National Library of Energy BETA

Sample records for fuel cell markets

  1. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  2. 2008 FUEL CELL TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

  3. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  4. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  5. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  6. Early Markets: Fuel Cells for Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Markets: Fuel Cells for Backup Power Early Markets: Fuel Cells for Backup Power This fact sheet describes the advantages of using fuel cell technology for application in...

  7. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Markets: Fuel Cells for Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to...

  8. 2010 Fuel Cell Technologies Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    along with policy and market drivers and the future outlook for fuel cells. 2010 Fuel Cell Technologies Market Report More Documents & Publications 2008 Fuel Cell Technologies...

  9. 2010 FUEL CELL TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    2010 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 #12;i Authors This report was a collaborative and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

  10. 2008 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  11. 2008 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    Vincent, B.

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  12. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  13. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  14. Fuel Cells Market Size | OpenEI Community

    Open Energy Info (EERE)

    Fuel Cells Market Size Home John55364's picture Submitted by John55364(100) Contributor 15 May, 2015 - 02:14 Global Fuel Cells Market to Value USD910.3 million by 2018 Fuel Cells...

  15. Connecticut Fuel Cell Activities: Markets, Programs, and Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Markets, Programs, and Models Connecticut Fuel Cell Activities: Markets, Programs, and Models Presented by the Connecticut Center for Advanced Technology, Inc. at the...

  16. 2010 Fuel Cell Technologies Market Report, June 2011

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

  17. Fuel Cells Today: Early Market Applications and Learning Demonstrations

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of early market fuel cell applications including today's commercially available fuel cells and "learning demonstrations" to validate fuel cell technology in real world conditions.

  18. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  19. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  20. 2010 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2011 on trends in the fuel cell industry for 2010 with some comparison to previous years.

  1. 2011 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2012 on trends in the fuel cell industry for 2011 with some comparison to previous years.

  2. 2012 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2013 on trends in the fuel cell industry for 2012 with some comparison to previous years.

  3. 2010 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    none,

    2011-05-01

    This report describes data compiled in 2011 on trends in the fuel cell industry for 2010 with some comparison to previous years.

  4. 2011 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    none,

    2012-07-01

    This report describes data compiled in 2012 on trends in the fuel cell industry for 2011 with some comparison to previous years.

  5. 2012 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    none,

    2013-10-31

    This report describes data compiled in 2013 on trends in the fuel cell industry for 2012 with some comparison to previous years.

  6. Fuel Cell Markets Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: EnergyFrontier PowerMarkets Ltd

  7. Market Transformation: Fuel Cell Early Adoption (Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. fuelcellpre-solicitationwkshopjan08devlin.pdf More Documents & Publications Idaho...

  8. 2007 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007 Annual Peer Review

  9. 2012 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conferenceof EnergyOffice |Department of This report

  10. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere andEVERETTofEagle

  11. 2013 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOEEnergy Los Alamos Site3EnergyFuel

  12. OpenEI Community - Fuel Cells Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  13. 2008 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007 Annual Peer8-1Presentations

  14. 2011 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conferenceof Energy Los AlamosDepartment1 DOE2012 2011

  15. Fuel Cells Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: EnergyFrontier

  16. 2014 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOEEnergy Los Alamos3and4Technologies

  17. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect (OSTI)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  18. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with UstheCellsMarket

  19. 2007 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline...

  20. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Broader source: Energy.gov (indexed) [DOE]

    Download the presentation slides from the Fuel Cell Technologies Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. Fuel Cell Mobile Lighting Webinar Slides...

  1. Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

    2003-01-01

    Progress Report for Hydrogen, Fuel Cells, and Infrastructurewould anyone buy a hydrogen fuel cell vehicle? We addressThus we will shorten “hydrogen fuel cell vehicle” to the

  2. Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales

    Broader source: Energy.gov [DOE]

    The market for fuel cells is growing, exceeding $1.3 billion in worldwide sales during 2013, according to the recently released "Business Case for Fuel Cells" report from the Fuel Cell Technologies Office.

  3. Fuel Cell Project Selected for First Ever Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

  4. Phantom Power: The Status of Fuel Cell Technology Markets 

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    2003-01-01

    Fuel cells have been touted as one of the most reliable and environmentally sound methods of producing high-quality electricity for use in the industrial sector. Fuel cell developers are racing to produce larger quantities of fuel cells at lower...

  5. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  6. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    SciTech Connect (OSTI)

    Mahadevan, K.; Judd, K.; Stone, H.; Zewatsky, J.; Thomas, A.; Mahy, H.; Paul, D.

    2007-04-15

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  7. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Broader source: Energy.gov (indexed) [DOE]

    Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market-continuing America's leadership in clean...

  8. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Broader source: Energy.gov (indexed) [DOE]

    Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean...

  9. U.S. Fuel Cell Market Production and Deployment Continues Strong...

    Broader source: Energy.gov (indexed) [DOE]

    released three new reports on December 19 showcasing strong growth across the U.S. fuel cell and hydrogen technologies market. According to these reports, the United States...

  10. 2014 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1 Webinar20134 Fuel Cell

  11. 2009 Fuel Cell Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy|20082009 ECR9 Fuel Cell

  12. Market Transformation: Fuel Cell Early Adoption (Presentation) | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites |andof Energy at the DOE Fuel Cell

  13. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  14. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  15. Global Fuel Cells Market to Value USD910.3 million by 2018 |...

    Open Energy Info (EERE)

    Global Fuel Cells Market to Value USD910.3 million by 2018 Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 15 May, 2015 - 02:14...

  16. Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-06-01

    This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

  17. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPress Releases EMMarket Applications for Fuel

  18. 2010 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conference Presentations | Department of EnergyFuel2010

  19. 2013 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1 Webinar2013 DOEProgram |3

  20. Connecticut Fuel Cell Activities: Markets, Programs, and Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE1 Connecticut Fuel

  1. Recovery Act Projects Funded for Fuel Cell Market Transformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmental Impact Statement |Department ofDepartment

  2. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor Systems MotorMoveDepartment

  3. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | DepartmentMeeting AgendaReadiness Workshop |

  4. Early Markets: Fuel Cells for Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere andEVERETTofEagleMaterial

  5. 2012 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOE Sustainability Awards 2012

  6. 2007 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy 1Energy 677 Fuel

  7. Connecticut Fuel Cell Activities: Markets, Programs, and Models |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5Energy Works' SuccessOil, and GasWorking

  8. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDF Social Media Energy |of Energy

  9. OpenEI Community - Fuel Cells Market Analysis

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  10. OpenEI Community - Fuel Cells Market Forecast

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  11. OpenEI Community - Fuel Cells Market Size

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  12. OpenEI Community - Fuel Cells Market Trends

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  13. OpenEI Community - Global Fuel Cells Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt.Information OlindaOnslow County,OpTICOpenBarter Jump

  14. 2008 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007 Annual Peer8-1Presentations08

  15. Fuel Cells Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: EnergyFrontier

  16. Fuel Cells Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: EnergyFrontier

  17. Fuel Cells Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: EnergyFrontier

  18. Global Fuel Cells Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlant <SilverChange

  19. 2011 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12SimulationDepartment ofEnergy 1

  20. 2008 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy| Department8Energy8

  1. Early Market Applications for Fuel Cell Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    handling equipment. It features a lifecycle-cost-analysis comparison table. Full Fuel-Cycle Comparison of Forklift Propulsion Systems - This report examines forklift...

