Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

2

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

3

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...Cars Now, Fuel Cell Cars...manufacturer of diesel engines) and an advisor...Power, a fuel cell manufacturer...2). This consumption resulted in...vehicles and fuel cell (FC...combustion engine (ICE) drive...gasoline, or diesel). For each...

Nurettin Demirdöven; John Deutch

2004-08-13T23:59:59.000Z

4

Optimal design of hybrid and non-hybrid fuel cell vehicles  

E-Print Network (OSTI)

Optimal design of hybrid and non-hybrid fuel cell vehicles by Jeongwoo Han A thesis submitted cell vehicles by Jeongwoo Han Chair: Panos Y. Papalambros Fuel cells are under development technology, however, still has many issues to be addressed for market acceptance. Several fuel cell vehicle

Papalambros, Panos

5

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...spark ignition engine; (B) HICE, a...over the urban drive cycle. We include a power...conventional ICE (14). A diesel ICE with a hybrid...direct-injection engine has an efficiency...vehicle and fuel cycle for the 2020 ICE...government support on fundamental, high-risk research...

Nurettin Demirdöven; John Deutch

2004-08-13T23:59:59.000Z

6

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

7

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

8

Multivariable robust control of a simulated hybrid solid oxide fuel cell gas turbine plant.  

E-Print Network (OSTI)

??This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built… (more)

Tsai, Alex, 1973-

2007-01-01T23:59:59.000Z

9

SunLine Begins Extended Testing of Hybrid Fuel Cell Bus | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins Extended Testing of Hybrid Fuel Cell Bus SunLine Begins Extended Testing of Hybrid Fuel Cell Bus DOE Hydrogen Program (Fact Sheet) 43203.pdf More Documents & Publications...

10

Simulation and test of a fuel cell hybrid golf cart  

Science Journals Connector (OSTI)

This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC), which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR) and the genetic algorithm (GA) to optimize it. Simulation of the objective function is composed ...

Jingming Liang, Qifei Jian

2014-01-01T23:59:59.000Z

11

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

12

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed more robust. This report analyzes V2G power from three types of EDVs--battery, hybrid, and fuel cell and prices are high. Fuel cell and hybrid EDVs are sources of new power generation. For economic reasons

Firestone, Jeremy

13

The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

such as wind and solar energy and from nuclear energy. Fuel cell vehicles (FCV) use hydrogen as fuel to produceINVITED P A P E R The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles, and constraints on energy resources, the electric, hybrid, and fuel cell vehicles have attracted more and more

Leung, Ka-Cheong

14

Ultracapacitor Boosted Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

With the escalating number of vehicles on the road, great concerns are drawn to the large amount of fossil fuels they use and the detrimental environmental impacts from their emissions. A lot of research and development have been conducted...

Chen, Bo

2010-01-14T23:59:59.000Z

15

Hybrid Cars Now, Fuel Cell Cars Later  

Science Journals Connector (OSTI)

...currently under consideration by Congress, would extend the time period for the hybrid car tax credit. 19 Quote taken from www.eere.energy.gov/vehiclesandfuels/. 20 T. Markel et al., J. Power Sources 110 , 225 ( 2002 ). 21 M. R. Cuddy , K. G...

Nurettin Demirdöven; John Deutch

2004-08-13T23:59:59.000Z

16

Design and application of hybrid fuel cell engine powertrain test platform  

Science Journals Connector (OSTI)

A test platform for hybrid fuel cell engine powertrain is developed, and the principle and the structure for hardware, software and data acquisition system of the platform are presented in this paper. The platform for hybrid fuel cell engine powertrain consists of hybrid power system, load system, data acquisition system and control system. An experiment for a fuel cell engine is done. The test results indicate that the platform can satisfy the requirement for measuring the performances of fuel cell.

Zhang Bingli; Zhu Yi; Zhang Bingzhan

2010-01-01T23:59:59.000Z

17

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

18

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

19

Argonne project turns methane to liquid fuel for hybrid fuel cells  

Science Journals Connector (OSTI)

Researchers from the US Department of Energy's Argonne National Laboratory in Illinois and the Illinois Institute of Technology (IIT) have been awarded $2 million from the Advanced Research Projects Agency–Energy (ARPA-E), for a two-year project on hybrid fuel cells, specifically on converting methane to liquid fuel.

2014-01-01T23:59:59.000Z

20

Design of a Control Strategy for a Fuel Cell/Battery Hybrid Power Supply  

E-Print Network (OSTI)

The purpose of this thesis is to design hardware and a control strategy for a fuel cell/battery hybrid power supply. Modern fuel cell/battery hybrid power supplies can have 2 DC/DC converters: one converter for the battery and one for the fuel cell...

Smith, Richard C.

2010-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle  

E-Print Network (OSTI)

Nonlinear adaptive sliding mode control of a powertrain supplying Fuel Cell Hybrid Vehicle M. D switching scheme for controlling DC-DC hybrid powertrain for propulsion of a Fuel Cell / Supercapacitor/dc Boost converter associated to Fuel Cell stack and another Bidirectionnel dc/dc converter associated

Paris-Sud XI, Université de

22

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network (OSTI)

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

23

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

1] D.J. Friedman etc. , PEM Fuel Cell System Optimization,Pressure Operation of PEM Fuel Cell Systems, SAE 2001, 2001-Maximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

24

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

kW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell StackkW) Vehicle Mass (kg) Electric Motor (kW) Fuel Cell Stack

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

25

Comparative study of State Estimation of Fuel Cell Hybrid System Using UKF and EKF  

E-Print Network (OSTI)

of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC) due to its solid state design nonlinear ex- amples are considered to compare the state estimation using UKF and EKF. A Solid Oxide FuelComparative study of State Estimation of Fuel Cell Hybrid System Using UKF and EKF Rambabu Kandepu

Foss, Bjarne A.

26

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

27

Model Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System1  

E-Print Network (OSTI)

voltage, a control system is necessary for maintaining optimal temperature, membrane humidity and pressure: Schematic of the fuel cell stack and air supply control sys- tem. The fuel cell stack consists of 350 cellsModel Predictive Control for Starvation Prevention in a Hybrid Fuel Cell System1 Ardalan Vahidi 2

Stefanopoulou, Anna

28

NETL: News Release - NETL Opens Fuel Cell/Turbine Hybrid Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2004 May 20, 2004 NETL Opens Fuel Cell/Turbine Hybrid Research Facility MORGANTOWN, WV - The Hybrid Performance Facility - called the Hyper facility - is now fully operational at the Department of Energy's National Energy Technology Laboratory (NETL). This one-of-a-kind facility, developed by NETL's Office of Science and Technology, will be used to develop control strategies for the reliable operation of fuel cell/turbine hybrids. - NETL's Fuel Cell/Turbine Hybrid Facility - The Hyper facility allows assessment of dynamic control and performance issues in fuel cell/turbine hybrid systems. Combined systems of turbines and fuel cells are expected to meet power efficiency targets that will help eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for

29

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

30

SWNT?MWNT Hybrid Architecture for Proton Exchange Membrane Fuel Cell Cathodes  

Science Journals Connector (OSTI)

SWNT?MWNT Hybrid Architecture for Proton Exchange Membrane Fuel Cell Cathodes ... A thin film of single-wall carbon nanotubes (SWNTs) and SWNT?multiwall carbon nanotube (MWNT) hybrids loaded with Pt have been evaluated as the cathode catalyst layer in proton exchange membrane fuel cells. ... Hydrogen, Fuel Cells & Infrastructure Technologies Program: Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2003?2010; U.S. Department of Energy: Energy Efficiency and Renewable Energy: January 21, 2005. ...

Palanisamy Ramesh; Mikhail E. Itkis; Jason M. Tang; Robert C. Haddon

2008-05-28T23:59:59.000Z

31

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume I, January 2000  

Energy.gov (U.S. Department of Energy (DOE))

An assessment of the opportunities for micropower and fuel cell/gas turbine hybrid technologies in the industrial sector.

32

Robust control strategies for hybrid solid oxide fuel cell systems.  

E-Print Network (OSTI)

??Solid Oxide Fuel Cell (SOFC) systems are electrochemical energy conversion devices characterized by the use of solid oxide as the electrolyte. They operate at high… (more)

Mathew, Anju Ann

2010-01-01T23:59:59.000Z

33

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 2, FEBRUARY 2010 589 Electric, Hybrid, and Fuel-Cell Vehicles  

E-Print Network (OSTI)

, and Fuel-Cell Vehicles: Architectures and Modeling C. C. Chan, Fellow, IEEE, Alain Bouscayrol, Member, IEEE, fuel economy, and global warming, as well as energy resource constraints, electric, hybrid, and fuel-cell systems. This paper reviews the state of the art for electric, hybrid, and fuel-cell vehicles

Leung, Ka-Cheong

34

A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered  

Science Journals Connector (OSTI)

Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of ... results show that the combination of lead-acid batteries or lithium-ion batteries

Chung-Hsing Chao; Jenn-Jong Shieh

2013-01-01T23:59:59.000Z

35

New York: EERE-Supported Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE-funding directly resulted in a cost-effective commercial electrocatalyst product for fuel cells that is now being manufactured with plans to be used in hybrid vehicles.

36

Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System  

E-Print Network (OSTI)

battery auxiliary power unit (APU) for remote applications where a fuel cell is the main energy source for decentralized or distributed energy production, such as telecom, remote sites or even for military applicationsFuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System M. Godoy Simões1

Simões, Marcelo Godoy

37

9 - Hybrid fuel cell gas turbine (FC/GT) combined cycle systems  

Science Journals Connector (OSTI)

Abstract: Hybrid fuel cell gas turbine systems consisting of high-temperature fuel cells (HTFCs) integrated into cycles with gas turbines can significantly increase fuel-to-electricity conversion efficiency and lower emissions of greenhouse gases and criteria pollutants from the electric power sector. In addition, the separated anode and cathode compartments of the fuel cell can enable CO2 separation and sequestration for some cycle configurations. Hybrid fuel cell gas turbine technology has the potential to operate on natural gas, digester gas, landfill gas, and coal and biomass syngas. HTFC technologies are emerging with high reliability and durability, which should enable them to be integrated with gas turbine technology to produce modern hybrid power systems. Advanced thermodynamic and dynamic simulation capabilities have been developed and demonstrated to enable future system integration and control.

