Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING  

Office of Scientific and Technical Information (OSTI)

LWR NUCLEAR FUEL BUNDLE DATA FOR LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING TOPICAL REPORT W. 8. Weihermilfer C. S. Allison Septem bet 1979 Work Performed, Under Contract EY-76-C- M - 1 8 3 0 Form 189 Number 210.1 BAlTELLE PACIFIC NORTHWEST LABORATORY RICHLAND, WA 99352 BASE TECHNOLOGY N O T I C E T h i s report was prepard n an account of work sponrored by the UAed States Govcmmenr. Neither tht Unltcd S t a t e nor !he k p n m c n t of Energy, not any of their ernploylecs, nw any of theb ccmtnctotr, hontncton. or their employper. maka any warranty. expms or Implied, or m u m any legal liability or rcrponrlbllity for the accuracy, c o m p l c r e ~ s or ulefulnm of m y information. -ratus, prodm or p r e di~1Oltd. or represents that Its u w ? would not infringe privateiy o w d rights. The views, opinions and ccnclusionr contained in this report a

2

FUEL HANDLING MECHANISM  

DOE Patents (OSTI)

A remotely operable handling device specifically adapted for the handling of vertically disposed fuel rods in a nuclear reactor was developed. The device consists essentially of an elongated tubular member having a gripping device at the lower end of the pivoted jaw type adapted to grip an enlarged head on the upper end of the workpiece. The device includes a sensing element which engages the enlarged head and is displaced to remotely indicate when the workpiece is in the proper position to be engaged by the jaws.

Koch, L.J.; Hutter, E.

1960-02-01T23:59:59.000Z

3

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide: Fuel Handling Equipment Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical task during a nuclear power plant refueling outage. The proper operation of fuel handling equipment (such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators) is important to a successful refueling outage and to preparing fuel for eventual disposal.BackgroundThe fuel handling system contains the components used to move fuel from the time that the new fuel is received until the spent fuel ...

2013-12-13T23:59:59.000Z

4

SEU43 fuel bundle shielding analysis during spent fuel transport  

Science Conference Proceedings (OSTI)

The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

2006-07-01T23:59:59.000Z

5

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

6

Assessment of Coal Handling for Fuel Flexibility  

Science Conference Proceedings (OSTI)

To reduce total generating costs, power generators may use multiple solid fuels. This study is a preliminary investigation of the methods and costs of handling multiple solid fuels. An important byproduct of the study was some of the first-ever systematic comparisons of coal handling costs at a sample of plants.

1998-09-03T23:59:59.000Z

7

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

Reese, A.P.; Stachowski, R.E.

1995-08-08T23:59:59.000Z

8

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

9

Numerical and experimental investigations on vibration of simulated CANDU fuel bundles subjected to turbulent fluid flow.  

E-Print Network (OSTI)

??Vibration of simulated CANDU fuel bundles induced by coolant flow is investigated in this thesis through experiments and numerical simulations. Two simulated bundles and a… (more)

Zhang, Xuan

2011-01-01T23:59:59.000Z

10

Production and Handling Slide 1: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

and Handling The Uranium Fuel Cycle Skip Presentation Navigation Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image...

11

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

12

CAT reconstruction and potting comparison of a LMFBR fuel bundle  

SciTech Connect

A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction.

Betten, P.R.; Tow, D.M.

1984-04-01T23:59:59.000Z

13

Investigations On Flow And Flow-Induced Vibration Of Candu Fuel Bundles.  

E-Print Network (OSTI)

??Excitations induced by three-dimensional unsteady flows of ordinary water coolant through a string of CANDU fuel bundles in a fuel channel are investigated in this… (more)

Bhattacharya, Alokendu

2013-01-01T23:59:59.000Z

14

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

15

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

16

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical item during a nuclear power plant refueling outage. The proper operation of fuel handling equipment, such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators, is important to a successful refueling outage and to preparing fuel for eventual disposal.

2007-12-21T23:59:59.000Z

17

MENT reconstruction and potting comparison of a LMFBR fuel bundle  

SciTech Connect

Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly.

Betten, P.R.; Tow, D.M.

1984-01-01T23:59:59.000Z

18

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

19

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

20

Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models  

SciTech Connect

A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Interim report spent nuclear fuel retrieval system fuel handling development testing  

Science Conference Proceedings (OSTI)

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

22

FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION  

SciTech Connect

The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

B. SZALEWSKI

2005-03-22T23:59:59.000Z

23

Calculation of the Local Neutronic Parameters for CANDU Fuel Bundles Using Transport Methods  

SciTech Connect

For a realistic neutronic evaluation of the CANDU reactor core it is important to accurately perform the local neutronic parameters (i.e. multigroup macroscopic cross sections for the core materials) calculation. This means using codes that allow a good geometric representation of the CANDU fuel bundle and then solving the transport equation. The paper reported here intends to study in detail the local behavior for two types of CANDU fuel, NU{sub 3}7 (Natural Uranium, 37 elements) and SEU{sub 4}3 (Slightly Enriched Uranium, 43 elements, with 1.1 wt% enrichment). The considered fuel types represent fresh and used bundles. The two types of CANDU super-cells are reference NU{sub 3}7, perturbed NU{sub 3}7, reference SEU{sub 4}3 and perturbed SEU{sub 4}3. The perturbed super-cells contain a Mechanical Control Absorber (a very strong reactivity device). For reaching the proposed objective a methodology is used based on WIMS and PIJXYZ codes. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the fine local neutronic parameters in the CANDU super-cells (k-eff values, local MCA reactivity worth, flux distributions and reaction rates), the PIJXYZ code is used. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for CANDU cell geometry. It is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON code. This comparison shows a good agreement between these results. (authors)

Balaceanu, Victoria; Rizoiu, Andrei; Hristea, Viorel [Institute for Nuclear Research, PO Box 78, PITESTI (Romania)

2006-07-01T23:59:59.000Z

24

Method and means of packaging nuclear fuel rods for handling  

DOE Patents (OSTI)

Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel rod. The tube has previously been rolled to form an overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod.

Adam, Milton F. (Idaho Falls, ID)

1979-01-01T23:59:59.000Z

25

Production and Handling Slide 3: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

First Slide Previous Slide Next Slide Last Presentation Table of Contents The Uranium Fuel Cycle See caption below for image description The second step in the uranium fuel cycle...

26

Production and Handling Slide 23: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description The fourth major step in the uranium fuel cycle is uranium enrichment. Slide 23...

27

Spent fuel handling and packaging program. Management summary report  

SciTech Connect

Objective is to design, develop, and demonstrate a spent fuel package for geologic storage and disposal; to design, license, and construct the facilities to produce this package; and to develop and demonstrate technology for the dry, passive surface storage of spent fuel. Progress is reported on engineering and system studies, technical R and D studies, demonstrations, project support studies, spent fuel facility project, and program management.

1978-09-01T23:59:59.000Z

28

Production and Handling Slide 37: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents The Uranium Fuel Cycle Refer to caption below for image description The enrichment process generates two streams of uranium hexafluoride, one enriched in...

29

Production and Handling Slide 5: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Refer to caption below for image description The third step in the uranium fuel cycle involves the conversion of "yellowcake" to uranium hexafluoride (UF6), the chemical form...

30

Production and Handling Slide 43: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description Enriched uranium hexafluoride, generally containing 3 to 5% uranium-235, is sent...

31

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

32

Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process  

SciTech Connect

Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

33

Towards CFD Modelling of Critical Heat Flux in Fuel Rod Bundles  

SciTech Connect

The paper describes actual CFD approaches to subcooled boiling and investigates their capability to contribute to fuel assembly design. In a prototype version of the CFD code CFX a wall boiling model is implemented based on a wall heat flux partition algorithm. It can be shown, that the wall boiling model is able, to calculate the cross sectional averaged vapour volume fraction with good agreement to published measurements. The most sensitive parameters of the model are identified. Needs for more detailed experiments are established which are necessary to support further model development. Nevertheless in the paper the model is applied for the investigation of the phenomena inside a hot channel in a fuel assembly. Here the essential parameter is the critical heat flux. Although subcooled boiling represents only a preliminary state toward critical heat flux essential parameters like the swirl, the cross flow between adjacent channels and concentration regions of bubbles can be determined. By calculating the temperature at the rod surface the critical regions can be identified which might later on lead to departure from nucleate boiling and possible damage of the fuel pin. The application of up-to-date CFD with a subcooled boiling model for the simulation of a hot channel enables the comparison and the evaluation of different geometrical designs of the spacer grids of a fuel rod bundle. (authors)

Krepper, Eckhard [Forschungszentrum Rossendorf e.V., Institute of Safety Research, D-01314 Dresden, POB 510119 (Germany); Egorov, Yury [ANSYS Germany GmbH Staudenfeldweg 12, D-83624 Otterfing (Germany); Koncar, Bostjan ['Jozef Stefan' Institute Jamova 39, 1000 Ljubljana (Slovenia)

2006-07-01T23:59:59.000Z

34

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

Science Conference Proceedings (OSTI)

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

35

Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors  

Science Conference Proceedings (OSTI)

This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%.

Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

1985-04-01T23:59:59.000Z

36

Plasma Fueling, Pumping, and Tritium Handling Considerations for FIRE  

Science Conference Proceedings (OSTI)

Tritium pellet injection will be utilized on the Fusion Ignition Research Experiment (FIRE) for efficient tritium fueling and to optimize the density profile for high fusion power. Conventional pneumatic pellet injectors, coupled with a guidetube system to launch pellets into the plasma from the high, field side, low field side, and vertically, will be provided for fueling along with gas puffing for plasma edge density control. About 0.1 g of tritium must be injected during each 10-s pulse. The tritium and deuterium will be exhausted into the divertor. The double null divertor will have 16 cryogenic pumps located near the divertor chamber to provide the required high pumping speed of 200 torr-L/s.

Fisher, P.W.; Foster, C.A.; Gentile, C.A.; Gouge, M.J.; Nelson, B.E.

1999-11-13T23:59:59.000Z

37

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

38

Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

39

Information Handling Plan For The Mixed Oxide Fuel Fabrication Facility  

E-Print Network (OSTI)

responses to the NRC's Request for Additional Information (RAI), and a revision to the Classified Matter Protection Plan (CMPP) for the Mixed Oxide Fuel Fabrication Facility (MFFF). Enclosure (1) provides the detailed responses to the Reference (A) RAIs, and indicates corresponding changes to the CMPP. Enclosure (2) provides a List of Effective Pages for the revised CMPP. Enclosure (3) is the revised CMPP itself; it is a page revision with respect to the previous revision of Reference (C). Enclosure (4) lists substantive changes in addition to those resulting from the RAIs. Changes resulting from the RAI responses, as well as other changes, are denoted by vertical lines in the right margin and revised pages have a current revision date. The enclosures herein concern protection of classified matter in accordance with 10 CFR 2.390(d), and should be withheld from public disclosure.

Shaw Areva; Mox Services

2008-01-01T23:59:59.000Z

40

CHF Performance of Hybrid Mixing Vane Grid for a Nuclear Fuel Bundle  

SciTech Connect

Numerous studies have shown that the mixing vanes of the spacer grids in a nuclear fuel rod bundle increase the Critical Heat Flux (CHF) significantly. The amount of the CHF enhancement depends strongly on the design of the mixing vanes such as the vane shape and vane bending angle. Recently a new mixing vane design was developed for an advanced spacer grid. It is called a Hybrid Mixing Vane. The main objective of this work is to evaluate the CHF performance of the hybrid vane grid and to compare it with that of a split vane grid. Three kinds of rod bundles were tested for the above objectives: no mixing vane grids, the hybrid mixing vane grids, and the split mixing vane grids. To measure the CHF data, 5x5 rod bundle experiments were conducted in the FTHEL (Freon Thermal Hydraulic Experiment Loop). Each experiment was performed by maintaining the following system conditions as constant: inlet pressure, inlet temperature, and mass flow rate. The experiments were performed in ranges of the inlet pressure, P{sub in} = 2000{approx}3000 kPa, mass flux, G = 1000{approx}3000 kg/m{sup 2}s, and inlet subcooling, {delta}h{sub in}= 10{approx}55 kJ/kg, which simulates the PWR operating conditions for a water equivalence through a fluid-to-fluid modeling. The CHF performances were compared with the data belonging to a PWR's operating conditions; a pressure of 2000{approx}3000 kPa and a mass flux of 1500{approx}3000 kg/m{sup 2}s. The average of the CHF increase for the hybrid mixing grids for 20 data sets is 18.2% higher than that for the no vane grids. While the average of the CHF increase for the split mixing vane grids for 20 data sets is 14.5% higher than that for the no vane grids. Consequently, the CHF performance of the hybrid mixing vane grid is superior by about 4% to that of the split mixing vane grid near the normal PWR operating conditions even under a longer grid span than usual. (authors)

Shin, Chang-Hwan; Chun, Tae-Hyun [LWR Fuel Development Division, Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Daejeon, 305-353 (Korea, Republic of); Choo, Yeon-Jun; Moon, Sang-Ki; Chun, Se-Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Daejeon, 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)  

DOE Green Energy (OSTI)

This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

42

Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control  

Science Conference Proceedings (OSTI)

A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

2012-04-24T23:59:59.000Z

43

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

44

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

45

EBR-II argon cooling system restricted fuel handling I and C upgrade  

SciTech Connect

The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software.

Start, S.E.; Carlson, R.B.; Gehrman, R.L. [Argonne National Lab., Idaho Falls, ID (United States). Engineering Div.

1995-06-01T23:59:59.000Z

46

Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof  

DOE Patents (OSTI)

Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

2013-03-05T23:59:59.000Z

47

Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements  

SciTech Connect

This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask`s primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives.

Powell, F.P. [Sierra Nuclear Corp., Roswell, GA (United States)

1995-04-01T23:59:59.000Z

48

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

49

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

50

Welding and Repair Technology Center: Boric Acid Attack of Concrete and Reinforcing Steel in PWR Fuel Handling Buildings  

Science Conference Proceedings (OSTI)

Spent fuel pool (SFP) leakage is common throughout the U.S. PWR fleet, with some plants experiencing leakage since early in plant life. The U.S. Nuclear Regulatory Commission (NRC) issued Information Notice 2004-05 describing leakage from the SFP at Salem Generating Station that migrated outside the building. The contamination was limited to the vicinity of the fuel handling building (FHB) and was contained and remediated within the confines of the protected area. It did not reach either underground aqui...

2012-05-14T23:59:59.000Z

51

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

Science Conference Proceedings (OSTI)

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

52

Criticality safety criteria for the handling, storage, and transportation of LWR fuel outside reactors: ANS-8.17-1984  

SciTech Connect

The potential for criticality accidents during the handling, storage, and transportation of fuel for nuclear reactors represents a health and safety risk to personnel involved in these activities, as well as to the general public. Appropriate design of equipment and facilities, handling procedures, and personnel training can minimize this risk. Even though the focus of the American National Standard, `Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors,` ANSI/ANS-8.1-1983, is general criteria for the ensurance of criticality safety, ANS-8.17-1984, provides additional guidance applicable to handling, storage, and transportation of light-water- reactor (LWR) nuclear fuel units in any phase of the fuel cycle outside the reactor core. ANS-8.17 had its origin in the late 1970s when a work group consisting of representatives from private industry, personnel from government contractor facilities, and scientists and engineers from the national laboratories was established. The work of this group resulted in the issuance of ANSI/ANS-8.17 in January 1984. This document provides a discussion of this standard.

Whitesides, G.E.

1996-09-01T23:59:59.000Z

53

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2  

Science Conference Proceedings (OSTI)

Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

54

Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

2003-02-01T23:59:59.000Z

55

Economic and Environmental Analysis of Fuel Cell Powered Materials Handling Equipment  

Science Conference Proceedings (OSTI)

This technical update describes an analysis of the economic and environmental attributes of forklift fleets powered by battery and fuel cell power plants. The report first provides background on the fuel cell forklift technology. The fuel cell forklift is then compared to three other technology options: conventional battery-powered forklifts, fast-charge forklifts at 15 kW of charging power, and fast-charge forklifts at 20 kW of charging power. This study develops models of the infrastructure and equipme...

2010-12-31T23:59:59.000Z

56

Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project  

Science Conference Proceedings (OSTI)

This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1991-12-01T23:59:59.000Z

57

Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning  

SciTech Connect

A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations.

Eberle, C.S.; Dean, E.M.; Angelo, P.L.

1995-12-31T23:59:59.000Z

58

SLUG HANDLING DEVICES  

DOE Patents (OSTI)

A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

Gentry, J.R.

1958-09-16T23:59:59.000Z

59

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1,1978--February 28, 1979  

SciTech Connect

Information is presented concerning coolant mixing in bundle geometry and subchannel geometry; outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.; Golay, M.W.; Wolf, L.