  2. Early Markets: Fuel Cells for Backup Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis theEVERETTA N A G E Madvantages of

  3. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ, CA,EnergystudentThis theEVERETTA N A G E Madvantages

  4. DOE Releases 2013 Fuel Cell Technologies Market Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominateEnergy U.S.Safety, Cost Savingsis an

  5. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

  6. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

  7. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

  9. Marketing alternative fueled automobiles

    E-Print Network [OSTI]

    Zheng, Alex (Yi Alexis)

    2011-01-01

    Marketing alternative fueled vehicles is a difficult challenge for automakers. The foundation of the market, the terms of competition, and the customer segments involved are still being defined. But automakers can draw ...

  10. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  11. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National Bank of Omaha...

  12. Hydrogen & Fuel Cells -Program Overview -

    E-Print Network [OSTI]

    Analysis Fuel Cells Solid oxide fuel cell (kW-scale) R&D led to 75% weight reduction and >80% volume,000 35,000 2008 2009 2010 2011 2012P (SystemsShipped) Fuel Cell Systems Shipped by Application, World Research Market Growth Fuel cell markets continue to grow 48% increase in global MWs shipped 62% increase

  13. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  14. Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015 |

  15. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

    2013-01-01

    This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

  16. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.

    2014-06-01

    This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

  17. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The First Five Years FYFuel Cell

  18. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  19. What We've Learned from 2.5 Years of Early Market Fuel Cell Operation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.

    2013-02-01

    This presentation describes the results of NREL technology assessments for two early market full cell applications, backup power and material handling equipment.

  20. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks Market Transformation Fact Sheet DOE Fuel Cell Technologies...

  1. CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT

    E-Print Network [OSTI]

    , natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer a current snapshot of the alternative fuel development and commercial vehicle status. This current update the baseline of alternative fuel development and use in California by identifying vehicles, market niche

  2. Liquid Fuels Market Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved ReservesCubic Feet) Kenai, AK Liquefied Natural2009343Decade Year-0DecadeLiquid

  3. Energy Department Reports: U.S. Fuel Cell Market Production and Deployment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMS MonthlyDepartmentIndustry | Department of Energy

  4. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conference Presentations | Department of

  5. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartmentIdaho

  6. Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere andEVERETTofEagleMaterial--

  7. Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EV Everywhere| Department of Energy

  8. Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus GlobalEfficientDepartment of

  9. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  10. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Reforming for Molten Carbonate Fuel Cells," Berichte derVan Dijkum, "The Molten Carbonate Fuel Cell Programme in thealkaline, molten carbonate, and solid oxide. (Fuel cells

  11. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Environmental Management (EM)

    Plants: Market Opportunities Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Barriers to CHP with Renewable Portfolio Standards,...

  12. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs,Department of Energy The Final 40%: SunShotDepartment of

  13. 2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007 AnnualofRenewable Energy 2009

  14. Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls21,Equipment:PetroleumDepartmentIdahoThis report is a

  15. Secretary Chu Announces $41.9 Million to Spur Growth of Fuel Cell Markets |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTIONEnergyHeavy-Duty Trucks andClean EnergyDepartment

  16. MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department of Energy MA3T Model Application at ORNL

  17. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural Gas |Tool for Used Vehicles |Crowdsourcing

  18. U.S. Fuel Cell Market Production and Deployment Continues Strong Growth |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency|Feed Families"ResearchABU DHABI,toDOE to Work

  19. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind Projects |EnergyAll 50Batteriesits Kind

  20. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 to PADDFuelFuelFuel

  1. (Fuel Cells)(Fuel Cells) William Grove

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    Fuel Cell #12; H2 O2 Power CH4 H2 Toyota H2 H2 #12; H2 ~253 #12; 2. 3. : 1. #12; #12;Fuel Cell #12; (Fuel Cells)(Fuel Cells) 1839 William Grove A H2O2 H2O2 2H; Fuel Cell #12;!! PEMFC DMFC SOFC (60~200) (60~100) (600~1000) #12; Proton

  2. fuel cells

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  3. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  4. Hydrogen & Fuel Cells -Program Overview -

    E-Print Network [OSTI]

    and Peer Evaluation Meeting May 14, 2012 #12;Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Others. For 2008-2011 All Others Germany South Korea Japan United States Fuel Cell Market Overview

  5. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: Brayton cycle, andMARKET

  6. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  7. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. ” 8th Annual

  12. Ceramic Fuel Cells (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Argonne National Laboratory Thursday, August 11, 2011 Ceramic Fuel Cells (SOFC) Manufacturing Fuel Cell Manhattan Project: * Joe Bonadies - Delphi * Rick...

  13. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  14. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's Fuel Cell Technologies Office...

  15. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  16. Early-Stage Market Change and Effects of the Recovery Act Fuel...

    Energy Savers [EERE]

    Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program On April 15, 2009, the U.S....

  17. Early Stage Market Change and Effects of the Recovery Act Fuel...

    Energy Savers [EERE]

    Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program -- 2015 Update Early Stage Market Change and Effects of the Recovery Act Fuel Cell Program -- 2015...

  18. POLYMER ELECTROLYTE FUEL CELLS

    E-Print Network [OSTI]

    Petta, Jason

    POLYMER ELECTROLYTE FUEL CELLS: The Gas Diffusion Layer Johannah Itescu Princeton University PRISM REU #12;PEM FUEL CELLS: A little background information I. What do fuel cells do? Generate electricity through chemical reaction #12;PEM FUEL CELLS: A little background information -+ + eHH 442 2 0244 22 He

  19. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  20. Symbolism and the Adoption of Fuel-Cell Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2007-01-01

    the Future for Hydrogen Fuel Cell Vehicle Markets" in Theof energy to produce the hydrogen fuel? Consumers’ confusionand the cost of hydrogen fuel. The more commonly-proposed

  1. Fuel Cell Technologies Office Launches National Laboratory Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

  2. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Evaluation of Fuel Cell Auxiliary Power Units for Heavy -Solid Oxide Fuel Cell Auxiliary Power Unit – A DevelopmentMarkets for Fuel Cell Auxiliary Power Units in Vehicles: A

  3. Alternative Fuels Market and Policy Trends (Presentation)

    SciTech Connect (OSTI)

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  4. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel CellsCells Fuel

  5. Webinar: Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

  6. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  7. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  8. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  9. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    the cost of automotive polymer electrolyte membrane (PEM) fuel cell systems. DOE Hydrogen and Fuel Cells Program Record 14012 More Documents & Publications DOE Fuel Cell...

  10. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Fuel Cell Seminar and Exposition on October 19, 2010. Hydrogen and Fuel Cell Technologies Update More Documents & Publications DOE Hydrogen and Fuel Cell Overview: 2011...

  11. Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership...

  12. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented...

