Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Cell Demonstration Program  

SciTech Connect (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

2

International Stationary Fuel Cell Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

3

Integrated gasification fuel cell (IGFC) demonstration test  

SciTech Connect (OSTI)

As concern about the environment generates interest in ultra-clean energy plants, fuel cell power plants can respond to the challenge. Fuel cells convert hydrocarbon fuels to electricity at efficiencies exceeding conventional heat engine technologies while generating extremely low emissions. Emissions of SOx and NOx are expected to be well below current and anticipated future standards. Nitrogen oxides, a product of combustion, will be extremely low in this power plant because power is produced electrochemically rather than by combustion. Due to its higher efficiencies, a fuel cell power plant also produces less carbon dioxide. Fuel cells in combination with coal gasification, are an efficient and environmentally acceptable means to utilize the abundant coal reserves both in the US and around the world. To demonstrate this technology, FuelCell Energy, Inc. (FCE), is planning to build and test a 2-MW Fuel Cell Power Plant for operation on coal derived gas. This power plant is based on Direct Fuel Cell (DFC{trademark}) technology and will be part of a Clean Coal V IGCC project supported by the US DOE. A British Gas Lurgi (BGL) slagging fixed-bed gasification system with cold gas clean up is planned as part of a 400 MW IGCC power plant to provide a fuel gas slip stream to the fuel cell. The IGFC power plant will be built by Kentucky Pioneer Energy, A subsidiary of Global Energy, in Clark County, KY. This demonstration will result in the world's largest fuel cell power plant operating on coal derived gas. The objective of this test is to demonstrate fuel cell operation on coal derived gas at a commercial scale and to verify the efficiency and environmental benefits.

Steinfeld, G.; Ghezel-Ayagh, H.; Sanderson, R.; Abens, S.

2000-07-01T23:59:59.000Z

4

FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)  

SciTech Connect (OSTI)

Presentation on the NREL Fuel Cell Vehicle learning demonstration prepared for the 2008 ASME Fuel Cell Conference.

Kurtz, J.; Wipke, K.; Sprik, S.

2008-06-18T23:59:59.000Z

5

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

Office of Environmental Management (EM)

National Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis...

6

Fuel Cell Technologies Office: National Hydrogen Learning Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Hydrogen National Hydrogen Learning Demonstration Status Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on

7

CHP Fuel Cell Durability Demonstration - Final Report  

SciTech Connect (OSTI)

Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (?-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

Petrecky, James; Ashley, Christopher J

2014-07-21T23:59:59.000Z

8

Encouraging Industrial Demonstrations of Fuel Cell Applications  

E-Print Network [OSTI]

amounts of electricity and process heat; yet none of these have tested a fuel cell. THE HARKET A recent study performed by the Department of Energy (reference 1) stated, "It is possi ble that the on-site market for fuel cells may eventually become... as large worldwide as that for electric utility fuel cell systems." The study included the industrial sector as part of the on-site market. It went on to state, "The potential industrial cogenera tion market is at present unknown. It may be as much...

Anderson, J. M.

9

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect (OSTI)

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

10

Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect (OSTI)

Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

2010-05-01T23:59:59.000Z

11

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

SciTech Connect (OSTI)

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

12

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

SciTech Connect (OSTI)

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

13

EERE and Auto Manufacturers Demonstrate and Evaluate Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE)

Auto manufacturers demonstrate that switching from a gasoline to a hydrogen fuel cell engine could reduce emissions by more than 90%.

14

Demonstration Project for Fuel Cell Bus Commercialisation in...  

Open Energy Info (EERE)

Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and Shanghai, China Sector:...

15

FCV Learning Demonstration: Factors Affecting Fuel Cell Degradation (Presentation)  

SciTech Connect (OSTI)

Presentation on factors affecting fuel cell degradation in the DOE Fuel Cell Vehicle learning demonstation.

Kurtz, J.; Wipke, K.; Sprik, S.

2007-11-15T23:59:59.000Z

16

Fuel Cell Demonstration Program - Central and Remote Sites 2003  

SciTech Connect (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies, the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 25 Lorax 4.5 units operated under this Award from April 2003 to December 2004. In parallel with the operation of the Farm, LIPA recruited government, commercial, and residential customers to demonstrate fuel cells as on-site distributed generation. The deployment of the 20 Lorax 4.5 units for the Remote Sites phase of the project began in October 2004. To date, 10 fuel cells have completed their demonstrations while 10 fuel cells are currently being monitored at various customer sites throughout Long Island. As of June 30, 2006 the 45 fuel cells operating under this Award produced a total of 1,585,093 kWh. As fuel cell technology became more mature, performance improvements included increases in system efficiency and availability. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

17

Data Analysis of Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect (OSTI)

Presentation about early fuel cell markets, the National Renewable Energy Laboratory's Hydrogen Secure Data Center and its role in data analysis and demonstrations, and composite data products, and results reported to multiple stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-11-17T23:59:59.000Z

18

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

SciTech Connect (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

19

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

Broader source: Energy.gov [DOE]

This report discusses key analysis results based on data from early 2005 through September 2011 from the US DOEs Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

20

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

SciTech Connect (OSTI)

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell Electric National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NREL/TP-5600-54860 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Prepared under Task No. HT12.8110 Technical Report NREL/TP-5600-54860 July 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

22

Connecticut Fuel Cell Programs- From Demonstration to Deployment  

Broader source: Energy.gov [DOE]

Presentation by the Connecticut Clean Energy Fund on Connecticut fuel cell programs. Presented September 12, 2007.

23

FCV Learning Demonstration: First-Generation Vehicle Results and Factors Affecting Fuel Cell Degradation (Presentation)  

SciTech Connect (OSTI)

Presentaion on the FCV Learning Demonstration and factors affecting fuel cell degradation given at the Fuel Cell Seminar on October 17, 2007 in San Antonio, TX.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-10-17T23:59:59.000Z

24

Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)  

SciTech Connect (OSTI)

Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2008-10-13T23:59:59.000Z

25

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies Office.

26

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network [OSTI]

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (EPRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energys coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

27

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Broader source: Energy.gov [DOE]

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOEs Advanced Vehicle Testing Activity.

28

Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.  

SciTech Connect (OSTI)

This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: relatively poor power quality as quantified by the IEEE-defined short term flicker parameter relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

Mark Hilson Schneider

2007-06-06T23:59:59.000Z

29

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix C: Hydrogen Quality  

Broader source: Energy.gov [DOE]

Appendix C: Hydrogen Quality section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated February 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

30

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

Energy Savers [EERE]

on the potential for plug-in electric vehicles (PEVs) to improve the United States' oil-dependency situation. The Learning Demonstration vehicle data were evaluated to see how...

31

Spent fuel pyroprocessing demonstration  

SciTech Connect (OSTI)

A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

McFarlane, L.F.; Lineberry, M.J.

1995-05-01T23:59:59.000Z

32

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.

33

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

34

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

35

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report  

SciTech Connect (OSTI)

This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

Eudy, L.; Post, M.

2014-05-01T23:59:59.000Z

36

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

SciTech Connect (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

37

Results from the Microcab fuel cell vehicle demonstration at the University of Birmingham  

Science Journals Connector (OSTI)

The UK's first fleet of hydrogen fuel cell vehicles the Microcab H4 series has been demonstrated at the University of Birmingham for 21 months. The five prototypes have been used interchangeably as four-seat urban taxis and light goods vehicles around campus, accumulating over 4,000 km on the campus road network and being filled with 68 kg of hydrogen. The performance and efficiency of these vehicles have been monitored in-situ throughout the trial, using custom-built data loggers for the fuel cell and other powertrain components. This paper presents the key findings relating to the powertrain performance and efficiency. While the peak tank-to-wheel efficiency was 27%, the Microcabs were found on average to be 18% efficient at converting hydrogen into tractive power. The causes of this loss in efficiency are analysed and discussed, and show that improving the control and interaction of the individual components would result in substantially improved vehicle performance.

Iain Staffell

2011-01-01T23:59:59.000Z

38

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

39

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

40

Demonstration of a high-efficiency steam reformer for fuel cell power plant applications  

SciTech Connect (OSTI)

Full-scale tests of a new modular steam reformer confirm its suitability for a wide range of fuel cell power plant applications. This new fuel processor offers interested utilities excellent performance, operating flexibility, reliability, and maintainability.

Udengaard, N.R.; Christiansen, L.J.; Summers, W.A.