J. Brouwer

2012-01-01T23:59:59.000Z

38

Optimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France  

E-Print Network (OSTI)

source. The produced hydrogen feeds then a fuel cell (FC) system, which will supply the city of BrestOptimal Design of a PV/Fuel Cell Hybrid Power System for the City of Brest in France Omar Hazem with the optimal design of a stand-alone hybrid photovoltaic and fuel cell power system without battery storage

Brest, Université de

39

Fuel cell–gas turbine hybrid system design part II: Dynamics and control  

Science Journals Connector (OSTI)

Abstract Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P–I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

Dustin McLarty; Jack Brouwer; Scott Samuelsen

2014-01-01T23:59:59.000Z

40

NETL: News Release - Honeywell Hybrid Fuel Cell Technology To Be Added to  

NLE Websites -- All DOE Office Websites (Extended Search)

February 14, 2001 February 14, 2001 Honeywell Hybrid Fuel Cell Technology To be Added to DOE R&D Program Goal is to Develop Distributed Power Generation PITTSBURGH, PA - Generating power close to the consumer - a concept called distributed generation - may be one way to take the future strain off the nation's electric grid. Two of the best technologies for distributed generation are the fuel cell and the micro-turbine - but an even better approach may be a "hybrid" of both technologies. The Department of Energy's Office of Fossil Energy is already testing one type of fuel cell-turbine hybrid, and this spring will begin running a second type of test unit. Now, the Department, through its National Energy Technology Laboratory, plans to add a third hybrid system to its fossil energy research program.

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

42

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

43

Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant  

SciTech Connect

This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

Tsai A, Banta L, Tucker D

2010-08-01T23:59:59.000Z

44

Fuel Cell Technologies Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

45

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan Süslü; ?pek Becerik

2009-03-24T23:59:59.000Z

46

5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive  

E-Print Network (OSTI)

automobile, there are many electrical loads grouped into two main categories depending on the voltages5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan1,2 Leon M. Tolbert2 fkhan3@utk.edu tolbert@utk.edu 1 Electric Power Research Institute (EPRI) 2

Tolbert, Leon M.

47

Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches  

Science Journals Connector (OSTI)

Abstract In this paper, different optimal hybrid techniques have been proposed for management of a hybrid power generation system including photovoltaic (PV), fuel cell and battery. The main power of the hybrid system comes from the photovoltaic panels, while the fuel cell and batteries are used as back up units. In order to achieve maximum power point tracking for the photovoltaic system, both fuzzy logic controller and perturb and observation methods are examined and their performances have been investigated via simulations. Next, the performance of the hybrid system has been improved via employing a family of well-known optimization approaches for load sharing among the available resources. Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization (PSO), Quantum behaved Particle Swarm Optimization (QPSO), Ant Colony Optimization (ACO), and Cuckoo Optimization Algorithm (COA) are used to manage the load sharing to achieve optimal performance while the system constraints are met. The optimal performance has been characterized via the control strategy performance measure being the ratio of the amount of hydrogen production with respect to the hydrogen consumption. In order to verify the system performance, simulation studies have been carried out using practical load demand data and real weather data (solar irradiance and air temperature). Different combination of maximum power point tracking methods with various optimization algorithms have been compared with each other. The results show that the combination of fuzzy logic controller with QPSO has the best performance among the considered combinations. In this situation, when the solar irradiation is noticeably high, the required load is supplied mainly by PV array, while the battery is charged, simultaneously. In the other times, the load is mainly fed by the battery and fuel cell while the performance constraints of battery is met and the daily performance measure is optimized.

Nooshin Bigdeli

2015-01-01T23:59:59.000Z

48

Comparison between two optimization strategies for solid oxide fuel cell–gas turbine hybrid cycles  

Science Journals Connector (OSTI)

This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.

Yingru Zhao; Nilay Shah; Nigel Brandon

2011-01-01T23:59:59.000Z

49

The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application  

Science Journals Connector (OSTI)

A solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid power system is a newly developed and promising power technology for ship power systems. Compared to conventional power plants on commercial sh...

Jiqing He; Peilin Zhou; David Clelland

2014-12-01T23:59:59.000Z

50

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

51

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

SciTech Connect

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

52

Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report  

SciTech Connect

The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

Hitchcock, David

2012-06-29T23:59:59.000Z

53

Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources  

Science Journals Connector (OSTI)

Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.

Jung-Ho Wee

2011-01-01T23:59:59.000Z

54

Dynamic competition between plug-in hybrid and hydrogen fuel cell vehicles for personal transportation  

Science Journals Connector (OSTI)

This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage.

Nuno Bento

2010-01-01T23:59:59.000Z

55

Optimal Design of a Stand-Alone Hybrid PV/Fuel Cell Power System for the City of Brest in France  

E-Print Network (OSTI)

= Photovoltaic; FC = Fuel Cell; COE = cost of energy; CC = Capital Costs; NPC = Net Present Cost; TNPC = Total. Elbaset4 Abstract ­ This paper deals with the optimal design of a stand-alone hybrid photovoltaic and fuel reserved. Keywords: Hybrid power system, renewable energy, photovoltaic, fuel cell, generation unit sizing

Paris-Sud XI, Université de

56

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

57

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

SciTech Connect

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

58

Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell â Gas Turbine â Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe.  

E-Print Network (OSTI)

??Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC)… (more)

Arsalis, Alexandros

2007-01-01T23:59:59.000Z

59

A SELF-POWERED, SELF-SUSTAINING SYSTEM-ON-CHIP (SOC) SOLUTION POWERED FROM HYBRID MICRO-FUEL CELLS  

E-Print Network (OSTI)

batteries (e.g., Li-ion, NiMH, NiCd, etc.). Therefore, integrating the battery with a power efficient system-on-ship (SOC) solution with fully integrated micro-fuel cell/thin-film lithium-ion battery hybrids. A power scheme is proposed whereby micro-fuel cells charge an in-package thin-film lithium-ion battery, which

Rincon-Mora, Gabriel A.

60

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

62

Thermodynamic Modeling and Optimum Design Strategy of a Generic Solid Oxide Fuel Cell-Based Hybrid System  

Science Journals Connector (OSTI)

(5, 17, 18) Here, we consider an indirectly combined system of a SOFC and a generic heat engine cycle, which is different from the coupling of high temperature fuel cells with Carnot heat engines, indirectly coupled solid oxide fuel cell/gas turbine hybrid power plants, or integration of a SOFC with a Stirling engine,(19-23) because it can be used to expound the general performance characteristics of a SOFC-based hybrid system, investigate the key irreversible losses of the hybrid system, and obtain the optimum criteria of the main performance parameters. ... The integration of a Stirling engine instead of the microturbine is a second possibility and the object of an ongoing study. ...

Xiuqin Zhang; Juncheng Guo; Jincan Chen

2012-07-09T23:59:59.000Z

63

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

64

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

65

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ti007erickson2011o...

66

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

67

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative

68

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

69

Influence of steam injection through exhaust heat recovery on the design performance of solid oxide fuel cell — gas turbine hybrid systems  

Science Journals Connector (OSTI)

This study analyzed the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. Two different ... the effects of injecting steam, generated by recovering

Sung Ku Park; Tong Seop Kim; Jeong L. Sohn

2009-02-01T23:59:59.000Z

70

Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Hybrid Electric State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg

71

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

72

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Insurance Discount on Digg

73

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

74

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

75

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Vehicle (HEV) Acquisition Requirements to Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

76

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Acquisition Requirements to and Hybrid Electric Vehicle (HEV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Acquisition Requirements on Digg

77

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.

Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.

1998-05-19T23:59:59.000Z

78

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1998-01-01T23:59:59.000Z

79

Hybrid deposition of thin film solid oxide fuel cells and electrolyzers  

DOE Patents (OSTI)

The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.

Jankowski, Alan F. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Rambach, Glenn D. (Livermore, CA); Randich, Erik (Endinboro, PA)

1999-01-01T23:59:59.000Z

80

High efficiency direct fuel cell hybrid power cycle for near term application  

SciTech Connect

Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Fuel Cell Systems Consultant, Wethersfield, CT (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

82

A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment  

E-Print Network (OSTI)

Biocathode for Wastewater Treatment Lilian Malaeb,,§ Krishna P. Katuri,,§ Bruce E. Logan, Husnul Maab, S. P-biocathode microbial fuel cell- membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good

83

Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell–gas turbine systems  

Science Journals Connector (OSTI)

Design performances of the hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) system have been investigated. A pressurized system and an indirectly heated ambient pressure system were analyzed and their performances were compared. In the baseline layout, the basic performance characteristics of the two system configurations were analyzed, with the cell operation temperature and the pressure ratio as the main design parameters. The pressurized system exhibits a better efficiency owing to not only the higher cell voltage but also more effective utilization of gas turbine, i.e., a larger GT power contribution due to a higher turbine inlet temperature. Independent setting of the turbine inlet temperature was simulated by using the additional fuel supply as well as the air bypass. Increasing the pressure ratio of the gas turbine hardly improves the system efficiency, but the efficiency becomes less sensitive to the turbine inlet temperature. In the ambient pressure system, the available design parameter range is much reduced due to the limit on the recuperator temperature. In particular, design of the ambient pressure hybrid system with a gas turbine of a high pressure ratio does not seem quite feasible because the system efficiency that can be achieved at the possible design conditions is even lower than the efficiency of the SOFC only system.

S.K. Park; T.S. Kim

2006-01-01T23:59:59.000Z

84

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

SciTech Connect

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

85

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

86

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

87

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

88

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Support on Digg Find More places to share Alternative Fuels Data Center: Alternative

89

Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

90

Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle  

Science Journals Connector (OSTI)

The power generation community faces a major challenge: to protect the environment while producing a plentiful supply of clean low-cost energy. “21st Century Energy Plants” (Vision 21 Plants) have been proposed and conceptualized to meet the energy and environmental challenges. The solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle introduced in this work is one example of a Vision 21 Plant. The system includes an internal-reforming tubular-SOFC, an intercooled gas turbine, a humidifier, and other auxiliary components. A recently developed thermodynamic analysis computer code entitled advanced power systems analyses tools (APSAT) was applied to analyze the system performance of the SOFC–ICGT cycle. Sensitivity analyses of several major system parameters were studied to identify the key development needs and design and operating improvements for this hybrid cycle. A novel optimization strategy including a design of experiments (DOEx) approach is proposed and applied to the hybrid system. Using this optimization strategy, a system electrical efficiency higher than 75% (net ac/lower heating value (LHV)) could be achieved when the system was designed to operate under a high operating pressure (50 bara) and with a low percent excess air (EA) (55%) in the SOFC.

Yaofan Yi; Ashok D. Rao; Jacob Brouwer; G.Scott Samuelsen

2004-01-01T23:59:59.000Z

91

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

92

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Hybrid Electric Vehicle (HEV) Emissions Inspection and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Emissions Inspection Exemption on Digg

93

Dynalene Fuel Cell Coolants Achieve Commercial Success  

Office of Energy Efficiency and Renewable Energy (EERE)

Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems.

