

to design suitable methods using MgH 2 as a model system. These methods included: Synthesis of new materials by mechanical alloying using * ball milling. Determining...

142

Lifting hydro's potential  

Science Conference Proceedings (OSTI)

Electric utilities are taking another look at potential sites for hydroelectric installations, reevaluating sites that had been uneconomic to develop and those that can be renovated or expanded. Both large- and small-scale facilities now offer the advantages of free fuel, no air or thermal pollution, and no waste - making hydro an attractive way to increase utility capacity. The Electric Power Research Institute (EPRI) is participating in screening studies which evaluate the unique characteristics of specific sites and recommend technical improvements for better water control and a higher output. Pumped-hydro facilities are increasing, with new attention going to underground storage as new aboveground sites become harder to find. The institutional hurdles of licensing and regulation, interference with recreational and shoreline activities, down-stream water temperature changes, fish migration, and insurance are often in conflict. EPRI's screening program includes a simplified cost/benefit analysis and a site characterization, which utilities can use for their evaluation. Future research will explore a new financing arrangement that will lower front-end costs. (DCK)

Lihach, N.; Ferreira, A.

1980-12-01T23:59:59.000Z

143

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. ” 8th Annual

Williams, Brett D

2010-01-01T23:59:59.000Z

144

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D

2007-01-01T23:59:59.000Z

145

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

146

Hydrodynamic lift on bound vesicles  

E-Print Network (OSTI)

Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.

Udo Seifert

1999-01-12T23:59:59.000Z

147

Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays  

DOE Green Energy (OSTI)

The effects of injection pressure and orifice diameter on the lift-off length of a direct-injection (DI) diesel spray (defined as the farthest upstream location of high temperature combustion) were investigated using a natural light emission imaging technique. The lift-off length experiments were conducted in a constant-volume combustion vessel under quiescent, heavy-duty DI diesel engine conditions using a Phillips research grade No.2 diesel fuel. The results show that natural light emission at 310 nm provides an excellent marker of the lift-off length. At this location, natural light emission at 310 nm is dominated by OH chemiluminescence generated by high-temperature combustion chemistry. Lift-off lengths determined from images of natural light emission at 310 nm show that as either injection pressure (i.e., injection velocity) or orifice diameter increase, the lift-off length increases. The observed lift-off length increase was linearly dependent on injection velocity, the same dependency as previously noted for gas jets. The lift-off length increase with increasing orifice diameter, however, is different than the independence of lift-off length on orifice diameter noted for gas jets An important overall observation was made by considering the lift-off length data in conjunction with data from recent investigations of liquid-phase fuel penetration and spray development. The combined data suggests that a systematic evolution of the relationship and interaction between various processes in a DI diesel spray has been occurring over time, as injection pressures have been increased and orifice diameters reduced as part of efforts to meet emissions regulations. The trends observed may eventually help explain effects of parameters such as injection pressure and orifice diameter on emissions.

D. L. Siebers; B. S. Higgins

2000-07-01T23:59:59.000Z

148

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSFORMATION TRANSFORMATION 442 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Market Transformation Summary of Annual Merit Review of the Market Transformation Program Summary of Reviewer Comments on the Market Transformation Program: The purpose of the Market Transformation program is to spur market growth for domestically produced hydrogen and fuel cell systems. By supporting increased sales in key early markets, this program helps to identify and overcome non-technical barriers to commercial deployment and to reduce the life cycle costs of fuel cell power by helping to achieve economies of scale. The current focus of the Market Transformation program is to build on past successes in lift truck and emergency backup power applications (part of the U.S. Department of Energy's [DOE's]

149

Two Row Mixed Integer Cuts Via Lifting?  

E-Print Network (OSTI)

Jun 22, 2008 ... the two-row mixed integer infinite-group problem), and to develop lifting ..... The next lemma analyzes the standard triangles with each side ...

150

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

151

DOE Hydrogen and Fuel Cells Program: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search help Home > Hydrogen Storage Printable Version Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power...

152

Gas lift systems make ideal offshore workers  

Science Conference Proceedings (OSTI)

With a low initial installation cost and small footprint, gas lift systems are well suited for offshore installations where compressed gas is usually already available. These systems are used on multiple and slimhole completions and handle sandy conditions well. They are also used to kick off wells that will flow naturally once the heavier completion fluids leave the production string. Gas lift itself is a mature workaday technology. Measurement and control of gas flow is an area of intense development in gas lift technology. One new control method involves production of multiple completions through a single wellbore. Typically, gas lift valves are opened and closed through tubing pressure. But downhole measurement technology does not yet yield information good enough for stable gas lift control of multiple completions. Gas lift is proving to be a useful AL technique in conjunction with electric submersible pumps (ESP). Located above the ESP pump, the gas lift can reduce the head and allow greater flow. This is helpful when small casing restricts the size of the downhole ESP pump. Wells can usually be produced by the gas lift alone in case of ESP failure, or by replacing the ESP where schedules, high repair costs or low prices rule out repair.

NONE

1999-05-01T23:59:59.000Z

153

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

154

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

155

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

156

Free market to be tested: Alaska oil export ban to be lifted  

Science Conference Proceedings (OSTI)

This article featurers a discussion of the effects of the lifting of the ban on Alaskan North Slope crude oil exports. This discussion centers on a report by the US DOE analyzing the impact of removing the crude oil export ban and takes issue with some of the findings in the report. It was concluded that the lifting of the ban will result in a rise in crude oil prices and a subsequent rise in prices to the end user. Also included in this article is refining netback data as of December 8th for the US Gulf Coast, US West Coast, Singapore, and Rotterdam. Eastern hemisphere fuel prices are also included.

NONE

1995-12-21T23:59:59.000Z

157

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

Fuel Cell Technologies Publication and Product Library (EERE)

This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

158

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

DOE Green Energy (OSTI)

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

Remick, R.; Wheeler, D.

2010-09-01T23:59:59.000Z

159

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

160

NREL: News Feature - NREL Drives Toward the Future with Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Drives Toward the Future with Fuel Cell EVs June 21, 2013 A hydrogen fuel cell powered Toyota sport utility vehicle emblazoned with an NREL logo drives past a building on the NREL...

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Molten carbonate fuel cell programs in the United States  

DOE Green Energy (OSTI)

The environmental, performance, and economic aspects of molten carbonate fuel cell power plants are discussed. Design, components, and operation of molten carbonate fuel cells are discussed, and US research is outlined. (WHK)

Ackerman, J.P.

1980-01-01T23:59:59.000Z

162

Gas lift utilizing a liquefiable gas introduced into a well  

SciTech Connect

A gas lift method is disclosed for lifting a well fluid from a well, the method comprising feeding liquid lifting medium into a first well conduit of the well to maintain a liquid column of liquid lifting medium in the first well conduit to provide a significant liquid column pressure at the downhole region of the well for lifting medium to pass into a second well conduit to mix with well fluid therein and cause lifting of well fluid in the second well conduit.

Kalina, A.

1983-08-09T23:59:59.000Z

163

Requirements for boom lift operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift  

NLE Websites -- All DOE Office Websites (Extended Search)

Fall Protection Requirements for Boom Lift Fall Protection Requirements for Boom Lift 2010 Requirements for boom lift operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift. While operating a JLG Aerial lift. LBNL best practices requirements for boom lift Operations is to tether an adjustable 6' lanyard to 3ft while operating a boom lift. January 14, 2009 OSHA Letter # 20070823-7896 - Whether a manufacturer stipulated minimum anchor point elevation of 18½ feet precludes the use of a shock absorbing lanyard in an aerial lift. (See attached Letter) An adjustable 6' lanyard to 3ft will keep the operator from protected from being ejected out of the lift. If a non-adjustable 6ft lanyard is used for fall restraint it is required that fall distance from the anchor point must be at a height not under

164

DOE Hydrogen and Fuel Cells Program: DOE Fuel Cell Power Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen production, lowering fossil energy use and greenhouse gas emissions, reducing electricity transmission congestion, lowering capital investment risk, and providing...

165

Apparatus for inspecting fuel elements  

SciTech Connect

Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

Oakley, David J. (Richland, WA); Groves, Oliver J. (Seattle, WA); Kaiser, Bruce J. (Wilmington, NC)

1986-01-01T23:59:59.000Z

166

Apparatus for inspecting fuel elements  

DOE Patents (OSTI)

This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

1984-12-21T23:59:59.000Z

167

Design and Performance Validation of a Fuel Cell Unmanned  

E-Print Network (OSTI)

This paper describes methods for design of an unmanned aerial vehicle which uses a proton exchange membrane fuel cell as its primary powerplant. The proposed design methods involve the development of empirical and physics-based contributing analyses to model the performance of the aircraft subsystems. The contributing analyses are collected into a design structure matrix which is used to map aircraft performance metrics as a function of design variables over a defined design space. An exhaustive search within the design space is performed to identify optimal design configurations and to characterize trends within the design space so as to inform lower-level design decisions. The results of the design process are used to construct a demonstration fuel cell-powered aircraft. Test results from the demonstration aircraft and its subsystems are compared to predicted results to validate the contributing analyses and improve their accuracy in further design iterations. Nomenclature A = Metal hydride tank area AR = Aspect ratio CL CMH = Lift coefficient (Referenced to the planform wing area) = Specific heat capacity of metal hydride, 419 J/kg o C dtank h = Diameter of metal hydride tank, m

Blake A. Moffitt; Thomas H. Bradley; David E. Parekh; Dimitri Mavris

2006-01-01T23:59:59.000Z

168

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

Mike Walneuski

2004-09-16T23:59:59.000Z

169

Design of a Thermally-Actuated Gas Lift Safety Valve  

E-Print Network (OSTI)

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valve assemblies (GLV). One failure mode occurs when the GLV check valve fails and product passes into the well annulus, potentially reaching ...

Gilbertson, Eric W.

170

Failure Mode and Sensitivity Analysis of Gas Lift Valves  

E-Print Network (OSTI)

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

Gilbertson, Eric W.

171

Design of an electronically-actuated gas lift safety valve  

E-Print Network (OSTI)

Gas lift valves are widely used in oil production fields to pump recycled gas and nitrogen into the production tubing, to sustain production by aerating the oil and lifting it to the ground or sea surface. Today's industry ...

Yu, Changkuan, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

172

Santa Clara 2MW Fuel Cell Demonstration Power Plant: Interim Acceptance Test Report  

Science Conference Proceedings (OSTI)

Power generation testing of the world's largest carbonate fuel cell power system began in Spring 1996. Lessons learned will enable developers to advance the commercialization of megawatt- scale, carbonate fuel cell systems for distributed generation applications.

1997-02-01T23:59:59.000Z

173

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

174

Bundles with a lift of infinitesimal diffeomorphisms  

E-Print Network (OSTI)

We slightly extend the notion of a natural fibre bundle by requiring diffeomorphisms of the base to lift to automorphisms of the bundle only infinitesimally, i.e. at the level of the Lie algebra of vector fields. Spin structures are natural only in this extended sense. We classify fibre bundles with this property, assuming a finite dimensional structure group. This includes all spin structures, but only some generalised spin structures. This classification links the gauge group G to the topology of space-time.

Bas Janssens

2009-11-18T23:59:59.000Z

175

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular...