  13. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Smith, James L. (Lemont, IL)

    1987-01-01

    A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  14. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  15. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  16. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h yFuel Cells

  17. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015ofFuel Cell

  18. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015ofFuel CellStates

  19. FUEL CELLS FOR TRANSPORTATION

    E-Print Network [OSTI]

    for Fuel Cells for Transportation Energy Efficiency and Renewable Energy Office of Transportation............................................................................................. 101 A. R&D of a 50-kW, High-Efficiency, High-Power-Density, CO-Tolerant PEM Fuel Cell Stack SystemFUEL CELLS FOR TRANSPORTATION 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department

  20. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  1. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Membrane Fuel Cells and Electrolyzers," Journal of PowerAdvanced Alkaline Electrolyzer for Solar Operation,"requirements are for electrolyzer feedwater. T h e high-

  2. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  3. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  4. Microcomposite Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  5. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01

    combined market share of diesels and hybrids is likely to beFuture Potential of Hybrid and Diesel Powertrains in the

  6. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01

    combined market share of diesels and hybrids is likely to beFuture Potential of Hybrid and Diesel Powertrains in the

  7. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  8. Webinar: Fuel Cell Mobile Lighting

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

  9. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen hfor|Fuel

  10. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  11. PADD 5 Transportation Fuels Markets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6 February 1999 PricePADD 5

  12. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y d r o g e

  13. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1983-01-01

    This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

  14. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  15. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  16. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  17. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  18. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  19. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  20. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  1. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  2. Electrocatalysts for Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science NetworkMediatorElectrocatalysts for Fuel Cells June

  3. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  4. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  5. Bootstrapping a Sustainable North American PEM Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a...

  6. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    freezing and about a hundred freeze-thaw cycles, there is no change in fuel cellfuel cell is operating, it generates more than enough heat to prevent water and moisture from freezingfuel cell system, because in the present design the flow fields and manifolds would be damaged by the freezing-

  7. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  8. Power from the Fuel Cell

    E-Print Network [OSTI]

    Lipman, Timothy E.

    2000-01-01

    Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productPower from the Fuel Cell BY TIMOTHY E. LIPMAN A U T O M O B

  9. DOE Hydrogen & Fuel Cell Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  10. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    and government partners will focus on identifying actions to encourage early adopters of fuel cell electric vehicles (FCEVs) by conducting coordinated technical and market...

  11. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  12. Webinar: Fuel Cells at NASCAR

    Broader source: Energy.gov [DOE]

    Video recording and text version of the Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR," originally presented on April 17, 2014.

  13. Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2010-02-01

    This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  17. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  18. MA3T Model Application at ORNL Assesses the Future of Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles...

  19. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  20. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research. cafcpinitiativescall.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan Vehicle Technologies Office Merit Review 2015:...

  1. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  2. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    the optimal conditions to operate a molten carbonate fuel cell, can be used to garner fundamental insightNational Fuel Cell Research Center www.nfcrc.uci.edu MOLTEN CARBONATE FUEL CELLS STEADY STATE MODELING OF MOLTEN CARBONATE FUEL CELLS FOR SYSTEM PERFORMANCE ANALYSES OVERVIEW Development of steady

  3. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  4. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  5. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  6. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic...

  7. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications Hydrogen and Fuel Cell...

  8. Fuel cell CO sensor

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  9. Fuel Cells on Bio-Gas (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-03-04

    The conclusions of this presentation are: (1) Fuel cells operating on bio-gas offer a pathway to renewable electricity generation; (2) With federal incentives of $3,500/kW or 30% of the project costs, reasonable payback periods of less than five years can be achieved; (3) Tri-generation of electricity, heat, and hydrogen offers an alternative route to solving the H{sub 2} infrastructure problem facing fuel cell vehicle deployment; and (4) DOE will be promoting bio-gas fuel cells in the future under its Market Transformation Programs.

  10. Fuel cell current collector

    DOE Patents [OSTI]

    Katz, Murray (Newington, CT); Bonk, Stanley P. (West Willington, CT); Maricle, Donald L. (Glastonbury, CT); Abrams, Martin (Glastonbury, CT)

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  11. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  12. Fuel cell membrane humidification

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  13. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel Cell

  14. PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches

    E-Print Network [OSTI]

    Developer University #12;8 FUEL CELL RESEARCH NEEDS MEA optimization should focus on new materials Pt (full1 PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches Tom Jarvi UTC Power South Windsor, CT 06074 23 January 2008 #12;2 UTC POWER MARKET FOCUS Transportation Fuel Cells On-Site Power Solutions #12

  15. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  16. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

  18. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  19. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  20. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  1. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  2. Fuel Cell Handbook, Fourth Edition

    SciTech Connect (OSTI)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  3. Commercialization of fuel-cells

    SciTech Connect (OSTI)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  4. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    National Fuel Cell Research Center www.nfcrc.uci.edu SOFC AND PEMFC COMPARISON Efficiency ­ Higher FOR OPTIMIZATION · Fuel Cell · Compressor · Combustor · Turbine · Storage Tank · Heat Exchanger·Battery · Motor of the system. · Operating characteristics of fuel cells at pressures less than 1 atm are largely unknown

  5. Microfluidic Fuel Cells Erik Kjeang

    E-Print Network [OSTI]

    Victoria, University of

    Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeĺ University, 2004 A Dissertation Submitted Supervisory Committee Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeĺ University, 2004 Supervisory University External Examiner Microfluidic fuel cell architectures are presented in this thesis. This work

  6. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  7. Microbial fuel cells

    DOE Patents [OSTI]

    Nealson, Kenneth H; Pirbazari, Massoud; Hsu, Lewis

    2013-04-09

    A microbial fuel cell includes an anode compartment with an anode and an anode biocatalyst and a cathode compartment with a cathode and a cathode biocatalyst, with a membrane positioned between the anode compartment and the cathode compartment, and an electrical pathway between the anode and the cathode. The anode biocatalyst is capable of catalyzing oxidation of an organic substance, and the cathode biocatalyst is capable of catalyzing reduction of an inorganic substance. The reduced organic substance can form a precipitate, thereby removing the inorganic substance from solution. In some cases, the anode biocatalyst is capable of catalyzing oxidation of an inorganic substance, and the cathode biocatalyst is capable of catalyzing reduction of an organic or inorganic substance.

  8. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  9. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  10. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  11. Early-Stage Market Change and Effects of the Recovery Act Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program Submitted to: Lawrence Berkeley National Laboratory Prepared by: EnerSys Innovation, LLC Under contract...

  12. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    Sediment microbial fuel cells demonstrating marine (left)Model of hydrogen fuel cell kinetic losses including5 FutureWork 5.1 Microfluidic Microbial Fuel Cell Continued

  13. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    microbial fuel cell applications using dielectrophoresis,”electrochemistry: Application to Fuel Cells. PhD thesis,scale, microbial fuel cells find their application in the

  14. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    on hydrogen fuel cell theoretical efficiency, ? rev , andon hydrogen fuel cell theoretical efficiency, ? rev , andand power and efficiency of PEM fuel cells. In this section,

  15. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    Model of hydrogen fuel cell kinetic losses includingschematic of typical hydrogen fuel cell performancephase factors on hydrogen fuel cell theoretical efficiency,

  16. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect (OSTI)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  17. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  18. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015ofFuelCell|FYIEA

  20. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015ofFuelCell|FYIEA

  1. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Cell Technologies

  2. Fuel Cell Research

    SciTech Connect (OSTI)

    Weber, Peter M.