94

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

and simulation of a PEM fuel cell/ultra-capacitor hybridOptimal Control for a PEM Fuel Cell Hybrid Vehicle,

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

95

Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

96

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

97

Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency .  

E-Print Network (OSTI)

??An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel.… (more)

Kroll, Douglas M.

2010-01-01T23:59:59.000Z

98

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Laws & Incentives Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Parking - New Haven, CT on

99

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network (OSTI)

various powertrains and alternative fuel options have beenthe corresponding breakeven alternative fuel price needed totruck, hybridization, alternative, fuel cell, fuel economy,

Zhao, Hengbing

2013-01-01T23:59:59.000Z

100

SunLine Begins Extended Testing of Hybrid Fuel Cell Bus; DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about half that time, SunLine has used alternatively fueled buses running primarily on compressed natural gas (CNG). Today, the agency is increasing its commitment to...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

102

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

103

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

104

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

105

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

Delucchi, Mark

1992-01-01T23:59:59.000Z

106

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

$ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$° Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

Delucchi, Mark

1992-01-01T23:59:59.000Z

107

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

108

Fuel Cells at NASCAR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please...

109

Automotive Fuel Cell Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

with AFCC, a private joint venture company in Canada, formed by combining the automotive fuel cell business of Ballard Power Systems with the fuel cell stack development...

110

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

111

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

112

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Technical Cell Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

113

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkol’nikov; S. N. Klyamkin; M. S. Vlaskin…

2010-12-01T23:59:59.000Z

114

FUEL CELLS – MOLTEN CARBONATE FUEL CELLS | Overview  

Science Journals Connector (OSTI)

The molten carbonate fuel cell (MCFC) emerged during the twentieth century as one of the key fuel cell types. It uses an electrolyte of alkali metal carbonates, operates typically at 650 °C, and is best suited to hydrocarbon fuels such as natural gas, coal gas, or biogas. The high operating temperature enables such fuels to be fed directly to the MCFC stacks, leading to conversion efficiencies greater than 50%. Molten carbonate fuel cell systems are ideally suited to applications that need continuous base load power. The first commercial systems, at the 300 kW scale, are therefore being used in applications such as hospitals and hotels.

A.L. Dicks

2009-01-01T23:59:59.000Z

115

Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation  

SciTech Connect

A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

Restrepo, Bernardo; Banta, Larry E.; Tucker, David

2012-10-01T23:59:59.000Z

116

Modelling microscale fuel cells.  

E-Print Network (OSTI)

??The focus of this work is to investigate transport phenomena in recently developed microscale fuel cell designs using computational fluid dynamics (CFD). Two microscale fuel… (more)

Bazylak, Aimy Ming Jii

2009-01-01T23:59:59.000Z

117

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

118

California Fuel Cell Partnership: Alternative Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

119

Electrocatalysts for Fuel Cells  

Science Journals Connector (OSTI)

...research-article Electrocatalysts for Fuel Cells G. J. K. Acres G. A. Hards The...physical composition of the catalysts used in fuel cells are determined by the type of cell...operating conditions. The six types of fuel cell presently in use or under development...

1996-01-01T23:59:59.000Z

120

DOE Fuel Cell Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Fuel Cells Fuel cells are an important enabling technology for the nation's energy portfolio and have the potential to revolutionize the way we power our nation,...

122

HISTORY | Fuel Cells  

Science Journals Connector (OSTI)

Together with the electric motor, dynamo, gas turbine, internal combustion engine, and the fused salt electrolysis of aluminum, the industrial revolution of the nineteenth century brought about the fuel cell – the silent or cold combustion of fossil fuels by the electrochemical oxidation with atmospheric oxygen to water and carbon dioxide. Wilhelm Ostwald, in 1894, emphasized the high efficiency and the nonpolluting properties of the direct conversion of chemical energy into electricity – in contrast to the then combination of steam engine and dynamo, which reached only about 10% efficiency. Direct coal fuel cells designed for the propulsion of ships, however, have not become a reality so far. Instead of fuel cells and batteries, internal combustion engines determined the nineteenth- and twentieth- century technological landscape. Against the background of the oil crisis and the long-term scarcity of natural gas, crude oil, and coal, new hopes have focused on fuel cell technology, which saw first early splendid applications during the space programs of the 1960s, in submarines since the 1980s, and in experimental zero-emission vehicles (ZEVs) since the 1990s. This article outlines (1) early insights about energy conversion: Grove's cell, direct conversion of coal and indirect fuel cells; (2) historical roots of alkaline fuel cells: the discovery of gas diffusion electrodes; low-pressure alkaline fuel cell conquer spacecrafts and submarines; (3) polymer electrolyte fuel cells: solid polymer technology, electric vehicles, direct methanol fuel-cell, stationary power systems and portable polymer electrolyte membrane fuel cell systems; (4) phosphoric acid fuel cell (PAFC): acid fuel cells, PAFC plants in Japan, gasoline fuel cells; and (5) high-temperature fuel cells: molten carbonate fuel cell and solid oxide fuel cell.

P. Kurzweil

2009-01-01T23:59:59.000Z

123

Fuel Cell Buses | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses Fuel Cell Buses Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cell Buses" held on September 12, 2013. Fuel Cell Buses...

124

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

125

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on AddThis.com...

126

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

127

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

128

FUEL CELLS RALLY  

Science Journals Connector (OSTI)

FUEL CELLS RALLY ... No, this car has composite tanks capable of storing 8 kg of hydrogen. ... It's General Motors' Sequel, a fuel-cell concept car unveiled earlier this month at the North American International Auto Show in Detroit. ...

ALEXANDER H. TULLO

2005-01-31T23:59:59.000Z

129

fuel cells | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cells fuel cells Leads No leads are available at this time. The Molecular Bond: October 2014 The Molecular Bond newsletter banner October 2014 FROM THE DIRECTOR Read more...

130

Fuel cell arrangement  

DOE Patents (OSTI)

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-05-12T23:59:59.000Z

131

Webinar: Fuel Cell Buses  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

132

Microfluidic fuel cells.  

E-Print Network (OSTI)

??Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the… (more)

Kjeang, Erik

2007-01-01T23:59:59.000Z

133

Webinar: Fuel Cell Mobile Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

134

An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations  

Science Journals Connector (OSTI)

Natural gas is transported in pipelines at high pressures. To distribute the gas locally at locations along the pipeline the pressure must be reduced before the gas enters the local distribution system. Most pressure reduction stations in North America use expansion valves for this purpose. The expansion process produces a temperature decrease which can cause problems so the gas must be preheated before entering the expansion valve. Usually this is done using a natural gas-fired boiler. To reduce the energy consumption the pressure drop can be achieved by passing the gas through a turboexpander which generates electrical power. With a turboexpander system the gas must also be preheated, a gas-fired boiler again used. A new approach which uses a hybrid turboexpander-fuel cell system has been considered here. In such a system, a Molten Carbonate Fuel Cell (MCFC) utilizing natural gas is used to preheat the gas before it flows through the turboexpander and to provide low emission electrical power. The main objective of the present work was to investigate the factors affecting the performance of such a system. Data on natural gas usage in typical smaller Canadian city was used as an input to a simulation of a hybrid gas expansion station in the city.

Clifford Howard; Patrick Oosthuizen; Brant Peppley

2011-01-01T23:59:59.000Z

135

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

136

Fuel Cells Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

137

Fuel Cell 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

138

Fuel cell generator  

DOE Patents (OSTI)

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

139

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

140

Fuel Cell Technologies Office: Early Market Applications for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on AddThis.com...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cells publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells » Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

142

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

143

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

144

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

145

FUEL CELLS – SOLID OXIDE FUEL CELLS | Systems  

Science Journals Connector (OSTI)

In this article, some basic arrangements of solid oxide fuel cell (SOFC) systems are described, starting with atmospheric systems using a catalytic burner or a thermal burner and anode gas recycling. For illustrating the potential electrical efficiency of SOFC systems, their combination with a gas turbine and also with a steam turbine (ST) are described. To be able to evaluate the potential of the different systems, first the essential efficiencies relevant to fuel cell systems are defined and then the basics of calculating energy balance are illustrated. Equations are given to describe, for example, the effect of fuel recycling on system fuel utilization and of internal reforming on the necessary air flow for cooling the stack. It is obvious that electrical efficiency depends strongly on cell voltage and fuel utilization. In the case of cells that operate with a high fuel utilization at cell voltages of 800 mV, a net electrical efficiency above 55% can be achieved. The combination in a pressurized system with a gas turbine enables efficiencies of up to 70% and combining this system with an additional ST allows efficiencies of up to 75%. However, an investigation into the size of these \\{STs\\} shows that such combined systems make sense only above a gas input of 10 MW.

L. Blum; E. Riensche

2009-01-01T23:59:59.000Z

146

Fuel Cells Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications...

147

NETL: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Coal and Power Systems Fuel Cells SECA Logo Welcome to NETL's Fuel Cells Webpage. In partnership with private industry, educational institutions and national laboratories, we are leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal-based SOFC power generation systems for stationary market large central power plants under the Solid State Energy Conversion Alliance (SECA). The SECA cost reduction goal is to have SOFC systems capable of being manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt (MW)-class fuel flexible products by 2012 and 2015. The SECA coal-based systems goal is the development of large

148

NREL: Learning - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

149

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

150

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

May 13 - 16, Appendix I Fuel cell hybrid vehicles with loadarea: 510 cm 2 ) Appendix II Fuel cell vehicles with powerarea: 510 cm 2 ) Appendix III Fuel cell vehicles with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

151

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network (OSTI)

supercapacitors. Fuel cell/Li-ion battery hybrids achievedFUDS and US06 cycles Li-ion Battery Coupled to FC DC-Link16 Comparison of fuel cell/Li-ion battery hybrids with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

152

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

153

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

154

Microcomposite Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

155

Fuel Cell Financing Options  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011.

156

Fuel Cell Case Study  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

157

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

158

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Hamza Alloui  

E-Print Network (OSTI)

A Control Strategy Scheme for Fuel Cell-Vehicle Based on Frequency Separation Hamza Alloui based on frequency-separation for Fuel cell-Battery Hybrid Electric Vehicle (HEV), using a Fuel cell (FC of this strategy. Keywords ­ Fuel cell, hybrid source, battery, DC-DC Boost converter, Buck-boost converter

Boyer, Edmond

159

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

160

Fuel Cell Demonstration Program  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Texas Taxis Go Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Texas Taxis Go Hybrid Texas Taxis Go Hybrid to someone by E-mail Share Alternative Fuels Data Center: Texas Taxis Go Hybrid on Facebook Tweet about Alternative Fuels Data Center: Texas Taxis Go Hybrid on Twitter Bookmark Alternative Fuels Data Center: Texas Taxis Go Hybrid on Google Bookmark Alternative Fuels Data Center: Texas Taxis Go Hybrid on Delicious Rank Alternative Fuels Data Center: Texas Taxis Go Hybrid on Digg Find More places to share Alternative Fuels Data Center: Texas Taxis Go Hybrid on AddThis.com... May 6, 2010 Texas Taxis Go Hybrid L earn how San Antonio is replacing traditional cabs with gasoline-electric hybrids. For information about this project, contact Alamo Area Clean Cities (San Antonio). Download QuickTime Video QuickTime (.mov) Download Windows Media Video Windows Media (.wmv)

162

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on AddThis.com... April 7, 2011 Hybrid Electric Horsepower for Kentucky Schools " The hybrid school bus project not only serves as a means to improve

163

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

164

How Fuel Cells Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Fuel Cells Work How Fuel Cells Work Diagram: How a PEM fuel cell works. 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.