176

Fuel Cell Handbook, Fourth Edition  

DOE Green Energy (OSTI)

sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

177

STABILIZATION OF GAS LIFTED WELLS Gisle Otto Eikrem  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS Gisle Otto Eikrem Bjarne Foss Lars Imsland Bin Hu Michael, e-mail: (hubin mgolan)@ipt.ntnu.no Abstract: Increased production from gas lifted oil wells can be achieved by use of feedback control. Without control the well system may have large oscillations

Foss, Bjarne A.

178

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

179

662-E solid waste silo-plug lifting analysis  

SciTech Connect

The Intermediate Level Tritium Vault No. 1, 662-E, Cell No. 1 contains 140 waste silos. Each silo is approximately 25 feet deep, 30 inches in diameter at the top and covered by a reinforced concrete plug. Two No. 4 reinforcing bars project from the top of each plug for lifting. During lifting operations, the 1.5 inch concrete cover over the lifting bars spelled off 16% of the silo plugs. The No. 4 reinforcing bars were also distorted on many of the silo plugs. Thirteen of the plugs have been repaired to date. The existing silo plug lifting bars have a safe working load of 480 pounds per plug, which is less than 1/3 of the dead weight of the silo plug. The safe working load was calculated using the minimum design factor of 3 based on the yield strength or 5 based on the ultimate strength of the material, as per the Savannah River Site Hoisting and Rigging Manual. The existing design calculations were reviewed, and the following items are noted: (1) Adequate concrete cover was not provided over the horizontal portion of the lifting bars. (2) The lifting bars were allowed to yield in bending, which violates the requirements of the Savannah River Site Hoisting and Rigging Manual. (3) The ultimate strain of the lifting bars would be exceeded before the calculated ultimate strength was achieved. Alternative lifting devices are also identified.

Mertz, G.E.

1993-03-01T23:59:59.000Z

180

Sensitivity of Convective Cloud Growth to Mesoscale Lifting: A Numerical Analysis of Mesoscale Convective Triggering  

Science Conference Proceedings (OSTI)

Numerical model simulation of mesoscale lifting of the convective environment indicates that the ability of the environment to develop deep moist convection increases as mesoscale lifting increases. Mesoscale lifting produces increases in modeled ...

David A. Matthews; Bernard A. Silverman

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DUCTED FAN INLET/EXIT AND ROTOR TIP FLOWIMPROVEMENTS FOR VERTICAL LIFT SYSTEMS.  

E-Print Network (OSTI)

??Ducted fan based vertical lift systems are excellent candidates to be in the group of the next generation vertical lift vehicles, with many potential applications… (more)

Akturk, Ali

2010-01-01T23:59:59.000Z

182

Design, integration, and trade-off analyses of gasoline-fueled polymer electrolyte fuel cell systems for transportation.  

DOE Green Energy (OSTI)

Prototype fuel-cell-powered vehicles have recently been demonstrated in Japan, Europe, and North America. Conceptual designs and simulations of fuel-cell-powered vehicles have also been published [1-3]. Many of these simulations include detailed vehicle performance models, but they use relatively simplistic fuel-cell power system models. We have developed a comprehensive model of a polymer electrolyte fuel cell (PEFC) power system for automotive propulsion. This system simulation has been used to design and analyze fuel-cell systems and vehicles with gasoline (or other hydrocarbons) as the on-board fuel. The major objective of this analysis is to examine the influence of design parameters on system efficiency and performance, and component sizes.

Kumar, R.

1998-09-14T23:59:59.000Z

183

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

184

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

Steven A. Gabrielle

2004-12-03T23:59:59.000Z

185

Alternative Fuels at AC Transit  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels at AC Transit Alternative Fuels at AC Transit Speaker(s): Jaimie Levin Date: November 1, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eve Edelson Mr. Levin will discuss AC Transit's range of environmental technology initiatives, including: zero emission fuel cell transit buses; state-of-the-art, high-capacity, hydrogen fueling stations; solar energy systems; and stationary solid oxide fuel cell power generators. AC Transit has the largest fleet of fuel cell buses in the United States, featuring fuel cell systems with more than 10,000 hours of continuous operation without any failures or power degradation. Their fuel cell fleet has logged more than 400,000 miles of service and carried in excess of one million passengers. Come hear what AC Transit has learned, where they're headed,

186

Integrated fuel processor development challenges.  

DOE Green Energy (OSTI)

In the absence of a hydrogen-refueling infrastructure, the success of the fuel cell system in the market will depend on fuel processors to enable the use of available fuels, such as gasoline, natural gas, etc. The fuel processor includes several catalytic reactors, scrubbers to remove chemical species that can poison downstream catalysts or the fuel cell electrocatalyst, and heat exchangers. Most fuel cell power applications seek compact, lightweight hardware with rapid-start and load- following capabilities. Although packaging can partially address the size and volume, balancing the performance parameters while maintaining the fuel conversion (to hydrogen) efficiency requires careful integration of the unit operations and processes. Argonne National Laboratory has developed integrated fuel processors that are compact and light, and that operate efficiently. This paper discusses some of the difficulties encountered in the development process, focusing on the factors/components that constrain performance, and areas that need further research and development.

Ahmed, S.; Pereira, Lee, S. H. D.; Kaun, T.; Krumpelt, M.

2002-01-09T23:59:59.000Z

187

Fuel Cell Seminar, 1992: Program and abstracts  

DOE Green Energy (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

188

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

189

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

and the recaptured regenerative energy are completely offsetincrease of captured regenerative energy, and will slightlythe capture of regenerative braking energy, which will

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

190

Mobility feasibility of fuel cell powered hopping robots for space exploration  

E-Print Network (OSTI)

Small hopping robots have been proposed that offer the potential to greatly increase the reach of unmanned space exploration. Using hopping, bouncing, and rolling, a small spherical robot could access and explore subterranean ...

Kesner, Samuel B. (Samuel Benjamin)

2007-01-01T23:59:59.000Z

191

A Fuel Cell Power Supply for Long Duration Balloon Flights Using Stored Cryogens  

E-Print Network (OSTI)

Office of High Energy and Nuclear Physics, High EnergyOffice of High Energy and Nuclear Physics, High Energy

Green, Michael A.; Manikowski, A.; Noland, G.; Golden, R.L.

1997-01-01T23:59:59.000Z

192

Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems  

DOE Green Energy (OSTI)

Tasks carried out during the reporting period March 2005-August 2005 are summarized. During this reporting period, the primary focus was on tasks leading to the fabrication of a proof-of-concept (POC) unit with HPD5R1 cells. Assembly of the POC unit was completed and the initial operation was started. Optimization of HPD cell design, investigation of scandia doped zirconia and low temperature operation of YSZ electrolyte based cells continued. Development of seal to be used in a ''once-thru'' design or an ''up-down'' design was started. Attachment 1 describes the progress in cell development and Attachments 2 and 3 deal with status of generator and BOP design. Operation of POC is summarized in Attachment 4. Plans for future work are summarized in Attachment 5.

S.D. Vora

2005-09-30T23:59:59.000Z

193

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog New Crystal Structures Lift Fog around Protein Folding New Crystal Structures Lift Fog around Protein Folding Print Wednesday, 25 July 2012 00:00 Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab, Stanford University, and the Massachusetts Institute of Technology has deciphered the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins.

194

Rod Pumping, Gas Well Dewatering and Gas Lift  

NLE Websites -- All DOE Office Websites (Extended Search)

new in artificial new in artificial lift? Production technology Part 1: In this first of two monthly reports, new innovations that improve operations and/or reduced expenses are described in the categories of Beam/ Rod Pumping, Gas Well Dewatering and Gas Lift Ĺť Ĺť JAMES F. LEA, PL Tech LLC; and HERALD W. WINKLER, Texas Tech University It has been another banner year for ar- tificial lift innovations. The offerings have been prolific enough, that we have split this year's report into two halves. This first-half report will cover eight develop- ments in Beam/Rod Pumping, Gas Lift and Gas Well Dewatering. In beam/rod pumping, a "three-in- one" solution is discussed, whereby coiled tubing is not only used as a pumping string, but as a means for the operator to preventively treat the well. Another item

195

Guidelines for Using Synthetic Slings for Lifting and Rigging  

Science Conference Proceedings (OSTI)

"Guidelines for Using Synthetic Slings for Lifting and Rigging" provides nuclear and fossil maintenance personnel with information on the use of synthetic slings. This information will assist personnel in the identification, protection, and inspection of synthetic slings.

2003-02-10T23:59:59.000Z

196

Industrial Lift Truck Battery Charger Demand Response Impact Study  

Science Conference Proceedings (OSTI)

Demand response and load shifting are two common energy management strategies used by lift truck fleet operators to mitigate on-peak energy consumption, reduce electricity costs, and react to electric system emergency curtailment requests. When customers elect to participate in demand response programs, they are contacted and asked to reduce load during power shortage situations. Alternatively, customers may implement longer-term economic load shifting strategies by reducing power to their lift truck bat...

2008-04-03T23:59:59.000Z

197

Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels  

Science Conference Proceedings (OSTI)

Approximately 400 Automated Surface Observing System (ASOS) observations of convective cloud-base heights at 2300 UTC were collected from April through August of 2001. These observations were compared with lifting condensation level (LCL) heights ...

Jeffrey P. Craven; Ryan E. Jewell; Harold E. Brooks

2002-08-01T23:59:59.000Z

198

Fuel cell market applications  

DOE Green Energy (OSTI)

This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

Williams, M.C.

1995-12-31T23:59:59.000Z

199

A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow  

SciTech Connect

Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

Yoo, Chun S [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

200

Onsite fuel cell program-- a status report  

SciTech Connect

The Onsite Fuel Cell Program is designed to produce data for the pioneering of fuel cell use. A fuel cell is an electrochemical device designed to transform the chemical energy of a hydrorich fuel, such as natural gas, into electricity. Under an Energy Service concept, onsite delivery and sale to consumers is promoted. Field test efforts are surveyed--a commercial laundry in Portland, Oregon, for example. Participating utilities in 40 kW cell field tests are mapped out. A project which will define a fuel cell power plant to meet cost requirements is underway.

Flore, V.B.; Cuttica, J.J.

1983-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Status of the US Fuel Cell Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is sponsoring major programs to develop high efficiency fuel cell technologies to produce electric power from natural gas and other hydrogen sources. Fuel cell systems offer attractive potential for future electric power generation and are expected to have worldwide markets. They offer ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product, heat, can be effectively used in cogeneration applications. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available after the turn of the century.

Williams, M.C.

1996-04-01T23:59:59.000Z

202

Joint DoD/DOE Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Congress agreed to provide funding to DOD for a competitive, cost- shared, near-term, Climate Change Fuel Cell program. Objectives are to reduce greenhouse gas emissions through the efficient use of fossil fuels, accelerate fuel cell commercialization for US manufacturers, and satisfy DOD goals for the environment, readiness, and economy, through activities which would stimulate end-user applications. Fuel cell power plants with combined capacity between 100 and 3,000 kW are covered.

Hooie, D.T.; Manilla, R.D.

1996-12-31T23:59:59.000Z

203

Structure for common access and support of fuel cell stacks  

DOE Patents (OSTI)

A structure provides common support and access to multiple fuel cells externally mounted thereto. The structure has openings leading to passages defined therein for providing the access. Various other fuel cell power system components are connected at the openings, such as reactant and coolant sources.