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: ? They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. ? They should be scientifically exciting and sound. ? They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. ? They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. ? They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. ? They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  3. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell

  4. Fuel Cell Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel Cell

  5. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities Financialof Energy Cell

  6. Financing Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9,UNIVERSITYDepartment of

  7. Fuel Cell Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus Global Leader, Sustainable

  8. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  9. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, Richard C. (East Hartford, CT)

    1986-09-02

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  10. Molten carbonate fuel cell separator

    DOE Patents [OSTI]

    Nickols, R.C.

    1984-10-17

    In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

  11. Fuel Cell Handbook (Seventh Edition)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directly to the Local Utility...... 8-37 8.2.6 Power Conditioners for Automotive Fuel Cells ... 8-39 8.2.7 Power Conversion...

  12. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  13. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  15. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4 FuelAbout Key Activities

  16. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  17. Air Breathing Direct Methanol Fuel Cell

    DOE Patents [OSTI]

    Ren; Xiaoming (Los Alamos, NM)

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  18. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  19. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  20. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    process for the dual channeled microbial fuel cell. Theprocess for the dual channeled microbial fuel cell. The

  1. Characterization of Fuel-Cell Diffusion Media

    E-Print Network [OSTI]

    Gunterman, Haluna Penelope Frances

    2011-01-01

    electrolyte fuel cells (PEFC) is an ongoing challenge.PEFC.electrolyte fuel cell (PEFC) is a device that converts

  2. Breaking the Fuel Cell Cost Barrier AMFC Workshop

    E-Print Network [OSTI]

    on in market entry process ! #12;Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost Barriers 3 Graphite batteries and diesel generators #12;PFM vs. PEM stack- Cost Analysis per kW at 10^3 unit volumes 6 PFM

  3. Sandia Energy - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy ConversionEngine CombustionFuel

  4. Ohio Fuel Cell Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh, the (Energy-Related) Stories

  5. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus Global Leader, Sustainable4IssuesUTC

  6. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  7. Energy 101: Fuel Cell Technology

    ScienceCinema (OSTI)

    None

    2014-06-06

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  8. Bonded polyimide fuel cell package

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan; Graff, Robert T.; Bettencourt, Kerry

    2010-06-08

    Described herein are processes for fabricating microfluidic fuel cell systems with embedded components in which micron-scale features are formed by bonding layers of DuPont Kapton.TM. polyimide laminate. A microfluidic fuel cell system fabricated using this process is also described.

  9. Energy 101: Fuel Cell Technology

    SciTech Connect (OSTI)

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  10. Bronx Zoo Fuel Cell Project

    SciTech Connect (OSTI)

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  11. Hydrogen & Fuel Cells Program Overview

    E-Print Network [OSTI]

    and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell: > 300-mile range for vehicles--without compromising interior space or performance #12;Balance of Plant estimate" for 2008 http://hydrogendoedev.nrel.gov/peer_reviews.html Progress ­ Fuel Cell R&D 2010 2007 6

  12. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  13. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits & Inspections

  14. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  15. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  16. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  17. Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMA TechFuel Cells

  18. Fuel Cells in the States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen hfor|Fuelin

  19. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  20. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

    1997-04-29

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

  1. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  2. Double interconnection fuel cell array

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); Zymboly, Gregory E. (Murrysville, PA)

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  3. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    that fuel cells are superior from an efficiency standpointefficiency is only The theoretical voltage obtained from fuel cellof the efficiency vs. rate power for fuel cells is compared

  4. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel...

  5. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    to produce a unit of bio-energy than is required to producecompared the amount of bio-energy (45 eJ) that could besource (electricity or bio-energy) or the end-use fuel (

  6. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  7. Climate Change Fuel Cell Program

    SciTech Connect (OSTI)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  8. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    Results from the analysis were communicated to the FCT Office at the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation 3 and at a meeting of the...

  9. NREL: Hydrogen and Fuel Cells Research - Hydrogen and Fuel Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adam Phillips, whose study was on membrane electrode assembly defect detection in PEM fuel cells. Phillips said that Ulsh and Bender helped him acclimate not only to NREL but...

  10. Fuel Cell Stack Components BipolarPlate

    E-Print Network [OSTI]

    for Metallic Bipolar Plates · Carbon Foam for Fuel Cell Humidification · High Temperature Proton ExchangeFuel Cell Stack Components Fuel Processor BipolarPlate Cathode+ Anode- Electrolyte H+ H+ HYDROGEN Crossover Fuel Cell Stack Components #12;Barriers

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  13. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  14. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  15. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Henrietta, NY)

    1998-01-01

    A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

  16. PEM/SPE fuel cell

    DOE Patents [OSTI]

    Grot, S.A.

    1998-01-13

    A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

  17. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  18. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  19. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Borough, PA)

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  20. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

    1997-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  1. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang; Meng, Wen-Jin; Swathirajan, Swathy; Harris, Stephen Joel; Doll, Gary Lynn

    2001-07-17

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  2. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen Joel (Bloomfield, MI); Doll, Gary Lynn (Orion Township, Oakland County, MI)

    2002-01-01

    The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

  3. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1985-01-01

    A rapidly refuelable dual cell of an electrochemical type wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  4. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  5. Thematic note to substantiate Ris's strategy impact on society Fuel cells and hydrogen

    E-Print Network [OSTI]

    Thematic note to substantiate Risř's strategy ­ impact on society Fuel cells and hydrogen Impact's efforts within the area of fuel cells and hydrogen is to contribute to establishing the necessary platform in synergy ­ electricity, wind energy, solar energy and fuel cells. Sub-themes Fuel cells The market

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and other “Mobile Energy” innovations in California: Av. Hippel, Democratizing innovation. Cambridge, Mass. : MITusing lessons from the innovation and niche marketing

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    the perspectives of innovation, product development, andseveral of the innovation and product- and market-the discussion of innovation and Me- product and business

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    the perspectives of innovation, product development, andseveral of the innovation and product- and market-the discussion of innovation and Me- product and business

  9. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    Optimization of Fuel Cell System Operating Conditions forOptimization of Fuel Cell System Operating Conditions forOptimization of Fuel Cell System Operating Conditions for

  10. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    R.M. Moore, PEM Fuel Cell System Optimization, ProceedingsInterface of the fuel cell system optimization model Fig. 5hydrogen fuel cell vehicle; optimization model; simulation *

  11. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    and cost [ 1]. Fuel cell applications in automobiles arete d M fuel cell systems for vehicle applications, Journalof the fuel cell for vehicle applications. The air supply

  12. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Accell system for direct hydrogen fuel cell vehicles Fig. 3

  13. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  14. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

  15. Market Analysis Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Market Reports Pathways to Commercial Success Business Case for Fuel Cells State of the States General Fuel Cell Technologies Office Market Reports 2013...