165

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

166

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

167

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

168

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

169

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

170

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

171

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

172

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

173

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

174

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

175

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

176

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

177

Energy 101: Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells Energy 101: Fuel Cells Addthis Description Learn everything you need to know about fuel cells. Topic Hydrogen & Fuel Cells...

178

Types of Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Current Technology Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification...

179

Fuel Cell Animation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen...

180

Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolysis, using renewable electricity * Conventional fuels - including natural gas, propane, diesel 3 | Fuel Cell Technologies Program Source: US DOE 852011...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuzzy logic controller based power management for a standalone solar/wind/fuel cell fed hybrid system  

Science Journals Connector (OSTI)

This paper proposes a new power conditioner topology with an intelligent power management controller that integrates multiple renewable energy sources such as solar energy wind energy and fuel cell energy with battery backup to make the best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed multiple-input converter uses neural network and fuzzy logic controller for maintaining a constant voltage at point of common coupling and efficient power flow control respectively. The power conditioner uses very limited number of switches and promises significant savings in component count and reduced losses. Also fuzzy logic controller based online estimation of state of charge and battery charging is also designed for the battery bank which is suitably connected by the controller to sink or source the input power based on the load requirement. The simulation results of the proposed system prove good in the stability aspect as well.

S. Saravanan; S. Thangavel

2013-01-01T23:59:59.000Z

182

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

183

Fuel Cell Animation- Fuel Cell Stack (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

184

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the...

185

Fuel Cell Animation- Fuel Cell Components (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

186

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record Record : 14012 Date: June 12, 2014 Title: Fuel Cell System Cost - 2013 Update to: Record 12020 Originator: Jacob Spendelow and Jason...

187

An advanced fuel cell simulator  

E-Print Network (OSTI)

of Fuel Cells ...................... 4 D. Fuel Cell Power Plant ..................... 4 E. Challenges in Fuel Cell Development ............ 5 F. Previous Work ......................... 6 G. Solar Array Simulators .................... 8 H. Battery... ............................. 54 28 Under-voltage Fault ........................... 55 1 CHAPTER I INTRODUCTION The depleting fossil fuel resources and increasing pollution are leading to the research and development of alternate energy generation techniques like fuel cells...

Acharya, Prabha Ramchandra

2005-11-01T23:59:59.000Z

188

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

189

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

190

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

191

Fuel Cell Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies...

192

Module 5: Fuel Cell Systems  

Energy.gov (U.S. Department of Energy (DOE))

This course covers the systems required to operate a fuel cell engine, the components and functionality of each fuel cell system

193

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

4/3/2012 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future development of roadmaps and technical targets for flow cells for various applications. 3. Identify grand challenges and prioritize R&D needs. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications.

194

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

195

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Hybrid

196

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

197

Hybrid Silicon Nanocone–Polymer Solar Cells  

Science Journals Connector (OSTI)

Hybrid Silicon Nanocone–Polymer Solar Cells ... In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. ...

Sangmoo Jeong; Erik C. Garnett; Shuang Wang; Zongfu Yu; Shanhui Fan; Mark L. Brongersma; Michael D. McGehee; Yi Cui

2012-04-30T23:59:59.000Z

198

Fuel cell generator energy dissipator  

DOE Patents (OSTI)

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

199

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program...

200

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

202

Cabot Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Cabot Fuel Cells Cabot Fuel Cells Jump to: navigation, search Name Cabot Fuel Cells Place Albuquerque, New Mexico Zip 87113 Product Cabot develops and manufactures advanced fuel cell electrocatalysts for PEM fuel cells. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Cornell Fuel Cell Institute | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Institute Fuel Cell Institute Jump to: navigation, search Name Cornell Fuel Cell Institute Place Ithaca, New York Zip 14850 Product The Cornell Fuel Cell Institute (CFCI) comprises of a team of materials experts who are involved in materials explorations to solve fuel cell related problems. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Compliant fuel cell system  

DOE Patents (OSTI)

A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

2009-12-15T23:59:59.000Z

205

Alternative Fuels Data Center: Michigan Transports Students in Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Transports Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Delicious Rank Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Digg Find More places to share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on AddThis.com...

206

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

207

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

208

Hydrogen & Fuel Cells Program Overview  

E-Print Network (OSTI)

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell

209

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

210

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

211

Fuel Cell Technologies Office: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

212

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

213

Market penetration scenarios for fuel cell vehicles  

SciTech Connect

Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

214

Handbook of fuel cell performance  

SciTech Connect

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

215

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

216

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...  

Energy Savers (EERE)

for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

217

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

218

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

219

Fuel Cells at NASCAR | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells at NASCAR Fuel Cells at NASCAR Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014. Fuel Cells at...

220

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network (OSTI)

treatment, sedi- ment or marine fuel cells for fieldmicrobial fuel cells demonstrating marine (left) and soil (1]. Sediment and Marine Microbial fuel cells can also

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

222

Fuel Cells News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells News Fuel Cells News October 16, 2014 Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications The...

223

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network (OSTI)

Model of hydrogen fuel cell kinetic losses includingschematic of typical hydrogen fuel cell performancephase factors on hydrogen fuel cell theoretical efficiency,

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

224

Fuel Cell Technologies Office Newsletter Archives | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Newsletter Fuel Cell Technologies Office Newsletter Archives Fuel Cell Technologies Office Newsletter Archives View previous issues of the Fuel Cell...

225

DOE Hydrogen Analysis Repository: Potential for Stationary Fuel Cells to  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Hydrogen Vehicles Project Summary Full Title: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles Project ID: 281 Principal Investigator: David Greene Brief Description: This analysis was focused on the role that combined heat and hydrogen power (CHHP) could play in increasing hydrogen refueling availability during the transition to hydrogen vehicles. Keywords: Stationary fuel cell; hydrogen; plug-in hybrid electric vehicle; hydrogen fuel cell vehicle; combined heat, hydrogen and power; internal combustion engine Performer Principal Investigator: David Greene Organization: Oak Ridge National Laboratory (ORNL)

226

Hoku Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Hoku Fuel Cells Hoku Fuel Cells Jump to: navigation, search Name Hoku Fuel Cells Place Honolulu, Hawaii Zip 96814 Product Hawaii-based, subsidiary of Hoku Scientific Inc, developer, manufacturer and seller of membranes and MEAs for stationary and automotive PEM fuel cells. Coordinates 21.30477°, -157.857614° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.30477,"lon":-157.857614,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Nuvera Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Nuvera Fuel Cells Nuvera Fuel Cells Jump to: navigation, search Name Nuvera Fuel Cells Address 129 Concord Road Place Billerica, Massachusetts Zip 01821 Sector Hydrogen Product Developing fuel cells Website http://www.nuvera.com/ Coordinates 42.549221°, -71.284134° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.549221,"lon":-71.284134,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Hydra Fuel Cell Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Corporation Fuel Cell Corporation Jump to: navigation, search Name Hydra Fuel Cell Corporation Place Beaverton, Oregon Product Holding company for American Security Resources' fuel cell operations. Coordinates 45.484895°, -122.796153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.484895,"lon":-122.796153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

230

Compact fuel cell  

DOE Patents (OSTI)

A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

2010-10-19T23:59:59.000Z

231

Air Liquide- Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

232

DOE Hydrogen & Fuel Cell Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Power Heat + Cooling Electricity Cooling Natural Gas Natural Gas or Biogas Fuel Cell H Excess power generated by the fuel cell is fed to the grid National...

233

Alkaline Membrane Fuel Cell Workshop  

Energy.gov (U.S. Department of Energy (DOE))

A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

234

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

235

Hybrid Life-Cycle Assessment of Natural Gas Based Fuel Chains for Transportation  

Science Journals Connector (OSTI)

The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. ... Then, trucks are used to transport the fuels to a fueling station in Geneva, Switzerland. ... In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid elec., and hydrogen fuel cells], we find no option dominates the others on all dimensions. ...

Anders Hammer Strømman; Christian Solli; Edgar G. Hertwich

2006-03-17T23:59:59.000Z

236

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

237

Hydrogen & Fuel Cells Program Overview  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

238

Fuel Cell Technologies Office: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

239

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network (OSTI)

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure Technologies Program Review was produced from water in a linked cyanobacterial- hydrogenase hybrid system Isolated mutants and cloned 2

240

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicles must give preference to hybrid, plug-in hybrid electric, biodiesel, hydrogen, fuel cell, or flexible fuel vehicles when the performance, quality, and anticipated...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

242

Microfluidic Fuel Cells Erik Kjeang  

E-Print Network (OSTI)

Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeå University, 2004 A Dissertation Submitted Supervisory Committee Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeå University, 2004 Supervisory University External Examiner Microfluidic fuel cell architectures are presented in this thesis. This work

Victoria, University of

243

Hydrogen & Fuel Cells Program Overview  

E-Print Network (OSTI)

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

244

Distributed Energy Fuel Cells Electricity Users  

E-Print Network (OSTI)

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

245

Fuel Cell Handbook, Fifth Edition  

SciTech Connect

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

246

Advanced Electrocatalysts for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

247

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

248

Vehicle System Impacts of Fuel Cell System Power Response Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

- 01 - 1959 - 01 - 1959 Vehicle System Impacts of Fuel Cell System Power Response Capability Tony Markel and Keith Wipke National Renewable Energy Laboratory Doug Nelson Virginia Polytechnic University and State Institute Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7

249

Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Google Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Delicious Rank Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen and Fuel Cell Tax Exemption The following are exempt from state sales tax: 1) any device, equipment, or

250

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

251

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

252

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

253

Hydrogen Fuel Cell Automobiles  

Science Journals Connector (OSTI)

With gasoline now more than $2.00 a gallon alternate automobiletechnologies will be discussed with greater interest and developed with more urgency. For our government the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.1

Bernard J. Feldman

2005-01-01T23:59:59.000Z

254

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

255

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

256

Sandia National Laboratories: fuel cell vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

257

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

258

Reversible Fuel Cells Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reversible Fuel Cells Workshop Reversible Fuel Cells Workshop The National Renewable Energy Laboratory hosted a workshop addressing the current state-of-the-art of reversible fuel...