Walsh, Michael M. (Fairfield, CT)

2000-01-01T23:59:59.000Z

204

Proceedings of the 1995 SAE alternative fuels conference. P-294  

Science Conference Proceedings (OSTI)

This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

205

Fuel Cell Systems Sensors Air Management Benchmarking Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems F u e l P r o c e s s o r Sensors Air Management Benchmarking Modeling Patrick Davis Patrick Davis Targets and Status 50 kWe (net) Integrated Fuel Cell Power System 5000 2000 1000 Hours Durability 45 125 275 $/kW Cost (including H2 storage) 650 500 400 W/L Power density (w/o H2 stor) Operating on direct hydrogen 5000 2000 1000 Hours Durability 45 125 325 $/kW Cost 325 250 140 W/L Power density Operating on Tier 2 gasoline containing 30 ppm sulfur, average 2010 2005 2003 status Units Characteristics Projects Fuel Cell Power Systems Analysis ANL NREL TIAX Directed Technologies, Inc. TIAX TIAX * Fuel Cell Systems Analysis * Fuel Cell Vehicle Systems Analysis * Cost Analyses of Fuel Cell Stacks/ Systems * DFMA Cost Estimates of Fuel Cell/ Reformer Systems at Low, Medium, & High Production Rates * Assessment of Fuel Cell Auxiliary

206

Fuel cells for the '90s  

SciTech Connect

Nontraditional power plants may be needed to help utilities meet the need for additional generating capacity in the late 1980s. Fuel cell power plants can be built in small factory-assembled modules and installed in just 2 or 3 years. Because the fuel cell converts fuel-oil, gas, even coal distillates and other synthetic fuels-directly to electricity without combustion, it has almost no sulfur and nitrogen oxide emissions. With no harmful emissions, fuel cells can be sited in populated areas. And because there is no combustion cycle to waste much of the fuel's energy, fuel cells have potentially higher efficiencies than thermal power plants. As a result of 12 years of intensive development by EPRI, DOE, utilities, manufacturers, and a fuel cell users group, the fuel cell technology will be ready when it is needed.

Lihach, N.; Fickett, A.; Gillis, E.

1984-09-01T23:59:59.000Z

207

High-Temperature-High-Volume Lifting | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » High-Temperature-High-Volume Lifting Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature-High-Volume Lifting Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

208

Introduction to plunger lift: applications, advantages and limitations  

Science Conference Proceedings (OSTI)

This study discusses the principle of plunger lift and its possible applications. Typical applications are (1) removal of liquids from gas wells, (2) hi-ratio oil well production, (3) paraffin and hydrate control, and (4) increased efficiency of intermittent gas lift wells. Some advantages of this system are low initial cost, very little maintenance, and that there is no external source of energy required in most cases. Limitations such as mechanical conditions, gas and liquid volumes and depths also are discussed. There is a brief section concerning the various types of equipment available.

Beauregard, E.; Ferguson, P.L.

1981-01-01T23:59:59.000Z

209

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

210

The Russian/American fuel cell consortium  

DOE Green Energy (OSTI)

The consortium involves US fuel cell industries and research institutes, Russian institutes and ministries, US national laboratories, GAZPROM (GASPROM?), the Russian natural gas company, etc. Financial resources would be leveraged by matching the technical resources to solve problems in fuel cell power development. The talents of the Russian and US scientists previously engaged in developing nuclear weapons, would be utilized. The consortium (RAFCO) would be operated by a joint committee, DOE, and MINATOM (Russian Federation Ministry of Atomic Energy).

Sylwester, A.; Baker, R. [Sandia National Labs., Albuquerque, NM (United States); Krumpelt, M. [Argonne National Lab., IL (United States)

1996-12-31T23:59:59.000Z

211

Simulated nanoscale peeling process of monolayer graphene sheet: effect of edge structure and lifting position  

Science Conference Proceedings (OSTI)

The nanoscale peeling of the graphene sheet on the graphite surface is numerically studied by molecular mechanics simulation. For center-lifting case, the successive partial peelings of the graphene around the lifting center appear as discrete jumps ...

Naruo Sasaki; Hideaki Okamoto; Shingen Masuda; Kouji Miura; Noriaki Itamura

2010-01-01T23:59:59.000Z

212

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Gisle Otto Eikrem Lars Imsland Bjarne well. Two different controllers are investigated, PI control using the estimated downhole pressure in the well, and nonlinear model based control of the total mass in the system. Both control structures rely

Foss, Bjarne A.

213

A survey of methods for gas-lift optimization  

Science Conference Proceedings (OSTI)

This paper presents a survey of methods and techniques developed for the solution of the continuous gas-lift optimization problem over the last two decades. These range from isolated single-well analysis all the way to real-time multivariate optimization ...

Kashif Rashid, William Bailey, Benoît Couët

2012-01-01T23:59:59.000Z

214

LIFTS OF CONVEX SETS AND CONE FACTORIZATIONS 1 ...  

E-Print Network (OSTI)

Nov 13, 2011 ... When the cones live in a family, our results lead to the definition ..... which would imply that the line through xz and xz would be .... Explicit constructions of the lifts guaranteed in Proposition 2.6 can be found in the work.

215

Heavy-lift contributions to a human mission to Mars  

Science Conference Proceedings (OSTI)

The reference heavy-lift launch vehicle (Ares V) for NASA's Constellation Program served as the Point of Departure for Mars Design Reference Architecture 5.0 (DRA 5.0)1, 2. The Ares V vehicle consists of two 5-segment reusable solid rocket boosters, ...

Tim Monk; Jon Holladay; John Jaap; Keithe Baggett; Robin Pinson; Ian Dux; Jason Hopkins; Chad Brown

2011-03-01T23:59:59.000Z

216

High-Lift Flight Tunnel---Phase II Report  

Science Conference Proceedings (OSTI)

The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This ...

Lofftus David; Lund Thomas; Rote Donald

2000-12-01T23:59:59.000Z

217

Progress in fuel cells for transportation applications  

DOE Green Energy (OSTI)

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

218

Short-term load forecasting using lifting scheme and ARIMA models  

Science Conference Proceedings (OSTI)

Short-term load forecasting is achieved using a lifting scheme and autoregressive integrated moving average (ARIMA) models. The lifting scheme is a general and flexible approach for constructing bi-orthogonal wavelets that are usually in the spatial ... Keywords: Autoregressive integrated moving average model, Back propagation network, Lifting scheme, Multi-revolution analysis, Short-term load forecasting, Wavelet transform

Cheng-Ming Lee; Chia-Nan Ko

2011-05-01T23:59:59.000Z

219

Control structure design for stabilizing unstable gas-lift oil wells  

E-Print Network (OSTI)

Control structure design for stabilizing unstable gas-lift oil wells Esmaeil Jahanshahi, Sigurd valve is the recommended solution to prevent casing-heading instability in gas-lifted oil wells. Focus to be effective to stabilize this system. Keywords: Oil production, two-phase flow, gas-lift, controllability, H

Skogestad, Sigurd

220

Composite element algorithm for the thermal analysis of mass concrete: Simulation of lift joint  

Science Conference Proceedings (OSTI)

Based on the principle of composite element method (CEM), the thermal algorithm for the massive concrete containing lift joint is developed, in which the lift joint segments are embedded within the composite elements. The composite element contains sub-elements ... Keywords: Composite element method, Lift joint, Mass concrete, Temperature field

S. H. Chen; P. F. Su; I. Shahrour

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

NONE

1998-04-01T23:59:59.000Z

222

DIGESTER GAS - FUEL CELL - PROJECT  

DOE Green Energy (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

223

An advanced fuel cell simulator  

E-Print Network (OSTI)

Fuel cell power generation systems provide a clean alternative to the conventional fossil fuel based systems. Fuel cell systems have a high e?ciency and use easily available hydrocarbons like methane. Moreover, since the by-product is water, they have a very low environmental impact. The fuel cell system consists of several subsystems requiring a lot of e?ort from engineers in diverse areas. Fuel cell simulators can provide a convenient and economic alternative for testing the electrical subsystems such as converters and inverters. This thesis proposes a low-cost and an easy-to-use fuel cell simulator using a programmable DC supply along with a control module written in LabVIEW. This simulator reproduces the electrical characteristics of a 5kW solid oxide fuel cell (SOFC) stack under various operating conditions. The experimental results indicate that the proposed simulator closely matches the voltage-current characteristic of the SOFC system under varying load conditions. E?ects of non-electrical parameters like hydrogen ?ow rate are also modeled and these parameters are taken as dynamic inputs from the user. The simulator is customizable through a graphical user interface and allows the user to model other types of fuel cells with the respective voltage-current data. The simulator provides an inexpensive and accurate representation of a solid oxide fuel cell under steady state and transient conditions and can replace an actual fuel cell during testing of power conditioning equipment.

Acharya, Prabha Ramchandra

2004-08-01T23:59:59.000Z

224

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities Activities FUEL CELL TECHNOLOGIES PROGRAM HTAC Meeting Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 17, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Overview - EERE Priorities * FY12 Budget * Examples of Collaboration & Leveraging Activities - Office of Science, DOD, DOT, SBIRs, International - Conferences and Workshops * Analysis Update * Recent HTAC Input & Future Needs Agenda 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov High Impact Innovation Examples of Innovative Applied R&D Developed high surface area nanostructures for fuel cell electrodes that helped increase fuel cell power density and reduce fuel cell system cost by >45%

225

New Crystal Structures Lift Fog around Protein Folding  

NLE Websites -- All DOE Office Websites (Extended Search)

New Crystal Structures Lift Fog around Protein Folding Print New Crystal Structures Lift Fog around Protein Folding Print Nature's proteins set a high bar for nanotechnology. Macromolecules forged from peptide chains of amino acids, these biomolecular nanomachines must first be folded into a dazzling variety of shapes and forms before they can perform the multitude of functions fundamental to life. However, the mechanisms behind the protein-folding process have remained a foggy mystery. Now the fog is lifting: a team of researchers from Berkeley Lab, Stanford University, and the Massachusetts Institute of Technology has deciphered the crystal structure of a critical control element within chaperonin, the protein complex responsible for the correct folding of other proteins. Chaperonins promote the proper folding of newly translated proteins and proteins that have been stress-denatured-meaning they've lost their structure-by encapsulating them inside a protective chamber formed from two rings of molecular complexes stacked back-to-back. There are two classes of chaperonins, group I found in prokaryotes and group II found in eukaryotes and archaea (organisms with no cell membrane or internal membrane-bound organelles). Much of the basic architecture has been evolutionarily preserved (conserved) across these two classes but they do differ in how the protective chamber is opened to accept proteins and closed to fold them. Whereas group I chaperonins require a detachable ring-shaped molecular lid to open and close the chamber, group II chaperonins have a built-in lid.

226

Advanced wind turbine with lift cancelling aileron for shutdown  

DOE Patents (OSTI)

An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

227

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

228

Hydrogen and Fuel Cells Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon resources Source: U.S. DOE, May 2011 Fuel Cell Market Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key Countries: 2008-2010 Fuel cell market continues to grow

229

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

230

Making more efficient fuel cells 08.09.2009 -Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide  

E-Print Network (OSTI)

Making more efficient fuel cells 08.09.2009 - Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste to generate electricity would greatly increase the cell's power output." The pili on the bacteria's surface

Lovley, Derek

231

1 MW Fuel Cell Project: Test and Evaluation of Five 200 kW Phosphoric Acid Fuel Cell Units Configured as a 1 MW Power Plant  

Science Conference Proceedings (OSTI)

Fuel cell technology can play a potentially significant role as a distributed generation resource at customer facilities. This report describes a demonstration of the new technology that is needed for utility management and control of multiple fuel cell power plants at a single location in an assured power application.