  16. Fuel Cell Handbook (Seventh Edition)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServicesAmesFourFromFuel Cell Handbook (Seventh

  17. Federico Zenith Control of fuel cells

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Federico Zenith Control of fuel cells Doctoral thesis for the degree of philosophić doctor with control of fuel cells, focusing on high-temperature proton- exchange-membrane fuel cells. Fuel cells-wide electric grids. Whereas studies about the design of fuel cell systems and the electrochemical properties

  18. Federico Zenith Control of fuel cells

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Federico Zenith Control of fuel cells Doctoral thesis for the degree of philosophić doctor with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells-wide electric grids. Whereas studies about the design of fuel cell systems and the electrochemical properties

  19. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  20. Transportation Fuel Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History

  1. Bunker Fuel Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio: EnergyNorth Dakota:

  2. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking with UstheCells Photo of

  3. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Calendar Fuel Cells Calendar Upcoming events for the Fuel Cell Technologies Office are listed below. Find past events. June 2015 < prev next > Sun Mon Tue Wed Thu Fri...

  4. Characterization of Fuel-Cell Diffusion Media

    E-Print Network [OSTI]

    Gunterman, Haluna Penelope Frances

    2011-01-01

    polymer electrolyte membrane fuel cells, 2009. C. Lim and C.be incorporated directly into full fuel-cell simulations toFCgen1020ACS, www.ballard.com/fuel-cell-products, Accessed

  5. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  6. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and Technology of Ceramic Fuel Cells, p. 209, Elsevier, NewI. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal

  7. Aalborg Universitet HTPEM Fuel Cell Impedance

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet HTPEM Fuel Cell Impedance Vang, Jakob Rabjerg Publication date: 2014 Document Citation for published version (APA): Vang, J. R. (2014). HTPEM Fuel Cell Impedance: Mechanistic Modelling #12;HTPEM fuel cell impedance - Mechanistic modelling and experimental characterisation Jakob Rabjerg

  8. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    264. DeLuchi M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re-or regulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA.Solar-Hydrogen Fuel-Cell Mark Ao DeLuchi Joan M. Ogden

  9. Microfluidic Microbial Fuel Cells for Microstructure Interrogations

    E-Print Network [OSTI]

    Parra, Erika Andrea

    2010-01-01

    5 FutureWork 5.1 Microfluidic Microbial Fuel Cell ContinuedSediment microbial fuel cells demonstrating marine (left)Model of hydrogen fuel cell kinetic losses including

  10. Report: Efficiency, Alternative Fuels to Impact Market Through 2040

    Broader source: Energy.gov [DOE]

    Fuel efficiency improvements and increased use of alternative fuels, will shrink gasoline's share of the fuel market 14% by 2040, according to a new report based on analysis of the U.S. Energy Information Administration in its Annual Energy Outl

  11. Developments in U.S. Alternative Fuel Markets

    Reports and Publications (EIA)

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  12. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  13. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from...

  14. PEM fuel cell durability studies

    SciTech Connect (OSTI)

    Borup, Rodney L [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Ofstad, Axel B [Los Alamos National Laboratory; Xu, Hui [Los Alamos National Laboratory

    2008-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization for stationary and transportation power applications. For transportation applications, the durability target for fuel cell power systems is a 5,000 hour lifespan and able to function over a range of vehicle operating conditions (-40{sup o} to +40{sup o}C). However, durability is difficult to quantify and improve because of the quantity and duration of testing required, and also because the fuel cell stack contains many components, for which the degradation mechanisms, component interactions and effects of operating conditions are not fully understood. These requirements have led to the development of accelerated testing protocols for PEM fuel cells. The need for accelerated testing methodology is exemplified by the times required for standard testing to reach their required targets: automotive 5,000 hrs = {approx} 7 months; stationary systems 40,000 hrs = {approx} 4.6 years. As new materials continue to be developed, the need for relevant accelerated testing increases. In this investigation, we examine the durability of various cell components, examine the effect of transportation operating conditions (potential cycling, variable RH, shut-down/start-up, freeze/thaw) and evaluate durability by accelerated durability protocols. PEM fuel cell durability testing is performed on single cells, with tests being conducted with steady-state conditions and with dynamic conditions using power cycling to simulate a vehicle drive cycle. Component and single-cell characterization during and after testing was conducted to identify changes in material properties and related failure mechanisms. Accelerated-testing experiments were applied to further examine material degradation.

  15. Fuel Cells in Telecommunications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells in Telecommunications Fuel Cells in Telecommunications Presentation by Joe Blanchard, ReliOn, at the Technology Transition Corporation and U.S. Department of Energy...

  16. Characterization of Fuel-Cell Diffusion Media

    E-Print Network [OSTI]

    Gunterman, Haluna Penelope Frances

    2011-01-01

    Characterization of Fuel-Cell Diffusion Media by HalunaFall 2011 Abstract Characterization of Fuel-Cell Diffusionpredictive capabilities. Characterization of DM and their

  17. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC...

  18. Fuel Cell School Buses: Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This Department of...

  19. Webinar: National Fuel Cell Technology Evaluation Center

    Broader source: Energy.gov [DOE]

    Video recording and text version of the Fuel Cell Technologies Office webinar titled "National Fuel Cell Technology Evaluation Center (NFCTEC)," originally presented on March 11, 2014.

  20. Characterization of Fuel-Cell Diffusion Media

    E-Print Network [OSTI]

    Gunterman, Haluna Penelope Frances

    2011-01-01

    to take up or eject fluid. Most fuel-cell materials arethe wetting fluid. Therefore, P C for fuel-cell systems is

  1. Pacific Fuel Cell Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Corporation Jump to: navigation, search Name: Pacific Fuel Cell Corporation Address: 26985 Lakeland Blvd. Place: Euclid, Ohio Zip: 44132 Sector: Buildings, Efficiency,...

  2. Durable Fuel Cell Membrane Electrode Assembly (MEA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Durable Fuel Cell Membrane Electrode Assembly (MEA) Durable Fuel Cell Membrane Electrode Assembly (MEA) A revolutionary method of building a membrane electrode assembly (MEA) for...

  3. Fuel Cell Technologies Office Information Resources | Department...

    Energy Savers [EERE]

    Information Resources Fuel Cell Technologies Office Information Resources Learn about hydrogen and fuel cells, find publications and technical information, view and download...

  4. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  5. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  6. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  7. Fuel cell with internal flow control

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  8. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245YearYear

  9. AEO 2013 Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY, August 27, 2012 Attendance (In

  10. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  11. Corrugated Membrane Fuel Cell Structures

    SciTech Connect (OSTI)

    Grot, Stephen President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  12. Fuel Cell Distributed Power Package Unit: Fuel Processing Based On

    E-Print Network [OSTI]

    have been metAll milestones have been met #12;4 Autothermal Cyclic Reforming for PEM Fuel Cell CH4 + H2Fuel Cell Distributed Power Package Unit: Fuel Processing Based On Autothermal Cyclic Reforming-2000) Bread-Board Fuel Processor Development DOE (2001-3) Integrated Fuel Processor Development CEC/ARB (2002

  13. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  14. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  15. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  16. Fuel Cell Forklift Project Final Report

    SciTech Connect (OSTI)

    Cummings, Clifton C

    2013-10-23

    This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

  17. Optimal design of hybrid and non-hybrid fuel cell vehicles

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

  18. 1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM

    E-Print Network [OSTI]

    Patent Growth Index[1] shows that fuel cell patents lead in the clean energy field with nearly 1,000 fuel/Market Assumptions: · $1,300/kW initial mfg cost (Battelle), $4,200/kW retail price. · Shipments reach 3,300 annually (construction/ expansion of mfg capacity, installation & infrastructure) & on-going jobs (manufacturing, O

  19. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  20. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. NY); Cunningham, Kevin M. (Romeo, MI)

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  1. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

  2. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  3. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01

    fuel cells are being developed: proton-exchange membrane (PEM), phosphoric acid, alkaline, molten carbonate

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  6. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview...