1987-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix B: Input/Output Matrix  

Broader source: Energy.gov [DOE]

Appendix B: Input/Output Matrix section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

42

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 1.0 Introduction  

Broader source: Energy.gov [DOE]

Introduction section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated March 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

43

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.9 Market Transformation  

Broader source: Energy.gov [DOE]

Market Transformation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

44

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Broader source: Energy.gov [DOE]

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

45

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.6 Technology Validation  

Broader source: Energy.gov [DOE]

Technology Validation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

46

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production  

Broader source: Energy.gov [DOE]

Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

47

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.5 Manufacturing R&D  

Broader source: Energy.gov [DOE]

Manufacturing R&D technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

48

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 6.0 Program Management  

Broader source: Energy.gov [DOE]

Program Management section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

49

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 4.0 Systems Analysis  

Broader source: Energy.gov [DOE]

Systems Analysis section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

50

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.8 Education and Outreach  

Broader source: Energy.gov [DOE]

Education and Outreach technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

51

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.0 Technical Plan  

Broader source: Energy.gov [DOE]

Technical Plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated May 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

52

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 2.0 Program Benefits  

Broader source: Energy.gov [DOE]

Program Benefits section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

53

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.2 Hydrogen Delivery  

Broader source: Energy.gov [DOE]

Hydrogen Delivery technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

54

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.3 Hydrogen Storage  

Broader source: Energy.gov [DOE]

Hydrogen Storage technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

55

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

56

Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dan Hennessy (Primary Contact), Jim Banna Delphi Automotive Systems, LLC 300 University Drive m/c 480-300-385 Auburn Hills, MI 48326 Phone: (248) 732-0656 Email: daniel.t.hennessy@delphi.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000478 Subcontractors: * Electricore, Inc., Valencia, CA * PACCAR, Inc., Bellevue, WA * TDA Research, Inc., Wheat Ridge, CO Project Start Date: August 1, 2009 Project End Date: April 30, 2013 Objectives

57

Fuel Cell Animation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen...

58

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

59

Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System  

SciTech Connect (OSTI)

The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

Howell, Thomas Russell

2013-04-30T23:59:59.000Z

60

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

62

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

63

Fuel Cell Animation- Fuel Cell Stack (Text Version)  

Broader source: Energy.gov [DOE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

64

Fuel Cell Animation- Fuel Cell Components (Text Version)  

Broader source: Energy.gov [DOE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

65

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

66

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network [OSTI]

treatment, sedi- ment or marine fuel cells for fieldmicrobial fuel cells demonstrating marine (left) and soil (1]. Sediment and Marine Microbial fuel cells can also

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

67

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

68

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: Energy.gov [DOE]

Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

69

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Broader source: Energy.gov [DOE]

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

70

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

here. The interest in hydrogen and fuel cell technologies atof new and improved hydrogen and fuel cell technologies.policy drivers for hydrogen and fuel cells include the

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

71

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

72

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

73

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Appendix C: Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page C - 1 Page C - 1 2012 Appendix C: Hydrogen Quality Appendix C - Hydrogen Quality The hydrogen fuel quality specification in Table C.1 below is based on the SAE International Surface Vehicle Standard SAE-2719 - Hydrogen Fuel Quality Guideline for Fuel Cell Vehicles, June 2011. This specification has been harmonized to the extent possible with the draft international standard, ISO/DIS 14687-2, Hydrogen Fuel - Product Specification - Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles, recently approved by the International Organization for Standardization (ISO). The primary purpose of this specification is to ensure that the effects of possible fuel contaminants on fuel cell performance and durability in early commercial vehicles are acceptable. Modeling and

74

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

75

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

76

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

77

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

as a fuel in solid oxide fuel cells, J. Power Sources 118:in Electricity in Solid Oxide Fuel Cells, Proceedings ofthe 6th European Solid Oxide Fuel Cell Forum, Lucerne,

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

78

EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) posted a Notice of Intent (NOI), on behalf of the Fuel Cell Technologies Office (FCTO), for a Funding Opportunity Announcement (FOA)...

79

Fuel Cells Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

80

NETL: Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Coal and Power Systems Fuel Cells SECA Logo Welcome to NETL's Fuel Cells Webpage. In partnership with private industry, educational institutions and national laboratories, we are leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal-based SOFC power generation systems for stationary market large central power plants under the Solid State Energy Conversion Alliance (SECA). The SECA cost reduction goal is to have SOFC systems capable of being manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt (MW)-class fuel flexible products by 2012 and 2015. The SECA coal-based systems goal is the development of large

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

82

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

83

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

84

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

85

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

86

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

87

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

88

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

89

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

90

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

91

SuperTruck ? Development and Demonstration of a Fuel-Efficient...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

92

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

93

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

94

Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

95

Fuel Cell Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

96

Fuel Cell Handbook, Fifth Edition  

SciTech Connect (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

97

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

98

Chemical Hydride Rate Modeling, Validation, and System Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Troy A. Semelsberger (Primary Contact), Biswajit Paik, Tessui Nakagawa, Ben Davis, and Jose I. Tafoya Los Alamos National Laboratory MS J579, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-4766 Email: troy@lanl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Project Start Date: February 2009 Project End Date: February 2014 Fiscal Year (FY) 2012 Objectives Investigate reaction characteristics of various fluid-phase * ammonia-borane (AB)-ionic liquid (IL) compositions Identify and quantify hydrogen impurities and develop *

99

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

Delucchi, Mark

1992-01-01T23:59:59.000Z

100

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

$ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$ Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

102

Fuel Cells at NASCAR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please...

103

Automotive Fuel Cell Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with AFCC, a private joint venture company in Canada, formed by combining the automotive fuel cell business of Ballard Power Systems with the fuel cell stack development...

104

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

105

Fuel cell generating plant  

SciTech Connect (OSTI)

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

106

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cell Technical Cell Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

107

DOE Hydrogen and Fuel Cell Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

108

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

109

FUEL CELLS MOLTEN CARBONATE FUEL CELLS | Overview  

Science Journals Connector (OSTI)

The molten carbonate fuel cell (MCFC) emerged during the twentieth century as one of the key fuel cell types. It uses an electrolyte of alkali metal carbonates, operates typically at 650C, and is best suited to hydrocarbon fuels such as natural gas, coal gas, or biogas. The high operating temperature enables such fuels to be fed directly to the MCFC stacks, leading to conversion efficiencies greater than 50%. Molten carbonate fuel cell systems are ideally suited to applications that need continuous base load power. The first commercial systems, at the 300kW scale, are therefore being used in applications such as hospitals and hotels.

A.L. Dicks

2009-01-01T23:59:59.000Z

110

Modelling microscale fuel cells.  

E-Print Network [OSTI]

??The focus of this work is to investigate transport phenomena in recently developed microscale fuel cell designs using computational fluid dynamics (CFD). Two microscale fuel (more)

Bazylak, Aimy Ming Jii

2009-01-01T23:59:59.000Z

111

Fuel Cell Technologies Overview  

Broader source: Energy.gov (indexed) [DOE]

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

112

February 23, 2007: Alternative Fuel Vehicle Demonstration at...  

Energy Savers [EERE]

February 23, 2007: Alternative Fuel Vehicle Demonstration at White House February 23, 2007: Alternative Fuel Vehicle Demonstration at White House February 23, 2007: Alternative...

113

FCT Fuel Cells: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

114

California Fuel Cell Partnership: Alternative Fuels Research  

Broader source: Energy.gov [DOE]

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

115

Electrocatalysts for Fuel Cells  

Science Journals Connector (OSTI)

...research-article Electrocatalysts for Fuel Cells G. J. K. Acres G. A. Hards The...physical composition of the catalysts used in fuel cells are determined by the type of cell...operating conditions. The six types of fuel cell presently in use or under development...

1996-01-01T23:59:59.000Z

116

Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team  

Broader source: Energy.gov [DOE]

The purpose of this document is to describe the coordination and evaluation of the demonstration of seven full-size (40-foot) fuel cell transit buses. The descriptions in this document include the partners, fuel cell bus demonstration sites, objectives...

117

DOE Fuel Cell Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable...

118

Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Fuel Cells Fuel cells are an important enabling technology for the nation's energy portfolio and have the potential to revolutionize the way we power our nation,...

119

HISTORY | Fuel Cells  

Science Journals Connector (OSTI)

Together with the electric motor, dynamo, gas turbine, internal combustion engine, and the fused salt electrolysis of aluminum, the industrial revolution of the nineteenth century brought about the fuel cell the silent or cold combustion of fossil fuels by the electrochemical oxidation with atmospheric oxygen to water and carbon dioxide. Wilhelm Ostwald, in 1894, emphasized the high efficiency and the nonpolluting properties of the direct conversion of chemical energy into electricity in contrast to the then combination of steam engine and dynamo, which reached only about 10% efficiency. Direct coal fuel cells designed for the propulsion of ships, however, have not become a reality so far. Instead of fuel cells and batteries, internal combustion engines determined the nineteenth- and twentieth- century technological landscape. Against the background of the oil crisis and the long-term scarcity of natural gas, crude oil, and coal, new hopes have focused on fuel cell technology, which saw first early splendid applications during the space programs of the 1960s, in submarines since the 1980s, and in experimental zero-emission vehicles (ZEVs) since the 1990s. This article outlines (1) early insights about energy conversion: Grove's cell, direct conversion of coal and indirect fuel cells; (2) historical roots of alkaline fuel cells: the discovery of gas diffusion electrodes; low-pressure alkaline fuel cell conquer spacecrafts and submarines; (3) polymer electrolyte fuel cells: solid polymer technology, electric vehicles, direct methanol fuel-cell, stationary power systems and portable polymer electrolyte membrane fuel cell systems; (4) phosphoric acid fuel cell (PAFC): acid fuel cells, PAFC plants in Japan, gasoline fuel cells; and (5) high-temperature fuel cells: molten carbonate fuel cell and solid oxide fuel cell.

P. Kurzweil

2009-01-01T23:59:59.000Z

120

Fuel Cell Buses | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Buses Fuel Cell Buses Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cell Buses" held on September 12, 2013. Fuel Cell Buses...