2002-07-10T23:59:59.000Z

232

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 December 28, 2009 NREL Experiments Advance Hydrogen-Production Technology Recent experiments mark a significant step forward for the photoelectrochemical hydrogen-production process. December 16, 2009 NREL Spearheads Development of Fuel Cell Power Model The Fuel Cell Power Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. December 11, 2009 Workshop Highlights Near-Term Applications for Renewable Hydrogen Technologies Co-hosted by NREL, the workshop highlighted market-ready hydrogen technologies and a California bill that requires 33% of the hydrogen produced or dispensed in the state to be made from renewable resources. December 8, 2009 Panel Discussion Focuses on Renewable Biogas for Fuel Cells A recent panel discussion at the 2009 Fuel Cell Seminar highlighted the

233

Fuel Cell Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

234

Fuel Cell Vehicle World Survey 2003-Specialty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Specialty Vehicles Specialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower. During the 1960s, Pratt & Whitney delivered the first of an estimated 200 fuel cell auxiliary power units for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cells were invented in the 1960s for Allis Chalmers fuel cell tractor, 1959 military applications and have been used since the 1970s in submarines. Engelhard developed a fuel-cell-powered forklift about 1969. Since fuel cells are modular, scalable, and fuel-flexible, they remain excellent candidates for a wide range of specialty vehicle applications. Fuel cells are currently being demonstrated on land,

235

Fuel Cells - The Reality of a High Technology  

E-Print Network (OSTI)

A fuel cell power plant is an energy conversion device which can continuously transform the chemical energy of natural gas into utility grade electricity and usable heat. The characteristics of high electrical conversion efficiencies (40 to 55%), potentially high fuel utilization efficiencies (>80%), excellent AC power quality, environmental compatibility, modular design, and good reliability are some of the reasons why fuel cells have the potential to be one of the best cogeneration devices available. This paper will emphasize the status of phosphoric acid fuel cell technology focusing in on the field test results to date with small 40 Kilowatt (kW) onsite fuel cell power plants being designed, developed, and field tested principally under the support of the Gas Utility Industry. Over 40 units are being installed by 30 gas and combination utility companies throughout the United States to evaluate the operating experience of onsite fuel cell technology. In addition, the paper will briefly provide the status of a similar project, funded by the electric utility industry, to demonstrate multimegawatt-sized fuel cell power plants. Lastly, the paper will try to bring into focus the status of the more advanced carbonate and solid oxide fuel cell technologies.

Cuttica, J. J.

1984-01-01T23:59:59.000Z

236

Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report  

DOE Green Energy (OSTI)

KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

2011-11-30T23:59:59.000Z

237

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network (OSTI)

in vehicle applications, the determination of the equilibrium temperature and pressure before and after usage the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed FOR THE DENSITY OF HYDROGEN GAS The equilibrium temperature and pressure of the gas before and after usage within

Magee, Joseph W.

238

Biogas and Fuel Cells Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS AND FUEL CELLS WORKSHOP AGENDA BIOGAS AND FUEL CELLS WORKSHOP AGENDA National Renewable Energy Laboratory Research Support Facility, Beaver Creek Conference Room Golden, Colorado June 11-13, 2012 WORKSHOP OBJECTIVES: * Discuss current state-of-the art for biogas and waste-to-energy technologies for fuel cell applications. * Identify key challenges (both technical and non-technical) preventing or delaying the widespread near term deployment of biogas fuel cells projects. * Identify synergies and opportunities for biogas and fuel cell technologies. * Identify and prioritize opportunities to address the challenges, and determine roles and opportunities for both government and industry stakeholders. * Develop strategies for accelerating the use of biogas for stationary fuel cell power and/or

239

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network (OSTI)

In the past, the oil and gas industry has typically used the single gradient system to drill wells offshore. With this system the bottom hole pressure was controlled by a mud column extending from the drilling rig to the bottom of the wellbore. This mud column was used to achieve the required bottom hole pressure. But, as the demand for oil and gas increased, the industry started exploring for oil and gas in deep waters. Because of the narrow margin between the pore and fracture pressures it is somewhat difficult to reach total depth with the single gradient system. This led to the invention of the dual gradient system. In the dual gradient method, heavy density fluid runs from the bottom hole to the mudline and a low density fluid from the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser dilution method). This method of achieving dual gradient drilling was somewhat different from the others, because it does not utilize elaborate equipment and no major changes are made on the existing drilling rigs. In this thesis the technical feasibility of using the liquid lift method over the other methods of achieving dual gradient drilling was determined. A computer program was developed to simulate the wellbore hydraulics under static and dynamic conditions, injection rate and base fluid density required to dilute the riser fluid and finally, u-tubing phenomena. In this thesis we also identified some problems associated with the liquid lift method and recommendations were made on how these problems can be eliminated or reduced. Emphases were placed on the effect of u-tubing, injection rate of base fluid at the bottom of the riser and well control issues facing this system.

Okafor, Ugochukwu Nnamdi

2007-12-01T23:59:59.000Z

240

Evaluation of liquid lift approach to dual gradient  

E-Print Network (OSTI)

In the past, the oil and gas industry has typically used the single gradient system to drill wells offshore. With this system the bottom hole pressure was controlled by a mud column extending from the drilling rig to the bottom of the wellbore. This mud column was used to achieve the required bottom hole pressure. But, as the demand for oil and gas increased, the industry started exploring for oil and gas in deep waters. Because of the narrow margin between the pore and fracture pressures it is somewhat difficult to reach total depth with the single gradient system. This led to the invention of the dual gradient system. In the dual gradient method, heavy density fluid runs from the bottom hole to the mudline and a low density fluid from the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser dilution method). This method of achieving dual gradient drilling was somewhat different from the others, because it does not utilize elaborate equipment and no major changes are made on the existing drilling rigs. In this thesis the technical feasibility of using the liquid lift method over the other methods of achieving dual gradient drilling was determined. A computer program was developed to simulate the wellbore hydraulics under static and dynamic conditions, injection rate and base fluid density required to dilute the riser fluid and finally, u-tubing phenomena. In this thesis we also identified some problems associated with the liquid lift method and recommendations were made on how these problems can be eliminated or reduced. Emphases were placed on the effect of u-tubing, injection rate of base fluid at the bottom of the riser and well control issues facing this system.

Okafor, Ugochukwu Nnamdi

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Business Case for Fast Charging of Industrial Lift Truck Fleets: Life Cycle Cost Model  

Science Conference Proceedings (OSTI)

In industrial settings, up to three battery packs are required per electric industrial lift truck: one in use, another being charged, and a third being cooled. Many industry experts see this as a financial barrier in selling electric over internal combustion (IC) industrial lift trucks. EPRI sponsored this study to provide a thorough evaluation of the economics in support of a business case for fast charging lift truck fleets.

2000-09-18T23:59:59.000Z

242

Fuel Cell Handbook, Fifth Edition  

DOE Green Energy (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

243

Economic efficiency of using solar water lift stations under the conditions of Uzbekistan  

SciTech Connect

It is shown that under certain conditions the best effect of using solar water lift stations is achieved by using installations with a dynamic converter.

Zakhidov, R.A.; Bogdasarov, V.M.

1981-01-01T23:59:59.000Z

244

Component Development - Advanced Fuel Cells for Transportation Applications  

DOE Green Energy (OSTI)

Report summarizes results of second phase of development of Vairex air compressor/expander for automotive fuel cell power systems. Project included optimizing key system performance parameters, as well as reducing number of components and the project cost, size and weight of the air system. Objectives were attained. Advanced prototypes are in commercial test environments.

Butler, William

2000-06-19T23:59:59.000Z

245

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 14, 2010 Hydrogen Bus Lets Lab Visitors Glimpse Future The hydrogen bus uses the same basic technology as a conventional gasoline-powered engine but runs on renewable hydrogen. October 25, 2010 New Report Identifies Ways to Reduce Cost of Fuel Cell Power Plants A new report by the National Renewable Energy Laboratory details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs. October 18, 2010 NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies NREL uses its hydrogen-powered internal combustion engine bus as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. The U.S. Department of Energy funded the lease for the bus to

246

Liquid-fueled SOFC power sources for transportation  

DOE Green Energy (OSTI)

Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

Myles, K.M.; Doshi, R.; Kumar, R.; Krumpelt, M.

1994-11-01T23:59:59.000Z

247

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle  

SciTech Connect

In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

1997-02-01T23:59:59.000Z

248

NREL: Hydrogen and Fuel Cells Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 December 12, 2011 Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles These projects will help lower the costs and increase the performance of hydrogen storage systems by developing innovative materials and advanced tanks for efficient and safe transportation. December 6, 2011 DOE Launches Comprehensive Hydrogen Storage Materials Clearinghouse Free access resource aims to accelerate advanced materials research and development December 2, 2011 Fuel Cell Lift Trucks: A Grocer's Best Friend Working in conjunction with the National Renewable Energy Laboratory, DOE has been analyzing the performance of fuel cell lift trucks at grocery distributors around the country. December 2, 2011 DOE and Partners to Host Webinar December 7: Fuel Cells and

249

Planning a Commercial Fuel Cell Installation  

E-Print Network (OSTI)

Fuel cell power plants represent a unique opportunity for industrial users to combine on-site electricity generation and heat recovery with high efficiencies and no significant environmental releases. Thus in some circumstances, the fuel cell may be the best option for industrial cogeneration in locations with environmental restrictions. Because of the modular nature of fuel cell plants, unit ratings can be easily tailored for specific user needs. Bechtel is currently working with International Fuel Cells on plant design and marketing for the 11 MW PC23 Fuel Cell Power Plant program, now being offered for electric utility applications. The utility industry offers a nearly uniform market large enough to permit recovery of design, commercial development and manufacturing start-up costs for a standardized plant. This paper discusses the features of these plants that will contribute to the high availability needed for industrial applications. The added advantages of powering the fuel cell with the hydrogen-rich feedstocks often available in refinery and chemical plants and operating in a cogeneration mode are presented as further incentives for anticipating development of commercial, units for industrial applications.

Bowden, J. R.; May, G. W.

1986-06-01T23:59:59.000Z

250

A single layer hydrogen silsesquioxane (HSQ) based lift-off process for germanium and platinum  

Science Conference Proceedings (OSTI)

Primarily used as etch mask, single layer hydrogen silsesquioxane has never been investigated for lift-off technique. In this article, we propose a new technique where a single layer of hydrogen silsesquioxane, a negative tone electron beam resist, is ... Keywords: Electron beam lithography, Germanium deposition, Hydrogen silsesquioxane (HSQ), Lift-off technique, Platinum deposition, Tetramethylammonium hydroxide (TMAH)

Vikram Passi; Aurelie Lecestre; Christophe Krzeminski; Guilhem Larrieu; Emmanuel Dubois; Jean-Pierre Raskin

2010-10-01T23:59:59.000Z

251

LIFTING BEAM DESIGN/ANALYSIS FOR THE DATA ACQUISITION AND CONTROL SYSTEM TRAILER  

SciTech Connect

This supporting document details calculations completed to properly design an adjustable lifting beam. The main use of the lifting beam is to hoist the Data Acquisition and Controls Systems (DACS) trailer over a steam line. All design work was completed using the American Institute of Steel Construction, Manual of Steel Construction (AISC, 1989) and Hanford Hoisting and Rigging Manual (WHC, 1992).