1979-01-01T23:59:59.000Z

60

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

DOE Green Energy (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

62

Fiber bundle fluorescence endomicroscopy  

E-Print Network (OSTI)

An improved design for fiber bundle fluorescence endomicroscopy is demonstrated. Scanned illumination and detection using coherent fiber bundles with 30,000 elements with 3 ?m resolution enables high speed imaging with ...

Tsai, Tsung-Han

63

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Readiness Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power

64

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Khericha, S.; Bhatt, R.; Liekhus, K.

2003-01-14T23:59:59.000Z

65

Estimation of clearance potential index and hazard factors of Candu fuel bundle and its validation based on the measurements of radioisotopes inventories from Pickering reactor fuel  

Science Conference Proceedings (OSTI)

This paper is related to the clearance potential levels, ingestion and inhalation hazard factors of the spent nuclear fuel and radioactive wastes. This study required a complex activity that consisted of more steps such as: the acquisition, setting up, validation and application of procedures, codes and libraries. The paper reflects the validation stage of this study. Its objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from the Pickering Candu reactor with the inventories predicted using a recent version of the SCALE 5/ORIGEN-ARP code coupled with the time dependent cross sections library for the Candu 28 reactor (produced by the sequence SCALE4.4a/SAS2H and SCALE4.4a/ORIGEN-S). In this way, the procedures, the codes and the libraries for the characterization of radioactive material in terns of radioactive inventories, clearance, and biological hazard factors could be qualified and validated, in support of the safety management of the radioactive wastes. (authors)

Pavelescu, Alexandru Octavian [University 'Politehnica' of Bucharest (Romania); Tinti, Renato; Voukelatou, Konstantina [ENEA FIS-NUC, Bologna (Italy); Cepraga, Dan Gabriel [ENEA FIS-MET, Bologna (Italy)

2007-07-01T23:59:59.000Z

66

Biodiesel Handling and Use Guidelines  

DOE Green Energy (OSTI)

This document is a field guide for end-users, distributors, and those involved in related activities. These guidelines cover fuel use and handling issues that could be anticipated or encountered in the field.

Tyson, S.

2001-09-05T23:59:59.000Z

67

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

68

Parabolic k-ample bundles  

E-Print Network (OSTI)

We construct projectivization of a parabolic vector bundle and a tautological line bundle over it. It is shown that a parabolic vector bundle is ample if and only if the tautological line bundle is ample. This allows us to generalize the notion of a k-ample bundle, introduced by Sommese, to the context of parabolic bundles. A parabolic vector bundle $E_*$ is defined to be k-ample if the tautological line bundle ${\\mathcal O}_{{\\mathbb P}(E_*)}(1)$ is $k$--ample. We establish some properties of parabolic k-ample bundles.

Biswas, Indranil

2011-01-01T23:59:59.000Z

69

Human error contribution to nuclear materials-handling events  

E-Print Network (OSTI)

This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...

Sutton, Bradley (Bradley Jordan)

2007-01-01T23:59:59.000Z

70

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

71

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

A guidebook that contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2002-04-01T23:59:59.000Z

72

Handbook for Handling, Storing, and Dispensing E85  

DOE Green Energy (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2008-04-01T23:59:59.000Z

73

Parabolic Raynaud bundles  

E-Print Network (OSTI)

Let X be an irreducible smooth projective curve defined over complex numbers, S= {p_1, p_2,...,p_n} \\subset X$ a finite set of closed points and N > 1 a fixed integer. For any pair (r,d) in Z X Z/N, there exists a parabolic vector bundle R_{r,d,*} on X, with parabolic structure over S and all parabolic weights in Z/N, that has the following property: Take any parabolic vector bundle E_* of rank r on X whose parabolic points are contained in S, all the parabolic weights are in Z/N and the parabolic degree is d. Then E_* is parabolic semistable if and only if there is no nonzero parabolic homomorphism from R_{r,d,*} to E_*.

Biswas, Indranil

2007-01-01T23:59:59.000Z

74

Biodiesel Handling and Use Guide: Fourth Edition (Revised)  

DOE Green Energy (OSTI)

Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

Not Available

2009-01-01T23:59:59.000Z

75

Nuclear Maintenance Applications Center: Guide for the Storage and Handling of Fuel Oil for Standby Diesel Generator Systems, Revisi on 3  

Science Conference Proceedings (OSTI)

Diesel engines are used to operate the emergency generators that supply power for many applications such as hospitals, communication facilities, fire water pumps, and nuclear power plants. In order for these engines to perform their intended function, they must have a readily available supply of suitable fuel. This revised guide addresses the concerns associated with long term storage of fuel, as well as techniques for monitoring and reducing the effects of contaminants, which can affect fuel storage sys...

2007-12-21T23:59:59.000Z

76

Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)  

DOE Green Energy (OSTI)

This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

Wheeler, D.; Ulsh, M.

2010-02-01T23:59:59.000Z

77

Propane gas: Handle with care  

SciTech Connect

Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

Fernald, D. [Plant Systems, Inc., Berea, OH (United States)

1996-04-01T23:59:59.000Z

78

Incident Handling Activities  

Science Conference Proceedings (OSTI)

[an error occurred while processing this directive] Incident Handling Activities. Since 1989 the National Institute of Standards ...

79

Vacuum Vessel Remote Handling  

E-Print Network (OSTI)

FIRE Vacuum Vessel and Remote Handling Overview B. Nelson, T. Burgess, T. Brown, H-M Fan, G. Jones #12;13 July 2002 Snowmass Review: FIRE Vacuum Vessel and Remote Handling 2 Presentation Outline · Remote Handling - Maintenance Approach & Component Classification - In-Vessel Transporter - Component

80

Theories of bundles with additional homotopy conditions.  

E-Print Network (OSTI)

In the present paper we study bundles equipped with extra homotopy conditions, in particular so-called simplicial $n$-bundles. It is shown that (under some condition) the classifying space of 1-bundles is the double coset space of some finite dimensional Lie group. We also establish some relation between our bundles and C*-algebras.

A. V. Ershov

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Quantum bundles and quantum interactions  

E-Print Network (OSTI)

A geometric framework for describing quantum particles on a possibly curved background is proposed. Natural constructions on certain distributional bundles (`quantum bundles') over the spacetime manifold yield a quantum ``formalism'' along any 1-dimensional timelike submanifold (a `detector'); in the flat, inertial case this turns out to reproduce the basic results of the usual quantum field theory, while in general it could be seen as a local, ``linearized'' description of the actual physics.

Daniel Canarutto

2005-06-22T23:59:59.000Z

82

Characterization of spent fuel approved testing material---ATM-105  

Science Conference Proceedings (OSTI)

The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

1991-12-01T23:59:59.000Z

83

Handbook for Handling, Storing, and Dispensing E85, July 2010, Energy Efficiency and Renewable Energy (EERE), Clean Cities (Brochure)  

SciTech Connect

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

2010-07-01T23:59:59.000Z

84

Handling Pyrophoric Reagents  

SciTech Connect

Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

Alnajjar, Mikhail S.; Haynie, Todd O.

2009-08-14T23:59:59.000Z

85

Fuel Reliability Program: BWR Fuel Crud Modeling  

Science Conference Proceedings (OSTI)

Deposition of BWR reactor system corrosion products (crud) on operating fuel rods has resulted in performance limiting conditions in a limited number of cases. The operational impact can include unplanned, or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and undesirable core design restrictions. T...

2010-12-23T23:59:59.000Z

86

METHOD AND APPARATUS FOR HANDLING RADIOACTIVE PRODUCTS  

DOE Patents (OSTI)

A device is described for handling fuel elements being discharged from a nuclear reactor. The device is adapted to be disposed beneath a reactor within the storage canal for spent fuel elements. The device is comprised essentially of a cylinder pivotally mounted to a base for rotational motion between a vertical position. where the mouth of the cylinder is in the top portion of the container for receiving a fuel element discharged from a reactor into the cylinder, and a horizontal position where the mouth of the cylinder is remote from the top portion of the container and the fuel element is discharged from the cylinder into the storage canal. The device is operated by hydraulic pressure means and is provided with a means to prevent contaminated primary liquid coolant in the reactor system from entering the storage canal with the spent fuel element.

Nicoll, D.

1959-02-24T23:59:59.000Z

87

Transportation and handling environment  

SciTech Connect

The elements of the environment relating to transportation and handling include temperature, solar radiation, precipitation, humidity, pressure, shock, and vibration. While each of these deserves consideration, the latter two, shock and vibration, are perhaps the least understood. The report discusses all of these elements, but concentrates largely on shock and vibration. Emphasis is upon the necessity of understanding both the product and the environment. To that end, descriptions of the environment which have been derived statistically are discussed. Land, sea, and air transport are considered. Current knowledge of the handling environment is indicated.

Gens, M.B.

1972-09-01T23:59:59.000Z

88

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

89

Boiling characteristics of small multitube bundles  

SciTech Connect

Boiling characteristics of multitube bundles have been investigated experimentally. Small bundles of up to nine rows were used. Void fraction profiles in the test vessel, tube surface temperatures, power input to individual tubes, and critical heat fluxes were measured for different bundle arrangements and boiling conditions. The data were used to study the system hydrodynamics, bundle heat transfer coefficients, and bundle critical heat flux. The data showed that for lower heat fluxes, the heat transfer characteristics are affected by the system hydrodynamics resulting in higher heat transfer coefficients, whereas at higher heat fluxes nucleate boiling is the dominant mechanism. The data also showed that within a tube bundle, the vapor rising from lower tubes enhances the CHF characteristics of the upper tubes.

Chan, A.M.C. (Ontario Hydro Research Div., Toronto (Canada)); Shoukri, M. (McMaster Univ., Hamilton, Ontario (Canada))

1987-08-01T23:59:59.000Z

90

Vestibule and Cask Preparation Mechanical Handling Calculation  

SciTech Connect

The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.

N. Ambre

2004-05-26T23:59:59.000Z

91

Ash Handling System Maintenance Guide  

Science Conference Proceedings (OSTI)

This Ash Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This guide will assist plant maintenance personnel in improving the reliability and reducing the maintenance costs for the ash handling system.

2005-12-23T23:59:59.000Z

92

December 2005 PREVENTING AND HANDLING  

E-Print Network (OSTI)

, and remote access servers. NIST SP 800-61, Computer Security Incident Handling Guide, describes the fourDecember 2005 PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT INFORMATION TECHNOLOGY SYSTEMS FROM MALICIOUS CODE AND SOFTWARE PREVENTING AND HANDLING MALWARE INCIDENTS: HOW TO PROTECT

93

Solid handling valve  

DOE Patents (OSTI)

The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

Williams, William R. (Morgantown, WV)

1979-01-01T23:59:59.000Z

94

Biodiesel Handling and Use Guide | Open Energy Information  

Open Energy Info (EERE)

Biodiesel Handling and Use Guide Biodiesel Handling and Use Guide Jump to: navigation, search Tool Summary Name: Biodiesel Handling and Use Guide Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.nrel.gov/vehiclesandfuels/npbf/pdfs/43672.pdf This document is a guide for those who blend, store, distribute, and use biodiesel. It is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

95

Sectional device handling tool  

DOE Patents (OSTI)

Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

Candee, Clark B. (Monroeville, PA)

1988-07-12T23:59:59.000Z

96

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

97

PA Sangli Bundled Wind Project | Open Energy Information  

Open Energy Info (EERE)

PA Sangli Bundled Wind Project Jump to: navigation, search Name PA Sangli Bundled Wind Project Place Maharashtra, India Zip 416115 Sector Wind energy Product Ichalkaranji-based SPV...

98

Bundles with a lift of infinitesimal diffeomorphisms  

E-Print Network (OSTI)

We slightly extend the notion of a natural fibre bundle by requiring diffeomorphisms of the base to lift to automorphisms of the bundle only infinitesimally, i.e. at the level of the Lie algebra of vector fields. Spin structures are natural only in this extended sense. We classify fibre bundles with this property, assuming a finite dimensional structure group. This includes all spin structures, but only some generalised spin structures. This classification links the gauge group G to the topology of space-time.

Bas Janssens

2009-11-18T23:59:59.000Z

99

Composite Retrieval of Diverse and Complementary Bundles  

E-Print Network (OSTI)

real-world database of user-generated restaurant reviews from Ya- hoo! Local ... constraint and the complementarity of the restaurants in the bundle w.r.t. the ...

100

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

102

Subcooled Boiling Data from Rod Bundles  

Science Conference Proceedings (OSTI)

Currently, steaming rate predictions are being made by the industry in thermal hydraulic (TH) codes to predict crud thickness and perform axial offset anomaly (AOA) risk assessments for pressurized water reactors (PWRs). These TH codes use single- and two-phase heat transfer correlations that have not been validated with rod bundle data under prototypical conditions. There is a need to verify that these heat transfer correlations also can predict steaming rates that are applicable for rod bundle geometri...

2002-09-19T23:59:59.000Z

103

Knizhnik-Zamolodchikov bundles are topologically trivial  

E-Print Network (OSTI)

We prove that the vector bundles at the core of the Knizhnik-Zamolodchikov and quantum constructions of braid groups representations are topologically trivial bundles. We provide partial generalizations of this result to generalized braid groups. A crucial intermediate result is that the representation ring of the symmetric group on n letters is generated by the alternating powers of its natural n-dimensional representation.

Marin, Ivan

2008-01-01T23:59:59.000Z

104

REMOTE HANDLING ARRANGEMENTS  

DOE Patents (OSTI)

A means for handling remotely a sample pellet to be irradiated in a nuclear reactor is proposed. It is comprised essentially of an inlet tube extending through the outer shield of the reactor and being inclined so that its outer end is at a higher elevation than its inner end, an outlet tube extending through the outer shield being inclined so that its inner end is at a higher elevation than its outer end, the inner ends of these two tubes being interconnected, and a straight tube extending through the outer shield and into the reactor core between the inlet and outlet tubes and passing through the juncture of said inner ends. A rod-like member is rotatably and slidely operated within the central straight tube and has a receptacle on its inner end for receiving a sample pellet from the inlet tube. The rod member is operated to pick up a sample pellet from the inlet tube, carry the sample pellet into the irradiating position within the core, and return to the receiving position where it is rotated to dump the irradiated pellet into the outlet tube by which it is conveyed by gravity to the outside of the reactor. Stop members are provided in the inlet tube, and electrical operating devices are provided to control the sequence of the operation automatically.

Ginns, D.W.

1958-04-01T23:59:59.000Z

105

Zipping mechanism for force-generation by growing filament bundles  

E-Print Network (OSTI)

We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gained during bundle formation. For opposing forces larger than the critical zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical zipping force depends on the initial configuration of the bundles. Our results are corroborated by Monte Carlo simulations.

Torsten Kuehne; Reinhard Lipowsky; Jan Kierfeld

2011-03-02T23:59:59.000Z

106

Zipping mechanism for force-generation by growing filament bundles  

E-Print Network (OSTI)

We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gained during bundle formation. For opposing forces larger than the critical zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical zipping force depends on the initial configuration of the bundles. Our results are corroborated by Monte Carlo simulations.

Kuehne, Torsten; Kierfeld, Jan

2011-01-01T23:59:59.000Z

107

CAN HANDLING FIXTURES  

DOE Patents (OSTI)

A sleeveless cauning apparatus is described for bonding and canning uranium fuel elements under the surface of a liquid bonding alloy. The can is supported on a pedestal by vertical pegs, and an adjustable collar is placed around the upper, open end of the can, which preferably is flared to assure accurate centering in the fixture and to guide the uranium slug into the can. The fixture with a can in place is then immersed in a liquid aluminum-silicon alloy and the can becomes filled with the liquid alloy. The slug is inserted by a slug guide located vertically above the can opening. The slug settles by gravity into the can, after which a cap is emplaced. A quenching tool lifts the capped can out of the bath by means of a slot provided for it in the pedestal. This apparatus provides a simple means of canning the slug without danger of injury to the uranium metal or the aluminum can.

Kelman, Ler.R.; Yaggee, F.L.