259

Ambient pressure fuel cell system  

DOE Patents (OSTI)

An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

Wilson, Mahlon S. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

260

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermal Stress Analysis of LCA-based Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??This research characterizes the thermal stress resulting from temperature gradients in hybrid solid oxide fuel cells that are processed using a novel oxide powder slurry… (more)

LeMasters, Jason Augustine

2004-01-01T23:59:59.000Z

262

The Business Case for Fuel Cells 2014: Powering the Bottom Line...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the University of Bridgeport. Our Renewable Energy Research Lab evaluates technologies in energy conversion, utilization and storage in fuel cells, solar, wind, and hybrid systems....

263

Entering a New Stage of Learning from the U.S. Fuel Cell Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Demonstration Project: Preprint To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9,...

264

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

265

How Fuel Cells Work | Department of Energy  

Energy Savers (EERE)

Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and...

266

NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team, which analyzes detailed data and reports on fuel cell technology status, progress, and technical challenges. Graphic representing NREL's Hydrogen Secure Data Center and the variety of applications from which it gathers data, including fuel cell (FC) stacks, FC backup power, FC forklifts, FC cars, FC buses, and FC prime power, and hydrogen infrastructure.

267

Fuel Quality Issues in Stationary Fuel Cell Systems  

Energy.gov (U.S. Department of Energy (DOE))

This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

268

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Program Record Record : 11003 Date: March 8, 2011 Title: Fuel Cell Stack Durability Originator: Jacob Spendelow, Dimitrios Papageorgopoulos, and John Garbak...

269

Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture  

SciTech Connect

This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

2008-06-01T23:59:59.000Z

270

Advanced Fuel Cell Systems | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Systems Fuel Cell Systems Place Amherst, New York Zip 14228 Product Collaboration of three companies (ATSI Engineering, ENrg, BioEconomy Development Corp) active in the development and application of fuel cell systems. Coordinates 44.450509°, -89.281675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.450509,"lon":-89.281675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Nuvera Fuel Cells Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Nuvera Fuel Cells Inc Place Billerica, Massachusetts Zip 1821 Product US-based developer of bipolar fuel cell stack plates to develop Proton Exchange Membrane (PEM) fuel cells. Coordinates 42.562968°, -71.270559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.562968,"lon":-71.270559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers stationary fuel cells and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

273

NREL: Hydrogen and Fuel Cells Research - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material,...

274

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

275

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

276

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

277

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

278

Carbonate fuel cell anodes  

DOE Patents (OSTI)

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

279

Fuel cells for electric utility and transportation applications  

SciTech Connect

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

280

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel cell gas management system  

DOE Patents (OSTI)

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

282

Energy 101: Fuel Cell Technology  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

283

Air Liquide - Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

284

2009 Fuel Cell Market Report  

Energy.gov (U.S. Department of Energy (DOE))

This report provides an overview of 2009 trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance.

285

Sandia National Laboratories: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

separator, compared to 800 hrs obtained by a commercial standard. Tagged with: Fuel Cells * Hydrogen * SAND2014-15070W Comments are closed. Renewable Energy Wind Energy...

286

Microfluidics for fuel cell applications.  

E-Print Network (OSTI)

??In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion… (more)

Stewart, Ian

2011-01-01T23:59:59.000Z

287

Hydrogen and Fuel Cell Vehicle Evaluation Richard Parish, Leslie Eudy, and Ken Proc  

E-Print Network (OSTI)

-, and heavy-duty fuel cell vehicles; and the hydrogen fueling and maintenance infrastructure required to make on past experience of developing and evaluating alternative fuel and hybrid electric vehicles, NREL took with its fuel cell vehicle and hydrogen infrastructure development and evaluation. Goals and Objectives The

288

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

289

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

290

Fusion-Fission Hybrid for Fissile Fuel Production without Processing  

SciTech Connect

Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors. This combination consumes about 20% of the thorium initially loaded in the hybrid reactor ({approx}200 GWd/tHM), partially during hybrid operation, but mostly during operation in the critical reactor. The plant support ratio is low compared to the one attainable using continuous fuel chemical reprocessing, which can yield a plant support ratio of about 20, but the resulting fuel cycle offers better proliferation resistance as fissile material is never separated from the other fuel components.

Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

2012-01-02T23:59:59.000Z

291

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

of stationary fuel Premier developer of stationary fuel cell technology -- founded in 1969 · Over 50 efficiency 60% DFC-ERGDFC ERG DFC/Turbine 58 ­ 70% Direct FuelCell (DFC)* 47% Natural Gas Engines Small Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp

292

Dupont Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Dupont Fuel Cells Dupont Fuel Cells Jump to: navigation, search Name Dupont Fuel Cells Place Wilmington, Delaware Zip DE 19880-0 Product A subsidiary of Dupont which specializes in fuel cell technology. It produces DuPontâ"¢ Nafion® membranes and dispersions to multilayer membrane electrode assemblies and specialty conductive plates for fuel cells. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

FuelCellsEtc | Open Energy Information  

Open Energy Info (EERE)

FuelCellsEtc FuelCellsEtc Jump to: navigation, search Logo: FuelCellsEtc Name FuelCellsEtc Address PO Box 9230 Place College Station, Texas Zip 77842 Sector Hydrogen, Renewable Energy, Services Product Fuel Cell and Electrolysis Components Year founded 2010 Number of employees 11-50 Company Type For Profit Phone number 9796354706 Website http://fuelcellsetc.com/ Coordinates 30.5982245°, -96.3046357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5982245,"lon":-96.3046357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

295

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

296

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network (OSTI)

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

297

NETL: News Release - GE Sets Benchmarks for Fuel Cell Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

August 8, 2005 August 8, 2005 GE Sets Benchmarks for Fuel Cell Performance Achievements Move Efficient, Clean SOFC Technology Closer to Mainstream Energy Markets TORRANCE, CA - In the race to speed solid oxide fuel cell (SOFC) technology out of niche markets and into widespread commercial use, GE Hybrid Power Generation Systems has kicked fuel cell performance into high gear. Recent advancements have dramatically improved baseline cell performance and accelerate GE's prospects for achieving the system efficiency and cost objectives of DOE's Solid State Energy Alliance (SECA) program. Packing more power into smaller volumes is one of the breakthroughs needed to reduce the cost and expand the use of efficient, environmentally friendly fuel cells. But increasing power density isn't the only goal; as power density increases, fuel cells must continue to efficiently and reliably convert fuel to electric power.

298

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers (EERE)

Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per...

299

Overview of Fuel Cell Electric Bus Development | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

300

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comparison of Fuel Cell Technologies: Fact Sheet | Department...  

Energy Savers (EERE)

Office. Comparison of Fuel Cell Technologies More Documents & Publications Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fuel Cells Fact Sheet MCFC and PAFC...

302

Comparison of Fuel Cell Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and disadvantages. See how fuel cell technologies compare with...

303

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

304

Fuel Cell Kickoff Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3:40 Aligned Carbon Nanotube-Based MEA and PEMFC D-J Liu, ANL 4:00 Light Weight Low Cost PEM Fuel Cell Stacks J. Wainright, CWRU 4:20 Adaptive Stack with Subdivided Cells for...

305

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

306

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

307

NREL: Hydrogen and Fuel Cells Research - Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

308

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

309

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

310

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can efficiently capture and use the power of hydrogen the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

311

Energy 101: Fuel Cell Technology  

SciTech Connect

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-03-11T23:59:59.000Z

312

Energy 101: Fuel Cell Technology  

ScienceCinema (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-06-06T23:59:59.000Z

313

Fuel Cells for Robots  

NLE Websites -- All DOE Office Websites (Extended Search)

For Robots For Robots Fuel Cells For Robots Pavlo Rudakevych iRobot Pavlo Rudakevych iRobot Product Needs Product Needs * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig PackBot PackBot * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight System Concept System Concept System Concept System Concept System Concept Continued System Concept Continued * Modular payload bays - 3 primary - 1 head - 4 side pods * Each payload socket supports - Ethernet

314

Hydrogen & Fuel Cells - Fuel Cell - Polymer Electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer Electrolyte Fuel Cell Research Polymer Electrolyte Fuel Cell Research Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. One of the main barriers to the commercialization of polymer electrolyte fuel cell (PEFC) systems, especially for automotive use, is the high cost of the platinum electrocatalysts. Aside from the cost of the precious metal, concern has also been raised over the adequacy of the world supply of platinum, if fuel cell vehicles were to make a significant penetration into the global automotive fleet. At Argonne, chemists are working toward the development of low-cost nonplatinum electrocatalysts for the oxygen reduction reaction--durable materials that would be stable in the fuel

315

U.S. DOE FE Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FE Fuel Cell Program FE Fuel Cell Program DOE Hydrogen and Fuel Cells Coordination Meeting June 2, 2003 Sam Biondo, 35910 FY 2001 Actual FY 2002 Actual FY 2003 Enacted* FY 2004 Budget Description Fossil Energy (FE) Fule Cells Distributed Generation System s Innovative Systems Concepts 3,789 26,484 33,779 23,500 Continue to develop and test six SECA industry team concept designs for prototype low -to-high temperature, $400/kW systems and continue the supporting SECA Core Technology program. Fuel Cell Systems Development 30,172 13,147 9,935 6,000 Conduct re-directed program on advanced systems development and testing. These advanced systems include zero emission and hybrid systems. Also includes various stack designs under SECA and adaptation of SECA for syngas and diesel. Vision 21 Hybrid

316

NETL: Fuel Cells/SECA News - Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells/Solid State Energy Conversion Alliance (SECA) Fuel Cells/Solid State Energy Conversion Alliance (SECA) News Archive SECA Workshop Proceedings, Peer Reviews, and Annual Reports 2013 Archive 2012 Archive 2011 Archive Previous Highlights FuelCell Energy's Stack Boosts Power and Minimizes Degradation FuelCell Energy has developed a new solid oxide fuel cell stack design that boosts the overall power output of the fuel cell stack by nearly 50%. FuelCell Energy also achieved a voltage degradation rate of 1.3% per 1000 hours after testing the fuel cells for 26,000 hours of operation. This breakthrough by FuelCell Energy of greater power from the fuel cell stack while minimizing fuel cell degradation pushes it further towards meeting SECA's goal of a market ready, affordable solid oxide fuel cell ready by the year 2010. (5/05)

317

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Markets Ltd Place: Buckinghamshire, United Kingdom Zip: SL0 9AQ Sector: Hydro, Hydrogen Product: Fuel Cell Markets was set up to assist companies in the fuel cell and...