MACKEY TC; BENEGAS TR

1993-03-15T23:59:59.000Z

252

Bottom/Side Lift Gantry Conceptual Design Rev. 01  

SciTech Connect

The purpose of this task is to update the existing bottom/side lift gantry analysis so that the design is consistent with Enhanced Design Alternative II (EDA II) design constraints listed in the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999a, Section 2.2.1.1, p. 9a). This update is consistent with the requirements of the Technical Guidance Document for License Application Preparation (YMP 1999, Section 6.2.5.1). This update will also take into account the latest available equipment classification and Waste Emplacement/Retrieval System Description Document (SDD) (CRWMS M and O 2000c) requirements. The principal objective of this analysis is to verify that the newly developed bottom/side lift gantry concept continues to be a suitable design concept for the current Monitored Geologic Repository (MGR) design. This analysis includes an examination of the waste package (WP) transfer operation at the emplacement drift transfer dock. In addition, this analysis verifies that the gantry is compatible with the WP transporter, which has been redesigned to handle WPs sitting on pallets (CRWMS M and O 2000a). The scope of this work is to examine the existing analysis and to determine what, if any, modifications to the analysis may be required as a result of additional requirements imposed by the EDA II concept. Then, a revision will be made to the conceptual design accordingly. The analysis will also be revised to show the approximate sizes and locations of the electrical equipment and control cabinets, and to take into account the weight of that equipment in the total gantry weight. The analytical portions of the analysis are revised, as required, to address changes resulting from modifications to the conceptual design or from changes in classification and/or SDD requirements. Finally, the revised conceptual design is evaluated to verify that it continues to be a suitable method for handling the WPs within the emplacement drift. Except as noted, the scope of this work does not include any new analytical investigations or any detailed studies regarding the mechanical or electrical subsystems of the gantry beyond those in Revision 00 of this analysis. This analysis has been prepared in accordance with the requirements set forth in Bottom/Side Lift Gantry Analysis (CRWMS M and O 1999b). This analysis supports the MGR design that will be presented as part of the Site Recommendation.

Bair, P.S.

2000-04-11T23:59:59.000Z

253

Fuel Cells for Portable Power Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Portable Power Fuel Cells for Portable Power JoAnn Milliken Office of Transportation Technologies Office of Energy Efficiency and Renewable Energy U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 202-586-2480 JoAnn.Milliken@ee.doe.gov January 15-17, 2002 Phoenix, AZ Presentation Outline * Why are we here? * DOE Transportation Fuel Cell Program * Workshop Objectives * Guidelines for Workshop Product * What have past DOE workshops achieved? Why are we here? Goal 300 10,000 Cost in $/kW 50kW system Today's low volume cost (1 unit) 2002 2010 Gasoline System Cost 50 Today's high volume cost (500,000 units) 1990 3,000 Government: Cost - the primary barrier to commercialization of PEMFCs for automobiles Industry: Business plans include fuel cells or fuel cell powered products

254

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

255

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

256

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

257

Feasibility study of long-life micro fuel cell power supply for sensor networks for space and terrestrial applications  

E-Print Network (OSTI)

Sensor networks used for activities like border security, search and rescue, planetary exploration, commonly operate in harsh environments for long durations, where human supervision is minimal. A major challenge confronting ...

Manyapu, Kavya Kamal

2010-01-01T23:59:59.000Z

258

Analysis and Application of Sheppard’s Airflow Model to Predict Mechanical Orographic Lifting and the Occurrence of Mountain Clouds  

Science Conference Proceedings (OSTI)

Mechanically driven orographic lifting is important for air pollution dispersion and weather prediction, but the small dimensions of mountain peaks often prevent numerical weather models from producing detailed forecasts. Mechanical lifting in ...

Jan Kleissl; Richard E. Honrath; Diamantino V. Henriques

2006-10-01T23:59:59.000Z

259

Gas lift valve failure mode analysis and the design of a thermally-actuated positive-locking safety valve  

E-Print Network (OSTI)

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

Gilbertson, Eric (Eric W.)

2010-01-01T23:59:59.000Z

260

The design of a control architecture for a heavy-lift precision manipulator for use in contact with the environment  

E-Print Network (OSTI)

Robotic manipulators can be used to enhance the strength and dexterity of a human user. This thesis considers the design of a controller for a heavy-lift manipulator for lifting and inserting payloads onto aircraft on the ...

Becker, William T. (William Theodore Leroy)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel cell systems multi-year program plan, fiscal years 1995 to 2000  

SciTech Connect

Fuel cell power systems are emerging power generation technologies for the efficient, economical and environmentally acceptable production of electricity. In some applications the by-product heat can also be efficiently used in cogeneration. Fuel cells produce electricity through the electrochemical oxidation of a fuel. They can be operated on a variety of fuels, including natural gas, coal gas, land fill gas and renewable fuels. First market entry units are fueled by natural gas. Fuel cells offer the opportunity for a major new manufacturing industry. System studies have shown that fuel cell power plants can be designed with overall system efficiencies in the 50 to 60 percent range (higher heating value basis) (55 to 65 percent on lower heating value basis). Fuel cell power plants are unique in that they offer high efficiency and low emissions even at part-load and in small sizes. Because of their efficiency, fuel cells will help in reducing CO{sub 2} emissions. Additional benefits are the environmentally desirable operating characteristics offered by fuel cells. Because electricity is produced through an electrochemical reaction rather than by combustion, fuel cells generate very little NO{sub x} and are extremely quiet. This combination of operating characteristics and high efficiency make fuel cells attractive for future electric utility applications. On-site industrial and commercial applications where the by-product heat can be utilized are also attractive. The DOE Office of Fossil Energy, the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI) are cooperatively sponsoring the development of fuel cell systems for applications in the utility, commercial and industrial sectors. Funding of development and demonstration is also provided by fuel cell developers and potential users. This document describes the fuel cell program of the DOE Office of Fossil Energy and its coordination with other fuel cell activities.

NONE

1995-07-01T23:59:59.000Z

262

Tubular solid oxide fuel cell demonstration activities  

DOE Green Energy (OSTI)

This reports on a solid oxide fuel cell demonstration program in which utilities are provided fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units serve to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

Ray, E.R.; Veyo, S.E.

1995-12-31T23:59:59.000Z

263

Field Test and Demonstration of 5-kW Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Fuel cell power systems have very high fuel efficiencies and low environmental emissions. They can be used to serve local end-use loads as distributed generators, thus helping to relieve distribution system constraints. As the cost of new central power generation systems continue to rise, delivered electricity and retail energy rates are also likely to rise, making electricity generated by fuel cell systems potentially as efficient and cost-effective as electricity delivered from large central power stat...

2008-10-09T23:59:59.000Z

264

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

Not Available

1980-02-01T23:59:59.000Z

265

DoD Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

A grant was awarded to PPL EnergyPlus, LLC for two (2) 250kW Molten Carbonate Fuel Cells at Pepperidge Farm, Inc. on 9/30/03. Pepperidge Farm subsequently signed a contract for one 250kW fuel cell. A request was made and granted to apply the award for the second fuel cell to the Sheraton New York Hotel & Towers (see attached email). This report discusses the first year of operation of a fuel cell power plant located at Pepperidge Farm, Inc., Bloomfield, Connecticut and a fuel cell power plant located at Sheraton New York Hotel & Towers, New York, New York. PPL EnergyPlus, LLC installed the plants under a contract with Pepperidge Farm and Starwood Hotels & Resorts Worldwide, Inc. Two DFC 300 fuel cells, manufactured by FuelCell Energy, Inc. of Danbury, CT were selected for the project. The fuel cell located at Pepperidge Farm successfully operated from January 16, 2006 to January 15, 2007. The fuel cell located at Sheraton New York Hotel & Tower successfully operated from May 19, 2005 to May 18, 2006.This report discusses the performance of these plants during these periods.

Steven A. Gabrielle

2007-04-30T23:59:59.000Z

266

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

267

Fuel cell systems program for stationary power, 1996  

SciTech Connect

The mission of the fuel cell systems program of the Department of Energy, Office of Fossil Energy, in partnership with its customers and stakeholders, is to foster the creation of a new domestic fuel cell industry. This industry should be capable of commercialization of new, improved fuel cell power generation systems and thereby provide significant economic and environmental benefits. This program is aligned with the Department of Energy`s core mission (business line) of energy resources. The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. This document describes the fuel cell activities of the DOE Office of Fossil Energy.

1996-07-01T23:59:59.000Z

268

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

269

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

270

Advanced wind turbine with lift-destroying aileron for shutdown  

DOE Patents (OSTI)

An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18T23:59:59.000Z

271

Testing and modeling of compressors for low-lift cooling applications.  

E-Print Network (OSTI)

??In this thesis, an inverter-driven variable speed scroll compressor is tested on a de-superheater test stand to determine its performance in areas of low-lift and… (more)

Willingham, Ryan Alexander

2009-01-01T23:59:59.000Z

272

Analysis of crane and lifting accidents in North America from 2004 to 2010  

E-Print Network (OSTI)

Cranes are the fundamental machinery used during lifting operations, and are crucial to the construction industry. Several key construction processes would be impossible without cranes and the benefits they provide. Cranes ...

King, Ray Addison

2012-01-01T23:59:59.000Z

273

Predictive pre-cooling control for low lift radiant cooling using building thermal mass  

E-Print Network (OSTI)

Low lift cooling systems (LLCS) hold the potential for significant energy savings relative to conventional cooling systems. An LLCS is a cooling system which leverages existing HVAC technologies to provide low energy cooling ...

Gayeski, Nicholas (Nicholas Thomas)

2010-01-01T23:59:59.000Z

274

Designing sustainable heavy lift launch vehicle architectures adaptability, lock-in, and system evolution  

E-Print Network (OSTI)

Long term human space exploration depends on the development of a sustainable heavy lift launch vehicle (HLLV). But what exactly is sustainability in the context of launch systems and how can it addressed in the design ...

Silver, Matthew Robin

2005-01-01T23:59:59.000Z

275

High-precision position control of a heavy-lift manipulator in a dynamic environment  

E-Print Network (OSTI)

This thesis considers the control of a heavy-lift serial manipulator operating on the deck of a large ocean vessel. This application presents a unique challenge for high- precision control because the system must contend ...

Garretson, Justin R. (Justin Richard)

2005-01-01T23:59:59.000Z

276

Solitary lift : redesigning the base and tilter modules to meet customer needs  

E-Print Network (OSTI)

A theoretical investigation towards the redesign of the base and the tilting module of the Solitary Lift prototype improved the machine with a weight reduction of 5.731bs. Besides lighter weight, the other criteria used ...

Vasquez, Elliot B. (Elliot Benjamin), 1982-

2004-01-01T23:59:59.000Z

277

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

278

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

279

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

280

Fuel Cell Technologies Office: High Temperature Membrane Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Membrane Working Group High Temperature Membrane Working Group The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells. Description Technical Targets Meetings Contacts Description Polymer electrolyte membrane (PEM) fuel cells typically operate at temperatures no higher than 60°C-80°C due to structural limitations of the membrane. Operating PEM fuel cell stacks at higher temperatures (120°C for transportation and 150°C for stationary applications), however, would yield significant energy benefits. For example, heat rejection is easier at higher temperatures, which would allow use of smaller heat exchangers in fuel cell power systems. In addition, for reformate fuel cell systems, carbon monoxide (CO) tolerance of the stack is less problematic at higher temperatures, which would reduce the size requirements or possibly eliminate the need for some CO clean-up beds in the fuel processor.