1958-08-01T23:59:59.000Z

108

ANALYSIS OF POWER BALANCING WITH FUEL CELLS & HYDROGEN  

E-Print Network (OSTI)

.....................................................................................17 B.2 Costs of fuels, fuel handling, electricity and CO2 quotas.........................................................................................................35 D. ­ TANK-TO-ELECTRICITY AND TANK...........................................................................................................36 D.2 Reference Car

109

Handbook for Handling, Storing, and Dispensing E85 | Open Energy  

Open Energy Info (EERE)

for Handling, Storing, and Dispensing E85 for Handling, Storing, and Dispensing E85 Jump to: navigation, search Tool Summary Name: Handbook for Handling, Storing, and Dispensing E85 Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/pdfs/48162.pdf This document serves as a guide for blenders, distributors, sellers, and users of E85 as an alternative motor fuel. It provides basic information on the proper and safe use of E85 and offers supporting technical and policy references. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

110

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

111

DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System. This includes the primary hot cell bounded by the receiving area and WP transport exit air locks; and isolation doors at ATS, CTS, and Waste Package Remediation. The hot cell includes areas for welding, various staging, tilting, and WP transporter loading. There are associated operating galleries and equipment maintenance areas outside the hot cell. These areas operate concurrently to accommodate the DC/WP throughput rates and support system maintenance. The new DC preparation area is located in an unshielded structure. The handling equipment includes DC/WP bridge cranes, tilting stations, and horizontal transfer carts. The welding area includes DC/WP welders and staging stations. Welding operations are supported by remotely operated equipment including a bridge crane and hoists, welder jib cranes, welding turntables, and manipulators. WP transfer includes a transfer/decontamination and transporter load area. The transfer operations are supported by a remotely operated horizontal lifting system, decontamination system, decontamination and inspection manipulator, and a WP horizontal transfer cart. All handling operations are supported by a suite of fixtures including collars, yokes, lift beams, and lid attachments. Remote equipment is designed to facilitate decontamination and maintenance. Interchangeable components are provided where appropriate. Set-aside areas are included, as required, for fixtures and tooling to support off-normal and recovery operations. Semi-automatic, manual, and backup control methods support normal, maintenance, and recovery operations. The system interfaces with the ATS and CTS to provide empty and receive loaded DCs. The Waste Emplacement/Retrieval System interfaces are for loading/unloading WPs on/from the transporter. The system also interfaces with the Waste Package Remediation System for DC/WP repair. The system is housed, shielded, supported, and has ventilation boundaries by the Waste Handling Building (WHB). The system is ventilated by the WHB Ventilation System, which in conjunction with ventilation boundaries ensure that ai

E. F. Loros

2000-06-30T23:59:59.000Z

112

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

2013-05-01T23:59:59.000Z

113

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012  

DOE Green Energy (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

114

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

115

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network (OSTI)

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

116

CONSTRAINED BUNDLE METHODS FOR UPPER INEXACT ...  

E-Print Network (OSTI)

For the numerical experience of this paper we focus on a specific energy problem .... analysis of bundle methods with lower oracles is simpler, because it fits better ... using oracle information computed with some inaccuracy. ...... latter can either come from some price decomposition scheme ([5, 23, 37]) or from the market.

117

Table 4. Average retail price for bundled and unbundled consumers ...  

U.S. Energy Information Administration (EIA)

Table 4. Average retail price for bundled and unbundled consumers by sector, Census Division, and State 2011

118

Assessment of Experimental Data to Support Computational Fluid Dynamics Analysis of PWR Rod Bundle Heat Transfer Studies  

Science Conference Proceedings (OSTI)

Crud-induced cladding corrosion (CILC) is a localized phenomenon, which is directly related to subcooled nucleate boiling (SNB) in rod bundles of pressurized water reactors (PWRs). Local boiling on fuel rod surfaces leads to preferential deposition of corrosion products circulating in the reactor coolant. Typical thermal hydraulic codes/methods used in core design do not have sufficient resolution to predict susceptible "hot spots" on fuel rod surfaces when SNB is elevated. Hence, detailed local computat...

2010-08-30T23:59:59.000Z

119

Heat transfer of finned tube bundles in crossflow  

SciTech Connect

This volume correlates findings on heat transfer and hydraulic drag of bundles of finned tubes in crossflow at Reynolds numbers from 10/sup 4/ to 10/sup 6/. These studies illustrate fin, local, and mean heat transfer coefficients; effects of geometric parameters of the fins; effect of tube location within the bundle on heat transfer and hydraulic drag; and resistance of finned tube bundles.

Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.

1988-01-01T23:59:59.000Z

120

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bulk materials storage handling and transportation  

Science Conference Proceedings (OSTI)

This book contains papers on bulk materials storage, handling, and transportation. Topic areas covered include: mechanical handling; pneumatic conveying; transportation; freight pipeliners; storage and discharge systems; integrated handling systems; automation; environment and sampling; feeders and flow control; structural design; large mobile machines; and grain handling.

Not Available

1983-01-01T23:59:59.000Z

122

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-HDBK-1129-2007 March 2007 ____________________ DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1129-2007

123

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

124

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuable to apply the vacuum to lift the object.

Anderson, G.H.

1981-07-30T23:59:59.000Z

125

Portable vacuum object handling device  

SciTech Connect

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object.

Anderson, Gordon H. (Los Alamos, NM)

1983-08-09T23:59:59.000Z

126

SGPL Sangli Nandurbar and Dhule Bundled Wind Project | Open Energy  

Open Energy Info (EERE)

SGPL Sangli Nandurbar and Dhule Bundled Wind Project SGPL Sangli Nandurbar and Dhule Bundled Wind Project Jump to: navigation, search Name SGPL Sangli, Nandurbar and Dhule Bundled Wind Project Place Maharashtra, India Sector Wind energy Product Maharashtra-based SPV involved in wind project development. References SGPL Sangli, Nandurbar and Dhule Bundled Wind Project[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SGPL Sangli, Nandurbar and Dhule Bundled Wind Project is a company located in Maharashtra, India . References ↑ "[ SGPL Sangli, Nandurbar and Dhule Bundled Wind Project]" Retrieved from "http://en.openei.org/w/index.php?title=SGPL_Sangli_Nandurbar_and_Dhule_Bundled_Wind_Project&oldid=350794

127

CHEMICAL HANDLING AND DISPOSAL GUIDELINES  

E-Print Network (OSTI)

it is converted to uranium oxide. This oxide is re-used in the nuclear fuel cycle. (b) The intensely radioactive

Ginzel, Matthew

128

Homotheties and topology of tangent sphere bundles  

E-Print Network (OSTI)

We prove a Theorem on homotheties between two given tangent sphere bundles $S_rM$ of a Riemannian manifold $M,g$, assuming different variable radius functions $r$ and weighted Sasaki metrics induced just by the conformal class of $g$. We show the associated almost complex and symplectic structures on the manifold $TM$, generalizing the well known structure of Sasaki. Finally the characteristic classes of Chern and Stiefel-Whitney are computed for the manifolds $TM$ and $S_rM$.

Albuquerque, Rui

2010-01-01T23:59:59.000Z

129

Adaptive nonparametric regression on spin fiber bundles  

Science Conference Proceedings (OSTI)

The construction of adaptive nonparametric procedures by means of wavelet thresholding techniques is now a classical topic in modern mathematical statistics. In this paper, we extend this framework to the analysis of nonparametric regression on sections ... Keywords: 42B35, 42C10, 42C40, 46E35, 62G08, 62G20, Adaptive nonparametric regression, Mixed spin needlets, Spin Besov spaces, Spin fiber bundles, Thresholding

Claudio Durastanti; Daryl Geller; Domenico Marinucci

2012-02-01T23:59:59.000Z

130

YANG-MILLS THEORY FOR BUNDLE GERBES  

E-Print Network (OSTI)

Abstract. Given a bundle gerbe with connection on an oriented Riemannian manifold of dimension at least equal to 3, we formulate and study the associated Yang-Mills equations. When the Riemannian manifold is compact and oriented, we prove the existence of instanton solutions to the equations and also determine the moduli space of instantons, thus giving a complete analysis in this case. We also study duality in this context.

Varghese Mathai; David Roberts

2005-01-01T23:59:59.000Z

131

Tangent bundle formulation of a charged gas  

E-Print Network (OSTI)

We discuss the relativistic kinetic theory for a simple, collisionless, charged gas propagating on an arbitrary curved spacetime geometry. Our general relativistic treatment is formulated on the tangent bundle of the spacetime manifold and takes advantage of its rich geometric structure. In particular, we point out the existence of a natural metric on the tangent bundle and illustrate its role for the development of the relativistic kinetic theory. This metric, combined with the electromagnetic field of the spacetime, yields an appropriate symplectic form on the tangent bundle. The Liouville vector field arises as the Hamiltonian vector field of a natural Hamiltonian. The latter also defines natural energy surfaces, called mass shells, which turn out to be smooth Lorentzian submanifolds. A simple, collisionless, charged gas is described by a distribution function which is defined on the mass shell and satisfies the Liouville equation. Suitable fibre integrals of the distribution function define observable fields on the spacetime manifold, such as the current density and stress-energy tensor. Finally, the geometric setting of this work allows us to discuss the relationship between the symmetries of the electromagnetic field, those of the spacetime metric, and the symmetries of the distribution function. Taking advantage of these symmetries, we construct the most general solution of the Liouville equation an a Kerr-Newman black hole background.

Olivier Sarbach; Thomas Zannias

2013-11-14T23:59:59.000Z

132

Best Practices for Biomass Handling in Wood Yard Operations  

Science Conference Proceedings (OSTI)

Utilities are beginning to add wood and other biomass fuels to fire their generating units to enable them to produce carbon-neutral electricity and participate in state or national renewable energy programs. However, because the material handling aspects of biomass differ from those of coal, firing at a significant scale requires new equipment to receive, store, and deliver the biomass to the flame front. This equipment is analogous in function to existing machinery but is quite different in detail, desi...

2011-08-29T23:59:59.000Z

133

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

134

Appendix A: Handling of Federal  

Gasoline and Diesel Fuel Update (EIA)

and selected State legislation and regulation in the AEO This page inTenTionally lefT blank 177 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Appendix A: Handling of Federal and selected State legislation and regulation in the AEO Legislation Brief description AEO handling Basis Residential sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories with periodic updates Included for categories represented in the AEO residential sector forecast. Public Law 100-12. a. Room air conditioners Sets standards for room air conditioners in 2014. Require new purchases of room air conditioners to meet the standard. Federal Register Notice

135

Automated fuel pin loading system  

DOE Patents (OSTI)

An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

1985-01-01T23:59:59.000Z

136

Tritium Handling and Safe Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-HDBK-1129-2008 December 2008 DOE HANDBOOK TRITIUM HANDLING AND SAFE STORAGE U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE-HDBK-1129-2008 ii This page is intentionally blank. DOE-HDBK-1129-2008 iii TABLE OF CONTENTS SECTION PAGE FOREWORD................................................................................................................................ ix ACRONYMS ................................................................................................................................ xi 1.0 INTRODUCTION ....................................................................................................................

137

Portable vacuum object handling device  

DOE Patents (OSTI)

The disclosure relates to a portable device adapted to handle objects which are not to be touched by hand. A piston and bore wall form a vacuum chamber communicating with an adaptor sealably engageable with an object to be lifted. The piston is manually moved and set to establish vacuum. A valve is manually actuatable to apply the vacuum to lift the object. 1 fig.

Anderson, G.H.

1983-08-09T23:59:59.000Z

138

Enhancing CIMOSA with Exception Handling  

E-Print Network (OSTI)

CIMOSA (Open System Architecture for CIM) [2], an architecture for the modelling of manufacturing applications, does not provide a facility for exception definition and handling. Exceptions, traditionally associated to programming language and operating systems, are necessary in all types of languages, including specification languages. Our contribution consists of the enhancement of the CIMOSA model with a complete facility and methodology for the specification of the system behaviour in case of exception.

Messina Pleinevaux Swiss; S. Messina; P. Pleinevaux

1996-01-01T23:59:59.000Z

139

Positioning and locking device for fuel pin to grid attachment  

DOE Patents (OSTI)

A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly.

Frick, Thomas M. (Irwin, PA); Wineman, Arthur L. (Greensburg, PA)

1976-01-01T23:59:59.000Z

140

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

142

DOE N 435.1, Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Directives, Delegations, and Requirements

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner ...

2011-08-15T23:59:59.000Z

143

Heat transfer in bundles of finned tubes in crossflow  

SciTech Connect

This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.

1986-01-01T23:59:59.000Z

144

FMAC: Coal-Handling Maintenance Guide  

Science Conference Proceedings (OSTI)

The Coal Handling System Maintenance Guide provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist plant maintenance personnel in improving the reliability of and reducing the maintenance costs for the coal handling system.

2006-12-22T23:59:59.000Z

145

Remarks on complex bundles of complex structures  

E-Print Network (OSTI)

We consider some classical fibre bundles furnished with almost complex structures of twistor type, deduce their integrability in some cases and study self-holomorphic sections of a symplectic twistor space, trying to approach the moduli space of $\\omega$-compatible complex structures. We recall the theory of flag manifolds in order to study the Siegel domain and other domains alike, which is the fibre of the referred twistor space. Finally the coordinates for the twistor of a Riemann surface with the canonical symplectic and metric connection are deduced, this time based on a given conformal coordinate on the surface.

Albuquerque, Rui

2007-01-01T23:59:59.000Z

146

Geodesic Reduction via Frame Bundle Geometry  

E-Print Network (OSTI)

A manifold with an arbitrary affine connection is considered and the geodesic spray associated with the connection is studied in the presence of a Lie group action. In particular, results are obtained that provide insight into the structure of the reduced dynamics associated with the given invariant affine connection. The geometry of the frame bundle of the given manifold is used to provide an intrinsic description of the geodesic spray. A fundamental relationship between the geodesic spray, the tangent lift and the vertical lift of the symmetric product is obtained, which provides a key to understanding reduction in this formulation.

Bhand, Ajit

2010-01-01T23:59:59.000Z

147

An inexact proximal bundle method with applications to convex ...  

E-Print Network (OSTI)

As a symmetric cone is the cone of squares of a Euclidean Jordan algebra, our ...... Incremental-like bundle methods with application to energy planning.

148

Bundle-type methods uniformly optimal for smooth and nonsmooth ...  

E-Print Network (OSTI)

Dec 7, 2010 ... present new bundle-type methods which possess the optimal rate of ... that uniformly optimal algorithms of this type have been presented in the ...

149

Incremental-like Bundle Methods with Application to Energy Planning  

E-Print Network (OSTI)

Nov 18, 2008 ... Incremental-like Bundle Methods with Application to Energy Planning. Grégory Emiel (gemiel ***at*** impa.br) Claudia Sagastizábal (sagastiz ...

150

Swani Jaisalmer Tirunelveli Erode Bundled Wind Project | Open...  

Open Energy Info (EERE)

Project Jump to: navigation, search Name Swani Jaisalmer, Tirunelveli & Erode Bundled Wind Project Place India Sector Wind energy Product An SPV formed for wind project...

151

Bundle method for non-convex minimization with inexact ...  

E-Print Network (OSTI)

why waste time and correct the value fa(x)? After all ..... [17] Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning.

152

Incremental-like Bundle Methods with Application to Energy Planning  

E-Print Network (OSTI)

are further studied from a theoretical point of view in [3]. For bundle methods, ... However, because nuclear plants can be seen as “equivalent energy reser- voirs

153

ENDTOEND REQUEST HANDLING IN DISTRIBUTED VIDEOONDEMAND SYSTEMS  

E-Print Network (OSTI)

that adequate storage and stream handling capacities are present at the servers in the remote clusters. In addition, the remote sites act as sources of supplemental request handling capacity minimizing overall service is delivered only when the local cluster can­ not handle the load. Between the two remote clusters

Mundur, Padma

154

Optical fuel pin scanner. [Patent application; for reading identifications  

DOE Patents (OSTI)

This patent relates to an optical identification system developed for post-irradiation disassembly and analysis of fuel bundle assemblies. The apparatus is designed to be lowered onto a stationary fuel pin to read identification numbers or letters imprinted on the circumference of the top fuel pin and cap. (DLC)

Kirchner, T.L.; Powers, H.G.

1980-12-09T23:59:59.000Z

155

Design and evaluate finned tube bundles  

Science Conference Proceedings (OSTI)

Finned tube bundles are widely used in heat exchangers, air coolers, waste heat boilers and fired heaters where energy transfer occurs between clean flue gases and a fluid with a high heat-transfer coefficient. They have several advantages including compactness, low gas pressure drop and low weight for a given duty compared to bare tube bundles. Choosing a fin type, arrangement and fin configuration requires a thorough analysis and economic evaluation. The solution is not unique since it depends on material and labor costs. Surface areas vary widely in finned tube designs for the same duty and gas pressure drop. Therefore, decisions should not be based on surface area alone. Plant engineers and consultants should consider operating costs in their evaluation because they accrue year after year. Selecting a boiler based on initial costs alone is not prudent. The paper discusses heat transfer and gas pressure drop with finned tubes, determining fin efficiency and effectiveness,g as pressure drop, tube wall and fin top temperatures, an example calculation, the effect of fin configuration on design, the effect of inline versus staggered arrangements and solid versus serrated fins, and concerns with high fin-density designs.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1996-09-01T23:59:59.000Z

156

Viability of Existing INL Facilities for Dry Storage Cask Handling R1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Viability of Existing INL Facilities for Dry Storage Cask Handling Viability of Existing INL Facilities for Dry Storage Cask Handling R1 Viability of Existing INL Facilities for Dry Storage Cask Handling R1 While dry storage technologies are some of the safest in the world, the U.S. Department of Energy is planning a confirmatory dry storage project for high burnup fuel. This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks. Existing facilities at the Idaho Nuclear Technology and Engineering Center provide the infrastructure to support handling and examining of casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal

157

Bundling practice in BitTorrent: what, how, and why  

Science Conference Proceedings (OSTI)

We conduct comprehensive measurements on the current practice of content bundling to understand the structural patterns of torrents and the participant behaviors of swarms on one of the largest BitTorrent portals: The Pirate Bay. From the datasets of ... Keywords: BitTorrent, content bundling, peer-to-peer

Jinyoung Han; Seungbae Kim; Taejoong Chung; Ted Taekyoung Kwon; Hyun-chul Kim; Yanghee Choi

2012-06-01T23:59:59.000Z

158

String structures and trivialisations of a Pfaffian line bundle.  