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Kenny Sprint Nextel 12000 Sunrise Valley Drive MS: VARESQ0401-E4064 Reston, VA 20191 Phone: (703) 592-8272 Email: kevin.p.kenny@sprint.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: James Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: EE-0000486 Project Partners: * Air Products & Chemicals, Inc., Allentown, PA (Fuel Project Partner) * Altergy Systems, Folsum, CA (PEM Fuel Cell Project Partner) * Black & Veatch Corporation, Overland Park, KS (A&E

122

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

123

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

124

FUEL CELLS RALLY  

Science Journals Connector (OSTI)

FUEL CELLS RALLY ... No, this car has composite tanks capable of storing 8 kg of hydrogen. ... It's General Motors' Sequel, a fuel-cell concept car unveiled earlier this month at the North American International Auto Show in Detroit. ...

ALEXANDER H. TULLO

2005-01-31T23:59:59.000Z

125

fuel cells | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cells fuel cells Leads No leads are available at this time. The Molecular Bond: October 2014 The Molecular Bond newsletter banner October 2014 FROM THE DIRECTOR Read more...

126

Fuel cell arrangement  

DOE Patents [OSTI]

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-05-12T23:59:59.000Z

127

Webinar: Fuel Cell Buses  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Fuel Cell Buses, originally presented on September 12, 2013.

128

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network [OSTI]

State-of-the-Art Hydrogen Storage in Solids, Presentationfor High Density Hydrogen storage, Fuel Cell Seminar,for On-Board Vehicular Hydrogen Storage, U.S. Department of

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

129

Microfluidic fuel cells.  

E-Print Network [OSTI]

??Microfluidic fuel cell architectures are presented in this thesis. This work represents the mechanical and microfluidic portion of a microfluidic biofuel cell project. While the (more)

Kjeang, Erik

2007-01-01T23:59:59.000Z

130

Webinar: Fuel Cell Mobile Lighting  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Fuel Cell Mobile Lighting, originally presented on November 13, 2012.

131

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research,...

132

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year...

133

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1.0 Introduction Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 1.0 Introduction Introduction section of the Fuel Cell...

134

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Fuel Cell Technologies Office Multi-Year Research,...

135

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

136

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

137

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel Cell...

138

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and...

139

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

140

Fuel Cells Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel Cell 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

142

Fuel cell generator  

DOE Patents [OSTI]

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

143

Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service  

E-Print Network [OSTI]

surrounding hydrogen and fuel cell vehicle research,as renewable power, hydrogen and fuel cells. Further, theSpecifically, hydrogen and fuel cell vehicle demonstrations

Eggert, Anthony

2004-01-01T23:59:59.000Z

144

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

145

Fuel Cell Technologies Office: Early Market Applications for Fuel Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on AddThis.com...

146

Fuel Cells publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science » Materials Science » Fuel Cells » Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

147

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network [OSTI]

performed a study on PEM fuel cell APUs. Based upon previousConsiderations for a PEM Fuel Cell Powered Truck APU Davidsuccessfully demonstrated a PEM fuel cell APU on a Century

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

148

Fuel Cell Animation (Text Version) | Department of Energy  

Energy Savers [EERE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with...

149

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

150

January 2009 Hydrogen and Fuel Cell Activities,  

E-Print Network [OSTI]

January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress #12;Preface describing-- (1) activities carried out by the Department under this title, for hydrogen and fuel cell to the strategy relating to hydrogen and fuel cell technology to reflect the results of learning demonstrations

151

Fuel Cell Technologies Office: Key Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

152

FUEL CELLS SOLID OXIDE FUEL CELLS | Systems  

Science Journals Connector (OSTI)

In this article, some basic arrangements of solid oxide fuel cell (SOFC) systems are described, starting with atmospheric systems using a catalytic burner or a thermal burner and anode gas recycling. For illustrating the potential electrical efficiency of SOFC systems, their combination with a gas turbine and also with a steam turbine (ST) are described. To be able to evaluate the potential of the different systems, first the essential efficiencies relevant to fuel cell systems are defined and then the basics of calculating energy balance are illustrated. Equations are given to describe, for example, the effect of fuel recycling on system fuel utilization and of internal reforming on the necessary air flow for cooling the stack. It is obvious that electrical efficiency depends strongly on cell voltage and fuel utilization. In the case of cells that operate with a high fuel utilization at cell voltages of 800mV, a net electrical efficiency above 55% can be achieved. The combination in a pressurized system with a gas turbine enables efficiencies of up to 70% and combining this system with an additional ST allows efficiencies of up to 75%. However, an investigation into the size of these \\{STs\\} shows that such combined systems make sense only above a gas input of 10MW.

L. Blum; E. Riensche

2009-01-01T23:59:59.000Z

153

Fuel Cells Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications...

154

NREL: Learning - Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

155

Reforming of fuel inside fuel cell generator  

DOE Patents [OSTI]

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

156

Distributed Energy Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

157

Microcomposite Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

Summary of microcomposite fuel cell membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

158

Fuel Cell Financing Options  

Broader source: Energy.gov [DOE]

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011.

159

Fuel Cell Case Study  

Broader source: Energy.gov [DOE]

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

160

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell an energy conversion device that can efficiently capture and use the power of hydrogen is the key to making it happen.

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion, SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

162

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

163

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

164

Fuel Cell Development Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

165

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

166

Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1977 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Vendor: ClearEdge Power, Hillsboro, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the durability of proton exchange membrane * (PEM) fuel cell systems in residential and light commercial combined heat and power (CHP) applications in California. Optimize system performance though testing of multiple * high-temperature units through collection of field data.

167

Fuel Cell Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

168

How Fuel Cells Work  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Fuel Cells Work How Fuel Cells Work Diagram: How a PEM fuel cell works. 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.

169

Miniature ceramic fuel cell  

DOE Patents [OSTI]

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

170

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

171

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

172

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

173

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

174

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

175

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

176

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

177

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

178

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

179

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

180

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy 101: Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells Energy 101: Fuel Cells Addthis Description Learn everything you need to know about fuel cells. Topic Hydrogen & Fuel Cells...

182

Types of Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Current Technology Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification...

183

Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolysis, using renewable electricity * Conventional fuels - including natural gas, propane, diesel 3 | Fuel Cell Technologies Program Source: US DOE 852011...

184

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the...

185

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record Record : 14012 Date: June 12, 2014 Title: Fuel Cell System Cost - 2013 Update to: Record 12020 Originator: Jacob Spendelow and Jason...

186

Chapter 8 - Hydrogen, Fuel Cells and Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Abstract Hydrogen has long been advocated as the ultra-clean fuel because its combustion produces pure water and no pollutants. As long ago as the 1930s, a German engineer demonstrated that an internal-combustion engine could be made to run on hydrogen. More recently, the automotive company BMW has built and demonstrated a small fleet of cars fuelled by hydrogen with the fuel stored on board as cryogenic liquid. An alternative approach to utilizing hydrogen is in an electrochemical fuel cell to generate electricity to drive an electric motor. This mode of transport is the counterpart of the battery electric vehicle (BEV). Fuel cell vehicles provide greater driving range and faster refuelling than \\{BEVs\\} and are therefore clearly a desirable way forward for electric traction. Unfortunately, there remain problems with the generation, the distribution and the storage of hydrogen, as well as with the cost of the fuel cells themselves. This chapter discusses these matters and concludes that, with the possible exception of fleets of buses, it will be some while yet before fuel cell vehicles become commonplace.

Ronald M. Dell; Patrick T. Moseley; David A.J. Rand

2014-01-01T23:59:59.000Z

187

An advanced fuel cell simulator  

E-Print Network [OSTI]

of Fuel Cells ...................... 4 D. Fuel Cell Power Plant ..................... 4 E. Challenges in Fuel Cell Development ............ 5 F. Previous Work ......................... 6 G. Solar Array Simulators .................... 8 H. Battery... ............................. 54 28 Under-voltage Fault ........................... 55 1 CHAPTER I INTRODUCTION The depleting fossil fuel resources and increasing pollution are leading to the research and development of alternate energy generation techniques like fuel cells...

Acharya, Prabha Ramchandra

2005-11-01T23:59:59.000Z

188

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

189

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

190

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

191

Fuel Cell Technologies Office: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies...

192

Module 5: Fuel Cell Systems  

Broader source: Energy.gov [DOE]

This course covers the systems required to operate a fuel cell engine, the components and functionality of each fuel cell system

193

Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4/3/2012 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future development of roadmaps and technical targets for flow cells for various applications. 3. Identify grand challenges and prioritize R&D needs. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications.

194

Fuel cell generator energy dissipator  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

195

The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today  

Broader source: Energy.gov [DOE]

This report profiles companies and corporations that are deploying or demonstrating fuel cells for power in warehouses, stores, manufacturing facilities, hotels, and telecommunications sites.

196

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program...

197

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

198

Compliant fuel cell system  

DOE Patents [OSTI]

A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

2009-12-15T23:59:59.000Z

199

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

200

State of the States 2010: Fuel Cells in America  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cell buses demonstrated at Chicago Transit Agency Middle left: Four 250-kW FuelCell Energy DFC fuel cell systems at the Sheraton San Diego Hotel Middle right: Plug Power...

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell

202

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

203

Fuel Cell Technologies Office: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

204

Fuel Cell Technologies Office: Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

205

Development of alkaline fuel cells.  