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

282

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

283

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

284

Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report  

DOE Green Energy (OSTI)

This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

Not Available

1994-12-15T23:59:59.000Z

285

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

286

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

287

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

288

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

Chandler, K.; Eudy, L.

2010-01-01T23:59:59.000Z

289

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

290

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

291

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

292

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

293

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

294

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

295

Open Data for Agriculture Offers Lift-Off for Global Food Security |  

NLE Websites -- All DOE Office Websites (Extended Search)

for Agriculture Offers Lift-Off for Global Food Security for Agriculture Offers Lift-Off for Global Food Security Open Data for Agriculture Offers Lift-Off for Global Food Security Submitted by Data.gov Administrator on Mon, 04/29/2013 - 3:54pm Log in to vote 0 Posted by Dr. Catherine Woteki, USDA's Chief Scientist and Under Secretary for Research, Education and Economics, on April 29, 2013 at 2:45 PM. The opening day of the G-8 International Conference on Open Data for Agriculture was action-packed and inspiring. From the moment the doors opened at 7:30 am, the air was punctuated with the sound of languages from across the globe. Scientists, policy makers, and leaders from the non-profit and development community all shared a day of discovery and connection around the unlimited opportunity in open data for agriculture.

296

USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES  

SciTech Connect

The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This paper will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.

Loftin, Bradley [Savannah River National Laboratory; Koenig, Richard [Savannah River National Laboratory

2013-08-08T23:59:59.000Z

297

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011  

DOE Green Energy (OSTI)

This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

Eudy, L.; Chandler, K.; Gikakis, C.

2011-11-01T23:59:59.000Z

298

Low enrichment fuel conversion for Iowa State University  

SciTech Connect

This report discusses the UTR-10 reactor at Iowa State University which went critical on low enriched uranium (LEU) fuel on August 14, 1991. However, subsequent to the criticality experiments the fuel plates started to discolor. In addition, roll pins used to lift the fuel assemblies were discovered to be cracked. It was determined that these problems were due to chemical agents in the primary coolant water. The roll pins were replaced by solid stainless steel pins. The primary coolant was replaced and the reactor is currently in operation. Surveillance specimens will be used to monitor any possible future discoloration. The high enriched fuel (HEU) is being prepared for eventual shipment to a high enriched fuel receiving facility.

Rohach, A.F.

1992-08-01T23:59:59.000Z

299

The existence of a canonical lifting of even Poisson Structures to the Algebra of Densities  

E-Print Network (OSTI)

In this note we construct a canonical lifting of arbitrary Poisson structures on a manifold to its algbera of densities. Using this construction we proceed to classify all extensions of a fixed structure on the original manifold to its algebra of densities. The question is analogous to the problem studied by H.M.Khudaverdian and Th.Voronov for odd Poisson structures and differential operators. Although the questions are similar the results are distinctly marked, namely in the case of even Poisson structures there always exists a lift which is naturally defined. The proof of this result bears a remarkable resemblance to the construction of the Frolicher-Nijenhuis bracket.

A. Biggs

2013-06-07T23:59:59.000Z

300

The Business Case for Fuel Cells 2012: America's Partner in Power  

NLE Websites -- All DOE Office Websites (Extended Search)

The Business Case for Fuel Cells 2012 The Business Case for Fuel Cells 2012 America's Partner in Power The Business Case for Fuel Cells 2012 Fuel Cells 2000 | Page i Authors and Acknowledgements This report was written and compiled by Sandra Curtin, Jennifer Gangi, and Ryan Skukowski of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, D.C. Support was provided by the U.S. Department of Energy's Fuel Cell Technologies Program. About This Report This report profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

302

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

303

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

304

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

305

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

306

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

307

FUEL CELLS IN SHIPPING: HIGHER CAPITAL COSTS AND REDUCED FLEXIBILITY  

E-Print Network (OSTI)

Abstract: The paper discusses some main economic characteristics of fuel cell power production technology applied to shipping. Whenever competitive fuel cell systems enter the market, they are likely to have higher capital costs and lower operating costs than systems based on traditional combustion technology. Implications of the difference are investigated with respect to investment flexibility by the use of a real options model of ship investment, lay-up and scrapping decisions under freight rate uncertainty. A higher capital share of total expected costs can represent a significant opportunity cost in uncertain markets. The paper highlights the significance of accounting properly for value of flexibility prior to investment in new technology.

Sigbjřrn Sřdal

2003-01-01T23:59:59.000Z

308

dc-to-ac power converter for fuel cell system  

SciTech Connect

As the interface between fuel cells and the utility line, a self-commutated inverter is preferred to a line-commutated inverter because of its easy controllability. Using the gate turn off (GTO) thyristors, this inverter can have high efficiency and simple circuit configurations. This paper describes the design features and test results of the dc-to-ac power converter, which is principally composed of four-phase transistor chopper and 12-pulse GTO inverter, for a 50kW experimental fuel cell power system. Furthermore, new GTO inverter which improves the circuit efficiency is presented. Special emphasis is placed on a detailed analysis and evaluation of this GTO inverter.

Kawabata, T.; Asaeda, T.; Hamasaki, Y.; Yutani, T.

1983-10-01T23:59:59.000Z

309

Design of control system for hydraulic lifting platform with jack-up wind-power installation vessel  

Science Conference Proceedings (OSTI)

Jack-up wind-power installation vessel is the most important tool in construction of wind farm. And the control system for hydraulic lifting platform is the key point of jack-up wind-power installation vessel. Therefore the design of the control system ... Keywords: hydraulic control, hydraulic lifting platform, programmable logic controller, wind-power

Xuejin Yang; Dingfang Chen; Mingwang Dong; Taotao Li

2012-11-01T23:59:59.000Z

310

Fuel subassembly leak test chamber for a nuclear reactor  

DOE Patents (OSTI)

A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

Divona, Charles J. (Santa Ana, CA)

1978-04-04T23:59:59.000Z

311

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2004-08-01T23:59:59.000Z

312

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

313

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

314

DOE Hydrogen and Fuel Cells Program: DOE H2A Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Production Delivery Fuel Cell Power Comments Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > DOE H2A Analysis Printable Version DOE H2A Analysis The Hydrogen Analysis (H2A) Project H2A Basic Model Architecture H2A Standard Economic Assumptions H2A Production Analysis H2A Delivery Analysis Fuel Cell Power Analysis The Hydrogen Analysis (H2A) Project Research and programmatic decisions should be informed by sound analysis - not only a comparative analysis of costs, but also of the energy and

315

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

DOE Green Energy (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

316

Molten carbonate fuel cell product design & improvement - 2nd quarter, 1995. Quarterly report, April 1--June 30, 1996  

DOE Green Energy (OSTI)

The primary objective of this project is to establish, by 1998, the commercial readiness of MW-class molten carbonate fuel cell power plants for distributed power generation, cogeneration, and compressor station applications. Tasks include system design and analysis, manufacturing, packaging and assembly, test facility development, and technology development, improvement, and verification.

NONE

1997-05-01T23:59:59.000Z

317

Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996  

DOE Green Energy (OSTI)

The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

NONE

1997-05-01T23:59:59.000Z

318

Temperatures of Air Parcels Lifted from the Surface: Background, Application and Nomograms  

Science Conference Proceedings (OSTI)

When the temperature of a parcel lifted adiabatically from the surface to a given pressure level (SLT) is subtracted from the ambient temperature at that level, the result is the surface index (SLI) for that level. This quantity, for the 500-mb ...

Frederick Sanders

1986-12-01T23:59:59.000Z

319

Spring 2002 ASME/API Gas Lift Workshop, February 5-6, 2002, Houston, Texas.  

E-Print Network (OSTI)

. The use of pressure pulse technology for flow condition analysis in production and injection wells in gas lift wells to identify point(s) of gas injection. Pressure pulse tests and measurements have been. Gas injection changes the fluid and flow properties in the well and in turn, the propagation

Gudmundsson, Jon Steinar

320

Lift-and-project relaxations of AC microgrid distribution system planning  

Science Conference Proceedings (OSTI)

We apply relaxation procedures to polynomial optimization problems that originate in transmission system planning, and obtain new convex formulations for the AC case. The approach is novel because the optimization is efficient but also addresses the ... Keywords: AC power flow, lift-and-project relaxation, linear programming, transmission system planning

Joshua A. Taylor; Franz S. Hover

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electric Lift Truck Fast Charge Demonstration at the Port of Galveston, Texas  

Science Conference Proceedings (OSTI)

A recent review of cargo handling equipment at the Port of Galveston determined that changes needed to be made in order to improve air quality through reduced emissions, while at the same time enhancing efficiencies and realizing cost reductions. This demonstration showed that electric lift trucks using fast charging are a viable way to meet these goals.

2007-07-06T23:59:59.000Z

322

A Study of a Lifting Body as a Space Station Crew Exigency Return Vehicle (CERV)  

Science Conference Proceedings (OSTI)

A lifting body is described for use as a return vehicle for crews from a space station. Reentry trajectories, subsystem weights and performance, and costs are included. The baseline vehicle is sized for a crew of eight. An alternate configuration is ...

MacConochie Ian O.

2000-10-01T23:59:59.000Z

323

Symmetric extension for lifted filter banks and obstructions to reversible implementation  

Science Conference Proceedings (OSTI)

Symmetric pre-extension is a standard approach to boundary handling for finite-length input vectors with linear phase filter banks. It works with both conventional linear implementations and the so-called reversible, or integer-to-integer, implementations ... Keywords: Filter bank, JPEG 2000, Lifting, Reversible, Symmetric extension

Brendt Wohlberg; Christopher M. Brislawn

2008-01-01T23:59:59.000Z

324

Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report  

SciTech Connect

Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

2010-01-31T23:59:59.000Z

325

Testing and modeling of compressors for low-lift cooling applications  

E-Print Network (OSTI)

In this thesis, an inverter-driven variable speed scroll compressor is tested on a de-superheater test stand to determine its performance in areas of low-lift and low compressor speed. The goal is to adapt this test stand ...

Willingham, Ryan Alexander

2009-01-01T23:59:59.000Z

326

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

Science Conference Proceedings (OSTI)

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

327

CASING-HEADING PHENOMENON IN GAS-LIFTED WELL AS A LIMIT CYCLE OF A  

E-Print Network (OSTI)

, France CSTJF, TOTAL Exploration-Production, Pau, France Abstract: Oil well instabilities cause activation to maintain the oil output at a commercial level. In the gas-lift activation technique (Brown). High yield setpoints (low gas and high oil output) lie in an unstable region (Jansen et al., 1999

328

Visualization of Multiple Scalar and Velocity Fields in a Lifted Jet Flame  

Science Conference Proceedings (OSTI)

The stabilization of lifted jet diffusion flames has long been a topic of interest to combustion researchers. The flame and flow morphology, the role of partial premixing, and the effects of large scale structures on the flame can be visualized through ... Keywords: Rayleigh scattering, combustion, flame stabilization, jet diffusion flame, laser diagnostics, laser-induced fluorescence (LIF), particle image velocimetry (PIV)

K. A. Watson; K. M. Lyons; J. M. Donbar; C. D. Carter

2000-08-01T23:59:59.000Z

329

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. In this particular application, the fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. The displacement of oil and coal resulting from the Bergen County Utilities Authority application was determined. A demonstration program based on the selected configuration was prepared to describe the scope of work, organization, schedules, and costs from preliminary design through actual tests and operation. The potential market for nationwide application of the concept was projected, along with the equivalent oil displacement resulting from estimated commercial application.