  7. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  8. Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels

    E-Print Network [OSTI]

    Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

    2012-01-01

    Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

  9. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  10. Use of Alternative Fuels in Solid Oxide Fuel Cells Fuel Cells and Solid State Chemistry Department, Ris National Laboratory, Technical

    E-Print Network [OSTI]

    Use of Alternative Fuels in Solid Oxide Fuel Cells Anke Hagen Fuel Cells and Solid State Chemistry on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types ­ the solid oxide fuel cell (SOFC) ­ has a number of advantages

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Molten carbonate fuel cell matrices

    DOE Patents [OSTI]

    Vogel, Wolfgang M. (Glastonbury, CT); Smith, Stanley W. (Vernon, CT)

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  14. Fuel cell powered irrigation system

    SciTech Connect (OSTI)

    Jacobi, E.F.; Madden, M.R.

    1982-01-12

    Set out herein is a fuel cell power plant for use with irrigation systems wherein the fuel cell is utilized to generate electric current to drive a pump motor. This pump motor drives a first water pump which receives water for distribution through a traveling irrigation system, the output of the first pump first conveyed into a condenser heat exchanger connected to a steam engine or turbine cycle. The fuel cell itself is contained within a boiler assembly and the heat of production of the electric power is used to generate steam which is sent to the steam engine. In the course of cooling the condenser gases of the steam engine the irrigating water is passed through a second pump driven by the steam engine and it is through this second pump that the pressure is raised sufficiently to allow for the necessary spraying fans. To improve the condenser efficiency part of the condensate or the ullage thereof is connected to one of the spray heads on the irrigation system in a venturi nozzle which thereby lowers the back pressure thereof. The lower portion of the condenser or the liquid part thereof is fed back through yet another condenser pump to the boiler to be regenerated into steam.

  15. Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical

    E-Print Network [OSTI]

    Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed Generator George Research Center program. This report is of work done under the PSERC project "Investigation of Fuel Cell

  16. Fuel Cells in America 2012 September 2012

    E-Print Network [OSTI]

    .S. Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Program. About & Efficiency (DSIRE). It is a follow-up to Fuel Cells 2000's 2011 and 2010 reports, State of the States: FuelFuel Cells in America 2012 State OF THE States September 2012 #12;i Authors and Acknowledgements

  17. Analysis of Fuel Cell Systems Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Analysis of Fuel Cell Systems Rangan Banerjee Energy Systems Engineering IIT Bombay Lecture in CEP Course on `Fuel Cell' at IIT 14th November 2007 #12;Overview of Talk Energy Crisis ­ Motivation for fuel biological Hydrogen Gasification Fermentation Cracking + Shift Reaction Fuel Cell #12;ENERGY FLOW DIAGRAM

  18. CONTROL OF FUEL CELLS Federico Zenith

    E-Print Network [OSTI]

    Skogestad, Sigurd

    CONTROL OF FUEL CELLS Federico Zenith Department of Chemical Engineering Norwegian University of Science and Technology Trondheim, June 29, 2007 WWW.NTNU.NO FEDERICO ZENITH, CONTROL OF FUEL CELLS #12 STACK TEMPERATURE CONTROL WWW.NTNU.NO FEDERICO ZENITH, CONTROL OF FUEL CELLS #12;3 INTRODUCTION Fuel

  19. Revision Date: October 2014 Fuel Cell Inspection

    E-Print Network [OSTI]

    Chen, Zhongping

    Revision Date: October 2014 Fuel Cell Inspection INTRODUCTION Introduction: Safety concerns associated with fuel cells are generally hazardous interactions when fuel is integrated in such systems, mainly fire, explosion and electrical shock hazards. Per the 2013 California Mechanical Code, fuel cell

  20. Encouraging Industrial Demonstrations of Fuel Cell Applications 

    E-Print Network [OSTI]

    Anderson, J. M.

    1986-01-01

    INDUSTRIAL DEMONSTRATIONS OF FUEL CELL APPLICATIONS Joseph M~ Anderson, P.E. INDUSTRIAL FUEL CELL ASSOCIATION Lake Charles, Louisiana ABSTRACT Fuel Cell technology has advanced from a space-age curiosity to near commercial status within the last few... years. Both the electric and the gas utilities in the United States have conducted ambitious programs to oemonstrate the practicality of fuel cell power plants in a number of applications. The Japanese have been equally active in promoting a fuel...

  1. The Onsite Fuel Cell Cogeneration System 

    E-Print Network [OSTI]

    Woods, R. R.; Cuttica, J. J.; Trimble, K. A.

    1986-01-01

    CELL COGENERATION SYSTEM R. Root Woods, John J. Cuttica and Karen A. Trimble Gas Research Institute, Chicago, Illinois ABSTRACT This paper describes the experiences and results of the major field test of forty-six 40kW onsite fuel cell power... acid onsite fuel cell power plants, the gas industry, in cooperation with International Fuel Cells Corporation (formerly the Power Systems Division of United Technologies Corporation), has demonstrated in extensive field tests that onsite fuel cell...

  2. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deermckee.pdf More Documents & Publications Testing...

  3. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells received an $800,000 Department of Energy grant to study how to make one type of fuel cell--solid oxide

  4. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  5. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  6. PADD 5 Transportation Fuels Markets - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20,

  7. In situ PEM fuel cell water measurements

    SciTech Connect (OSTI)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendalow, Jacob S [Los Alamos National Laboratory

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  8. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    ip t Table 3 Vehicle and fuel cell system parameters (Casekg) Electric Motor (kW) Fuel Cell Stack and Auxiliaries Max.An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paper

  9. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  10. Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2008-01-01

    H. Peng, Control of Fuel Cell Power Systems, Springer, 2004.May 2002, pp.3117-3122. te d M fuel cell systems for vehicleHutchenreuther, Control of a Fuel Cell Air Supply Module (

  11. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-08

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  12. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel CellDepartmentFuel Cell

  13. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , Control of Fuel Cell Power Systems, Springer, 2004. [transient power. The fuel cell power command is calculatedavoiding low fuel cell output power region. Keywords: fuel

  14. EERE Announces Notice of Intent to Issue Fuel Cell Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuel Technologies."...

  15. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  16. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  18. Cooling assembly for fuel cells

    DOE Patents [OSTI]

    Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  19. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  20. Fuel Cell Handbook - Seventh Edition (DOE FE)

    Fuel Cell Technologies Publication and Product Library (EERE)

    This handbook is a technical explanation of the science of the fuel cell. Descriptions and explanations of the many different types of fuel cells are also included. Explanations of the chemistry, phys

  1. Biogas Impurities and Cleanup for Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Biogas Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13,...