E-Print Network (OSTI)

The present paper is a contribution to categorial index theory. Its main result is the calculation of the Pfaffian line bundle of a certain family of real Dirac operators as an object in the category of line bundles. Furthermore, it is shown how string structures give rise to trivialisations of that Pfaffian.

Ulrich Bunke

159

PARABOLIC RAYNAUD BUNDLES INDRANIL BISWAS AND GEORG HEIN  

E-Print Network (OSTI)

PARABOLIC RAYNAUD BUNDLES INDRANIL BISWAS AND GEORG HEIN Abstract. Let X be an irreducible smooth and N 2 a fixed integer. For any pair (r, d) N Ã? 1 N Z, there exists a parabolic vector bundle Rr,d, on X, with parabolic structure over S and all parabolic weights in 1 N Z, that has the following

Hein, Georg

160

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS  

SciTech Connect

Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic information, are presented in this paper.

Hugh McIlroy; Hongbin Zhang; Kurt Hamman

2008-05-01T23:59:59.000Z

162

Reconstruction of intra-bundle fission density profile during a postulated LOCA in a CANDU reactor  

SciTech Connect

In this paper, results related to the reconstruction of intra-bundle fission density profile for a 37-pin CANDU-6 bundle with the highest enthalpy deposition during a postulated large LOCA stagnation break in a Bruce B core are presented. Bruce B is a nuclear power plant in Kincardine, Ontario (Canada)), on the shores of Lake Huron with 4 CANDU reactors that are rated at about 750 MWe. The reconstruction of the fuel pin fission densities is based on steady-state, three-dimensional simulations with the Monte Carlo code MCNP for a subset of 27 out of 69 time steps during the first two seconds of the power pulse predicted for the fuel bundle at core location V13/8. Two-group cross section data libraries are generated for MCNP at each time step by the lattice depletion neutron transport code HELIOS-1.7. To include the effect of the surrounding core environment, the calculations are performed with time-dependent albedo boundary conditions inferred from a full core simulation of the transient by the nodal diffusion code NESTLE with HELIOS homogenized cross-sections. It is found that the local peaking factor (LPF) in the outer ring varies during the transient, but never exceeds its value before the transient. Inclusion of the core environment increases the LPF in the outer ring. For the analyzed case, the increase is 0.72% with a relative error of 0.01% for the LPF before the transient and 0.55% (with a relative error of 0.01%) for the maximum average LPF during the transient. The latter is based on only four selected transient time points. Note that the immediate environment of the 'hot bundle' does not contain any reactivity devices or other perturbing factors. As a result, the increases observed in the LPF in the outer ring may not be representative of the situations in which 'other' core environment perturbing factors are present. To determine the effect of these factors on the LPF, further analyses of a bundle in the proximity of control devices should be carried out. (authors)

Ilas, D. [Oak Ridge National Laboratory (United States); Rahnema, F. [Georgia Inst. of Technology (United States); Nuclear and Radiological Engineering/Medical Physics Programs, George W. Woodruff School, Georgia Inst. of Technology, Atlanta, GA 30332-0405 (United States); Serghiuta, D. [Canadian Nuclear Safety Commission (Canada); Sarsour, H.; Turinsky, P. J. [North Carolina State Univ. (United States); Stamm'ler, R. [Studsvik Scandpower AS (Norway)

2006-07-01T23:59:59.000Z

163

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

164

Fuel or irradiation subassembly  

DOE Patents (OSTI)

A subassembly for use in a nuclear reactor is described which incorporates a loose bundle of fuel or irradiation pins enclosed within an inner tube which in turn is enclosed within an outer coolant tube and includes a locking comb consisting of a head extending through one side of the inner sleeve and a plurality of teeth which extend through the other side of the inner sleeve while engaging annular undercut portions in the bottom portion of the fuel or irradiation pins to prevent movement of the pins.

Seim, O.S.; Hutter, E.

1975-12-23T23:59:59.000Z

165

Cask system design guidance for robotic handling  

SciTech Connect

Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

1990-10-01T23:59:59.000Z

166

Introduction to the polymorphic tracking code Fibre bundles, polymorphic Taylor types and "Exact tracking"  

E-Print Network (OSTI)

This is a description of the basic ideas behind the ``Polymorphic Tracking Code'' or PTC. PTC is truly a ``kick code'' or symplectic integrator in the tradition of TRACYII, SixTrack, and TEAPOT. However it separates correctly the mathematical atlas of charts and the magnets at a structural level by implementing a ``restricted fibre bundle.'' The resulting structures allow backward propagation and recirculation, something not possible in standard tracking codes. Also PTC is polymorphic in handling real (single, double and even quadruple precision) and Taylor series. Therefore it has all the tools associated to the TPSA packages: Lie methods, Normal Forms, Cosy-Infinity capabilities, beam envelopes for radiation, etc., as well as parameter dependence on-the-fly. However PTC is an integrator, and as such, one must, generally, adhere to the Talman ``exactness'' view of modelling. Incidentally, it supports exact sector and rectangular bends as well. Of course, one can certainly bypass its integrator and the user i...

Schmidt, F; McIntosh, E

2002-01-01T23:59:59.000Z

167

CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT  

Science Conference Proceedings (OSTI)

The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

E.F. Loros

2000-06-23T23:59:59.000Z

168

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

169

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

170

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

171

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

172

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

173

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

174

Scheduling coal handling processes using metaheuristics.  

E-Print Network (OSTI)

??The operational scheduling at coal handling facilities is of the utmost importance to ensure that the coal consuming processes are supplied with a constant feed… (more)

Conradie, David Gideon

2008-01-01T23:59:59.000Z

175

Waste management handling in Benin City.  

E-Print Network (OSTI)

??The researcher was inspired by the topic “Waste management handling” due to the ugly situa-tion of waste being littered all over the city, which have… (more)

Oseghale, Peter

2011-01-01T23:59:59.000Z

176

NUCLEAR REACTOR FUEL SYSTEMS  

DOE Patents (OSTI)

Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

1959-09-15T23:59:59.000Z

177

Energy Bundle Bonus (WPS Customers Only) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bundle Bonus (WPS Customers Only) Bundle Bonus (WPS Customers Only) Energy Bundle Bonus (WPS Customers Only) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate 75% of project cost or $25,000 Program Info State Wisconsin Program Type State Rebate Program Rebate Amount 2 unrelated projects: 25% bonus 3 unrelated projects: 50% bonus

178

Hermitian and quaternionic Hermitian structures on tangent bundles  

E-Print Network (OSTI)

We review the theory of quaternionic Kähler and hyperkähler structures. Then we consider the tangent bundle of a Riemannian manifold M with a metric connection D (with torsion) and with its well estabilished canonical complex structure. With an extra almost Hermitian structure on M it is possible to find a quaternionic Hermitian structure on TM, which is quaternionic Kähler if, and only if, D is flat and torsion free. We also review the symplectic nature of TM. Finally a proper S 3-bundle of complex structures is introduced, expanding to TM the well known twistor bundle of M.

Rui Albuquerque

2008-01-01T23:59:59.000Z

179

Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR  

SciTech Connect

The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

Gruszczynski, M.J.; Viskanta, R.

1983-01-01T23:59:59.000Z

180

WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will be designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.

S.C. Khamamkar

2000-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Constraint Handling in Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

In this article, the authors propose a particle swarm optimization PSO for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed ... Keywords: Constrained Optimization, Constraint Handling, Feasible Personal Best, Infeasible Personal Best, Multiobjective Optimization, Particle Swarm Optimization

Wen Fung Leong; Gary G. Yen

2010-01-01T23:59:59.000Z

182

Room-temperature fuel cells and their integration into portable and embedded systems  

Science Conference Proceedings (OSTI)

Direct methanol fuel cells (DMFCs) are a promising nextgeneration energy source for portable applications, due to their high energy density and the ease of handling of the liquid fuel. However, the limited range of output power obtainable from a fuel ...

Naehyuck Chang; Jueun Seo; Donghwa Shin; Younghyun Kim

2010-01-01T23:59:59.000Z

183

Generalized Bundle Methods for Sum-Functions with “Easy ...  

E-Print Network (OSTI)

class of bundle methods with a unified convergence analysis. However ...... GB of RAM, under a i686 GNU/Linux (Ubuntu 10.10 server). The computation of the.

184

A macroscopic scale model of bacterial flagellar bundling  

E-Print Network (OSTI)

Escherichia coli and other bacteria use rotating helical filaments to swim. Each cell typically has about four filaments, which bundle or disperse depending on the sense of motor rotation. To study the bundling process, we built a macroscopic scale model consisting of stepper-motor-driven polymer helices in a tank filled with a high-viscosity silicone oil. The Reynolds number, the ratio of viscous to elastic stresses, and the helix geometry of our experimental model approximately match the corresponding quantities of the full scale E. coli cells. We analyze digital video images of the rotating helices to show that the initial rate of bundling is proportional to the motor frequency and is independent of the characteristic relaxation time of the filament. We also determine which combinations of helix handedness and sense of motor rotation lead to bundling.

MunJu Kim; James C. Bird; Annemarie J. Van Parys; Kenneth S. Breuer; Thomas R. Powers

2003-12-21T23:59:59.000Z

185

The first Chern form on moduli of parabolic bundles  

E-Print Network (OSTI)

For moduli space of stable parabolic bundles on a compact Riemann surface, we derive an explicit formula for the curvature of its canonical line bundle with respect to Quillen's metric and interpret it as a local index theorem for the family of dbar-operators in associated parabolic endomorphism bundles. The formula consists of two terms: one standard (proportional to the canonical Kaehler form on the moduli space), and one nonstandard, called a cuspidal defect, that is defined by means of special values of the Eisenstein-Maass series. The cuspidal defect is explicitly expressed through curvature forms of certain natural line bundles on the moduli space related to the parabolic structure. We also compare our result with Witten's volume computation.

Leon A. Takhtajan; Peter G. Zograf

2006-09-26T23:59:59.000Z

186

Signatures of surface bundles and Milnor Wood inequalities  

E-Print Network (OSTI)

Let E be a surface bundle over a surface. We use a variant of the Milnor Wood inequality to show that $|3\\sigma(E)|\\leq \\chi(E)$.

Hamenstaedt, Ursula

2012-01-01T23:59:59.000Z

187

THE CHERN CHARACTER OF A PARABOLIC BUNDLE, AND A PARABOLIC COROLLARY OF REZNIKOV'S THEOREM  

E-Print Network (OSTI)

THE CHERN CHARACTER OF A PARABOLIC BUNDLE, AND A PARABOLIC COROLLARY OF REZNIKOV'S THEOREM JAYA NN character of a locally abelian parabolic bundle in terms of its constituent bundles. Several features and variants of parabolic structures are discussed. Parabolic bundles arising from logarithmic connections form

Iyer, Jaya N,

188

Identification of failed fuel element  

DOE Patents (OSTI)

A passive fission product gas trap is provided in the upper portion of each fuel subassembly in a nuclear reactor. The gas trap consists of an inverted funnel of less diameter than the subassembly having a valve at the apex thereof. An actuating rod extends upwardly from the valve through the subassembly to a point where it can be contacted by the fuel handling mechanism for the reactor. Interrogation of the subassembly for the presence of fission products is accomplished by lowering the fuel handling machine onto the subassembly to press down on the actuating rod and open the valve.

Fryer, Richard M. (Idaho Falls, ID); Matlock, Robert G. (Hinsdale, IL)

1976-06-22T23:59:59.000Z

189

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

Dickson, J.J.

1963-09-24T23:59:59.000Z

190

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

191

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

192

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

193

Noncontacting Laser Scanner for Fuel Assembly Distortion Measurement  

Science Conference Proceedings (OSTI)

The distortion of fuel assemblies and bundles due to in-reactor exposure is a problem that has the potential to significantly affect the operations of both BWRs and PWRs. The distortion can take many shapes of axial, lateral and torsional displacements, with common distortions manifested as bows (such as C, S, and W shapes). Such distortion has implications from fuel ...

2012-09-30T23:59:59.000Z

194

Testing of the CANDU Spent Fuel Storage Basket Package  

SciTech Connect

The paper described the results of testing for a CANDU Spent Fuel Storage Basket Package Prototype intended to be used for transport and storage of the CANDU spent fuel bundles within NPP CANDU Cernavoda, Romania. The results obtained proved that the objectives of those tests were achieved

Vieru, G.

2002-02-28T23:59:59.000Z

195

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

196

QUAD Cities-2 EOC 18 Fuel Examination and Assessment of Ultrasonic Cleaning  

Science Conference Proceedings (OSTI)

A fuel surveillance campaign has been conducted to support the development of ultrasonic cleaning of boiling water reactor (BWR) fuel bundles. The cleaning was performed on a pilot scale with sixteen 1-cycle bundles at Quad Cities 2 in March 2004. The objective was to minimize occupational radiation exposure by reducing one potential source of Co-60 that could redistribute following chemical decrudding of recirculation piping and the subsequent application of NobleChem™.

2006-12-13T23:59:59.000Z

197

Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR  

SciTech Connect

A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

Felde, D. K.

1982-04-01T23:59:59.000Z

198

INTERNATIONAL SYMPOSIUM ON PROCESSING AND HANDLING ...  

Science Conference Proceedings (OSTI)

... Battle, DuPont White Pigments and Mineral Products, Edge Moor Plant, Edge Moor, ... PHYSICAL EXAMINATION AND HANDLING OF WET AND DRY C60: K. ... part of a modern ironmaking blast furnace with high pulverised coal injection, ...

199

Detachable connection for a nuclear reactor fuel assembly  

DOE Patents (OSTI)

A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engagable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

Christiansen, D.W.; Karnesky, R.A.

1983-08-29T23:59:59.000Z

200

Location of test bundle instrumentation and anticipated experimental values for the CFTL AG-1 bundle  

Science Conference Proceedings (OSTI)

The placement of instrumentation within the CFTL (Core Flow Test Loop) AG-1 test section to meet the following objective is described. The objectives are threefold: (1) to provide values for the evaluation of the performance of the test section, (2) to compare the experimental data with values determined by pretest calculations to indicate the approach to conditions that can lead to a bundle failure, and (3) to acquire data during testing that will form a data base for subsequent use in the verification of computational procedures used in the licensing of the Gas Cooled Fast Reactor. Anticipated values for the various instruments have been determined using the computational procedure, SAGAPO, modified for the AG-1 geometry. These results are used as the basis for the specification of differential pressure cells and the range of readings anticipated from the thermocouples. Part of the results for the full flow, full power case are presented.

Sanders, J.P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FUEL ELEMENT INTERLOCKING ARRANGEMENT  

DOE Patents (OSTI)

This patent relates to a system for mutually interlocking a multiplicity of elongated, parallel, coextensive, upright reactor fuel elements so as to render a laterally selfsupporting bundle, while admitting of concurrent, selective, vertical withdrawal of a sizeable number of elements without any of the remaining elements toppling, Each element is provided with a generally rectangular end cap. When a rank of caps is aligned in square contact, each free edge centrally defines an outwardly profecting dovetail, and extremitally cooperates with its adjacent cap by defining a juxtaposed half of a dovetail- receptive mortise. Successive ranks are staggered to afford mating of their dovetails and mortises. (AEC)

Fortescue, P.; Nicoll, D.

1963-01-01T23:59:59.000Z

202

Nuclear reactor composite fuel assembly  

DOE Patents (OSTI)

A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

1980-01-01T23:59:59.000Z

203

BA Tirunelveli Bundled Wind Project | Open Energy Information  

Open Energy Info (EERE)

BA Tirunelveli Bundled Wind Project BA Tirunelveli Bundled Wind Project Jump to: navigation, search Name BA Tirunelveli Bundled Wind Project Place Raipur, Chhattisgarh, India Zip 492001 Sector Wind energy Product Raipur-based SPV for wind project development. Coordinates 20.38971°, 76.15055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.38971,"lon":76.15055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats...

205

LM Records Handling System (LMRHS01) - Electronic Records Keeping...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees...

206

T-656: Microsoft Office Visio DXF File Handling Arbitrary Code...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability June 28,...