SciTech Connect (OSTI)

This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

2013-09-01T23:59:59.000Z

206

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

207

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

208

Handbook of fuel cell performance  

SciTech Connect (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

209

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

210

Fuel Cell Technologies Office: Catalysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysis Working Group Catalysis Working Group The Catalysis Working Group (CWG) meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying electrocatalysis for polymer electrolyte fuel cells (PEFCs) and other low- and intermediate-temperature fuel cell systems, including direct methanol fuel cells (DMFCs), alkaline fuel cells (AFCs), alkaline membrane fuel cells (AMFCs), and phosphoric acid fuel cells (PAFCs). The CWG members include principal and co-principal investigators in electrocatalysis projects funded by the U.S. Department of Energy (DOE), as well as supporting DOE personnel. More information on DOE electrocatalysis activities can be found in the Multi-Year Research, Development, and Demonstration Plan.

211

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...  

Energy Savers [EERE]

for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

212

Overview of Fuel Cell Electric Bus Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

213

Fuel Cell Vehicle World Survey 2003-Specialty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specialty Vehicles Specialty Vehicles History The first fuel cell vehicles were specialty vehicles. Allis Chalmers built and demonstrated a tractor in 1959 utilizing an alkaline fuel cell that produced 20 horsepower. During the 1960s, Pratt & Whitney delivered the first of an estimated 200 fuel cell auxiliary power units for space applications. Union Carbide delivered a fuel cell scooter to the U.S. Army in 1967. PEM fuel cells were invented in the 1960s for Allis Chalmers fuel cell tractor, 1959 military applications and have been used since the 1970s in submarines. Engelhard developed a fuel-cell-powered forklift about 1969. Since fuel cells are modular, scalable, and fuel-flexible, they remain excellent candidates for a wide range of specialty vehicle applications. Fuel cells are currently being demonstrated on land,

214

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

215

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

216

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

217

Fuel Cells at NASCAR | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells at NASCAR Fuel Cells at NASCAR Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Fuel Cells at NASCAR" held on April 17, 2014. Fuel Cells at...

218

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

219

Fuel Cells News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cells News Fuel Cells News October 16, 2014 Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications The...

220

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network [OSTI]

Model of hydrogen fuel cell kinetic losses includingschematic of typical hydrogen fuel cell performancephase factors on hydrogen fuel cell theoretical efficiency,

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel Cell Technologies Office Newsletter Archives | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Newsletter Fuel Cell Technologies Office Newsletter Archives Fuel Cell Technologies Office Newsletter Archives View previous issues of the Fuel Cell...

222

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Broader source: Energy.gov (indexed) [DOE]

SunLine. NRELPIX 14396 NRELPIX 14395 FUEL CELL BUS DEMONSTRATION PROJECTS Hydrogen, Fuel Cells & Infrastructure Technologies program F U E L C E L L B U S D E M o N S T R A T I...

223

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

224

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

225

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

226

Compact fuel cell  

DOE Patents [OSTI]

A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

2010-10-19T23:59:59.000Z

227

Air Liquide- Biogas & Fuel Cells  

Broader source: Energy.gov [DOE]

Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

228

DOE Hydrogen & Fuel Cell Overview  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Power Heat + Cooling Electricity Cooling Natural Gas Natural Gas or Biogas Fuel Cell H Excess power generated by the fuel cell is fed to the grid National...

229

Alkaline Membrane Fuel Cell Workshop  

Broader source: Energy.gov [DOE]

A workshop on alkaline membrane fuel cells (AMFC) was held May 8-9, 2011, before the 2011 Hydrogen and Fuel Cells Annual Merit Review, at Crystal Gateway Marriott in Arlington, Virginia.

230

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

231

Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet)  

Broader source: Energy.gov [DOE]

This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement; included are specifications for the fuel cell bus and information about its operation.

232

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

233

Hydrogen & Fuel Cells Program Overview  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Joint Plenary

234

Fuel Cell Technologies Office: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

235

Fuel Cell Handbook, Fourth Edition  

SciTech Connect (OSTI)

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

236

Microfluidic Fuel Cells Erik Kjeang  

E-Print Network [OSTI]

Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeå University, 2004 A Dissertation Submitted Supervisory Committee Microfluidic Fuel Cells by Erik Kjeang M.Sc., Umeå University, 2004 Supervisory University External Examiner Microfluidic fuel cell architectures are presented in this thesis. This work

Victoria, University of

237

Hydrogen & Fuel Cells Program Overview  

E-Print Network [OSTI]

Hydrogen & Fuel Cells Program Overview Dr. Sunita Satyapal Program Manager 2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 #12;Enable widespread commercialization of hydrogen and fuel cell transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2

238

Distributed Energy Fuel Cells Electricity Users  

E-Print Network [OSTI]

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

239

NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Animated Map Correlates Fuel Cell Usage for Backup Power with Grid Outages Snapshot graphic of a U.S. map that shows the location and operational status of backup power fuel cells systems as well as the location of grid outages. Learn how NREL developed the time-lapse geographical visualization map or view the animation, which covers January 2010 to August 2013. Learning Demonstration Validates Hydrogen Fuel Cell Vehicles and Infrastructure in a Real-World Setting Two icons depict a fuel cell car (left) and hydrogen infrastructure (right). The cars icon is a drawing of a car with a water droplet at the gas tank. The infrastructure icon is a drawing of a hydrogen fueling nozzle. NREL analyzed seven years of real-world validation data, validated key DOE

240

DOE Hydrogen and Fuel Cells Program Record 5036: Fuel Cell Stack Durability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Date: April 20, 2006 6 Date: April 20, 2006 Title: Fuel Cell Stack Durability Originator: Valri Lightner Approved by: JoAnn Milliken Date: May 22, 2006 Item: Over the past several years, the durability of the fuel cell stack has doubled. Supporting Information: Fuel cell and component developers, supported by the DOE program (through the FreedomCAR and Fuel Partnership, which includes DOE, USCAR, and the five major U.S. energy companies), have developed fuel cell components having improved performance and durability. These improvements have been demonstrated in fuel cell stacks built by industry having double the lifetime - from 1,000 hours to 2,000 hours over the past two years. These results have been independently verified by Ballard, a fuel cell developer/supplier

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Electrocatalysts for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Presentation slides from the DOE Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, held February 12, 2013.

242

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

243

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus:...

244

Fuel Cell Opportunities in Marine Corps Garrison  

E-Print Network [OSTI]

% 315,343, 4% 1,585,200, 19% 5,937,358, 73% E85 CNG B100 Diesel Gasoline #12;1 3 0 5 10 15 20 25 30 FY01 fuel cell vehicle operations & maintenance · Partner with Naval Facilities Engineering Service Center, TARDEC, General Motors (GMT800 pickup) · Temporary fueling capability Current Phase... Demonstrate

245

Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Google Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Delicious Rank Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen and Fuel Cell Tax Exemption The following are exempt from state sales tax: 1) any device, equipment, or

246

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

247

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

248

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

249

Hydrogen Fuel Cell Automobiles  

Science Journals Connector (OSTI)

With gasoline now more than $2.00 a gallon alternate automobiletechnologies will be discussed with greater interest and developed with more urgency. For our government the hydrogen fuel cell-powered automobile is at the top of the list of future technologies. This paper presents a simple description of the principles behind this technology and a brief discussion of the pros and cons. It is also an extension on my previous paper on the physics of the automobile engine.1

Bernard J. Feldman

2005-01-01T23:59:59.000Z

250

Fuel Cell Technologies Office: About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

251

Hydrogen and Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

252

Fuel Cell Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

253

Sandia National Laboratories: fuel cell vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuel cell vehicle ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy...

254

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

255

Reversible Fuel Cells Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reversible Fuel Cells Workshop Reversible Fuel Cells Workshop The National Renewable Energy Laboratory hosted a workshop addressing the current state-of-the-art of reversible fuel...

256

Ambient pressure fuel cell system  

DOE Patents [OSTI]

An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

Wilson, Mahlon S. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

257

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

258

Fuel Cell Power Plant Experience Naval Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

259

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009  

Broader source: Energy.gov [DOE]

This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

260

The Business Case for Fuel Cells 2012: America's Partner in Power  

Broader source: Energy.gov [DOE]

This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Office, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells.

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

How Fuel Cells Work | Department of Energy  

Energy Savers [EERE]

Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and...

262

NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team, which analyzes detailed data and reports on fuel cell technology status, progress, and technical challenges. Graphic representing NREL's Hydrogen Secure Data Center and the variety of applications from which it gathers data, including fuel cell (FC) stacks, FC backup power, FC forklifts, FC cars, FC buses, and FC prime power, and hydrogen infrastructure.

263

Fuel Quality Issues in Stationary Fuel Cell Systems  

Broader source: Energy.gov [DOE]

This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

264

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Program Record Record : 11003 Date: March 8, 2011 Title: Fuel Cell Stack Durability Originator: Jacob Spendelow, Dimitrios Papageorgopoulos, and John Garbak...

265

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov [DOE]

Presentation covers stationary fuel cells and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

266

NREL: Hydrogen and Fuel Cells Research - Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material,...

267

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

268

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

269

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

270

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

271

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

272

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

273

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

274

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

275

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

276

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Systems Integration section of the...

277

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

278

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in...

279

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

280

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Appendix C: Hydrogen Quality section of...

282

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

283

State of the States: Fuel Cells in America  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GENCO, was awarded ARRA funding to demonstrate the economic benefits of large fleet conversions of lift trucks from batteries to fuel cell power. A Wegmans warehouse is one...