  2. Fuel Cell Systems Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy Office of Transportation Technologies TRANSPORTATION FUEL CELL POWER SYSTEMS TRANSPORTATION FUEL CELL POWER SYSTEMS A C K N O W L E D G E M E N T...

  3. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  4. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  5. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal and J.create connected nanostructured SOFC electrodes is reviewed.of Solid Oxide Fuel Cells (SOFC) to directly and efficiently

  6. Fuel Cell Technologies Researcher Lightens Green Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel CellDepartment of

  7. Webinar: NREL's Fuel Cell Contaminant Database

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "NREL's Fuel Cell Contaminant Database," originally presented on May 27, 2014.

  8. The Promise of Fuel-Cell Vehicles

    E-Print Network [OSTI]

    Deluchi, Mark; Swan, David

    1993-01-01

    molten carbonate (molten salt), or solid oxide (a ceramic). Today, many researchers believe that P E M fuel cells,

  9. Webinar: Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  10. Planning a Commercial Fuel Cell Installation 

    E-Print Network [OSTI]

    Bowden, J. R.; May, G. W.

    1986-01-01

    COMMERCIAL FUEL CELL INSTALLATION J. R.Bowden & G. W. May Bechtel National, Inc. San Francisco, California Fuel cell power plants represent a unique opportunity for industrial users to combine on-site electricity generation and heat recovery... with high efficiencies and no significant environmental releases. Thus in some circumstances, the fuel cell may be the best option for industrial cogeneration in locations with environmental restrictions. Because of the modular nature of fuel cell...

  11. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Dated May 3, 2012, this program record from the U.S. Department of Energy focuses on fuel cell stack durability. 11003fuelcellstackdurability.pdf More Documents & Publications...

  12. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  13. FUEL TRANSFORMER SOLID OXIDE FUEL CELL

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-03-24

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2004 through January 2004. Work was focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the lay out plans for further progress in next budget period.

  14. Fuel Transformer Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Lars Allfather; Anthony Litka

    2005-08-01

    The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from January of 2005 through June 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

  15. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  16. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  17. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  18. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  19. April 2011 1 Regenerative Fuel Cells

    E-Print Network [OSTI]

    . Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O2? 5. High Pressure Storage 1. Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O2? 5. HighApril 2011 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt #12;April

  20. DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    DYNAMIC MODELING PROTON EXCHANGE MEMBRANE FUEL CELL OVERVIEW Current/Completed Plug Power to garner SCAQMD funding for fuel cell testing GenCore system is sensitive to diluents · As built design stream to compensate for removal of EGR · Functionality of the modified GenCore Fuel Cell system

  1. Desulfurization of Natural Gas for Fuel Cells

    E-Print Network [OSTI]

    Edwards, David A.

    Desulfurization of Natural Gas for Fuel Cells Problem Presenter Emma Campbell, Bloom Energy Report as feedstock for fuel cells. This manuscript is really a collection of reports from teams in the group working (enumerated in the preface). #12;Model Formulation; Asymptotics 1 Section 1: Introduction Fuel cells use

  2. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  3. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  4. Catalysts compositions for use in fuel cells

    DOE Patents [OSTI]

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  5. Catalysts compositions for use in fuel cells

    DOE Patents [OSTI]

    Chuang, Steven S.C.

    2015-12-02

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  6. FUEL CELL TECHNOLOGIES PROGRAM Small Business

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Fuel up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation compression at fueling stations. However in the short term, EHCs can be used to compress hydro

  7. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y dFuel

  8. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel CellDepartmentFuelFuel

  9. Demonstration of a PC 25 Fuel Cell in Russia

    SciTech Connect (OSTI)

    John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

    2004-09-01

    This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three major tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.

  10. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  11. The Business Case for Fuel Cells: Why Top Companies are Purchasing Fuel Cells Today

    E-Print Network [OSTI]

    The Business Case for Fuel Cells: Why Top Companies are Purchasing Fuel Cells Today September 2010 Gangi of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, D.C., with assistance from Elizabeth Delmont. Support was provided by the U.S. Department of Energy`s Fuel Cell

  12. Microbial Fuel Cells In this experiment, a batch mixed culture microbial fuel cell with Shewanella

    E-Print Network [OSTI]

    Fay, Noah

    Microbial Fuel Cells Abstract In this experiment, a batch mixed culture microbial fuel cell conditions under nitrogen gas. In the microbial fuel cell with Shewanella putrefaciens sp. 200 as catalysisM at pH=7. Introduction Microbial fuel cells (MFC) are systems that take advantage of certain

  13. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

  14. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOEFactory-Built

  15. Flexible method for monitoring fuel cell voltage

    DOE Patents [OSTI]

    Mowery, Kenneth D. (Noblesville, IN); Ripley, Eugene V. (Russiaville, IN)

    2002-01-01

    A method for equalizing the measured voltage of each cluster in a fuel cell stack wherein at least one of the clusters has a different number of cells than the identical number of cells in the remaining clusters by creating a pseudo voltage for the different cell numbered cluster. The average cell voltage of the all of the cells in the fuel cell stack is calculated and multiplied by a constant equal to the difference in the number of cells in the identical cell clusters and the number of cells in the different numbered cell cluster. The resultant product is added to the actual voltage measured across the different numbered cell cluster to create a pseudo voltage which is equivalent in cell number to the number of cells in the other identical numbered cell clusters.

  16. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp z ETHANOL z WASTE METHANE z BIOGASz BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency ­ High

  17. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  18. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel CellFuel for(FCEVs) |

  19. Fuel Cells using Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMA TechFuel Cells using

  20. Speeding the transition: Designing a fuel-cell hypercar

    SciTech Connect (OSTI)

    Williams, B.D.; Moore, T.C.; Lovins, A.B.

    1997-12-31

    A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

  1. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel

  2. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel CellDepartmentFuel

  3. Fuel Cell Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities Financialof Energy Cell TechnologiesFuel

  4. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel Cells &

  5. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel Cells &October

  6. Fuel Cells Calendar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel Cells

  7. Connections for solid oxide fuel cells

    DOE Patents [OSTI]

    Collie, Jeffrey C. (Pittsburgh, PA)

    1999-01-01

    A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

  8. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"HaganTalley,Surrogate Normal

  9. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    etc. , PEM Fuel Cell System Optimization, Proceedings of thesystem, hybrid fuel cell vehicle, optimization, dynamic,a scalable fuel cell system optimization model [14

  10. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record, Record 13008:...

  11. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

  12. Air System Management for Fuel Cell Vehicle Applications

    E-Print Network [OSTI]

    Cunningham, Joshua M

    2001-01-01

    variations of a typical fuel cell application where the peakunder development for fuel cell applications. Several of theDOE for vehicular fuel cell applications. Arthur D. Little:

  13. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    for fuel cell systems for vehicle applications, Journal ofand Fuel Cell Electric Vehicle Symposium applications. Thesewhich limits its application in fuel cell vehicles. The

  14. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  15. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition...