207

Holomorphic Vector Bundles, Knots and the Rozansky-Witten Invariants  

E-Print Network (OSTI)

Link invariants, for 3-manifolds, are defined in the context of the Rozansky-Witten theory. To each knot in the link one associates a holomorphic bundle over a holomorphic symplectic manifold X. The invariants are evaluated for b_{1}(M) \\geq 1 and X Hyper-Kaehler. To obtain invariants of Hyper-Kaehler X one finds that the holomorphic vector bundles must be hyper-holomorphic. This condition is derived and explained. Some results for X not Hyper-Kaehler are presented.

George Thompson

2000-02-21T23:59:59.000Z

208

Storage and Handling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage and Handling Storage and Handling Storage and Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office is responsible for originating the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sending it to IM-23 at doerha@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness (Coordinates with the originating office by email if more information is required.). 3. IM-23 sends the SF-135 for approval to WNRC. PREPARING RECORDS FOR THE TRANSFER TO THE WNRC: 1. Use your organization's Records Information Disposition Schedule (RIDS) as a guide toward assessing records for storage. Refer to DOE O

209

DOE handbook: Tritium handling and safe storage  

SciTech Connect

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

210

Assessment of Browns Ferry 2 Cycle 12 Fuel Corrosion Failures  

Science Conference Proceedings (OSTI)

Boiling water reactor (BWR) fuel rods from 63 bundles of the Reload 10 GE13 (9x9) design developed leaks during Cycle 12 at Browns Ferry 2 (BF-2). Corrosion failures also occurred in Browns Ferry 3 (BF-3) and Vermont Yankee (VY) in a similar time frame. These fuel failures were investigated in the spent fuel pool and in two separate hot cell examination campaigns. This report compiles and assesses the significant findings of the root cause investigation.

2011-11-30T23:59:59.000Z

211

WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect

The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. The contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.

P.A. Kumar

2000-06-21T23:59:59.000Z

212

Recommendations for cask features for robotic handling from the Advanced Handling Technology Project  

SciTech Connect

This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs.

Drotning, W.

1991-02-01T23:59:59.000Z

213

INEXACT BUNDLE METHODS FOR TWO-STAGE STOCHASTIC ...  

E-Print Network (OSTI)

information for the remaining scenarios by a fast procedure that does not involve .... and where NX(¯x) is the normal cone of Convex Analysis. ...... G. Emiel and C. Sagastizábal, Incremental-like bundle methods with application to energy planning, ... A. Conejo, and M. Carrión, Scenario reduction for futures market trading.

214

New Experimental Studies of Thermal Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR project (that is, new experimental studies of thermal hydraulics of rod bundles) is a multiyear collaborative endeavor of the Electric Power Research Institute (EPRI), Electricit de France (EDF), and Commissariat a lEnergie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2011-10-26T23:59:59.000Z

215

Optimal File-Bundle Caching Algorithms for Data-Grids  

Science Conference Proceedings (OSTI)

The file-bundle caching problem arises frequently in scientific applications where jobs process several files concurrently. Consider a host system in a data-grid that maintains a disk cache for servicing jobs of file requests where a job is serviced ...

Ekow Otoo; Doron Rotem; Alexandru Romosan

2004-11-01T23:59:59.000Z

216

The geometry of determinant line bundles in noncommutative geometry  

E-Print Network (OSTI)

This paper is concerned with the study of the geometry of determinant line bundles associated to families of spectral triples parametrized by the moduli space of gauge equivalent classes of Hermitian connections on a Hermitian finite projective module. We illustrate our results with some examples that arise in noncommutative geometry.

Chakraborty, Partha Sarathi

2008-01-01T23:59:59.000Z

217

The geometry of determinant line bundles in noncommutative geometry  

E-Print Network (OSTI)

This paper is concerned with the study of the geometry of determinant line bundles associated to families of spectral triples parametrized by the moduli space of gauge equivalent classes of Hermitian connections on a Hermitian finite projective module. We illustrate our results with some examples that arise in noncommutative geometry.

Partha Sarathi Chakraborty; Varghese Mathai

2008-04-21T23:59:59.000Z

218

Fuel Reliability Program: Browns Ferry Fuel Corrosion Failures Root Cause Investigation  

Science Conference Proceedings (OSTI)

Sixty-three GE13 fuel bundles failed in Browns Ferry Unit 2 (BF2) during Cycle 12; three GE13 assemblies failed in BF Unit 3 (BF3) during Cycle 11. The affected fuel in BF2 was in its second cycle of operation and the fuel in BF3 in its third at the time of failure. Global Nuclear Fuel (GNF), General Electric-Hitachi (GEH), Tennessee Valley Authority (TVA), and the Electric Power Research Institute (EPRI) investigated the cause of the failures. The investigation included evaluations of materials and manu...

2010-09-30T23:59:59.000Z

219

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Medical Examiner/Coroner on the Handling of a Body/Human Remains that are Potentially Radiologically Contaminated

220

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Safe Handling Of Nuclear Substances Undergraduate Laboratories  

E-Print Network (OSTI)

Safe Handling Of Nuclear Substances Undergraduate Laboratories There are three main hazards associated with working with unsealed sources of nuclear substances. These are: 1. Skin contamination and/or deposition of the nuclear substance in the body 2. Spread of contamination 3. External radiation In teaching

Beaumont, Christopher

222

Water Management in Ash-Handling Systems  

Science Conference Proceedings (OSTI)

In 1980, EPA proposed revisions to the effluent standards and guidelines for fly ash and bottom ash transport systems. This review of utility practices provides a comprehensive account of the operation of and problems experienced in wet handling of bottom and fly ash and suggests areas for further research.

1987-08-24T23:59:59.000Z

223

Remodeling a b-peptide bundle Matthew A. Molski,a  

E-Print Network (OSTI)

-leucine core as the optimal solution, a small void observed in the bundle center suggested that larger sideRemodeling a b-peptide bundle Matthew A. Molski,a Jessica L. Goodman,b Fang-Chieh Chou,c David-packed cores and protecting their backbones from solvent. Certain b-peptide oligomers assemble into bundles

Das, Rhiju

224

Poincar'e polynomial of the moduli spaces of parabolic bundles  

E-Print Network (OSTI)

Poincar'e polynomial of the moduli spaces of parabolic bundles Yogish I. Holla March 7, 2000 School of the moduli spaces of semi­stable parabolic bundles on a curve. The quasi parabolic analogue of the Siegel for determine the Betti numbers of the moduli of semistable parabolic bundles on a curve (when parabolic semi

Holla, Yogish I.

225

Stable Parabolic Bundles over Elliptic Surfaces and over Orbifold Riemann Surfaces  

E-Print Network (OSTI)

If q: Y ? ? is an elliptic surface (to be made precise) then the induced map of fundamental groups is an isomorphism if we consider ? as an orbifold, [U], [Dol]. Hence, we obtain a correspondence of flat bundles (by bundles we always mean complex vector bundles). Donaldson showed that each

Christian Gantz; Brian Steer

2008-01-01T23:59:59.000Z

226

MODULI SPACES OF PARABOLIC HIGGS BUNDLES AND PARABOLIC K(D) PAIRS OVER SMOOTH CURVES: I  

E-Print Network (OSTI)

MODULI SPACES OF PARABOLIC HIGGS BUNDLES AND PARABOLIC K(D) PAIRS OVER SMOOTH CURVES: I HANS U. BODEN AND K â?? OJI YOKOGAWA Abstract. This paper concerns the moduli spaces of rank two parabolic Higgs bundles and parabolic K(D) pairs over a smooth curve. Precisely which parabolic bundles occur in stable K

Boden, Hans U.

227

CALCULATING THE PARABOLIC CHERN CHARACTER OF A LOCALLY ABELIAN PARABOLIC BUNDLE  

E-Print Network (OSTI)

CALCULATING THE PARABOLIC CHERN CHARACTER OF A LOCALLY ABELIAN PARABOLIC BUNDLE CHADI HASSAN TAHER Abstract. We calculate the parabolic Chern character of a bundle with locally abelian parabolic structure for the parabolic Chern character of a locally abelian parabolic bundle on (X, D) in terms of: --the Chern character

Paris-Sud XI, Université de

228

Compressive force generation by a bundle of living biofilaments  

E-Print Network (OSTI)

To study the compressional forces exerted by a bundle of living stiff filaments pressing on a surface, akin to the case of an actin bundle in filopodia structures, we have performed particulate Molecular Dynamics simulations of a grafted bundle of parallel living (self-assembling) filaments, in chemical equilibrium with a solution of their constitutive monomers. Equilibrium is established as these filaments, grafted at one end to a wall of the simulation box, grow at their chemically active free end and encounter the opposite confining wall of the simulation box. Further growth of filaments requires bending and thus energy, which automatically limit the populations of longer filaments. The resulting filament sizes distribution and the force exerted by the bundle on the obstacle are analyzed for different grafting densities and different sub- or supercritical conditions, these properties being compared with the predictions of the corresponding ideal confined bundle model. In this analysis, non-ideal effects due to interactions between filaments and confinement effects are singled out. For all state points considered at the same temperature and at the same gap width between the two surfaces, the force per filament exerted on the opposite wall appears to be a function of a rescaled free monomer density $\\hat{\\rho}_1^{\\rm eff}$. This quantity can be estimated directly from the characteristic length of the exponential filament size distribution $P$ observed in the size domain where these grafted filaments are not in direct contact with the wall. We also analyze the dynamics of the filament contour length fluctuations in terms of effective polymerization ($U$) and depolymerization ($W$) rates, where again it is possible to disentangle non-ideal and confinement effects.

Sanoop Ramachandran; Jean-Paul Ryckaert

2013-10-06T23:59:59.000Z

229

Alcohol Transportation Fuels Demonstration Program  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. (ed.)

1990-01-01T23:59:59.000Z

230

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

231

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

232

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

233

One-pot, high-yield synthesis of titanate nanotube bundles decorated by Pd (Au) clusters for stable electrooxidation of methanol  

Science Conference Proceedings (OSTI)

Titanate nanotube bundles assembled by several simple nanotubes were synthesized through a simple reaction between TiO{sub 2} crystallites and highly concentrated NaOH in the presence of Au or Pd sols. Due to the unique scrolling growth mechanism of titanate nanotubes (TNTs), Au or Pd clusters were encapsulated in situ by TNTs, and titanate/Au and titanate/Pd nanotube bundles were formed. In comparison with carbon nanotubes (CNTs) or active carbon that was widely used as carriers to support metal clusters, TNTs bundles can immobilize the metal clusters tightly and overcome the shortcoming of exfoliation of metal clusters from the carriers. The as-prepared titanate/metal hybrids possess mesoporosity and high surface area. The electrochemical oxidation of methanol demonstrates that titanate/Pd hybrids exhibit high electrocatalytic activity and excellent stability, and hence they should be ideal catalyst candidates in direct methanol fuel cells (DMFCs). - Graphical abstract: Titanate/Au and titanate/Pd nanotube bundles have been fabricated by taking advantage of the unique scrolling growth mechanism of titanate tubes. The titanate/Pd hybrids show stable catalytic effects toward the electrooxidation of methanol.

Xue Xiudong [Key Lab of Organic Synthesis of Jiangsu Province and Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Gu Li [College of Biology and Chemical Engineering, Jiaxing University, Jiaxing, Zhejiang 314001 (China); Cao Xuebo, E-mail: xbcao@suda.edu.c [Key Lab of Organic Synthesis of Jiangsu Province and Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Song Yingying; Zhu Lianwen; Chen Peng [Key Lab of Organic Synthesis of Jiangsu Province and Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

2009-10-15T23:59:59.000Z

234

Performance Assessment of High Burnup Fuel From Limerick  

Science Conference Proceedings (OSTI)

GE11 design (9x9 lattice) fuel was irradiated to ~52 and ~65 GWd/MTU average bundle exposures at Exelon's Limerick Unit 1 and Limerick Unit 2 reactors. The project goal was to characterize the behavior of modern boiling water reactor (BWR) fuel at exposures beyond current fuel licensing limits. Additionally, the program examined both GE11 and GE13 fuel rods (irradiated to ~51-55 GWd/MTU) to assess the effects of noble metal chemical addition (NMCA) and variations in fuel cladding fabrication processes on...

2008-01-31T23:59:59.000Z

235

Proceedings: pellet fuels conference  

DOE Green Energy (OSTI)

The conference brought together professionals from the process- engineered-fuels (PEF), utility, paper, plastics, and boiler industries. Although the last two decades have produced technical breakthroughs, efforts to advance PEF must now focus on increasing commercial breakthroughs. Successful commercialization will depend on increasing supplier, consumer, and regulator confidence and support by demonstrating the performance and value of PEF products. Speakers provided updates on how PEF technology is evolving with respect to technical, economic, and regulatory challenges. Actions critical toward full commercialization of PEF were then considered. Discussion groups addressed materials sourcing, fuel processing and transportation, combustion, and ash handling.

Not Available

1995-12-31T23:59:59.000Z

236

Remote Inspection, Measurement and Handling for LHC  

E-Print Network (OSTI)

Personnel access to the LHC tunnel will be restricted to varying extents during the life of the machine due to radiation, cryogenic and pressure hazards. The ability to carry out visual inspection, measurement and handling activities remotely during periods when the LHC tunnel is potentially hazardous offers advantages in terms of safety, accelerator down time, and costs. The first applications identified were remote measurement of radiation levels at the start of shut-down, remote geometrical survey measurements in the collimation regions, and remote visual inspection during pressure testing and initial machine cool-down. In addition, for remote handling operations, it will be necessary to be able to transmit several real-time video images from the tunnel to the control room. The paper describes the design, development and use of a remotely controlled vehicle to demonstrate the feasibility of meeting the above requirements in the LHC tunnel. Design choices are explained along with operating experience to-dat...

Kershaw, K; Coin, A; Delsaux, F; Feniet, T; Grenard, J L; Valbuena, R

2007-01-01T23:59:59.000Z

237

History of remote handling at LAMPF  

SciTech Connect

A portable remote-handling system (Monitor) has been developed for performing remote maintenance on radioactive experimental facilities at the Clinton P. Anderson Meson Physics Facility (LAMPF). This system has been continually improved since its implementation in 1976. The present system has performed highly sophisticated tasks in improving and maintaining the LAMPF experimental facility. Unlike conventional hot-cell remote-handling technology, the Monitor system is portable and highly flexible, thereby allowing quick response to unforeseen tasks with minimal planning and/or special tooling. In addition to performing routine maintenance and repairs, the Monitor system is capable of performing major revisions and improvements to current facilities, keeping pace with new experimental requirements.

Grisham, D.L.; Lambert, J.E.

1982-01-01T23:59:59.000Z

238

Intermodal transfer of spent fuel  

Science Conference Proceedings (OSTI)

As a result of the international standardization of containerized cargo handling in ports around the world, maritime shipment handling is particularly uniform. Thus, handier exposure parameters will be relatively constant for ship-truck and ship-rail transfers at ports throughout the world. Inspectors' doses are expected to vary because of jurisdictional considerations. The results of this study should be applicable to truck-to-rail transfers. A study of the movement of spent fuel casks through ports, including the loading and unloading of containers from cargo vessels, afforded an opportunity to estimate the radiation doses to those individuals handling the spent fuels with doses to the public along subsequent transportation routes of the fuel. A number of states require redundant inspections and for escorts over long distances on highways; thus handlers, inspectors, escort personnel, and others who are not normally classified as radiation workers may sustain doses high enough to warrant concern about occupational safety. This paper addresses the question of radiation safety for these workers. Data were obtained during, observation of the offloading of reactor spent fuel (research reactor spent fuel, in this instance) which included estimates of exposure times and distances for handlers, inspectors and other workers during offloading and overnight storage. Exposure times and distance were also for other workers, including crane operators, scale operators, security personnel and truck drivers. RADTRAN calculational models and parameter values then facilitated estimation of the dose to workers during incident-free ship-to-truck transfer of spent fuel.

Neuhauser, K.S. (Sandia National Labs., Albuquerque, NM (United States)); Weiner, R.F. (Western Washington Univ., Bellingham, WA (United States))

1991-01-01T23:59:59.000Z

239

Connections for solid oxide fuel cells  

DOE Patents (OSTI)

A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.

Collie, Jeffrey C. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

240

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Medical catheters thermally manipulated by fiber optic bundles  

DOE Patents (OSTI)

A maneuverable medical catheter comprising a flexible tube having a functional tip is described. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts. 10 figs.

Chastagner, P.

1992-10-06T23:59:59.000Z

242

Medical catheters thermally manipulated by fiber optic bundles  

DOE Patents (OSTI)

A maneuverable medical catheter comprising a flexible tube having a functional tip. The catheter is connected to a control source. The functional tip of the catheter carries a plurality of temperature activated elements arranged in parallel and disposed about the functional tip and held in spaced relation at each end. These elements expand when they are heated. A plurality of fiber optic bundles, each bundle having a proximal end attached to the control source and a distal end attached to one of the elements carry light into the elements where the light is absorbed as heat. By varying the optic fiber that is carrying the light and the intensity of the light, the bending of the elements can be controlled and thus the catheter steered. In an alternate embodiment, the catheter carries a medical instrument for gathering a sample of tissue. The instrument may also be deployed and operated by thermal expansion and contraction of its moving parts.