284

Hybrid Fuel Cell Technology Overview  

SciTech Connect (OSTI)

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

285

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

286

Fuel cell gas management system  

DOE Patents [OSTI]

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

287

Fuel Processing for High-Temperature High-Efficiency Fuel Cells  

Science Journals Connector (OSTI)

With commonly available fuels such as natural gas, only the high-temperature fuel cells MCFC and SOFC have reached electrical efficiencies of ?50% lower heating value (LHV). ... A high electrical efficiency of 60% has recently been demonstrated in a stationary field test system by Ceramic Fuel Cells Ltd. with a 2 kW(electrical) unit fueled by natural gas using DIR as fuel processing option. ... Some catalyst manufacturers supply their catalysts in the reduced and stabilized state at a premium price. ...

Khaliq Ahmed; Karl Fger

2010-07-15T23:59:59.000Z

288

Energy 101: Fuel Cell Technology  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

289

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

290

2009 Fuel Cell Market Report  

Broader source: Energy.gov [DOE]

This report provides an overview of 2009 trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance.

291

Sandia National Laboratories: Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

separator, compared to 800 hrs obtained by a commercial standard. Tagged with: Fuel Cells * Hydrogen * SAND2014-15070W Comments are closed. Renewable Energy Wind Energy...

292

Microfluidics for fuel cell applications.  

E-Print Network [OSTI]

??In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion (more)

Stewart, Ian

2011-01-01T23:59:59.000Z

293

Market penetration scenarios for fuel cell vehicles  

SciTech Connect (OSTI)

Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

294

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

295

Status of hydrogen fuel cell electric buses worldwide  

Science Journals Connector (OSTI)

Abstract This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets.

Thanh Hua; Rajesh Ahluwalia; Leslie Eudy; Gregg Singer; Boris Jermer; Nick Asselin-Miller; Silvia Wessel; Timothy Patterson; Jason Marcinkoski

2014-01-01T23:59:59.000Z

296

Fuel Cell Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

297

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network [OSTI]

of stationary fuel Premier developer of stationary fuel cell technology -- founded in 1969 · Over 50 efficiency 60% DFC-ERGDFC ERG DFC/Turbine 58 ­ 70% Direct FuelCell (DFC)* 47% Natural Gas Engines Small Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp

298

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

299

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

300

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per...

302

Overview of Fuel Cell Electric Bus Development | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

303

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Broader source: Energy.gov (indexed) [DOE]

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

304

Comparison of Fuel Cell Technologies: Fact Sheet | Department...  

Energy Savers [EERE]

Office. Comparison of Fuel Cell Technologies More Documents & Publications Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fuel Cells Fact Sheet MCFC and PAFC...

305

Comparison of Fuel Cell Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Comparison of Fuel Cell Technologies Comparison of Fuel Cell Technologies Each fuel cell technology has advantages and disadvantages. See how fuel cell technologies compare with...

306

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

307

Fuel cells for extraterrestrial and terrestrial applications  

SciTech Connect (OSTI)

The fuel cell is a nineteenth century invention and a twentieth century technology development. Due to the high power and energy density, high efficiency, reliability, and production of pure water, hydrogen-oxygen fuel cell systems have no competition as auxiliary power sources for space vehicles. The alkaline fuel cell system is a well developed and proven technology for this application. The solid polymer electrolyte system may be its future competitor. The energy crisis of 1973 stimulated research, development and demonstration of the phosphoric acid, molten carbonate, solid oxide and solid polymer electrolyte fuel cell systems using natural gas, petroleum or coal derived hydrogen (and carbon monoxide for the high temperature systems) for terrestrial applications. The direct methanol-air fuel cell is still an electrochemist's dream. Though considerable technological advances have been made, the present price of crude oil, and the high capital costs and limited lifetime of fuel cell systems impede their terrestrial applications in the developed countries. Conversely, the potential for lower capital costs of labor intensive manufacturing processes and the relatively higher fossil fuel prices make these systems more attractive for such applications in the developing countries. 11 refs.

Srinivasan, S.

1987-01-01T23:59:59.000Z

308

Fuel Cell Kickoff Meeting Agenda  

Broader source: Energy.gov (indexed) [DOE]

3:40 Aligned Carbon Nanotube-Based MEA and PEMFC D-J Liu, ANL 4:00 Light Weight Low Cost PEM Fuel Cell Stacks J. Wainright, CWRU 4:20 Adaptive Stack with Subdivided Cells for...

309

Manufacturing Fuel Cell Manhattan Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

310

Fuel cell electric power production  

DOE Patents [OSTI]

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

311

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect (OSTI)

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

312

NREL: Hydrogen and Fuel Cells Research - Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable...

313

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

314

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

315

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel cell -- an energy conversion device that can efficiently capture and use the power of hydrogen the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

316

Energy 101: Fuel Cell Technology  

SciTech Connect (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-03-11T23:59:59.000Z

317

Energy 101: Fuel Cell Technology  

ScienceCinema (OSTI)

Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

None

2014-06-06T23:59:59.000Z

318

Fuel Cells for Robots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Robots For Robots Fuel Cells For Robots Pavlo Rudakevych iRobot Pavlo Rudakevych iRobot Product Needs Product Needs * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig PackBot PackBot * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight System Concept System Concept System Concept System Concept System Concept Continued System Concept Continued * Modular payload bays - 3 primary - 1 head - 4 side pods * Each payload socket supports - Ethernet

319

Hydrogen & Fuel Cells - Fuel Cell - Polymer Electrolyte  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polymer Electrolyte Fuel Cell Research Polymer Electrolyte Fuel Cell Research Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. One of the main barriers to the commercialization of polymer electrolyte fuel cell (PEFC) systems, especially for automotive use, is the high cost of the platinum electrocatalysts. Aside from the cost of the precious metal, concern has also been raised over the adequacy of the world supply of platinum, if fuel cell vehicles were to make a significant penetration into the global automotive fleet. At Argonne, chemists are working toward the development of low-cost nonplatinum electrocatalysts for the oxygen reduction reaction--durable materials that would be stable in the fuel

320

NETL: Fuel Cells/SECA News - Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells/Solid State Energy Conversion Alliance (SECA) Fuel Cells/Solid State Energy Conversion Alliance (SECA) News Archive SECA Workshop Proceedings, Peer Reviews, and Annual Reports 2013 Archive 2012 Archive 2011 Archive Previous Highlights FuelCell Energy's Stack Boosts Power and Minimizes Degradation FuelCell Energy has developed a new solid oxide fuel cell stack design that boosts the overall power output of the fuel cell stack by nearly 50%. FuelCell Energy also achieved a voltage degradation rate of 1.3% per 1000 hours after testing the fuel cells for 26,000 hours of operation. This breakthrough by FuelCell Energy of greater power from the fuel cell stack while minimizing fuel cell degradation pushes it further towards meeting SECA's goal of a market ready, affordable solid oxide fuel cell ready by the year 2010. (5/05)

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Markets Ltd Place: Buckinghamshire, United Kingdom Zip: SL0 9AQ Sector: Hydro, Hydrogen Product: Fuel Cell Markets was set up to assist companies in the fuel cell and...

322

Hydrogen fuel cells for cars and buses  

Science Journals Connector (OSTI)

The use of hydrogen fuel cells for cars is strongly promoted by the governments of ... . The electrochemical behaviour of the most promising fuel cell (polymer electrolyte membrane fuel cell, PEMFC) is critically...

L. J. J. Janssen

2007-11-01T23:59:59.000Z

323

Hydrogen Fuel Cell Engines and Related Technologies  

Broader source: Energy.gov [DOE]

This course covers hydrogen properties, use and safety, fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine.

324

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network [OSTI]

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and V. I. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C.Nanostructured Solid Oxide Fuel Cell Electrodes By Tal Zvi

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

325

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network [OSTI]

tion, to the typical PEM fuel cell kinetics, the system alsostudied. As with other PEM fuel cells, it is generally ad-exchange membrane (PEM) fuel cell performance, utilizing

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

326

Ceramic Fuel Cells (SOFC) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ceramic Fuel Cells (SOFC) Ceramic Fuel Cells (SOFC) Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011....

327

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network [OSTI]

M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

328

Fuel Cells Get New BFF | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells Get New BFF Fuel Cells Get New BFF Artificial diamonds may lead to affordable, efficient fuel cells Oxygen (red spheres) migrates from one vacancy to another inside the...

329

Fuel Cells - Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Basics Fuel Cells - Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as...

330

Fuel Cells Calendar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Calendar Fuel Cells Calendar Upcoming events for the Fuel Cell Technologies Office are listed below. Find past events. January 2015 < prev next > Sun Mon Tue Wed Thu Fri...

331

Fuel Cell School Buses: Report to Congress  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This...