Not Available

1980-02-01T23:59:59.000Z

330

CX-000611: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

611: Categorical Exclusion Determination 611: Categorical Exclusion Determination CX-000611: Categorical Exclusion Determination Fuel Cell-Powered Lift Truck Fleet Deployment (Topic 7B) - Coca Cola CX(s) Applied: B5.1 Date: 01/14/2010 Location(s): Charlotte, North Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office GENCO Infrastructure Solutions, Inc. has Department of Energy American Recovery and Reinvestment Act funding available to support the construction of a hydrogen fueling storage and dispensing system for fuel cell-powered lift-trucks at Coca Cola Bottling Plant in Charlotte, North Carolina. Funding will be used for the purchase of 40 Plug Power GenDrive Class-1 systems, installation of the units on new lift trucks, installation of the hydrogen fueling infrastructure, and the daily operation of the lift trucks

331

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Shine a Light on the Last Endeavour Space Shuttle Launch Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

332

K Basins floor sludge retrieval system knockout pot basket fuel burn accident  

SciTech Connect

The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

HUNT, J.W.

1998-11-11T23:59:59.000Z

333

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

334

GRID INDEPENDENT FUEL CELL OPERATED SMART HOME  

SciTech Connect

A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

Dr. Mohammad S. Alam

2003-12-07T23:59:59.000Z

335

GRID INDEPENDENT FUEL CELL OPERATED SMART HOME  

DOE Green Energy (OSTI)

A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

Dr. Mohammad S. Alam

2003-12-07T23:59:59.000Z

336

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

337

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

338

Demonstration of a PC 25 Fuel Cell in Russia  

DOE Green Energy (OSTI)

This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three major tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.

John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

2004-09-01T23:59:59.000Z

339

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

340

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOD Shipboard APU Workshop DOE-DOD Shipboard APU Workshop The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office participated in a Shipboard Auxiliary Power Unit (APU) Workshop hosted by the U.S. Department of Defense's (DOD) Office of Naval Research (ONR) on March 29 in Arlington, Virginia. Workshop objectives were to update the Navy, Military Sea Lift, and Maritime communities on the technical status of fuel cell development applicable to shipboard fuel cells, identify key opportunities for power generation systems, and prioritize associated system characteristics needed for transition. The workshop included an open discussion about user needs, limitations of existing design, and prioritization of next steps. Speakers included Precision Combustion Inc., UTC Power, FuelCell Energy, DOE, DOD, and ONR.

342

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

343

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

344

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

345

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

346

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

347

FUEL ASSEMBLY SHAKER TEST SIMULATION  

SciTech Connect

This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

2013-05-30T23:59:59.000Z

348

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

349

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

350

Magnetic moment type of lifting from particle dynamics to Vlasov-Maxwell dynamics  

E-Print Network (OSTI)

Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to transform the noncanonical Poisson bracket and, thus, the field Hamiltonian structure of the Vlasov-Maxwell equation. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.

P. J. Morrison; M. Vittot; Loic de Guillebon

2012-12-12T23:59:59.000Z

351

Higher-lift lower-cost absorption cycles. Phase 1, final report  

SciTech Connect

The purpose of the research was to determine if modified NaOH solutions could be used in absorption heat pumps (AHP) to provide higher heat-pumping lifts from low ambient temperatures than are now possible. The research consisted of performing screening experiments on a great number of modified alkali hydroxide solutions, in order to characterize and bound the properties of boiling-point elevation, solubility limit, and corrosivity as a function of composition. Two preferred compositions were selected for more-detailed characterization: the binary NaOH-KOH and the ternary NaOH-KOH-CsOH. Lifts as high as from 0 to 90C were shown to be possible, which will extend AHP applicability into several important new applications.

Erickson, D.C.; Davidson, W.F.

1985-07-01T23:59:59.000Z

352

Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow  

E-Print Network (OSTI)

The motion of a large, neutrally buoyant, particle, freely advected by a turbulent flow is determined experimentally. We demonstrate that both the translational and angular accelerations exhibit very wide probability distributions, a manifestation of intermittency. The orientation of the angular velocity with respect to the trajectory, as well as the translational acceleration conditioned on the spinning velocity provide evidence of a lift force acting on the particle.

Zimmermann, Robert; Bourgoin, Mickael; Volk, Romain; Pumir, Alain; Pinton, Jean-Francois

2010-01-01T23:59:59.000Z

353

NETL: News Release - Solid Oxide Fuel Cell Reaches One Year of Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2000 January 31, 2000 Solid Oxide Fuel Cell Reaches One Year of Operations Netherlands Test Boosts Confidence for Commercial Introduction by 2004 An experimental all solid-state fuel cell - the possible prototype for a future "combustion-less" power plant - has passed a key milestone in a joint public-private development effort. Schematic Diagram of Tubular Solid Oxide Fuel Cell The Siemens Westinghouse solid oxide fuel cell is a tubular arrangement of concentric ceramic electrodes and a solid-state electrolyte. Siemens-Westinghouse Power Corp., headquartered in Orlando, FL, announced this week that its 100-kilowatt solid oxide fuel cell power system, the world's largest, has completed one year of total operating time, the longest any fuel cell of this type and size has run. The milestone marked

354

Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT Science Arizona Public Service Alternative Fuel Pilot Plant & Hydrogen Internal Combustion Engine Vehicle Testing Alternative Fuel Pilot Plant The Arizona Public Service Alternative Fuel Pilot Plant is a model alternative fuel refueling system, dispensing hydrogen, compressed natural gas (CNG), and hydrogen/ CNG blends (HCNG). The plant is used daily to fuel vehicles operated in Arizona Public Service's fleet. Hydrogen Subsystem The plant's hydrogen system consists of production, compression, storage, and dispensing. The hydrogen produced is suitable for use in fuel cell-powered vehicles, for which the minimum hydrogen purity goal is 99.999%. Hydrogen is produced using an electrolysis process that separates water into hydrogen and oxygen. At present, the hydrogen is

355

A Novel Architecture for Lifting-Based Discrete Wavelet Transform for JPEG2000 Standard suitable for VLSI implementation  

Science Conference Proceedings (OSTI)

This paper presents a novel architecture for the implementationof a 2-D discrete wavelet transform (DWT) forimage compression. The architecture is designed for liftingbased DWT. The advantages of the lifting based DWTand its inverse, IDWT, over the convolution ...

Srikar Movva; Srinivasan S.

2003-01-01T23:59:59.000Z

356

Predictive Capabilities of a One-Dimensional Convective Cloud Model with Forced Lifting and a New Entrainment Formulation  

Science Conference Proceedings (OSTI)

A one-dimensional time-dependent nonhydrostatic convective cloud model, with an entrainment formulation that includes the combined effects of turbulent and organized dynamic processes and forced lifting, is used to improve the forecasting of ...

Mladjen Curi?; Dejan Janc

1993-11-01T23:59:59.000Z

357

Efficient Low-Lift cooling with Radiant Distribution, Thermal Storage and Variable-Speed Chiller Controls  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s Building Technologies Program goal is to develop cost-effective technologies and building practices that will enable the design and construction of net-zero energy buildings by 2025. To support this goal, Pacific Northwest National Laboratory evaluated an integrated technology that through utilization of synergies between emerging heating, ventilation and air conditioning systems can significantly reduce energy consumption in buildings. This set consists of thermal storage, dedicated outdoor air system, radiant heating/cooling with a variable speed low-lift-optimized vapor compression system. The results show that the low-lift cooling system provides significant energy savings in many building types and climates locations. This market represents well over half of the entire U.S. commercial building sector. This analysis shows that significant cooling system efficiency gains can be achieved by integrating low-lift cooling technologies. The cooling energy savings for a standard-performance building range from 37% to 84% and, for a high-performance building, from -9% to 70%.

Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas

2010-05-31T23:59:59.000Z

358

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

359

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

360

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

362

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

363

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

364

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

365

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

366

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

367

Photonic crystal laser lift-off GaN light-emitting diodes Aurlien David,a  

E-Print Network (OSTI)

Photonic crystal laser lift-off GaN light-emitting diodes Aurélien David,a Tetsuo Fujii,b Brendan March 2006 We report on the fabrication and study of laser lift-off GaN-based light-emitting diodes-state lighting. However, as is the case for any light-emitting diode LED , light tends to be trapped in the high

Recanati, Catherine

368

Design considerations for DC-DC converters in fuel cell systems  

E-Print Network (OSTI)

Rapidly rising fossil fuel costs along with increased environmental awareness has encouraged the development of alternative energy sources. Such sources include fuel cells, wind, solar and ocean tide power. Among them, fuel cells have received increased interest in the recent years. This is mainly due to their high efficiency, modularity, and simple construction. However, due to their low output voltage and wide variation from no load to full load, a power electronics converter is required to interface the fuel cell with its loads. This dissertation focuses on developing a set of considerations that will assist designers of the power electronics converter in the design and optimization of the system. These design considerations are obtained analytically and verified experimentally and allow obtaining an efficient and stable fuel cellpower converter system. In addition to the design guidelines this dissertation presents new power converter topologies that do not require the use of transformers to achieve a large voltage gain. Further a new modular fuel cell power converter system that divides the fuel cell stack to optimize power generation is proposed. It is shown by means of mathematical analysis and experimental prototypes that the proposed solutions contribute to the reduction of size and cost of the power converter as well to increase the efficiency of the system.

Palma Fanjul, Leonardo Manuel

2006-12-01T23:59:59.000Z

369

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

DOE Green Energy (OSTI)

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

370

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

371

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

372

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

373

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

374

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

375

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

376

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

377

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

378

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

379

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

380

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

382

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

383

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

384

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC products development has been carried out under a joint public-private effort with DOE being the major contributor. Current funding is primarily under a Cooperative Agreement with DOE.

H. C. Maru; M. Farooque

2003-12-19T23:59:59.000Z

385

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

386

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

H.C. Maru; M. Farooque

2002-02-01T23:59:59.000Z

387

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

388

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

389

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

390

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

391

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

392

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

393

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

394

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

395

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

396

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

397

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

398

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

399

Assessment of a Transportable 200-kW Fuel Cell in Rural Applications: Site 1: Central Georgia EMC/Oglethorpe Power Corporation, Jack son, Georgia  

Science Conference Proceedings (OSTI)

Dispersed generation is particularly attractive to electric cooperatives in rural areas due to low customer densities and sometimes rapid load growth at the end of long lines. EPRI and the National Rural Electric Cooperative Association (NRECA) are cosponsoring a project to demonstrate the use of transportable 200 kW phosphoric acid fuel cell power plants in rural dispersed generation applications. This interim report details the project and describes the first year of operation of a transportable fuel c...

1997-12-30T23:59:59.000Z

400

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

402

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

403

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

404

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

405

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

406

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

DOE Green Energy (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

407

Short communication Electronic circuit model for proton exchange membrane fuel cells ?  

E-Print Network (OSTI)

The proton exchange membrane (PEM) fuel cell is being investigated as an alternate power source for various applications like transportation and emergency power supplies. The paper presents a novel circuit model for a PEM fuel cell that can be used to design and analyze fuel cell power systems. The PSPICE-based model uses bipolar junction transistors (BJTs) and LC elements available in the PSPICE library with some modification. The model includes the phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The static and dynamic characteristics obtained through simulation are compared with experimental results obtained on a commercial fuel cell module. © 2004 Elsevier B.V. All rights reserved.