318

Hydrogen fuel cells for cars and buses  

Science Journals Connector (OSTI)

The use of hydrogen fuel cells for cars is strongly promoted by the governments of ... . The electrochemical behaviour of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically...

L. J. J. Janssen

2007-11-01T23:59:59.000Z

319

Hydrogen Fuel Cell Engines and Related Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This course covers hydrogen properties, use and safety, fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine.

320

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and V. I. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C.Nanostructured Solid Oxide Fuel Cell Electrodes By Tal Zvi

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network (OSTI)

tion, to the typical PEM fuel cell kinetics, the system alsostudied. As with other PEM fuel cells, it is generally ad-exchange membrane (PEM) fuel cell performance, utilizing

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

322

Ceramic Fuel Cells (SOFC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ceramic Fuel Cells (SOFC) Ceramic Fuel Cells (SOFC) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011....

323

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network (OSTI)

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

324

Fuel Cells Get New BFF | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Get New BFF Fuel Cells Get New BFF Artificial diamonds may lead to affordable, efficient fuel cells Oxygen (red spheres) migrates from one vacancy to another inside the...

325

Fuel Cells - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics Fuel Cells - Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as...

326

Fuel Cells Calendar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Calendar Fuel Cells Calendar Upcoming events for the Fuel Cell Technologies Office are listed below. Find past events. January 2015 < prev next > Sun Mon Tue Wed Thu Fri...

327

Fuel Cell School Buses: Report to Congress  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This...

328

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

329

Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells  

E-Print Network (OSTI)

less than organic bulk heterojunction solar cells. Knowledgeof individual organic/inorganic hybrid nanowire solar cells.an organic/inorganic hybrid single nanowire solar cell. End-

Briseno, Alejandro L.

2010-01-01T23:59:59.000Z

330

Fuel cell with internal flow control  

SciTech Connect

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

331

fuel cells | OpenEI  

Open Energy Info (EERE)

cells cells Dataset Summary Description Developed for the U.S. Department of Energy's Office of Fuel Cell Technologies by Argonne National Laboratory and RCF Economic and Financial Consulting, Inc., JOBS and economic impacts of Fuel Cells (JOBS FC) is a spreadsheet model that estimates economic impacts from the manufacture and use of select types of fuel cells. Source Argonne Date Released Unknown Date Updated Unknown Keywords fuel cells Job Creation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon File without Macros. Full version at official link. (xlsx, 2.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment From Argonne National Lab

332

SBIR/STTR Phase I Release 2 Technical Topics Announced for FY14 Fuel Cell Topics Included  

Energy.gov (U.S. Department of Energy (DOE))

Phase I Release 2 technical topics include prototype fuel cell-battery electric hybrid trucks for waste transportation and novel membranes and non-platinum group metal catalysts for direct methanol as well as hydrogen fuel cells.

333

Development of a lithium hydride powered hydrogen generator for use in long life, low power PEM fuel cell power supplies  

E-Print Network (OSTI)

This thesis studies a hybrid PEM fuel cell system for use in low power, long life sensor networks. PEM fuel cells offer high efficiency and environmental friendliness but have not been widely adopted due to cost, reliability, ...

Strawser, Daniel DeWitt

2012-01-01T23:59:59.000Z

334

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

335

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

336

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

337

DOE Hydrogen and Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

338

Technology Validation: Fuel Cell Bus Evaluations | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Validation: Fuel Cell Bus Evaluations Technology Validation: Fuel Cell Bus Evaluations 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

339

Webinar: Advanced Electrocatalysts for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, originally presented on February 12, 2013.

340

Durable, Low Cost, Improved Fuel Cell Membranes  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007.

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus...

342

Advancements and Opportunities for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Fuel Cell Seminar and Energy Exposition Reuben Sarkar U.S. Department of Energy Deputy Assistant Secretary Sustainable Transportation...

343

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

344

Characterization of Fuel-Cell Diffusion Media  

E-Print Network (OSTI)

47 Figure 4.2 CV of PEM fuel-cell CL that shows hydrogencurrent. Figure 4.2. CV of PEM fuel-cell catalyst layer that

Gunterman, Haluna Penelope Frances

2011-01-01T23:59:59.000Z

345

Nuvera fuel cells for Fincantieri marine vessels  

Science Journals Connector (OSTI)

US-based Nuvera Fuel Cells is working with Italian shipbuilder Fincantieri on a programme to power luxury marine vessels with advanced hydrogen PEM fuel cell technology.

2013-01-01T23:59:59.000Z

346

Market Transformation: Fuel Cell Early Adoption (Presentation...  

Office of Environmental Management (EM)

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

347

NREL: Hydrogen and Fuel Cells Research - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells News The following news stories highlight hydrogen and fuel cells research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS....

348

Hydrogen and Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

349

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

350

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

351

Hydrogen and Fuel Cells Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

71 Hydrogen and Fuel Cells Success Stories en Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle http:energy.goveeresuccess-storiesarticlesadvancing-hydrogen-in...

352

Fuel Cells - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current Technology Fuel Cells - Current Technology Today, fuel cells are being developed to power passenger vehicles, commercial buildings, homes, and even small devices such as...

353

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

354

Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

hydrogen delivery, and economic impacts of fuel cells as well as hydrogen and natural gas fueling infrastructure. Marianne will discuss a new tool for estimating the economic...

355

Development of Solid Oxide Fuel Cells Utilizing Alternative Fuels.  

E-Print Network (OSTI)

??This dissertation is a summary of four solid oxide fuel cell (SOFC) research projects which addressed a number of SOFC technologies to use alternative fuels… (more)

Labarbera, Mark

2012-01-01T23:59:59.000Z

356

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

1997-04-29T23:59:59.000Z

357

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

358

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

359

EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA  

Energy.gov (U.S. Department of Energy (DOE))

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies."

360

Overview of Hydrogen Fuel Cell Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Budget Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D - Technology-neutral fuel cell systems R&D for diverse applications * Hydrogen Fuel R&D - Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel...

362

EERE Announces Notice of Intent to Issue Fuel Cell Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator:...

363

Moving toward a commercial market for hydrogen fuel cell vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

364

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy Savers (EERE)

DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel...

365

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

366

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

367

Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: How They Fuel Cells: How They Work and How They're Used (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cells:

368

Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorWeek Fuel Cell MotorWeek Fuel Cell Video (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Google Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Delicious Rank Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

369

Water reactive hydrogen fuel cell power system  

DOE Patents (OSTI)

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

370

Water reactive hydrogen fuel cell power system  

DOE Patents (OSTI)

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

371

Fuel Cell Research  

SciTech Connect

Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: ? They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. ? They should be scientifically exciting and sound. ? They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. ? They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. ? They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. ? They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

Weber, Peter M. [Brown University] [Brown University

2014-03-30T23:59:59.000Z

372

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

373

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

374

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

375

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

376

FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)  

SciTech Connect

Presentation on factors affecting fuel cell degradation in the DOE Fuel Cell Vehicle learning demonstation.

Kurtz, J.; Wipke, K.; Sprik, S.

2007-11-15T23:59:59.000Z

377

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss063bazzi2012...

378

Advancing Plug In Hybrid Technology and Flex Fuel Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss063bazzi2011...

379

Fuel Cell Scientific LLC | Open Energy Information  

Open Energy Info (EERE)

Scientific LLC Scientific LLC Jump to: navigation, search Name Fuel Cell Scientific LLC Address 200 F Main Street Place Stoneham, Massachusetts Zip 02180 Sector Hydrogen Product Fuel cell parts supplier Website http://www.fuelcellsupplies.ne Coordinates 42.4894164°, -71.1002334° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4894164,"lon":-71.1002334,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Fuel Cells Technology Transit | Open Energy Information  

Open Energy Info (EERE)

Technology Transit Technology Transit Jump to: navigation, search Name Fuel Cells Technology Transit Place Clearwater, Florida Zip 33767 Sector Hydro, Hydrogen Product Involved in the development and research of energy models on Hydrogen Energy Fuel Cell within the local and national arena. Coordinates 42.172132°, -98.189096° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.172132,"lon":-98.189096,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

California Fuel Cell Partnership | Open Energy Information  

Open Energy Info (EERE)

Partnership Partnership Jump to: navigation, search Name California Fuel Cell Partnership Address 3300 Industrial Blvd Place West Sacramento, California Zip 95691 Region Bay Area Notes Collaboration of organizations that work together to promote the commercialization of hydrogen fuel cell vehicles Website http://www.fuelcellpartnership Coordinates 38.574198°, -121.557486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.574198,"lon":-121.557486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Market Readiness Workshop DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program February 16, 2011 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently: ~9 million metric tons of H 2 produced annually > 1200 miles of H 2 pipelines Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts. The largest markets for fuel cells today are in

383

Fuel Cell Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

384

Fuel cell and hydrogen economy  

Science Journals Connector (OSTI)

This article reviews some of the recent developments in the materials, design, and concepts for bipolar/end plates in the polymer electrolyte membrane fuel cell stack. Experimental results for the use of iron- an...

Ramana G. Reddy

2006-08-01T23:59:59.000Z

385

New Fuel Cell Projects Meeting  

Energy.gov (U.S. Department of Energy (DOE))

On February 13-14, 2007, the U.S. Department of Energy (DOE) held a kick-off meeting for fuel cell projects awarded under a hydrogen R&D solicitation. Principal investigators presented project...

386

Honeywell developing fuel cell sensors  

Science Journals Connector (OSTI)

In the US, four development teams from Honeywell Sensing & Control are collaborating in a DOE project to develop sensors that provide better control in the demanding fuel cell environment.

2004-01-01T23:59:59.000Z

387

Fuel Cells as Rechargeable Batteries  

Science Journals Connector (OSTI)

The combination of water electrolysis, storage of the produced hydrogen and oxygen and subsequent electrochemical recombination of the stored hydrogen and oxygen in a fuel cell provide the basis for a practical e...

J. Giner; A. Laconti

1996-01-01T23:59:59.000Z

388

Fuel Cell Technologies Office Overview  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sara Dillich, DOE Fuel Cell Technologies Office, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

389

A FUEL CELL IN EVERY CAR  

Science Journals Connector (OSTI)

A FUEL CELL IN EVERY CAR ... FUEL CELLS ARE MOVING PAST THE developmental stage and into realworld trials. ... The effort to construct the first working prototypes is giving way to improving designs and developing a hydrogen-fuel infrastructure. ...

ALEXANDER H. TULLO

2001-03-05T23:59:59.000Z

390

Catalyst supports for polymer electrolyte fuel cells  

Science Journals Connector (OSTI)

...Bruce, Richard Catlow and Peter Edwards Catalyst supports for polymer electrolyte fuel...durability in fuel cells is to discover catalyst supports that do not corrode, or corrode...black support. fuel cells|oxides|catalyst supports|nanoparticles|conductivity...