Chastagner, Philippe (608 Aumond Rd., Augusta, GA 30909)

1992-01-01T23:59:59.000Z

243

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

244

Enhanced boiling heat transfer in horizontal test bundles  

Science Conference Proceedings (OSTI)

Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

1994-08-01T23:59:59.000Z

245

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network (OSTI)

Before the year 2000, more than one quarter of U.S. businesses will be firing Alternate Fuels in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (VOC's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase in interest in Alternate Fuels and demand for proven Alternate Fuel technology is being driven by three factors -* The requirement of U.S. firms to compete in a global market. * The improvements in Alternate Fuel technologies. * The increasing federal regulations encompassing more types of waste streams. This paper will provide an overview of the types of waste utilized as fuel sources in packaged boilers and the technology available to successfully handle these waste streams.

Coerper, P.

1992-04-01T23:59:59.000Z

246

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

247

Generator module architecture for a large solid oxide fuel cell power plant  

DOE Patents (OSTI)

A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

2013-06-11T23:59:59.000Z

248

Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat.  

E-Print Network (OSTI)

, combined heat and power, materials handling, and backup power. Power Generation & Electric Grid support· Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat The demand for multi-megawatt (MW) fuel cell systems for power generation and utility grid support applica

249

Experience with non-fuel-bearing components in LWR (light-water reactor) fuel systems  

SciTech Connect

Many non-fuel-bearing components are so closely associated with the spent fuel assemblies that their integrity and behavior must be taken into consideration with the fuel assemblies, when handling spent fuel of planning waste management activities. Presented herein is some of the experience that has been gained over the past two decades from non-fuel-bearing components in light-water reactors (LWRs), both pressurized-water reactors (PWRs) and boiling-water reactors (BWRs). Among the most important of these components are the control rod systems, the absorber and burnable poison rods, and the fuel assembly channels. 15 refs., 5 figs., 2 tabs.

Bailey, W.J.; Berting, F.M.

1990-12-01T23:59:59.000Z

250

Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting  

DOE Green Energy (OSTI)

Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

Atchison, J. E.; Hettenhaus, J. R.

2003-03-01T23:59:59.000Z

251

DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES  

DOE Green Energy (OSTI)

A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

Kyser, E.

2010-06-17T23:59:59.000Z

252

Chris Densham T2K Target Remote Handling  

E-Print Network (OSTI)

Chris Densham T2K Target Remote Handling CJ Densham, MD Fitton, M Baldwin, M Woodward Rutherford are handled by remote controlled crane. Concrete shield Horns are shielded by iron and concrete shields A numerical controlled crane is used in the TS. A remote handling machine is attached to this crane. Crane

McDonald, Kirk

253

The Remote-Handled TRU Waste Program  

SciTech Connect

RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput: the RH-72B and the CNS 10-160B transportation casks. Additionally, a draft Notification of Proposed Change to the EPA 40 CFR 194 Certification of the WIPP has been prepared, which contains a proposal for the RH TRU characterization program for compliance with the EPA requirements.

Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

2002-02-26T23:59:59.000Z

254

Safety Advice for Storage and Handling of  

E-Print Network (OSTI)

"This document is intended for information only and sets out advice for the safe storage and handling of anhydrous titanium tetrachloride. The information contained in these guidelines is provided in good faith and, while it is accurate as far as the authors are aware, no representations or warranties are made with regards to its completeness. For guidance on individual circumstances specific advice should be sought and in all cases the applicable national, European and international regulations should always be complied with. No responsibility will be assumed by Cefic in relation to the information

unknown authors

2007-01-01T23:59:59.000Z

255

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation and on order units with no DOE funding. Data...

256

New fuels for old  

SciTech Connect

A combination of price, availability, and government policies is forcing electric utilities to look to non-oil fuels even though only a small percentage of the conversions will be uncomplicated. Even those plants that originally burned coal will require extensive modifications to meet present pollution regulations and to restore their coal preparation and handling equipment. Hybrid fuels, such as coal-oil and coal-water, offer the flexibility of oil at a lower cost, but many utilities lack the capital to gamble on non-traditional alternatives. The Electric Power Research Institute (EPRI) programs that can provide the information that utilities need to make fuel decisions include work on coal and oil or water mixtures, municipal solid wastes, peat, and wood residues. The information EPRI gathers will allow utilities to identify the alternative best suited to their existing equipment, financial position, environment, and location. (DCK)

Lihach, N.

1981-04-01T23:59:59.000Z

257

Catalytic membranes for fuel cells  

DOE Patents (OSTI)

A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

2011-04-19T23:59:59.000Z

258

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

259

Application of mechanistic models for flow distribution and heat transfer in finned tube bundles.  

E-Print Network (OSTI)

?? The focus of this thesis was heat transfer and pressure drop in staggered tube bundles with solid and serrated fins. The first part of… (more)

Eikill, Astrid Oygarden

2013-01-01T23:59:59.000Z

260

Proceedings of the 1995 SAE alternative fuels conference. P-294  

Science Conference Proceedings (OSTI)

This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

262

FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL  

Science Conference Proceedings (OSTI)

This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

2012-10-30T23:59:59.000Z

263

Primer on tritium safe handling practices  

Science Conference Proceedings (OSTI)

This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

Not Available

1994-12-01T23:59:59.000Z

264

Method and system rapid piece handling  

DOE Patents (OSTI)

The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

Spletzer, Barry L. (9504 Arvilla, NE, Albuquerque, NM 87111)

1996-01-01T23:59:59.000Z

265

Hot Cell Examination of Broken GE14 Spacer Grid and Sound Fuel Rod Irradiated in Forsmark-3 BWR  

Science Conference Proceedings (OSTI)

A Global Nuclear Fuel (GNF)-designed GE14 fuel rod8212operated to approximately 40 GWd/MTU bundle average exposure in the Forsmark-3 boiling water reactor (BWR) in Osthammar, Sweden8212was examined at the Studsvik Nuclear hot cell laboratory in Nykping, Sweden. During re-channeling and rod retrieval, it was found that the first spacer grid was broken in the same bundle. Along with the one sound GE14 fuel rod, the broken spacer grid piece was sent to the Studsvik facility for examination. This report prov...

2008-10-23T23:59:59.000Z

266

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

267

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

268

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

269

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates * Applications - Primary (including CHP) power, backup power, APU, and material handling * Fuel Cell Types - 80°C PEM, 180°C PEM, SOFC technologies

270

PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Pre-hospital Practices for Handling a Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient Radiologically Contaminated Patient DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional specific areas of competency or more hours of training

271

Premixed direct injection nozzle for highly reactive fuels  

Science Conference Proceedings (OSTI)

A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

2013-09-24T23:59:59.000Z

272

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

Although the majority of the material handling activities at nuclear power plant sites are similar to the material handling activities in many other industries, there are several differences unique to the nuclear power industry. This guide to material handling equipment and its safe and effective operation at nuclear plants covers basic common practices while taking into account those unique differences. Recent industry experiences provide context for the guidance in the report.

2007-11-30T23:59:59.000Z

273

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

BackgroundDuring 2005 and 2006, there were nine Institute of Nuclear Power Operations (INPO) operating events (OEs) from material handling incidents. A fatality occurred at Browns Ferry on Oct. 1, 2005, when a small article radiation monitor overturned while being moved on a material handling cart (INPO OE21844).More than 50 serious OEs concerning material handling activities have occurred in the past 10 years. The majority of these incidents involved the ...

2012-09-28T23:59:59.000Z

274

Topological Defects, Surface Geometry and Cohesive Energy of Twisted Filament Bundles  

E-Print Network (OSTI)

Cohesive assemblies of filaments are a common structural motif found in diverse contexts, ranging from biological materials such as fibrous proteins, to artificial materials such as carbon nanotube ropes and micropatterned filament arrays. In this paper, we analyze the complex dependence of cohesive energy on twist, a key structural parameter of both self-assembled and fabricated filament bundles. Based on the analysis of simulated ground states of cohesive bundles, we show that the non-linear influence of twist derives from two distinct geometric features of twisted bundles: (i) the geometrical frustration of inter-filament packing in the bundle cross-section; and (ii) the evolution of the surface geometry of bundles with twist, which dictates the cohesive cost of non-contacting filaments at the surface. Packing frustration in the bundle core gives rise to the appearance of a universal sequence of topological defects, excess 5-fold disclinations, with increasing twist, while the evolution of filament contact at the surface of the bundle generically favors twisted geometries for sufficiently long filaments. Our analysis of both continuum and discrete models of filament bundles shows that, even in the absence of external torque or intrinsic chirality, cohesive energy universally favors twisted ground states above a critical (length/radius) aspect ratio and below a critical filament stiffness threshold.

Isaac R. Bruss; Gregory M. Grason

2013-03-06T23:59:59.000Z

275

Capillary bundle model of hydraulic conductivity for frozen soil Kunio Watanabe1  

E-Print Network (OSTI)

Capillary bundle model of hydraulic conductivity for frozen soil Kunio Watanabe1 and Markus Flury2] We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature

Flury, Markus

276

Overhead electric power transmission line jumpering system for bundles of five or more subconductors  

DOE Patents (OSTI)

Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

Winkelman, Paul F. (Beaverton, OR)

1982-01-01T23:59:59.000Z

277

Resistive analysis of mixed carbon nanotube bundle interconnect and its comparison with copper interconnect  

Science Conference Proceedings (OSTI)

As resistivity of Copper (Cu) increases with technology scaling, this drives us to look for new interconnect material for future very large scale integration (VLSI). Mixed carbon nanotube (CNT) bundle has superior properties like current carrying capacity ... Keywords: copper, interconnect, mixed carbon nanotube bundle

T. Alam; R. Dhiman; R. Chandel

2011-02-01T23:59:59.000Z

278

Segmentation of nerve bundles and ganglia in spine MRI using particle filters  

Science Conference Proceedings (OSTI)

Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution ... Keywords: nerve bundles, particle filter, segmentation, tracking

Adrian Dalca; Giovanna Danagoulian; Ron Kikinis; Ehud Schmidt; Polina Golland

2011-09-01T23:59:59.000Z

279

BETTI NUMBERS OF PARABOLIC U(2, 1)-HIGGS BUNDLES MODULI SPACES.  

E-Print Network (OSTI)

Abstract. Let X be a compact Riemann surface together with a finite set of marked points. We use Morse theoretic techniques to compute the Betti numbers of the parabolic U(2, 1)-Higgs bundles moduli spaces over X. We give examples for one marked point showing that the Poincaré polynomials depend on the system of weights of the parabolic bundle. 1.

Marina Logares

2006-01-01T23:59:59.000Z

280

Bundle Methods in Stochastic Optimal Power Management: A Disaggregated Approach Using Preconditioners  

Science Conference Proceedings (OSTI)

A specialized variant of bundle methods suitable for large-scale problems with separable objective is presented. The method is applied to the resolution of a stochastic unit-commitment problem solved by Lagrangian relaxation. The model includes hydro- ... Keywords: Lagrangian relaxation, bundle methods, optimization, preconditioning, stochastic optimization, unit-commitment problems

Léonard Bacaud; Claude Lemaréchal; Arnaud Renaud; Claudia Sagastizábal

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

282

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratory’s nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INL’s remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INL’s remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INL’s remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INL’s remote-handled waste. The large capital costs associated with establishing a fixed asset to process INL’s remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

283

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

284

LM Records Handling System-Fernald Historical Records System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management, LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management Energy.gov Careers & Internships For Staff & Contractors...

285

Unit load and material handling considerations in facility layout design  

E-Print Network (OSTI)

Dec 1, 2002 ... In this paper, the integration of unit load and material handling considerations in facility layout design is presented. This integration is based on ...

286

Chromoblastomycosis associated with in a carpenter handling exotic woods  

E-Print Network (OSTI)

in a carpenter handling exotic woods Nuno Menezes 1 , Pauloas saprophytes in the soil, wood and vegetation [ 3 ]. Theyare normally made of tropical wood [ 9 ]. The inoculation

2008-01-01T23:59:59.000Z

287

Property:EIA/861/ActivityBundledServices | Open Energy Information  

Open Energy Info (EERE)

ActivityBundledServices ActivityBundledServices Jump to: navigation, search This is a property of type Boolean. Description: Activity Bundled Services Entity provides bundled services (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityBundledServices" Showing 25 pages using this property. (previous 25) (next 25) A Ajo Improvement Co + true + Alabama Power Co + true + Amana Society Service Co + true + American Samoa Power Authority + true + Atlantic City Electric Co + true + Auburn Board of Public Works + true + Avista Corp + true + B Bamberg Board of Public Works + true + Barrow Utils & Elec Coop, Inc + true + Basin Electric Power Coop + true + Borough of Wampum, Pennsylvania (Utility Company) + true +

288

Tunable Raman spectroscopy study of CVD and peapod-derived bundled and individual double-wall carbon nanotubes  

E-Print Network (OSTI)

We use 40 laser excitation energies to analyze the differences in the Raman spectra from chemical vapor deposition-derived double-wall carbon nanotube (CVD-DWNT) bundles, fullerene-derived DWNT bundles (C[subscript 60]-DWNTs), ...

Dresselhaus, Mildred

289

Alcohol Transportation Fuels Demonstration Program. Phase 1  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. [ed.

1990-12-31T23:59:59.000Z

290

Fun Fact Friday: Fueling Growth | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fun Fact Friday: Fueling Growth Fun Fact Friday: Fueling Growth Fun Fact Friday: Fueling Growth January 3, 2014 - 1:53pm Addthis Fuel cells, which work like batteries but don’t run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. Recent Energy Department reports indicate the fuel cell and hydrogen industry is continuing to grow. | Photo courtesy of Plug Power, Inc. Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. Recent Energy Department reports indicate the fuel cell and hydrogen industry is continuing to grow. | Photo courtesy of

291

SAFEGUARDS EXPERIENCE ON THE DUPIC FUEL CYCLE PROCESS  

SciTech Connect

Safeguards have been applied to the R and D process for directly fabricating CANDU fuel with PWR spent fuel material. Safeguards issues to be resolved were identified in the areas such as international cooperation on handling foreign origin nuclear material, technology development of operator's measurement system of the bulk handling process of spent fuel material, and a built-in C/S system for independent verification of material flow. The fuel cycle concept (Direct Use of PWR spent fuel in CANDU, DUPIC) was developed in consideration of reutilization of over-flowing spent fuel resources at PWR sites and a reduction of generated high level wastes. All those safeguards issues have been finally resolved, and the first batch of PWR spent fuel material was successfully introduced in the DUPIC lab facility and has been in use for routine process development.

J. HONG; H. KIM; ET AL

2001-02-01T23:59:59.000Z

292

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

293

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

294

ITER Engineering Design Activities -R & DITER-In-Vessel Remote Handling  

E-Print Network (OSTI)

ITER Engineering Design Activities - R & DITER- In-Vessel Remote Handling Blanket Module Remote Handling Project (L-6) Divertor Remote Handling Project (L-7) Objective To develop and demonstrate handling equipment, port handling equipment, auxiliary remote handling tools and a blanket mockup structure

295

Treatment, packaging, and storage of bundle scrap hardware  

SciTech Connect

A study was performed to identify and evaluate the various technical options for treatment, packaging and storing the bundle scrap hardware that results from rod consolidation. The three general scenarios addressed were keeping the treated scrap in the pool, moving it to on-site dry storage, or immediate disposal. The study concluded that practical alternatives existed for all three cases. Use of novel scrap packaging techniques achieved an overall net consolidation ratio of two. The most economical concept was found to be using advanced technology in the pool storage scenario with dry storage schemes a close second. The project also provides information on scrap characterization and provides tools to assist in classifying the scrap hardware.