Dachuan Yu; S. Yuvarajan

2004-01-01T23:59:59.000Z

408

Decision Matrix Screening Tool to Identify the Best Artificial Lift Method for Liquid-loaded Gas Wells  

E-Print Network (OSTI)

Liquid loading is a serious problem in gas wells. Many proven artificial lift methods have been used to alleviate this problem. However, a complete workflow to determine the most suitable artificial lift method for given well conditions does not exist. In 2008, Han Young Park presented his thesis of decision matrix tool using a decision tree technique for data mining that determined the best artificial lift method for liquid loading in gas wells from seven artificial lift methods: plunger lift, gas lift, ESP, PCP, rod pump, jet pump, and piston pump. He determined the technical feasibility and the cost evaluation of these seven techniques. His workflow consisted of three rounds. The first round was the preliminary screening round. By using all input well conditions, the impractical techniques were screened out. In the second round, all the techniques from round one were graded and ranked. In the third round, the economic evaluation was performed by using cost for each artificial lift method and assuming the constant additional gas production per day to determine net present value (NPV) and internal rate of return (IRR). In this thesis, we propose an extended workflow from the Han-Young’s thesis for the decision matrix tool. We added integrated production simulations (reservoir to wellhead) step with commercial software in between the second and third round. We performed simulations of the various artificial lift methods to see the additional gains from each technique. We used the additional gas production resulted from simulation to calculate economic yardsticks (the third round), NPV and IRR. Moreover, we made the decision matrix more complete by adding three more liquid unloading techniques to the decision matrix: velocity string, foam injection, and heated tubing. We have also updated all screening conditions, the technical scores, and the costs for the decision matrix from the previous study using literature reviews, information from the project’s sponsor, information from service company and our own judgment. The aim of the decision matrix is to allow operators to screen quickly and efficiently for the most suitable artificial lift method to solve the liquid loading problem under given well conditions.

Soponsakulkaew, Nitsupon

2010-08-01T23:59:59.000Z

409

Electrolyte paste for molten carbonate fuel cells  

DOE Patents (OSTI)

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

410

Micronized-coal-water slurry sprays from a diesel engine positive displacement fuel injection system  

DOE Green Energy (OSTI)

Experiments have been conducted to characterize the sprays from a modified positive displacement fuel injection system for a diesel engine. Diesel fuel water and three concentrations of micronized-coal-water slurry were used in these experiments. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal slurry fuel from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and still photographs of the sprays were obtained. In addition, instaneous fuel line pressures and needle lifts were obtained. Data were acquired as a function of fluid, nozzle orifice diameter, rack setting and chamber conditions. The high speed movies were used to determine spray penetration and spray growth.

Caton, J.A.; Kihm, K.D.; Seshadri, A.K.; Zicterman, G. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1991-12-31T23:59:59.000Z

411

Precious Metal Recovery from Fuel Cell MEA's  

DOE Green Energy (OSTI)

One of the next-generation power sources is the proton exchange membrane (PEM) fuel cell, which runs on pure hydrogen or hydrogen-rich reformate. At the heart of the PEM fuel cell is a membrane electrode assembly (MEA). The MEA is a laminate composed of electrode layers sandwiched between outer layers, fabricated from either carbon fiber or fabric and which control the diffusion of reactant gases, and the inner polymer mebrane. Hydrogen is oxidized at the anode to form protons, which migrate through the membrane and react with oxygen at the cathode to form water. In this type of fuel cell, platinum catalyzes the reactions at both electrodes. Realization of a future that includes ubiquitous use of hydrogen fuel cell-powered vehicles will be partially contingent on a process for recycling components of the fuel cell membrane electrode assemblies. In aggregate, the platinum used for the fuel cell will represent a large pool of this precious metal, and the efficient recycling of Pt from MEA's will be a cost-enabling factor for success of this technology. Care must be taken in the reclamation process because of the presence of fluoropolymers in the MEA. While Pt is normally recovered with high yield, the combustion process commonly applied to remove an organic matrix will also liberate a large volume of HF, a gas which is both toxic and corrosive. Carbonyl fluoride, which has a recommended exposure limit of 2ppmv, is another undesirable product of fluoroploymer combustion. In 2003, the Department of Energy awarded Engelhard Corporation an 80% cost share grant for a five-year project budgeted at $5.9MM. The principal objective is reclaiming platinum from fuel cell MEA's without producing fluorine-containing emissions. Over the last three years, Engelhard has approached the problem from several directions in balancing the two goals: a commercially-viable recycling process and an environmentally favorable one. Working with both fresh and aged fuel cells, it has been shown that precious metals can be liberated at high yield using microwave assisted acid digestion, but exposure of the gas diffusion electrode surfaces is required. A low-cost solvent-stripping process has been identified for two geometries of fuel cell MEA's: GDL and GDE. This paper will detail progress made in realizing a practical, "green" process for recovery of Pt from PEM fuel cell MEA's

Lawrence Shore

2006-11-16T23:59:59.000Z

412

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2005-03-01T23:59:59.000Z

413

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

414

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

415

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

416

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

417

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

418

The U.S. molten carbonate fuel-cell development and commercialization effort  

SciTech Connect

The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the U.S., including the role of the U.S. Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. They describe major fundamental stack research issues, as well as MCF power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

1994-09-01T23:59:59.000Z

419

The U.S. molten carbonate fuel-cell development and commercialization effort  

SciTech Connect

The authors discuss the status of molten carbonate fuel-cell (MCFC) development in the US, including the role of the US Department of Energy (DOE) in commercializing MCFC power-plant products for use by gas utility and electric power industries. The authors describe major fundamental stack research issues, as well as MCFC power-plant network and system issues, that need to be resolved before MCFC technology can be commercialized. A significant initiative in MCFC research is the spatial configuration of MCFC stacks into networks in a fuel-cell power plant.

Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

1995-03-01T23:59:59.000Z

420

FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

Fortescue, P.; Zumwalt, L.R.

1961-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell-powered lift" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

422

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

423

Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

424

Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

425

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

426

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

427

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

428

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

429

Molten Carbonate Fuel Cell Product Design Improvement  

DOE Green Energy (OSTI)

This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

NONE

1996-03-01T23:59:59.000Z

430

RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS  

SciTech Connect

The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.

J. Gan; B.D. Miller; D.D. Keiser Jr.; A.B. Robinson; J.W. Madden; P.G. Medvedev; D.M. Wachs

2011-10-01T23:59:59.000Z

431

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

432

Assessment of a Transportable 200-kW Fuel Cell in Rural Distributed Generation Applications: Final Report: Georgia, Colorado, Alaska  

Science Conference Proceedings (OSTI)

Distributed generation is particularly attractive to electric cooperatives in rural areas because of their low customer densities and the rapid load growth that often occurs at the end of long radial distribution lines. EPRI and the National Rural Electric Cooperative Association (NRECA) Cooperative Research Network cosponsored this project to demonstrate the use of transportable 200-kW phosphoric acid fuel cell power plants in rural distributed generation applications. This final report details the proj...

2002-07-19T23:59:59.000Z

433

Design of gasifiers to optimize fuel cell systems  

DOE Green Energy (OSTI)

The objective of this program is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. During this quarter the topical report covering Tasks 1, 2, and 3 was submitted. this study evaluates various catalytic gasification/fuel cell power plant configurations. The competitive position of the configurations are assessed in a comparison with present-day as well as emerging alternate coal-based power plant technologies. The work plan for Task 4, Experimental Studies, was also submitted this quarter. This plan outlines the series of tests which will evaluate the feasibility of using the disposable gasification catalysts recommended in Task 3 of this program. (VC)

Not Available

1992-01-01T23:59:59.000Z

434

Adaptive Detached Eddy Simulation of a High-Lift Wing with Active Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. Full span view of the flow past a vertical tail assembly of a commercial aircraft with active flow control at Re=360,000. This picture highlights the root and tip vortex along with the turbulent structures in the wake of a deflected rudder through isosurface of instantaneous Q criterion colored by speed on a locally adapted unstructured finite element mesh with 1.2 billion elements. Michel Rasquin, Argonne National Laboratory Adaptive Detached Eddy Simulation of a High-Lift Wing with Active Flow Control PI Name: Kenneth Jansen PI Email: jansenke@colorado.edu Institution: University of Colorado Allocation Program: INCITE Allocation Hours at ALCF:

435

Lift, drag and flow-field measurements around a small ornithopter  

SciTech Connect

The aerodynamics of a flight-worthy, radio controlled ornithopter is investigated using a combination of Particle-Image Velocimetry (PIV), load cell measurements, and high-speed photography of smoke visualizations. The lift and thrust forces of the ornithopter are measured at various flow speeds, flapping frequencies and angles of attack to characterize the flight performance. These direct force measurements are then compared with forces estimated using control volume analysis on PIV data. High-speed photography of smoke streaks is used to visualize the evolution of leading edge vortices, and to qualitatively infer the effect of wing deformation on the net downwash. Vortical structures in the wake are compared to previous studies on root flapping, and direct measurements of flapping efficiency are used to argue that the current ornithopter operates sub-optimally in converting the input energy into propulsive work.

Balakumar, B J [Los Alamos National Laboratory; Chavez - Alarcon, Ramiro [NMSU; Shu, Fangjun [NMSU

2011-01-12T23:59:59.000Z

436

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

437

CX-000612: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Categorical Exclusion Determination 12: Categorical Exclusion Determination CX-000612: Categorical Exclusion Determination Fuel Cell-Powered Lift Truck Fleet Deployment (Topic 7B) - Wegmans CX(s) Applied: B5.1 Date: 01/14/2010 Location(s): Pottsville, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Golden Field Office GENCO Infrastructure Solutions, Inc. has Department of Energy American Recovery and Reinvestment Act funding available to support the construction of a hydrogen fueling storage and dispensing system for fuel cell-powered lift-trucks at the Wegmans grocery retail service and distribution center in Pottsville, Pennsylvania. Funding will be used for the purchase of 136 Plug Power GenDrive (100 Class-3 systems and 36 Class-2 systems) systems, installation of the units onto lift trucks, installation of the hydrogen

438

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

439

Solid Oxide Fuel Cell (SOFC) Development at Pacific Northwest National Laboratory  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL), in collaboration with government agencies and industries, is actively engaged in the development, testing, and characterization of high efficiency, low cost modular solid oxide fuel cell power generation systems for stationary, automotive and military applications. Advanced SOFC systems are being developed which will offer ease of operation on a variety of gaseous liquid hydrocarbon and coal-derived fuels as well as "zero emissions" capability. SOFC R&D activities at PNNL continue in the areas of cell component materials, electrochemistry, cell design and modeling, high temperature corrosion, and fuel processing. Specific activities include development of optimized materials and cost effective fabrication techniques for high power density anode-supported cells operating at temperatures below 800 degrees C, characterization of processes responsible for high electrical performance and long term performance degradation, optimization and cell and stack designs using computational engineering models, and hydrocarbon fuel processing using micro technology.

Stevenson, Jeffry W.; Baskaran, Suresh; Chick, Lawrence A.; Chou, Y. S.; Deibler, John E.; Khaleel, Mohammad A.; Marina, Olga A.; Meinhardt, Kerry D.; Paxton, Dean M.; Pederson, Larry R.; Recknagle, Kurtis P.; Simner, Steve P.; Sprenkle, Vince L.; Weil, K. Scott; Yang, Z Gary; Singh, Prabhakar; McVay, Gary L.

2003-01-20T23:59:59.000Z