2010-01-01T23:59:59.000Z

391

Hydrogen Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your H2IQ Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel...

392

Say hello to cheaper hydrogen fuel cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Say hello to cheaper hydrogen fuel cells Say hello to cheaper hydrogen fuel cells Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel...

393

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

1997-01-01T23:59:59.000Z

394

Stationary Fuel Cell Evaluation (Presentation)  

SciTech Connect

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

395

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

396

Careers in Hydrogen and Fuel Cells | Department of Energy  

Energy Savers (EERE)

and Fuel Cells The resources below link to job boards and listings on fuel cell company Web sites. Fuel Cell Employment Resources - Fuel Cells 2000 provides links to fuel cell job...

397

Fuel Cell R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell R&D Activities Fuel Cell R&D Activities Photo of electric motor under the hood of fuel cell car The Fuel Cell Technologies fuel cell research and development (R&D)...

398

Parts of a Fuel Cell | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Parts of a Fuel Cell Parts of a Fuel Cell Polymer electrolyte membrane (PEM) fuel cells are the current focus of research for fuel cell vehicle applications. PEM fuel cells are...

399

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Energy.gov (U.S. Department of Energy (DOE))

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

400

DOE Fuel Cell Subprogram Nancy Garland  

E-Print Network (OSTI)

hydrogen fuel cell power system at a cost of $45/kW with 5000 hours of durability (80°C); by 2015, a cost a distributed generation PEM fuel cell system operating on natural gas or LPG that achieves 40% electricalDOE Fuel Cell Subprogram Nancy Garland Acting Fuel Cell Team Leader Pre-Solicitation Meeting Golden

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network (OSTI)

) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline, 2009 Joel M. Rinebold #12;2 2 · Connecticut Hydrogen Roadmap (Fuel Cell Economic Development Plan) · A National "Green Energy" Economic Stimulus Plan based on Investment in the Hydrogen and Fuel Cell Industry

402

Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

403

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

404

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2012 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2012 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2012 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2012 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

405

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

406

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

407

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Webinar Archives 2011 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2011 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2011 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2011 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2011 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

408

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

409

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Financial Opportunities to someone by E-mail Share Fuel Cell Technologies Office: Past Financial Opportunities on Facebook Tweet about Fuel Cell Technologies Office: Past Financial Opportunities on Twitter Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Google Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Delicious Rank Fuel Cell Technologies Office: Past Financial Opportunities on Digg Find More places to share Fuel Cell Technologies Office: Past Financial Opportunities on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities

410

Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Abstract Hydrogen has long been advocated as the ultra-clean fuel because its combustion produces pure water and no pollutants. As long ago as the 1930s, a German engineer demonstrated that an internal-combustion engine could be made to run on hydrogen. More recently, the automotive company BMW has built and demonstrated a small fleet of cars fuelled by hydrogen with the fuel stored on board as cryogenic liquid. An alternative approach to utilizing hydrogen is in an electrochemical fuel cell to generate electricity to drive an electric motor. This mode of transport is the counterpart of the battery electric vehicle (BEV). Fuel cell vehicles provide greater driving range and faster refuelling than \\{BEVs\\} and are therefore clearly a desirable way forward for electric traction. Unfortunately, there remain problems with the generation, the distribution and the storage of hydrogen, as well as with the cost of the fuel cells themselves. This chapter discusses these matters and concludes that, with the possible exception of fleets of buses, it will be some while yet before fuel cell vehicles become commonplace.

Ronald M. Dell; Patrick T. Moseley; David A.J. Rand

2014-01-01T23:59:59.000Z

411

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2012 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2012: DOE Updates JOBS and economic impacts of Fuel Cells (JOBS FC 1.1) Model Hydrogen and Fuel Cell Manufacturing R&D Opportunities Fuel Cell Mobile Lighting California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems Material Characterization of Storage Vessels for Fuel Cell Forklifts Fuel Cells for Portable Power BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

412

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network (OSTI)

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office Fuel Cell Technologies Office eere.energy.gov This award is being accepted on behalf of the U.S. Department of Energy fuel cell and hydrogen programs Acknowledgements #12;3 | Fuel Cell Technologies Office eere

413

Chapter 24 - Fuel Cells: Energy Conversion Technology  

Science Journals Connector (OSTI)

The drive for fuel cell technology research and development stems from cleanliness of the technology, high chemical to electrical conversion efficiency and versatile applications ranging from large-scale, stand-alone stationary power plant to modular distributed generation systems to advanced mobile auxiliary power units. Portable systems and those that can be carried are also currently being designed for civilian and military markets. Fuel cells are capable of generating electricity with virtually negligible to zero pollution (e.g. SOx, NOx, volatile organic compounds (VOC), particulate matters (PMs)). They also offer a reduced carbon footprint and have the potential to be engineered for ‘zero carbon’ systems. Despite the potential to meet the pressing needs for clean and efficient fuel cell–based power generation systems, high capital and maintenance cost remains a challenge for large-scale commercialisation and global market entry. Solid oxide fuel cell (SOFC) is one of the most promising fuel cell technologies as it offers significantly higher electrical efficiency as well as co-production of high-quality process heat. The system lifetime, its reliability and cost, however, remain a concern due to the performance degradation with time, commonly associated with the instability of materials in complex operating environment and high exposure temperature (650–1000)°C. New materials, systems design and operating conditions are being developed to increase the lifetime. Centralised and distributed SOFC power systems in the range of hundreds of kilowatt to megawatt are being considered for integration with advanced coal power plants, hybrid systems integrated with energy storage and carbon-capture technologies to fully exploit the commercial potential.

Manoj K. Mahapatra; Prabhakar Singh

2014-01-01T23:59:59.000Z

414

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the...

415

Review of Fuels for Direct Carbon Fuel Cells  

Science Journals Connector (OSTI)

Review of Fuels for Direct Carbon Fuel Cells ... After optimization for minimum activation polarization, the authors then produced impedance spectra to assess cell performance and achieved a peak power density of around 18 and 53 mW cm–2 at 700 and 800 °C, respectively. ... solid oxide fuel cell system under 600° just by optimizing the anode microstructure and operating conditions. ...

Adam C. Rady; Sarbjit Giddey; Sukhvinder P. S. Badwal; Bradley P. Ladewig; Sankar Bhattacharya

2012-01-31T23:59:59.000Z

416

Direct Methanol Fuel Cell Corporation DMFCC | Open Energy Information  

Open Energy Info (EERE)

Methanol Fuel Cell Corporation DMFCC Methanol Fuel Cell Corporation DMFCC Jump to: navigation, search Name Direct Methanol Fuel Cell Corporation (DMFCC) Place Altadena, California Zip 91001 Product DMFCC is focused on providing intellectual property protection and disposable fuel cartridge for the direct methanol fuel cell industry. Coordinates 34.185405°, -118.131529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.185405,"lon":-118.131529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

418

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of...

419

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

420

California and Connecticut: National Fuel Cell Bus Programs Drive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Breaking the Fuel Cell Cost Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with...

422

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network (OSTI)

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

423

US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc | Open Energy  

Open Energy Info (EERE)

US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc Jump to: navigation, search Name US Energy Initiatives Corp (formerly Hybrid Fuel Systems Inc) Place Tampa, Florida Zip 33637 Product Holds patented natural gas/diesel dual fuel technology. References US Energy Initiatives Corp (formerly Hybrid Fuel Systems Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Energy Initiatives Corp (formerly Hybrid Fuel Systems Inc) is a company located in Tampa, Florida . References ↑ "US Energy Initiatives Corp (formerly Hybrid Fuel Systems Inc)" Retrieved from "http://en.openei.org/w/index.php?title=US_Energy_Initiatives_Corp_formerly_Hybrid_Fuel_Systems_Inc&oldid=352601"

424

Sandia National Laboratories: fuel cell membrane  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

425

FUEL CELLS – SOLID OXIDE FUEL CELLS | Gas Distribution  

Science Journals Connector (OSTI)

A uniform distribution of the reactants over the total available electrode surfaces in solid oxide fuel cells (SOFCs) is a prerequisite for the proper operation of the fuel cell. The gas distribution plays a dominant role not only in the current density distribution but also in the temperature distribution over the cell areas and in the stack and modules. Several transport mechanisms for mass transport occurring in the SOFC are introduced and discussed. General flow configurations and structures for the gas distribution at three different levels, i.e., stack/module, cell/tube, and electrode/electrolyte, are discussed for both tubular and planar type cells and illustrated with examples of concentration and temperature profiles.

L.G.J. de Haart; M. Spiller

2009-01-01T23:59:59.000Z

426

Direct Carbon Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

427

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper number1009). for an automotive PEM fuel cell system with imbedded

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

428

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

429

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

430

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

431

Argonne CNM Highlight: Improved Hybrid Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Hybrid Solar Cells Improved Hybrid Solar Cells inorganic-organic hybrid photovoltaic (PV) cells imade of highly ordered titanium dioxide (TiO2) nanotube arrays filled with solid organic hole conductors such as conjugated polymers One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered titanium dioxide (TiO2) nanotube arrays with solid organic hole conductors such as conjugated polymers. Center for Nanoscale Materials researchers and collaborative users from the University of Chicago present a new in situ ultraviolet (UV) polymerization method for growing polythiophene inside TiO2 nanotubes and compare this method to the conventional approach of infiltrating nanotubes with presynthesized polymer. A nanotubular TiO2 substrate is immersed in a 2,5-diiodothiophene (DIT)

432

Overview of Hydrogen & Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: US DOE 2/25/2011 Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Fuel Cells: Addressing Energy Challenges 4 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW,

433

Micro and Man-Portable Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

& USFCC Fuel Cells Meeting: & USFCC Fuel Cells Meeting: US DOE & USFCC Fuel Cells Meeting: Matching Federal Government Energy Needs Matching Federal Government Energy Needs with Energy Efficient Fuel Cells with Energy Efficient Fuel Cells Micro & Man Micro & Man - - Portable Fuel Cells Portable Fuel Cells Jerry Hallmark Jerry Hallmark Motorola Labs Motorola Labs - - President USFCC President USFCC Hotel Palomar Hotel Palomar Washington, DC Washington, DC April 26th, 2007 April 26th, 2007 US DOE & USFCC Fuel Cells Meeting 1 4/26/2007 U.S. Fuel Cell Council Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU * 100 Watts to 10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup,

434

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Publications Educational Publications Increase your H2IQ Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's First Tri-Generation Energy Station - Fountain Valley Fuel Cell Financing for Tax-Exempt Entities Jobs in Fuel Cell Technologies Hydrogen Fuel Cells Hydrogen Production Hydrogen Distribution and Delivery Hydrogen Market Transformation Hydrogen Storage Hydrogen Safety Hydrogen Technology Validation Comparison of Fuel Cell Technologies Hydrogen-Powered Buses

435

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

436

Pacific Fuel Cell Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Corporation Fuel Cell Corporation Jump to: navigation, search Name Pacific Fuel Cell Corporation Address 26985 Lakeland Blvd. Place Euclid, Ohio Zip 44132 Sector Buildings, Efficiency, Renewable Energy, Services Product Consulting; Engineering/architectural/design; Maintenance and repair;Manufacturing;Raw materials/extraction; Research and development;Retail product sales and distribution;Trainining and education Phone number 216-731-0906 Website http://www.pacificfuelcell.com Coordinates 41.603828°, -81.494011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.603828,"lon":-81.494011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary This glossary contains terms and acronyms related to hydrogen and fuel cell technologies. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - Acronyms A AC Generator (or Alternator) An electric device that produces an electric current that reverses direction many times per second. Also called a synchronous generator. Adsorption The adhesion of the molecules of gases, dissolved substances, or liquids to the surface of the solids or liquids with which they are in contact. Air The mixture of oxygen, nitrogen, and other gases that, with varying amounts of water vapor, forms the atmosphere of the earth. Alkaline Fuel Cell (AFC) A type of hydrogen/oxygen fuel cell in which the electrolyte is concentrated potassium hydroxide (KOH) and the hydroxide ions (OH-) are transported from the cathode to the anode.