332

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

333

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

334

Data Collection & Analysis for ARRA Fuel Cell Projects (Presentation)  

SciTech Connect (OSTI)

The data analysis objectives are: (1) Independent assessment of technology, focused on fuel cell system and hydrogen infrastructure:performance, operation, and safety; (2) Leverage data processing and analysis capabilities from the fuel cell vehicle Learning Demonstration project and DoD Forklift Demo; (3) Establish a baseline of real-world fuel cell operation and maintenance data and identify technical/market barriers; (4) Support market growth of fuel cell technologies by reporting on technology features relevant to the business case; and (5) Report on technology to fuel cell and hydrogen communities and stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-08-21T23:59:59.000Z

335

Fuel cell with internal flow control  

SciTech Connect (OSTI)

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

336

fuel cells | OpenEI  

Open Energy Info (EERE)

cells cells Dataset Summary Description Developed for the U.S. Department of Energy's Office of Fuel Cell Technologies by Argonne National Laboratory and RCF Economic and Financial Consulting, Inc., JOBS and economic impacts of Fuel Cells (JOBS FC) is a spreadsheet model that estimates economic impacts from the manufacture and use of select types of fuel cells. Source Argonne Date Released Unknown Date Updated Unknown Keywords fuel cells Job Creation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon File without Macros. Full version at official link. (xlsx, 2.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment From Argonne National Lab

337

Fuel Cell Technologies Office: 2011 Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Webinar Archives 1 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2011 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2011: Hydrogen Storage Materials Database Demonstration Hydrogen Production by PEM Electrolysis - Spotlight on Giner and Proton Science Magazine Article Highlight: Moving Towards Near Zero Platinum Fuel Cells I2CNER: An International Collaboration to Enable a Carbon-Neutral, Energy Economy Photosynthesis for Hydrogen and Fuels Production Hydrogen Storage Materials Database Demonstration December 13, 2011 The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) has launched a hydrogen storage materials database to collect and disseminate materials data and accelerate advanced materials research and development. Marni Lenahan of BCS Incorporated demonstrated the functionality of the database including accessing and extracting data, submitting new material property data for inclusion, and performing organized searches.

338

Fuel Cell Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

339

Fuel Cell Technologies Office: Hydrogen Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

340

Fuel Cell Technologies Office: Market Analysis Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technology Validation: Fuel Cell Bus Evaluations | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Validation: Fuel Cell Bus Evaluations Technology Validation: Fuel Cell Bus Evaluations 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

342

Webinar: Advanced Electrocatalysts for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, originally presented on February 12, 2013.

343

Durable, Low Cost, Improved Fuel Cell Membranes  

Broader source: Energy.gov [DOE]

This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007.

344

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus...

345

Advancements and Opportunities for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Fuel Cell Seminar and Energy Exposition Reuben Sarkar U.S. Department of Energy Deputy Assistant Secretary Sustainable Transportation...

346

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

347

Characterization of Fuel-Cell Diffusion Media  

E-Print Network [OSTI]

47 Figure 4.2 CV of PEM fuel-cell CL that shows hydrogencurrent. Figure 4.2. CV of PEM fuel-cell catalyst layer that

Gunterman, Haluna Penelope Frances

2011-01-01T23:59:59.000Z

348

Nuvera fuel cells for Fincantieri marine vessels  

Science Journals Connector (OSTI)

US-based Nuvera Fuel Cells is working with Italian shipbuilder Fincantieri on a programme to power luxury marine vessels with advanced hydrogen PEM fuel cell technology.

2013-01-01T23:59:59.000Z

349

Market Transformation: Fuel Cell Early Adoption (Presentation...  

Office of Environmental Management (EM)

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

350

NREL: Hydrogen and Fuel Cells Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cells News The following news stories highlight hydrogen and fuel cells research, technologies, and resources. Subscribe to the RSS feed RSS . Learn about RSS....

351

Hydrogen and Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through...

352

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

353

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

354

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

355

Hydrogen and Fuel Cells Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

71 Hydrogen and Fuel Cells Success Stories en Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle http:energy.goveeresuccess-storiesarticlesadvancing-hydrogen-in...

356

Fuel Cells - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current Technology Fuel Cells - Current Technology Today, fuel cells are being developed to power passenger vehicles, commercial buildings, homes, and even small devices such as...

357

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

358

Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

hydrogen delivery, and economic impacts of fuel cells as well as hydrogen and natural gas fueling infrastructure. Marianne will discuss a new tool for estimating the economic...

359

Development of Solid Oxide Fuel Cells Utilizing Alternative Fuels.  

E-Print Network [OSTI]

??This dissertation is a summary of four solid oxide fuel cell (SOFC) research projects which addressed a number of SOFC technologies to use alternative fuels (more)

Labarbera, Mark

2012-01-01T23:59:59.000Z

360

Corrosion resistant PEM fuel cell  

DOE Patents [OSTI]

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell`s operating environment. Stainless steels rich in Cr, Ni, and Mo are particularly effective protective interlayers. 6 figs.

Li, Y.; Meng, W.J.; Swathirajan, S.; Harris, S.J.; Doll, G.L.

1997-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Calling All Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

362

Calling All Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

363

EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies."

364

Overview of Hydrogen Fuel Cell Budget  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Budget Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D - Technology-neutral fuel cell systems R&D for diverse applications * Hydrogen Fuel R&D - Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities

365

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel...

366

EERE Announces Notice of Intent to Issue Fuel Cell Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels Technologies FOA EERE Announces Notice of Intent to Issue Fuel Cell Technologies Incubator:...

367

Moving toward a commercial market for hydrogen fuel cell vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

368

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy Savers [EERE]

DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel...

369

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

370

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

371

Hydrogen & Fuel Cells | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

372

Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells: How They Fuel Cells: How They Work and How They're Used (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cells:

373

Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MotorWeek Fuel Cell MotorWeek Fuel Cell Video (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Google Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Delicious Rank Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

374

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

375

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

376

Overview of U.S. Hydrogen and Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

United States Hydrogen and Fuel United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international codes and standards harmonization * Identify potential future collaborations, workshops, education and communication strategies 3 Hydrogen and Fuel Cells - Where are we today? Fuel Cells for Transportation

377

Fuel Cell Technologies Office: Durability Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Durability Working Group Durability Working Group The Durability Working Group meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying degradation mechanisms of polymer electrolyte fuel cell stacks. Its members include principle investigators and supporting personnel from U.S. Department of Energy (DOE)-funded durability projects. More information on DOE durability activities can be found in the Multi-Year Research, Development, and Demonstration Plan. Description Technical Targets Meetings Contacts Description DOE durability targets for stationary and transportation fuel cells are 40,000 hours and 5,000 hours, respectively, under realistic operating conditions. In the most demanding applications, realistic operating conditions include impurities in the fuel and air, starting and stopping, freezing and thawing, and humidity and load cycles that result in stresses on the chemical and mechanical stability of the fuel cell materials, components, and interfaces. Degradation-exacerbating conditions resulting from cyclic operation include hydrogen starvation, differential pressure imbalance, oxidation-reduction cycling, and oxygen ingress to the anode, resulting in high cathode potentials. Significant progress has been made in determining the degradation mechanisms of fuel cell components and developing improved materials. However, as stated in the 2008 DOE Fuel Cell Solicitation, there is a need for further research and development in the following areas:

378

Fuel Cell Research  

SciTech Connect (OSTI)

Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: ? They should be fundamental research that has the potential to significantly impact the nations energy infrastructure. ? They should be scientifically exciting and sound. ? They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. ? They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. ? They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. ? They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

Weber, Peter M. [Brown University] [Brown University

2014-03-30T23:59:59.000Z

379

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

380

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network [OSTI]

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

382

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

383

DOE Hydrogen & Fuel Cell Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Market Readiness Workshop DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program February 16, 2011 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently: ~9 million metric tons of H 2 produced annually > 1200 miles of H 2 pipelines Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts. The largest markets for fuel cells today are in

384

Fuel cell and hydrogen economy  

Science Journals Connector (OSTI)

This article reviews some of the recent developments in the materials, design, and concepts for bipolar/end plates in the polymer electrolyte membrane fuel cell stack. Experimental results for the use of iron- an...

Ramana G. Reddy

2006-08-01T23:59:59.000Z

385

New Fuel Cell Projects Meeting  

Broader source: Energy.gov [DOE]

On February 13-14, 2007, the U.S. Department of Energy (DOE) held a kick-off meeting for fuel cell projects awarded under a hydrogen R&D solicitation. Principal investigators presented project...

386

Honeywell developing fuel cell sensors  

Science Journals Connector (OSTI)

In the US, four development teams from Honeywell Sensing & Control are collaborating in a DOE project to develop sensors that provide better control in the demanding fuel cell environment.

2004-01-01T23:59:59.000Z

387

Fuel Cells as Rechargeable Batteries  

Science Journals Connector (OSTI)

The combination of water electrolysis, storage of the produced hydrogen and oxygen and subsequent electrochemical recombination of the stored hydrogen and oxygen in a fuel cell provide the basis for a practical e...

J. Giner; A. Laconti

1996-01-01T23:59:59.000Z

388

Fuel Cell Technologies Office Overview  

Broader source: Energy.gov [DOE]

Presentation by Sara Dillich, DOE Fuel Cell Technologies Office, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

389

A FUEL CELL IN EVERY CAR  

Science Journals Connector (OSTI)

A FUEL CELL IN EVERY CAR ... FUEL CELLS ARE MOVING PAST THE developmental stage and into realworld trials. ... The effort to construct the first working prototypes is giving way to improving designs and developing a hydrogen-fuel infrastructure. ...

ALEXANDER H. TULLO

2001-03-05T23:59:59.000Z

390

Catalyst supports for polymer electrolyte fuel cells  

Science Journals Connector (OSTI)

...Bruce, Richard Catlow and Peter Edwards Catalyst supports for polymer electrolyte fuel...durability in fuel cells is to discover catalyst supports that do not corrode, or corrode...black support. fuel cells|oxides|catalyst supports|nanoparticles|conductivity...