Fuierer, A. (Rochester Gas and Electric Corp., NY (United States)); Dabolt, R. (Chem-Nuclear Systems, Inc., Columbia, SC (United States))

1991-09-01T23:59:59.000Z

296

The Demand for Homeowners Insurance with Bundled Catastrophe Coverages *  

E-Print Network (OSTI)

In this paper we estimate demand for homeowner insurance in Florida. Since we are interested in a number of factors influencing demand, we approach the problem from two directions. Using 3SLS estimation, we first estimate two hedonic equations representing the price mark-up and the level of premiums per contract. We are interested in how the contracts are bundled and how the various terms influence the price mark-up and the overall level of premiums. Second, we estimate the demand for homeowners insurance using the ISO's indicated loss cost as our proxy forreal insurance services demanded. We assume that the demand for coverage is essentially a joint demand and thus we can estimate the demand for cat cover separately from the demand for non-cat cover. Two notable results are that cat coverage is more price sensitive than non-cat coverage and that cat coverage is an inferior good. This research is supported by the Wharton Project on Managing Catastrophic Risks. This paper will contribute to a report that will be jointly written and published by the Insurance Services Office (ISO) and the authors. We gratefully acknowledge the assistance of ISO in providing much of the data used in this analysis and of the companies who have allowed their exposure data to be used for this research project. The efforts of Michael Murray of ISO deserve particular recognition. James Ament, Howard Kunreuther, Neil Doherty, Michael Murray and Steven Nivin provided helpful comments on an earlier draft. This paper is still preliminary and many revisions still remain to be made. The Demand for Catastrophe Insurance with Bundled Catastrophic Coverages

Martin F. Grace; Robert W. Klein; Paul R. Kleindorfer

2000-01-01T23:59:59.000Z

297

Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report  

Science Conference Proceedings (OSTI)

Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

Hancock, David, W.

2012-02-14T23:59:59.000Z

298

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

299

Corn/coal fuel characterization study  

DOE Green Energy (OSTI)

Laboratory analyses and tests were conducted to determine the suitability of shelled corn as a potential supplemental fuel for pulverized coal fired utility boilers. The analyses and tests used were those routinely used for the characterization of coal. The data indicated very high volatility and very low ash. Corn by itself would not be a suitable fuel for conventional boilers, primarily because of the severe fouling and slagging potential of corn ash. Blends of corn and coal minimized the fouling and slagging problems. The blend samples contained 10% corn by BTU or 14% by weight. Approximately 1.05 pounds of this blend would provide the heat equivalent of one pound of coal. The additional fuel input would place an additional load on fuel handling and preparation equipment, but the decrease in ash quantity would reduce the load on ash handling and particulate-type flue gas clean-up equipment. (JSR)

Cioffi, P. L.

1978-08-01T23:59:59.000Z

300

An apparatus for remotely handling components  

DOE Patents (OSTI)

The inventive apparatus for remotely handling barlike components which define a longitudinal direction includes a gripper mechanism for gripping the component including first and second gripper members longitudinally fixedly spaced from each other and oriented parallel to each other in planes transverse to the longitudinal direction. Each gripper member includes a jaw having at least one V-groove with opposing surfaces intersecting at a base and extending radially relative to the longitudinal direction for receiving the component in an open end between the opposing surfaces. The V-grooves on the jaw plate of t he first and second gripper members are aligned in the longitudinal direction to support the component in the first and second gripper members. A jaw is rotatably mounted on and a part of each of the first and second gripper members for selectively assuming a retracted mode in which the open end of the V-groove is unobstructed and active mode in which the jaw spans the open end of the V-groove in the first and second gripper members. The jaw has a locking surface for contacting the component in the active mode to secure the component between the locking surface of the jaw and the opposing surfaces of the V-groove. The locking surface has a plurality of stepped portions, each defining a progressively decreasing radial distance between the base of the V-groove and the stepped portion opposing the base to accommodate varying sizes of components. In a preferred embodiment, the apparatus also includes a control mechanism for remotely controlling movement of the jaw in the locking mode to assume one of a plurality of locking positions corresponding to positioning one of the stepped portions opposite the base.

Szkrybalo, G.A.; Griffin, D.L.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

302

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network (OSTI)

Cryostat 1. Remote handling The high radiation levels and presence of hazardous, ac- tivated mercury vaporsMERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 placement within the Shielding Module in a remote environment. · Providing double containment of the mercury

McDonald, Kirk

303

Integrative path planning and motion control for handling large components  

Science Conference Proceedings (OSTI)

For handling large components a large workspace and high precision are required. In order to simplify the path planning for automated handling systems, this task can be divided into global, regional and local motions. Accordingly, different types of ... Keywords: integrative production, motion control, path planning, robotic assembly application

Rainer Müller; Martin Esser; Markus Janssen

2011-12-01T23:59:59.000Z

304

HANDLING FRESH FISH REFRIGERATION OF FISH -PART 2  

E-Print Network (OSTI)

(Fishery Leaflet 427) Cold-Storage Design and Refrigeration Equipment Part 3 (Fisher y Leaflet 429) FactorsHANDLING FRESH FISH REFRIGERATION OF FISH - PART 2 UNITED STATES DEPARTMENT OF THE INTERIOR FISH 428 Washington 25, D, C. December 1956 REFRIGERATION OF FISH - PART TWO HANDLING FRESH FISH By Charles

305

Dynamic manipulation inspired by the handling of a pizza peel  

Science Conference Proceedings (OSTI)

This paper discusses dynamic manipulation inspired by the handling mechanism of a pizza chef. The chef handles a tool called "pizza peel," where a plate is attached at the tip of a bar, and he remotely manipulates a pizza on the plate. We found that ... Keywords: dynamic manipulation, high-speed robot, robot skill

Mitsuru Higashimori; Keisuke Utsumi; Yasutaka Omoto; Makoto Kaneko

2009-08-01T23:59:59.000Z

306

Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System  

SciTech Connect

In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

Barker, M.E.; Holt, T.E.; LaValle, D.R. [PaR Systems, Inc., Shoreview, MN (United States); Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V. [Battelle Energy Alliance, LLC/Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

307

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

308

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

309

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

310

T-625: Opera Frameset Handling Memory Corruption Vulnerability | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Opera Frameset Handling Memory Corruption Vulnerability 5: Opera Frameset Handling Memory Corruption Vulnerability T-625: Opera Frameset Handling Memory Corruption Vulnerability May 18, 2011 - 3:05pm Addthis PROBLEM: A vulnerability has been reported in Opera, which can be exploited by malicious people to compromise a user's system. PLATFORM: Opera versions prior to 11.11 ABSTRACT: The vulnerability is caused due to an error when handling certain frameset constructs during page unloading and can be exploited to corrupt memory via a specially crafted web page. reference LINKS: Secunia Advisory: SA44611 Opera Knowledge Base Opera 11.11 for Windows Opera Download Opera Mobile IMPACT ASSESSMENT: High Discussion: Framesets allow web pages to hold other pages inside them. Certain frameset constructs are not handled correctly when the page is unloaded, causing a

311

Pre-Hospital Practices for Handling a Radiologically Contaminated Patient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Hospital Practices for Handling a Radiologically Contaminated Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Pre-Hospital Practices for Handling a Radiologically Contaminated Patient The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on key activities and duties at the scene. PRE-HOSPITAL PRACTICES FOR HANDLING A RADIOLOGICALLY CONTAMINATED PATIENT More Documents & Publications Emergency Response to a Transportation Accident Involving Radioactive Material Handling and Packaging a Potentially Radiologically Contaminated Patient

312

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

313

FUELING OF ITER-SCALE FUSION PLASMAS M. J. Gouge  

E-Print Network (OSTI)

systems to handle the larger DT throughput. Gas and pellet fueling efficiency data from past tokamak Ridge, Tennessee 37831-8071, USA (423) 576-4467 ABSTRACT Fueling system functions for the International in the fusion reaction, to establish a density gradient for plasma particle (especially helium ash) flow

314

Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995  

SciTech Connect

The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

1996-03-15T23:59:59.000Z

315

Remote real time x-ray examination of fuel elements in a hot cell environment  

Science Conference Proceedings (OSTI)

This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

Yapuncich, F.L.

1993-01-01T23:59:59.000Z

316

Remote real time x-ray examination of fuel elements in a hot cell environment  

SciTech Connect

This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

Yapuncich, F.L.

1993-03-01T23:59:59.000Z

317

Splitting vector bundles and A^1-fundamental groups of higher dimensional varieties.  

E-Print Network (OSTI)

We study aspects of the A^1-homotopy classification problem in dimensions >= 3 and, to this end, we investigate the problem of computing A^1-homotopy groups of some A^1-connected smooth varieties of dimension >=. Using these computations, we construct pairs of A^1-connected smooth proper varieties all of whose A^1-homotopy groups are abstractly isomorphic, yet which are not A^1-weakly equivalent. The examples come from pairs of Zariski locally trivial projective space bundles over projective spaces and are of the smallest possible dimension. Projectivizations of vector bundles give rise to A^1-fiber sequences, and when the base of the fibration is an A^1-connected smooth variety, the associated long exact sequence of A^1-homotopy groups can be analyzed in detail. In the case of the projectivization of a rank 2 vector bundle, the structure of the A^1-fundamental group depends on the splitting behavior of the vector bundle via a certain obstruction class. For projective bundles of vector bundles of rank >=, the A^1-fundamental group is insensitive to the splitting behavior of the vector bundle, but the structure of higher A^1-homotopy groups is influenced by an appropriately defined higher obstruction class.

Aravind Asok.

318

Mulled coal---A beneficiated coal form for use as a fuel or fuel intermediate  

SciTech Connect

The storage, transport and handling of beneficiated coals in the form of a modified wet cake ( mulled coal'') to yield a coal water fuel having acceptable properties for atomization and combustion on industrial, commercial and/or residential scales, have been investigated. The Mulled Coal project is divided into a series of tasks designed to produce formulations and system designs suitable to convert fine coal wet cakes'' into a material that can be stored, handled, and transported to a site where it can be utilized as a fuel in existing and developing combustion devices. (VC)

Not Available

1991-05-01T23:59:59.000Z

319

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

320

Remote-Handled Transuranic Content Codes  

SciTech Connect

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

322

Void fraction prediction in two-phase flow across a tube bundle  

Science Conference Proceedings (OSTI)

The hydrodynamics of two-phase flow has been investigated extensively for in-tube flows and for parallel flows in tube bundles. Very limited work has been performed, however, on vertical two-phase flows across tube bundles, which occur frequently on the shell side of heat exchangers such as kettle reboilers used in the process and other industries. In recent years, a few articles have been published on the measurement and prediction of void fraction in adiabatic, vertical air-water flow across horizontal rod bundles.

Dowlati, R.; Kawaji, M.; Chisholm, D.; Chan, A.M.C. (Dept. of Chemical Engineering and Applied Chemistry, Univ. of Toronto, Toronto, Ontario, M5S 1A4 (CA))

1992-04-01T23:59:59.000Z

323

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

324

Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation  

SciTech Connect

Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives. (JGB)

1976-05-01T23:59:59.000Z

325

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

326

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

327

Economizer Applications in Dual-Duct Air-Handling Units  

E-Print Network (OSTI)

This paper provides analytical tools and engineering methods to evaluate the feasibility of the economizer for dual-duct air-handling units. The results show that the economizer decreases cooling energy consumption without heating energy penalties for dual-fan, dual-duct air-handling units. The economizer has significant heating energy penalties for single-fan, dual-duct air-handling units. The penalties are higher than the cooling energy savings when the cold airflow is less than the hot airflow. Detailed engineering analyses are required to evaluate the feasibility of the economizer for single-fan, dual-duct systems.

Joo, I.; Liu, M.

2002-01-01T23:59:59.000Z

328

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

329

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

330

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Usage » Storage » Hydrogen & Fuel Cells Energy Usage » Storage » Hydrogen & Fuel Cells Hydrogen & Fuel Cells December 19, 2013 Fuel cells, which work like batteries but don't run down or need recharging, are ideal for powering material handling equipment, like forklifts and airport baggage carts, because they reduce recharging time and cut carbon pollution. This is helping them become more mainstream in the U.S., with more than 4,000 vehicles in operation in 2012, and this year, they might even be helping bring you holidays to you. | Photo courtesy of Plug Power, Inc. Your Holidays ... Brought to You by Fuel Cells Next time you're at the airport or at a shop picking up a last-minute gift, you might see speciality vehicles powered by fuel cells, a clean energy technology that is helping bring your holidays to you.

331

H-Bond Deletion in a Metal-Assembled Helical Bundle Protein  

NLE Websites -- All DOE Office Websites (Extended Search)

J. F. Wishart and G. L. McLendon J. Phys. Chem. B 102, 9975-9980 (1998) Find paper at ACS Publications Abstract: Transition metal ion-assembled three-helix bundle proteins...

332

Assessing the viability of the bundled energy efficiency/electricity supply business model.  

E-Print Network (OSTI)

??The restructuring of the U.S. electricity economy has enabled the emergence of a unique form of energy efficiency provision, the bundled energy efficiency/electricity supply contract.… (more)

Benson, C.L.

2013-01-01T23:59:59.000Z

333

0 + 0 = 1 : the appliance model of selling software bundled with hardware  

E-Print Network (OSTI)

The business model of selling software bundled with hardware is called the appliance model. As hardware becomes less and less expensive and open source software is being offered for free, the traditional business model of ...

Hein, Bettina

2007-01-01T23:59:59.000Z

334

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

335

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

336

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

337

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

338

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

339

PARABOLIC BUNDLES ON ALGEBRAIC SURFACES I- THE DONALDSON–UHLENBECK COMPACTIFICATION  

E-Print Network (OSTI)

Abstract. The aim of this paper is to construct the parabolic version of the Donaldson–Uhlenbeck compactification for the moduli space of parabolic stable bundles on an algenraic surface with parabolic structures along a divisor with normal crossing singularities. We prove the non–emptiness of the moduli space of parabolic stable bundles of rank 2 and also prove the existence of components with smooth points. 1.

V. Balaji; A. Dey; R. Parthasarathi

2006-01-01T23:59:59.000Z

340

Method of bundling rods so as to form an optical fiber preform  

DOE Patents (OSTI)

The present invention provides a simple method for fabricating fiber-optic glass preforms having complex refractive index configurations and/or dopant distributions in a radial direction with a high degree of accuracy and precision. The method teaches bundling together a plurality of glass rods of specific physical, chemical, or optical properties and wherein the rod bundle is fused in a manner that maintains the cross-sectional composition and refractive-index profiles established by the position of the rods.

Kliner, Dahv A. V. (San Ramon, CA); Koplow, Jeffery P. (Washington, DC)

2004-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Production and Handling Slide 20: Advantages of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Advantages of UF6 Only one isotope of F2 Can be handled at reasonable...

342

V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCUSSION: The vulnerability is caused due to an error within the Windows NAT Driver when handling ICMP packets and can be exploited to cause the system to stop responding IMPACT:...

343

V-079: ISC BIND AAAA Record Lookup Handling Assertion Failure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lets Remote Users Deny Service T-633: BIND RRSIG RRsets Negative Caching Off-by-one Bug Lets Remote Users Deny Service U-183: ISC BIND DNS Resource Records Handling Vulnerability...

344

Material handling resource utilization simulation study for stamping plant  

Science Conference Proceedings (OSTI)

This paper describes the application of dynamic simulation to evaluate material handling resource utilization for a stamping plant in the automotive industry. The other objective of this study was evaluation of throughput relative to press schedules, ...

Edward J. Williams; Onur M. Ulgen; Sheldon Bailiff; Ravindra Lote

2006-12-01T23:59:59.000Z

345

Input handling in agent-based micro-level simulators.  

E-Print Network (OSTI)

??In this thesis we presented a new direction for handling missing values in multi agent-based simulation (MABS) at micro-level by using truth tables and logical… (more)

Fayyaz, Muhammad

2010-01-01T23:59:59.000Z

346

Strategies for handling missing data in randomised trials  

E-Print Network (OSTI)

sensitivity analysis and how to handle missing baseline variables. Published: 13 December 2011 References 1. National Research Council: The prevention and treatment of missing data in clinical trials. The National Academies Press; Washington, DC; 2010 [http...

2011-12-13T23:59:59.000Z

347

PRIME VALUE METHOD TO PRIORITIZE RISK HANDLING STRATEGIES  

Science Conference Proceedings (OSTI)

Funding for implementing risk handling strategies typically is allocated according to either the risk-averse approach (the worst risk first) or the cost-effective approach (the greatest risk reduction per implementation dollar first). This paper introduces a prime value approach in which risk handling strategies are prioritized according to how nearly they meet the goals of the organization that disburses funds for risk handling. The prime value approach factors in the importance of the project in which the risk has been identified, elements of both risk-averse and cost-effective approaches, and the time period in which the risk could happen. This paper also presents a prioritizer spreadsheet, which employs weighted criteria to calculate a relative rank for the handling strategy of each risk evaluated.

Noller, D

2007-10-31T23:59:59.000Z

348

In-Plant Ash-Handling Reference Manual  

Science Conference Proceedings (OSTI)

Despite problems with ash-handling systems that have led to failures in electrostatic precipitators, there has been no extensive reference manual for specifying, operating, and maintaining such systems. The comprehensive manual compiled in this study serves as a reference for every phase of boiler bottom ash- and fly ash-handling systems design and operation as well as a primer for those unfamiliar with these systems.

1986-12-01T23:59:59.000Z

349

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

350

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

351

Motor vehicle fuel economy, the forgotten HC control stragegy?  

DOE Green Energy (OSTI)

Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

Deluchi, M.; Wang, Quanlu; Greene, D.L.