438

International Stationary Fuel Cell Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

439

Development of alkaline fuel cells.  

SciTech Connect

This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

2013-09-01T23:59:59.000Z

440

Carbon-based Fuel Cell  

SciTech Connect

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011.

442

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition  

Energy.gov (U.S. Department of Energy (DOE))

Overview of DOE's Fuel Cell Technologies Office presented by Sunita Satyapal at the 2013 Fuel Cell Seminar and Energy Exposition in Columbus, Ohio.

443

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

444

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

445

Fuel Cell Portable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

446

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

447

An Octane-Fueled Solid Oxide Fuel Cell  

Science Journals Connector (OSTI)

...for the adoption of fuel cells for applications...not only reduces fuel consumption but also reduces...emission. Although fuel cells can achieve efficiencies...internal combustion engine, and H 2 is more...is, gasoline and diesel, has not been successful...

Zhongliang Zhan; Scott A. Barnett

2005-05-06T23:59:59.000Z

448

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Educational Publications to someone by E-mail Share Fuel Cell Technologies Office: Educational Publications on Facebook Tweet about Fuel Cell Technologies Office: Educational Publications on Twitter Bookmark Fuel Cell Technologies Office: Educational Publications on Google Bookmark Fuel Cell Technologies Office: Educational Publications on Delicious Rank Fuel Cell Technologies Office: Educational Publications on Digg Find More places to share Fuel Cell Technologies Office: Educational Publications on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage

449

Fuel Cell Technologies Office: November 2013 Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2013 November 2013 Newsletter to someone by E-mail Share Fuel Cell Technologies Office: November 2013 Newsletter on Facebook Tweet about Fuel Cell Technologies Office: November 2013 Newsletter on Twitter Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Google Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Delicious Rank Fuel Cell Technologies Office: November 2013 Newsletter on Digg Find More places to share Fuel Cell Technologies Office: November 2013 Newsletter on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery

450

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Accelerated Stress Test Protocols for PEM Fuel Cells, Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies

451

Uniqueness of magnetotomography for fuel cells and fuel cell stacks  

Science Journals Connector (OSTI)

The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm2and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

H Lustfeld; J Hirschfeld; M Reißel; B Steffen

2009-01-01T23:59:59.000Z

452

Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coca-Cola Bottling Co. Coca-Cola Bottling Co. Brings Hybrids to New Orleans to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Google Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Delicious Rank Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on AddThis.com... Jan. 1, 2010 Coca-Cola Bottling Co. Brings Hybrids to New Orleans

453

Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Availability of Hybrid Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

454

Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coca-Cola Charges Coca-Cola Charges Forward With Hybrid Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Google Bookmark Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Delicious Rank Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Charges Forward With Hybrid Delivery Trucks on AddThis.com... Aug. 18, 2012 Coca-Cola Charges Forward With Hybrid Delivery Trucks

455

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

456

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

457

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

458

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

459

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Plug-In Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles

460

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

462

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

463

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

464

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers (EERE)

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

465

2010 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Market Report 2010 Fuel Cell Technologies Market Report This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It...

466

2007 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Fuel Cell Technologies Market Report 2007 Fuel Cell Technologies Market Report The fuel cell industry, which has experienced continued increases in sales, is an emerging clean...

467

Fuel Cell Technologies Office Newsletter: January 2015 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Newsletter: January 2015 Fuel Cell Technologies Office Newsletter: January 2015 The January 2015 issue of the Fuel Cell Technologies Office (FCTO)...

468

Biogas and Fuel Cells Workshop Summary Report: Proceedings from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012 Biogas and Fuel Cells Workshop Summary Report:...

469

2008 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Fuel Cell Technologies Market Report 2008 Fuel Cell Technologies Market Report This report provides an overview of trends in the fuel cell industry and markets, including product...

470

National Fuel Cell Technology Evaluation Center (NFCTEC) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center (NFCTEC) National Fuel Cell Technology Evaluation Center (NFCTEC) Download presentation slides from the DOE Fuel Cell Technologies...

471

Webinar: NREL's Fuel Cell Contaminant Database | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL's Fuel Cell Contaminant Database Webinar: NREL's Fuel Cell Contaminant Database Below is the text version of the webinar titled "NREL's Fuel Cell Contaminant Database,"...

472

Fuel Cell Technologies Office Newsletter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Fuel Cell Technologies Office Newsletter Fuel Cell Technologies Office Newsletter The Fuel Cell Technologies (FCT) Office newsletter highlights program...

473

Webinar: National Fuel Cell Technology Evaluation Center | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center Webinar: National Fuel Cell Technology Evaluation Center Below is the text version of the webinar titled "National Fuel Cell...

474

Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

475

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Office of Environmental Management (EM)

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

476

Microchannel High-Temperature Recuperator for Fuel Cell Systems...  

Office of Environmental Management (EM)

Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell...

477

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Presentation by Nancy Garland at a meeting on fuel cell projects on February 13 - 14, 2007....

478

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

479

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit...

480

Careers in Fuel Cell Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and...

Note: This page contains sample records for the topic "fuel cell hybrid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel Cell Kickoff Meeting Agenda | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Kickoff Meeting Agenda Fuel Cell Kickoff Meeting Agenda This agenda provides information about the fuel cell projects meeting in February 2007. newfcagenda0207.pdf...

482

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network (OSTI)

conditions used for fuel—cell simulations. 3.12 Values usedFuel Cells . . . . . . . . . . . . . . . . . . . . . . 1.1.1in Polymer Electrolyte Fuel Cells — II. Parametric Study,”

Balliet, Ryan

2010-01-01T23:59:59.000Z

483

Advanced Cathode Catalysts and Supports for PEM Fuel Cells |...  

Energy Savers (EERE)

Advanced Cathode Catalysts and Supports for PEM Fuel Cells Advanced Cathode Catalysts and Supports for PEM Fuel Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

484

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

485

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

486

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

487

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

488

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February...

489

Reversible Fuel Cells Workshop Summary Report | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reversible Fuel Cells Workshop Summary Report Reversible Fuel Cells Workshop Summary Report Summary and presentations from the NREL Reversible Fuel Cells Workshop held April 19,...

490

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Societal lifetime cost of hydrogen fuel cell vehiclesthe societal cost of hydrogen fuel-cell vehicles with modelsand running costs) than hydrogen fuel-cell vehicles in 2030.

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

491

Matching Government Needs with Energy Efficient Fuel Cells |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program,...

492

Advancements and Opportunities for Fuel Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Advancements and Opportunities for Fuel Cells Presentation by Reuben Sarkar at the Fuel Cell Seminar and Energy Exposition plenary...

493

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

494

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

495

Fuel Cell Technologies Office Newsletter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Fuel Cell Technologies Office Newsletter Fuel Cell Technologies Office Newsletter The Fuel Cell Technologies Office (FCTO) newsletter highlights program...

496

US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates...

497

Fuel Cell Technologies Office Newsletter: December 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Newsletter: December 2014 Fuel Cell Technologies Office Newsletter: December 2014 The December 2014 issue of the of the Fuel Cell Technologies Office...

498

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

& Deputy Program Manager & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA 2 1. Overview, Challenges & Technology Status 2. DOE Program Activities and Progress 3. Market Transformation Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits * Efficiencies can be 60% (electrical)

499

Speeding the transition: Designing a fuel-cell hypercar  

SciTech Connect

A rapid transformation now underway in automotive technology could accelerate the transition to transportation powered by fuel cells. Ultralight, advanced-composite, low-drag, hybrid-electric hypercars--using combustion engines--could be three- to fourfold more efficient and one or two orders of magnitude cleaner than today`s cars, yet equally safe, sporty, desirable, and (probably) affordable. Further, important manufacturing advantages--including low tooling and equipment costs, greater mechanical simplicity, autobody parts consolidation, shorter product cycles, and reduced assembly effort and space--permit a free-market commercialization strategy. This paper discusses a conceptual hypercar powered by a proton-exchange-membrane fuel cell (PEMFC). It outlines the implications of platform physics and component selection for the vehicle`s mass budget and performance. The high fuel-to-traction conversion efficiency of the hypercar platform could help automakers overcome the Achilles` heel of hydrogen-powered vehicles: onboard storage. Moreover, because hypercars would require significantly less tractive power, and even less fuel-cell power, they could adopt fuel cells earlier, before fuel cells` specific cost, mass, and volume have fully matured. In the meantime, commercialization in buildings can help prepare fuel cells for hypercars. The promising performance of hydrogen-fueled PEMFC hypercars suggests important opportunities in infrastructure development for direct-hydrogen vehicles.

Williams, B.D.; Moore, T.C.; Lovins, A.B. [Rocky Mountain Inst., Snowmass, CO (United States). Hypercar Center

1997-12-31T23:59:59.000Z

500

Kettering University Center for Fuel Cell Systems Powertrain Integration |  

Open Energy Info (EERE)

Kettering University Center for Fuel Cell Systems Powertrain Integration Kettering University Center for Fuel Cell Systems Powertrain Integration Jump to: navigation, search Name Kettering University - Center for Fuel Cell Systems & Powertrain Integration Place Flint, Michigan Zip 48504-4898 Product Focussed on fuel cell research. Coordinates 32.204081°, -95.349009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.204081,"lon":-95.349009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11