2010-01-01T23:59:59.000Z

391

Hydrogen Fuel Cell Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Your H2IQ Hydrogen Fuel Cell Basics Hydrogen Fuel Cell Basics Hydrogen is a versatile energy carrier that can be used to power nearly every end-use energy need. The fuel...

392

Say hello to cheaper hydrogen fuel cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Say hello to cheaper hydrogen fuel cells Say hello to cheaper hydrogen fuel cells Laboratory scientists have developed a way to avoid the use of expensive platinum in hydrogen fuel...

393

Corrosion resistant PEM fuel cell  

DOE Patents [OSTI]

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

1997-01-01T23:59:59.000Z

394

Stationary Fuel Cell Evaluation (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

395

Careers in Hydrogen and Fuel Cells | Department of Energy  

Energy Savers [EERE]

and Fuel Cells The resources below link to job boards and listings on fuel cell company Web sites. Fuel Cell Employment Resources - Fuel Cells 2000 provides links to fuel cell job...

396

Fuel Cell R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell R&D Activities Fuel Cell R&D Activities Photo of electric motor under the hood of fuel cell car The Fuel Cell Technologies fuel cell research and development (R&D)...

397

Parts of a Fuel Cell | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Parts of a Fuel Cell Parts of a Fuel Cell Polymer electrolyte membrane (PEM) fuel cells are the current focus of research for fuel cell vehicle applications. PEM fuel cells are...

398

[Gas cooled fuel cell systems technology development program  

SciTech Connect (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

399

DOE Fuel Cell Subprogram Nancy Garland  

E-Print Network [OSTI]

hydrogen fuel cell power system at a cost of $45/kW with 5000 hours of durability (80°C); by 2015, a cost a distributed generation PEM fuel cell system operating on natural gas or LPG that achieves 40% electricalDOE Fuel Cell Subprogram Nancy Garland Acting Fuel Cell Team Leader Pre-Solicitation Meeting Golden

400

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network [OSTI]

) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline, 2009 Joel M. Rinebold #12;2 2 · Connecticut Hydrogen Roadmap (Fuel Cell Economic Development Plan) · A National "Green Energy" Economic Stimulus Plan based on Investment in the Hydrogen and Fuel Cell Industry

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

402

Fuel Cell Technologies Office: 2012 Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Webinar Archives 2 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2012 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2012 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2012 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2012 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

403

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

404

Fuel Cell Technologies Office: Program Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

405

Fuel Cell Technologies Office: 2011 Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Webinar Archives 2011 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2011 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2011 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2011 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2011 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

406

Fuel Cell Technologies Office: Catalysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

407

Fuel Cell Technologies Office: Past Financial Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Financial Opportunities to someone by E-mail Share Fuel Cell Technologies Office: Past Financial Opportunities on Facebook Tweet about Fuel Cell Technologies Office: Past Financial Opportunities on Twitter Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Google Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Delicious Rank Fuel Cell Technologies Office: Past Financial Opportunities on Digg Find More places to share Fuel Cell Technologies Office: Past Financial Opportunities on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities

408

Fuel Cell Technologies Office: 2012 Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Webinar Archives 2 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2012 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2012: DOE Updates JOBS and economic impacts of Fuel Cells (JOBS FC 1.1) Model Hydrogen and Fuel Cell Manufacturing R&D Opportunities Fuel Cell Mobile Lighting California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems Material Characterization of Storage Vessels for Fuel Cell Forklifts Fuel Cells for Portable Power BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

409

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network [OSTI]

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office Fuel Cell Technologies Office eere.energy.gov This award is being accepted on behalf of the U.S. Department of Energy fuel cell and hydrogen programs Acknowledgements #12;3 | Fuel Cell Technologies Office eere

410

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the...

411

Fuel Cell Technologies Office: Accomplishments and Progress  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments and Progress Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Reducing the Cost and Improving the Durability and Performance of Fuel Cells Chart showing the cost of the automotive fuel cell system, which is projected to a high-volume manufacturing of 500,000 units per year. In 2002, the cost of the automotive fuel cell system (including balance of plant and stack) was $275/kW. The cost decreased to $108/kW in 2006, to $94/kW in 2007, to $73/kW in 2008, $61/kW in 2009, to $51/kW in 2010, and to $49/kW in 2011. The target cost for 2017 is $30/kW.

412

FUEL CELL/MICRO-TURBINE COMBINED CYCLE  

SciTech Connect (OSTI)

A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

1999-12-01T23:59:59.000Z

413

Review of Fuels for Direct Carbon Fuel Cells  

Science Journals Connector (OSTI)

Review of Fuels for Direct Carbon Fuel Cells ... After optimization for minimum activation polarization, the authors then produced impedance spectra to assess cell performance and achieved a peak power density of around 18 and 53 mW cm2 at 700 and 800 C, respectively. ... solid oxide fuel cell system under 600 just by optimizing the anode microstructure and operating conditions. ...

Adam C. Rady; Sarbjit Giddey; Sukhvinder P. S. Badwal; Bradley P. Ladewig; Sankar Bhattacharya

2012-01-31T23:59:59.000Z

414

Development and Demonstration of a Fuel-Efficient HD Engine  

Broader source: Energy.gov [DOE]

Approach to selection of technologies and their contribution to enhance heavy-duty truck fuel efficiency.

415

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

416

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Broader source: Energy.gov (indexed) [DOE]

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of...

417

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents [OSTI]

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

418

California and Connecticut: National Fuel Cell Bus Programs Drive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August...

419

Breaking the Fuel Cell Cost Barrier  

Broader source: Energy.gov (indexed) [DOE]

the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with...

420

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results  

Broader source: Energy.gov [DOE]

This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided.

422

Sandia National Laboratories: fuel cell membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membrane ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy, Energy Efficiency,...

423

FUEL CELLS SOLID OXIDE FUEL CELLS | Gas Distribution  

Science Journals Connector (OSTI)

A uniform distribution of the reactants over the total available electrode surfaces in solid oxide fuel cells (SOFCs) is a prerequisite for the proper operation of the fuel cell. The gas distribution plays a dominant role not only in the current density distribution but also in the temperature distribution over the cell areas and in the stack and modules. Several transport mechanisms for mass transport occurring in the SOFC are introduced and discussed. General flow configurations and structures for the gas distribution at three different levels, i.e., stack/module, cell/tube, and electrode/electrolyte, are discussed for both tubular and planar type cells and illustrated with examples of concentration and temperature profiles.

L.G.J. de Haart; M. Spiller

2009-01-01T23:59:59.000Z

424

Direct Carbon Fuel Cell Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

425

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper number1009). for an automotive PEM fuel cell system with imbedded

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

426

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

427

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

428

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

429

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

430

Overview of Hydrogen & Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source: US DOE 2/25/2011 Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Fuel Cells: Addressing Energy Challenges 4 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW,

431

Micro and Man-Portable Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& USFCC Fuel Cells Meeting: & USFCC Fuel Cells Meeting: US DOE & USFCC Fuel Cells Meeting: Matching Federal Government Energy Needs Matching Federal Government Energy Needs with Energy Efficient Fuel Cells with Energy Efficient Fuel Cells Micro & Man Micro & Man - - Portable Fuel Cells Portable Fuel Cells Jerry Hallmark Jerry Hallmark Motorola Labs Motorola Labs - - President USFCC President USFCC Hotel Palomar Hotel Palomar Washington, DC Washington, DC April 26th, 2007 April 26th, 2007 US DOE & USFCC Fuel Cells Meeting 1 4/26/2007 U.S. Fuel Cell Council Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU * 100 Watts to 10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup,

432

Fuel Cell Technologies Office: Educational Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Educational Publications Educational Publications Increase your H2IQ Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's First Tri-Generation Energy Station - Fountain Valley Fuel Cell Financing for Tax-Exempt Entities Jobs in Fuel Cell Technologies Hydrogen Fuel Cells Hydrogen Production Hydrogen Distribution and Delivery Hydrogen Market Transformation Hydrogen Storage Hydrogen Safety Hydrogen Technology Validation Comparison of Fuel Cell Technologies Hydrogen-Powered Buses

433

Fuel Cell Technologies Office: Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

434

California Fuel Cell Partnership CaFCP | Open Energy Information  

Open Energy Info (EERE)

Partnership CaFCP Partnership CaFCP Jump to: navigation, search Name California Fuel Cell Partnership (CaFCP) Place West Sacramento, California Zip 95691 Sector Hydro, Hydrogen, Vehicles Product A collaboration of auto manufacturers, energy companies, fuel cell technology companies, and government agencies intended to demonstrate fuel cell vehicles under real driving conditions and to assist in the development of a hydrogen infrastructure. References California Fuel Cell Partnership (CaFCP)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. California Fuel Cell Partnership (CaFCP) is a company located in West Sacramento, California . References ↑ "California Fuel Cell Partnership (CaFCP)"

435

Fuel Cell Technologies Office: Glossary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary This glossary contains terms and acronyms related to hydrogen and fuel cell technologies. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - Acronyms A AC Generator (or Alternator) An electric device that produces an electric current that reverses direction many times per second. Also called a synchronous generator. Adsorption The adhesion of the molecules of gases, dissolved substances, or liquids to the surface of the solids or liquids with which they are in contact. Air The mixture of oxygen, nitrogen, and other gases that, with varying amounts of water vapor, forms the atmosphere of the earth. Alkaline Fuel Cell (AFC) A type of hydrogen/oxygen fuel cell in which the electrolyte is concentrated potassium hydroxide (KOH) and the hydroxide ions (OH-) are transported from the cathode to the anode.