  16. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01

    conditions used for fuel—cell simulations. 3.12 Values usedFuel Cells . . . . . . . . . . . . . . . . . . . . . . 1.1.1in Polymer Electrolyte Fuel Cells — II. Parametric Study,”

  17. Novel Materials for High Efficiency Direct Methanol Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for High Efficiency Direct Methanol Fuel Cells Novel Materials for High Efficiency Direct Methanol Fuel Cells Presented at the Department of Energy Fuel Cell Projects...

  18. Fuel Cell Technologies Office Newsletter: May 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Newsletter: May 2015 Fuel Cell Technologies Office Newsletter: May 2015 The May 2015 issue of the Fuel Cell Technologies Office (FCTO) newsletter...

  19. Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts Presented at the Department of Energy Fuel Cell...

  20. On a Pioneering Polymer Electrolyte Fuel Cell Model

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01

    polymer electrolyte fuel cell, in, USPTO Editor, UnitedRenewable Energy, Office of Fuel Cell Technologies, of thePolymer Electrolyte Fuel Cell Model Adam Z Weber Lawrence

  1. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    hybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & theof battery electric, hydrogen fuel cell and hybrid vehicles

  2. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle Symposiumcycles. Vehicles with the fuel cell operating in the optimum

  3. Hydrogen and Fuel Cell Activities: 5th International Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells...

  4. Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Fuel Cell Seminar and Energy Exposition Hydrogen and Fuel Cell Technologies Overview Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and...

  5. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01

    Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

  6. Modeling Cold Start in a Polymer-Electrolyte Fuel Cell

    E-Print Network [OSTI]

    Balliet, Ryan

    2010-01-01

    conditions used for fuel—cell simulations. 3.12 Values usedin Polymer Electrolyte Fuel Cells — II. Parametric Study,”of Polymer Electrolyte Fuel Cells,” Electrochimica Acta, 53,

  7. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  8. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APUs - Fuel Cell Commercial Outlook Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Presented at the DOE-DOD Shipboard APU Workshop...

  9. Fuel Cell Transit Bus Coordination and Evaluation Plan California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation...

  10. Something for Nothing: Solid-Oxide Fuel Cells

    E-Print Network [OSTI]

    Gururangan, Karthik

    2015-01-01

    A. (2001). Materials for fuel cell technologies. Nature,Temperature Solid Oxide Fuel Cell in Hydrocarbon-Airin solid-oxide fuel cell. Letters to Nature,404. Retrieved

  11. HNEI Overview and Fuel Cell Programs

    E-Print Network [OSTI]

    fuels · Integrated bioenergy systems · Technology Assessment and Policy #12;ACT 253 (HB1003 and from the energy fund to HNEI. Passed out of House and Senate EEN committees #12;Technology Assessment fuel cells and materials · Fuel cell testing and modeling · Hydrogen ­ · Renewable hydrogen production

  12. Center for Intelligent Fuel Cell Materials Design

    SciTech Connect (OSTI)

    Santurri, P.R., (Chemsultants International); Hartmann-Thompson, C.; Keinath, S.E. (Michigan Molecular Inst.)

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture provides a key element for the United States: 1) to transition the country from a fossil fuel based energy economy to a renewable energy based economy, and 2) to reduce our dependence on foreign oil. Developments of this program will serve as an important step toward continuing PEMFC technology and ultimately the broad-based commercial availability of this technology and its benefits.

  13. Preventing CO poisoning in fuel cells

    DOE Patents [OSTI]

    Gottesfeld, Shimshon (Los Alamos, NM)

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  14. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect (OSTI)

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  15. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  16. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.membraneless microchannel fuel cell system with open circuit

  17. Stackable Miniature Fuel Cells with On-Demand Fuel and Oxygen Supply

    E-Print Network [OSTI]

    Hur, Janet

    2013-01-01

    methanol fuel cells for portable applications," J. Powermethanol fuel cells for portable applications," J. Powerof fuel cell for portable applications. A self-regulated

  18. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

  19. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.electrolyte membrane fuel cell design," J. Power Sources,

  20. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    direct formic acid fuel cell," J. Power Sources, vol. 128,Direct formic acid fuel cells," J. Power Sources, vol. 111,acid microfabricated fuel cells," J. Power Sources, vol.

  1. Miniature fuel-cell system complete with on-demand fuel and oxidant supply

    E-Print Network [OSTI]

    Hur, JI; Kim, CJ

    2015-01-01

    breathing direct formic acid fuel cell," J. Power Sources,Barnrad, "Direct formic acid fuel cells," J. Power Sources,formic acid microfabricated fuel cells," J. Power Sources,

  2. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  3. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  4. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  5. Careers in Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof EnergyBatteriesSales EngineerTransportation

  6. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |ChartPresentations:UlJmately , the1Report 2009

  7. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department ofRefrigerators | Department DOE1 DOEGolden,SubprogramDOE Fuel

  8. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4 FuelAbout Key

  9. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect (OSTI)

    Zelenay, Piotr [Los Alamos National Laboratory

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  10. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

  11. Commercialization of fuel cells: myth or reality?

    E-Print Network [OSTI]

    Wang, Junye

    2014-01-01

    Despite huge investment and efforts in the last decades, fuel cells are still known as a fledgling industry after 170 years of the first fuel cell. It becomes clear that these investment and efforts did not address the critical questions. Why upscaling of fuel cells failed often when many researchers stated their successes in small scale? Why the fuel cells with simpler structure still lag far from the internal combustion (IC) engines and gas turbines? Could the current investment of the hydrogen infrastructure reduce substantially the fuel cell cost and make a breakthrough to the key issues of durability, reliability and robustness? In this paper, we study these fundamental questions and point out a must-way possible to reduce cost of fuel cells and to substantially improve durability and reliability.

  12. Fuel Cell Technologies Program: Delivery Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel CellMaterials Meetings |

  13. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1Activity Hydrogen andDepartment of

  14. National Fuel Cell and Hydrogen Energy Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDFNational Fuel Cell and Hydrogen Energy Overview

  15. Fuel Cell Technologies Office: Past Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information Resources » Fuel Cell TechnologiesFinancial

  16. Hydrogen and Fuel Cells Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContractingManagement »Hydrogen and Fuel Cell

  17. Fuel Cell Power (FCPower) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: Race

  18. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  19. Proceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference

    E-Print Network [OSTI]

    Papalambros, Panos

    optimization study. For a new technology, such as fuel cells, it is also important to include uncertaintiesProceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference June 16-18, 2008, Denver, Colorado, USA FUELCELL2008-65111 OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL

  20. Method of making straight fuel cell tubes

    DOE Patents [OSTI]

    Borglum, Brian P. (Edgewood, PA)

    2001-01-01

    A method and an apparatus for making straight fuel cell tubes are disclosed. Extruded tubes comprising powders of fuel cell material and a solvent are dried by rotating the extruded tubes. The rotation process provides uniform circumferential drying which results in uniform linear shrinkage of the tubes. The resultant dried tubes are very straight, thereby eliminating subsequent straightening steps required with conventional processes. The method is particularly useful for forming inner air electrode tubes of solid oxide fuel cells.