436

Carbon-based Fuel Cell  

SciTech Connect (OSTI)

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

437

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011.

438

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition  

Broader source: Energy.gov [DOE]

Overview of DOE's Fuel Cell Technologies Office presented by Sunita Satyapal at the 2013 Fuel Cell Seminar and Energy Exposition in Columbus, Ohio.

439

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

440

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Broader source: Energy.gov [DOE]

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels  

SciTech Connect (OSTI)

This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

Turgut Gur

2010-04-30T23:59:59.000Z

442

Fuel Cell Portable Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

443

Fuel Cell Technologies Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat, Hydrogen and Power (CHHP) offers opportunities for use of natural gas or wastebiogas Fountain Valley demonstration * 250 kW of electricity * 100 kgday hydrogen capacity...

444

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

445

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

446

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

447

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

448

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

449

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

450

Supertruck- Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

451

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

452

Fuel Cell Applied Research Project  

SciTech Connect (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

453

An Octane-Fueled Solid Oxide Fuel Cell  

Science Journals Connector (OSTI)

...for the adoption of fuel cells for applications...not only reduces fuel consumption but also reduces...emission. Although fuel cells can achieve efficiencies...internal combustion engine, and H 2 is more...is, gasoline and diesel, has not been successful...

Zhongliang Zhan; Scott A. Barnett

2005-05-06T23:59:59.000Z

454

Fuel Cell Technologies Office: Educational Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Educational Educational Publications to someone by E-mail Share Fuel Cell Technologies Office: Educational Publications on Facebook Tweet about Fuel Cell Technologies Office: Educational Publications on Twitter Bookmark Fuel Cell Technologies Office: Educational Publications on Google Bookmark Fuel Cell Technologies Office: Educational Publications on Delicious Rank Fuel Cell Technologies Office: Educational Publications on Digg Find More places to share Fuel Cell Technologies Office: Educational Publications on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage

455

Fuel Cell Technologies Office: November 2013 Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 2013 November 2013 Newsletter to someone by E-mail Share Fuel Cell Technologies Office: November 2013 Newsletter on Facebook Tweet about Fuel Cell Technologies Office: November 2013 Newsletter on Twitter Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Google Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Delicious Rank Fuel Cell Technologies Office: November 2013 Newsletter on Digg Find More places to share Fuel Cell Technologies Office: November 2013 Newsletter on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery

456

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Accelerated Stress Test Protocols for PEM Fuel Cells, Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies

457

Uniqueness of magnetotomography for fuel cells and fuel cell stacks  

Science Journals Connector (OSTI)

The criterion for the applicability of any tomographic method is its ability to construct the desired inner structure of a system from external measurements, i.e. to solve the inverse problem. Magnetotomography applied to fuel cells and fuel cell stacks aims at determining the inner current densities from measurements of the external magnetic field. This is an interesting idea since in those systems the inner electric current densities are large, several hundred mA per cm2and therefore relatively high external magnetic fields can be expected. Still the question remains how uniquely the inverse problem can be solved. Here we present a proof that by exploiting Maxwell's equations extensively the inverse problem of magnetotomography becomes unique under rather mild assumptions and we show that these assumptions are fulfilled in fuel cells and fuel cell stacks. Moreover, our proof holds true for any other device fulfilling the assumptions listed here. Admittedly, our proof has one caveat: it does not contain an estimate of the precision requirements the measurements need to fulfil for enabling reconstruction of the inner current densities from external magnetic fields.

H Lustfeld; J Hirschfeld; M Reiel; B Steffen

2009-01-01T23:59:59.000Z

458

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

459

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

460

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2010 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Market Report 2010 Fuel Cell Technologies Market Report This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It...

462

2007 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Fuel Cell Technologies Market Report 2007 Fuel Cell Technologies Market Report The fuel cell industry, which has experienced continued increases in sales, is an emerging clean...

463

Fuel Cell Technologies Office Newsletter: January 2015 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Newsletter: January 2015 Fuel Cell Technologies Office Newsletter: January 2015 The January 2015 issue of the Fuel Cell Technologies Office (FCTO)...

464

Biogas and Fuel Cells Workshop Summary Report: Proceedings from...  

Broader source: Energy.gov (indexed) [DOE]

and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012 Biogas and Fuel Cells Workshop Summary Report:...

465

2008 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Fuel Cell Technologies Market Report 2008 Fuel Cell Technologies Market Report This report provides an overview of trends in the fuel cell industry and markets, including product...

466

National Fuel Cell Technology Evaluation Center (NFCTEC) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center (NFCTEC) National Fuel Cell Technology Evaluation Center (NFCTEC) Download presentation slides from the DOE Fuel Cell Technologies...

467

Webinar: NREL's Fuel Cell Contaminant Database | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL's Fuel Cell Contaminant Database Webinar: NREL's Fuel Cell Contaminant Database Below is the text version of the webinar titled "NREL's Fuel Cell Contaminant Database,"...

468

Fuel Cell Technologies Office Newsletter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Fuel Cell Technologies Office Newsletter Fuel Cell Technologies Office Newsletter The Fuel Cell Technologies (FCT) Office newsletter highlights program...

469

Webinar: National Fuel Cell Technology Evaluation Center | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell Technology Evaluation Center Webinar: National Fuel Cell Technology Evaluation Center Below is the text version of the webinar titled "National Fuel Cell...

470

Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

471

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Office of Environmental Management (EM)

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

472

Microchannel High-Temperature Recuperator for Fuel Cell Systems...  

Office of Environmental Management (EM)

Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell...

473

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Presentation by Nancy Garland at a meeting on fuel cell projects on February 13 - 14, 2007....

474

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

475

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Broader source: Energy.gov (indexed) [DOE]

Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit...

476

Careers in Fuel Cell Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and...

477

Fuel Cell Kickoff Meeting Agenda | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Kickoff Meeting Agenda Fuel Cell Kickoff Meeting Agenda This agenda provides information about the fuel cell projects meeting in February 2007. newfcagenda0207.pdf...

478

Modeling Cold Start in a Polymer-Electrolyte Fuel Cell  

E-Print Network [OSTI]

conditions used for fuelcell simulations. 3.12 Values usedFuel Cells . . . . . . . . . . . . . . . . . . . . . . 1.1.1in Polymer Electrolyte Fuel Cells II. Parametric Study,

Balliet, Ryan

2010-01-01T23:59:59.000Z

479

Advanced Cathode Catalysts and Supports for PEM Fuel Cells |...  

Energy Savers [EERE]

Advanced Cathode Catalysts and Supports for PEM Fuel Cells Advanced Cathode Catalysts and Supports for PEM Fuel Cells 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

480

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cell demonstration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Broader source: Energy.gov (indexed) [DOE]

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

482

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Broader source: Energy.gov (indexed) [DOE]

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

483

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

484

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Broader source: Energy.gov (indexed) [DOE]

Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February...

485

Reversible Fuel Cells Workshop Summary Report | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Reversible Fuel Cells Workshop Summary Report Reversible Fuel Cells Workshop Summary Report Summary and presentations from the NREL Reversible Fuel Cells Workshop held April 19,...

486

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

487

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Societal lifetime cost of hydrogen fuel cell vehiclesthe societal cost of hydrogen fuel-cell vehicles with modelsand running costs) than hydrogen fuel-cell vehicles in 2030.

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

488

Matching Government Needs with Energy Efficient Fuel Cells |...  

Broader source: Energy.gov (indexed) [DOE]

Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program,...

489

Advancements and Opportunities for Fuel Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancements and Opportunities for Fuel Cells Advancements and Opportunities for Fuel Cells Presentation by Reuben Sarkar at the Fuel Cell Seminar and Energy Exposition plenary...

490

Advanced Materials and Concepts for Portable Power Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell...

491

Hydrogen and Fuel Cells Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Success Stories Hydrogen and Fuel Cells Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in advanced fuel cell...

492

Fuel Cell Technologies Office Newsletter | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Fuel Cell Technologies Office Newsletter Fuel Cell Technologies Office Newsletter The Fuel Cell Technologies Office (FCTO) newsletter highlights program...

493

US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates...

494

Fuel Cell Technologies Office Newsletter: December 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Newsletter: December 2014 Fuel Cell Technologies Office Newsletter: December 2014 The December 2014 issue of the of the Fuel Cell Technologies Office...

495

Overview of Hydrogen and Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Deputy Program Manager & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA 2 1. Overview, Challenges & Technology Status 2. DOE Program Activities and Progress 3. Market Transformation Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits * Efficiencies can be 60% (electrical)

496

In situ PEM fuel cell water measurements  

SciTech Connect (OSTI)

Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendalow, Jacob S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

497

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

498

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development and Demonstration Plan Page 3.5 - 1 3.5 Manufacturing R&D More than 15,000 fuel cell systems were shipped in 2010 worldwide, 1 representing more than 80 MW of power....

499

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Appendix B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput...

500

The Business Case for Fuel Cells 2011: Energizing America's Top Companies  

Fuel Cell Technologies Publication and Product Library (EERE)

This report was developed by Fuel Cells 2000 with support from the Fuel Cell Technologies program. The report profiles nationally recognizable companies and corporations that are deploying or demonstr