1992-06-01T23:59:59.000Z

352

DOE Hydrogen and Fuel Cells Program: Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

First Responder Training First Responder Training Bibliographic Database Newsletter Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Safety Printable Version Safety Safe practices in the production, storage, distribution, and use of hydrogen are an integral part of future plans. Like most fuels, hydrogen can be handled and used safely with appropriate sensing, handling, and engineering measures. The aim of this program activity is to verify the physical and chemical properties of hydrogen, outline the factors that must be considered to minimize the safety hazards related to the use of hydrogen as a fuel, and provide a comprehensive database on hydrogen and hydrogen safety. Photo of hydrogen fueling pump in Las Vegas, Nevada

353

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

354

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

355

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

356

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

357

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

358

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

359

Step-By-Step Guide for Waste Handling at WIPP - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

the nation's nuclear waste disposal problem Step-By-Step Guide for Waste Handling at WIPP The handling and disposal of contact-handled transuranic waste at the Waste Isolation...

360

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

362

Conceptual design report for the ICPP spent nuclear fuel dry storage project  

Science Conference Proceedings (OSTI)

The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

NONE

1996-07-01T23:59:59.000Z

363

Future Armored Resupply Vehicle (FARV) conceptual fuel system design. Final report  

Science Conference Proceedings (OSTI)

This document presents an idealized automated fuel system applicable to unique requirements. The system accepts fuel at high rates, transports fuel in a battlefield environment, and supplies fuel to a vehicle equipped to receive it without exposing the crew to small arms fire. The fuel system design incorporates controls and mechanisms which compensate for battle damage and irregularities found in previous fuel systems for tracked vehicles. The fuel system is a functional part of a ReArm/Resupply system which also handles munitions and liquid propellant, automatically.

Daubert, R.R.; Fisher, E.C.; Moore, W.K.; Munro, N.C.

1995-03-01T23:59:59.000Z

364

Strategy for Used Fuel Acquisition  

SciTech Connect

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation staffs within the UFDC are responsible for addressing issues regarding the extended or long-term storage of UNF and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While both wet and dry storage have been shown to be safe options for storing UNF, the focus of the program is on dry storage at reactor or centralized locations. Because limited information is available on the properties of high burnup fuel (exceeding 45 gigawatt-days per metric tonne of uranium [GWd/MTU]), and because much of the fuel currently discharged from today’s reactors exceeds this burnup threshold, a particular emphasis of this program is on high burnup fuels. Since high burnup used fuels have only been loaded into dry storage systems in the past decade or so, these materials are available to the UFDC for testing in only very limited quantities. Much of what is available has come via NRC testing programs. Some of these fuels may have achieved "high burnup," but that does not mean they were designed for high burnup use (e.g. lower enrichments, smaller plenum spaces, extra reactor cycles). The handling and transfer of these materials from utility to laboratory has not always been prototypical of how used nuclear fuel is prepared for dry storage; these fuels are not subjected to the same vacuum drying conditions that can lead to changes in hydride morphology that will affect the mechanical properties of the fuel. It is recognized that sources of used high burnup fuel that can be handled in a manner consistent with how fuel is readied for dry storage is essential to the mission of the UFDC. This report documents what types of fuel are of interest to the campaign, and how those fuels could be acquired and shipped to the Idaho National Laboratory (INL) for incorporation into the campaign R&D mission. It also identifies any gaps in INL capabilities that might preclude working with one fuel type or another.

Steven C. Marschman; Chris Rusch

2013-09-01T23:59:59.000Z

365

Poolside Examination Results and Assessment, GE11 BWR Fuel Exposed to 52 to 65 GWd/MTU at the Limerick 1 and 2 Reactors  

Science Conference Proceedings (OSTI)

Boiling water reactor (BWR) fuel assemblies of the GE11 (9x9) design that operated to approximately 65 GWd/MTU average exposure in the Limerick 2 reactor were examined in the fuel storage pool. Irradiation and examination of these assemblies are part of a program to increase the exposure to which BWR fuel is allowed to operate. The post-irradiation poolside examination included visual inspection of the fuel assemblies and selected fuel rods, measurements of bundle and rod length, measurement of fuel rod ...

2002-12-06T23:59:59.000Z

366

Gaseous-fuel safety assessment. Status report  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

1982-01-01T23:59:59.000Z

367

MELCOR modeling of the PBF (Power Burst Facility) Severe Fuel Damage Test 1-4  

DOE Green Energy (OSTI)

This paper describes a MELCOR Version 1.8 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) Test 1--4. The input data for the analysis were obtained from the Test Results Report and from SCDAP/RELAP5 input. Results are presented for the transient liquid level in the test bundle, clad temperatures, shroud temperatures, clad oxidation and hydrogen generation, bundle geometry changes, fission product release, and heat transfer to the bypass flow. Comparisons are made with experimental data and with SCDAP/RELAP5 calculations. 10 refs., 7 figs.

Madni, I.K.

1990-01-01T23:59:59.000Z

368

Influence of Mixing and Fuel Composition on Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixing and Fuel Composition Mixing and Fuel Composition on Emissions * Lean premixed combustion is effective for emission reduction More sensitive to perturbations including fuel gas composition variability * UC Irvine developed model relating fuel/air mixing and fuel composition to emissions Altering fuel distribution is a strategy to accommodate fuel composition changes * Results were used by 3 OEM's, 1 combustion technology developer and 1 user to help make decisions on how to handle the impact of LNG on combustor stability, and in the case of California installations, on how to respond to regulatory issues * As LNG is used in increasing quantities from more sources the variability of fuel gas should be more widespread, and manufacturers are likely to use this data in redesigning

369

THE CHERN CHARACTER OF A PARABOLIC BUNDLE, AND A PARABOLIC REZNIKOV THEOREM IN THE CASE OF FINITE ORDER AT INFINITY  

E-Print Network (OSTI)

In this paper, we obtain an explicit formula for the Chern character of a locally abelian parabolic bundle in terms of its constituent bundles. Several features and variants of parabolic structures are discussed. Parabolic bundles arising from logarithmic connections form an important class of examples. As an application, we consider the situation when the local monodromies are semi-simple and are of finite order at infinity. In this case the parabolic Chern classes of the associated locally abelian parabolic bundle are deduced to be zero in the rational Deligne cohomology in degrees ? 2.

Jaya Nn Iyer; Carlos T Simpson

2007-01-01T23:59:59.000Z

370

Film condensation of R-113 on in-line bundles of horizontal finned tubes  

Science Conference Proceedings (OSTI)

Film condensation of R-113 on in-line bundles of horizontal finned tubes with vertical vapor downflow was experimentally investigated. Two tubes with flat-sided annular fins and four tubes with three-dimensional fins were tested. The test sections were 3 {times} 15 tube bundles with and without two rows of inundation tubes at the top. Heat transfer measurements were carried out on a row-by-row basis. The heat transfer enhancement due to vapor shear was much less for a finned tube bundle than for a smooth tube bundle. The decrease in heat transfer due to condensate inundation was more marked for a three-dimensional fin tube than for a flat-sided fin tube. The predictions of the previous theoretical model for a bundle of flat-sided fin tubes agreed well with the measured data for low vapor velocity and a small to medium condensate inundation rate. Among the six tubes tested, the highest heat transfer performance was provided by the flat-sided fin tube with fin dimensions close to the theoretically determined optimum values.

Honda, H. (Kyushu Univ., Fukuoka (Japan)); Uchima, B.; Nozu, S.; Nakata, H.; Torigoe, E. (Okayama Univ. (Japan))

1991-05-01T23:59:59.000Z

371

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

372

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydride Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilized unique fast-cycling 5.63 mole uranium beds (50.9 g to T/sub 2/ at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops.

Nasise, J.E.

1988-09-01T23:59:59.000Z

373

Some new techniques in tritium gas handling as applied to metal hydride synthesis  

SciTech Connect

A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs.

Nasise, J.E.

1988-01-01T23:59:59.000Z

374

Monsanto/Mound Laboratory Engineering Development of Tritium-Handling Systems  

SciTech Connect

Mound Laboratory (Mound) has, during the past four years, been actively involved in the development of methods to contain and control tritium during its processing and to recover it from waste streams. Initial bench-scale research was directed mainly toward removal of tritium from gaseous effluent streams and from laboratory liquid wastes. The gaseous effluent investigation has progressed through the developmental stage and has been implemented in routine operations. A test laboratory embodying many of the results of the research phase has been designed and construction has been completed. As the program at Mound has progressed, the scope of the effort has been expanded to include research concerned with handling not only gaseous tritium but also tritiated liquids. A program is presently under way to investigate the detritiation of aqueous wastes encountered in the fuel cycle of the commercial power reactor industry.

Bixel, J. C.; Lamberger, P. H.

1976-07-01T23:59:59.000Z

375

GN470094 - Handling Chemicals at SNL/CA  

NLE Websites -- All DOE Office Websites (Extended Search)

094, Handling Chemicals at SNL/CA 094, Handling Chemicals at SNL/CA Sponsor: Michael W. Hazen, 4000 Revision Date: October 31, 2008 Replaces Document Dated: October 16, 2007 This document is no longer a CPR. This document implements the requirements of Corporate procedure ESH100.2.IH.25, Control Chemical Hazards at SNL/CA. IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is the online version located on the Sandia Restricted Network (SRN). GN470094 - HANDLING CHEMICALS AT SNL/CA Subject Matter Expert: Al Buerer GN470094, Issue E Revision Date: October 31, 2008; Replaces Document Dated: October 16, 2007 Change History 1.0 Purpose, Scope, and Ownership 2.0 Responsibilities 3.0 Definitions 4.0 Training 5.0 Protective Equipment 6.0 Procurement of Chemicals

376

Status of ITER neutral beam cell remote handling system  

E-Print Network (OSTI)

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

377

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

378

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

379

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

380

Production of New Biomass/Waste-Containing Solid Fuels  

DOE Green Energy (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

382

Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal  

SciTech Connect

The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

Not Available

1984-07-01T23:59:59.000Z

383

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

384

Chemical decontamination of BWR fuel and core materials  

Science Conference Proceedings (OSTI)

A previous EPRI project decontaminated two discharged BWR fuel assemblies using the AP-LOMI and AP-CAN-DECON processes at Commonwealth Edison's Quad-Cities Nuclear Power Site. The two decontaminated assemblies and a third control assembly were shipped to the B W Hot Cell Facility in Lynchburg, Virginia. The three assemblies were partially disassembled in the hot cells and several rods extracted for nondestructive oxide measurement and visual examination. Various components were removed from the two decontaminated fuel assemblies for destructive examination to search for possible deleterious effects of chemical cleaning. The AP-LOMI process removed essentially all of the crud which normally covers a BWR bundle and channel. The AP-CAN-DECON process removed most of the crud, but left a thin layer on the rods and components in the central region of the bundle between the top and bottom spacer grids. Neither decontamination process appeared to damage the Zircaloy-2 fuel and water rods, or the Zircaloy-4 channels and spacers. An adherent zirconium oxide layer still covered all of the Zircaloy surfaces which were examined. The increase in hydrogen content of the channels and fuel rods was low. The AP-LOMI process did not appear to damage the Inconel X-750 fuel rod expansion springs, spacer lantern springs or channel finger spring. A thin, adherent oxide layer was found on all components.

Beauregard, R.J. (Babcock and Wilcox Co., Lynchburg, VA (USA))

1989-09-01T23:59:59.000Z

385

Unified gauge theory for electromagnetism and gravitation based on twistor bundles  

SciTech Connect

A unified gauge theory of the combined gravitational and electromagnetic fields is obtained by two different procedures using twistors as a starting point for the construction of the appropriate bundles. One of these formalisms is obtained by relaxing the conditions on the structure of a twistor bundle theory previously developed by the authors for the Poincare group as the structure group. The other formalism is based on a tensor product bundle and can be readily extended to include structure groups involving direct products of nonabelian groups with the Poincare group. The results of the theory are compared with those obtained in projective theories of the generalized Jordan--Kaluza--Klein type, and some of the essential differences are pointed out.

Luehr, C.P.; Rosenbaum, M.

1984-02-01T23:59:59.000Z

386

Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System  

SciTech Connect

Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

Rodney M. Shurtliff

2005-09-01T23:59:59.000Z

387

Coal- and Ash-Handling Systems Reliability Conference and Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report presents papers, discussion summaries, and conclusions from an EPRI workshop on reliability problems with coal- and ash-handling systems in power plants. Held in October 1980 in St. Louis, the workshop covered yard and in-plant coal handling, frozen coal, fugitive dust, fly ash handling, bottom ash handling, and ash disposal.

1981-08-01T23:59:59.000Z

388

Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors  

Science Conference Proceedings (OSTI)

Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

2009-09-01T23:59:59.000Z

389

Method of preparing and handling chopped plant materials  

DOE Patents (OSTI)

The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

2002-11-26T23:59:59.000Z

390

Some thoughts on using argumentation to handle trust  

Science Conference Proceedings (OSTI)

This paper describes some of our recent work on using argumentation to handle information about trust. We first discuss the importance of trust in computer science in general and in multi-agent systems in particular.We then describe the setting of our ...

Simon Parsons; Yuqing Tang; Kai Cai; Elizabeth Sklar; Peter McBurney

2011-07-01T23:59:59.000Z

391

Thermal decomposition study of hydroxylamine nitrate during storage and handling  

E-Print Network (OSTI)

Hydroxylamine nitrate (HAN), an important agent for the nuclear industry and the U.S. Army, has been involved in several costly incidents. To prevent similar incidents, the study of HAN safe storage and handling boundary has become extremely important for industries. However, HAN decomposition involves complicated reaction pathways due to its autocatalytic behavior and therefore presents a challenge for definition of safe boundaries of HAN storage and handling. This research focused on HAN decomposition behavior under various conditions and proposed isothermal aging testing and kinetic-based simulation to determine safety boundaries for HAN storage and handling. Specifically, HAN decomposition in the presence of glass, titanium, stainless steel with titanium, or stainless steel was examined in an Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). n-th order kinetics was used for initial reaction rate estimation. Because stainless steel is a commonly used material for HAN containers, isothermal aging tests were conducted in a stainless steel cell to determine the maximum safe storage time of HAN. Moreover, by changing thermal inertia, data for HAN decomposition in the stainless steel cell were examined and the experimental results were simulated by the Thermal Safety Software package. This work offers useful guidance for industries that manufacture, handle, and store HAN. The experimental data acquired not only can help with aspects of process safety design, including emergency relief systems, process control, and process equipment selection, but also is a useful reference for the associated theoretical study of autocatalytic decomposition behavior.

Zhang, Chuanji

2003-05-01T23:59:59.000Z

392

Guidelines for Handling Confidential Information by Remote Access  

E-Print Network (OSTI)

Guidelines for Handling Confidential Information by Remote Access You have signed an OHSU of your access to OHSU electronic information and/or other sanctions. Remember, using remote access of the OHSU facilities. When you are utilizing remote access, you must provide the same level of security used

Chapman, Michael S.

393

A business process modeling notation extension for risk handling  

Science Conference Proceedings (OSTI)

During the years of prosperity, numerous organizations neglected numerous aspects of risk management. As systematic approach to handling identified risks is crucial to achieving success by the organization, modern business modeling standards and techniques ... Keywords: BPMN extension, business process modeling notation, risk management

Bartosz Marcinkowski; Michal Kuciapski

2012-09-01T23:59:59.000Z

394

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

395

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

396

Alternative gaseous-fuels safety assessment  

DOE Green Energy (OSTI)

A relative safety assessment of alternative gaseous and reference liquid fuels utilized for light automotive transportation in the public sector was completed. The specific fuels considered were compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), and the liquid fuels, gasoline and diesel. The assessment methodology describes and develops the relative hazards of these fuels from an integrated generic physicochemical property and accident scenario point of view. A technique involving a method of eliciting expert judgment combined with a comparative scoring methodology was applied in establishing fuel relative safety rankings. Limitations of this type of assessment are discussed. Selected accident scenarios included fuel leakage in both residential and public garages; fueling line rupture at a refueling station in the presence of user vehicles or delivery vehicles; and vehicle collisions under rural, urban, and vehicular tunnel conditions. Overall, the results obtained demonstrate dependency upon the specific application or scenario. Gaseous fuels have increased relative risks in certain situations and are relatively safe in others. The results suggest that alternative gaseous fuels are not disqualified for public usage. The assessment also provides rationale for the development of selected safe handling criteria and recommendations.

Krupka, M.C.; Peaslee, A.T. Jr.; Laquer, H.L.

1983-01-01T23:59:59.000Z

397

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

398

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

399

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

400

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

402

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

403

Methodology for Managing the Handling and Combustion of Spot Coal  

Science Conference Proceedings (OSTI)

Fuel purchases can constitute 80 percent of generation costs for a coal-fired power plant. Therefore, reducing fuel costs is often a key strategy for reducing generation costs. Power producers have found the spot coal market to be a viable option for filling the gaps in a plant's coal supply portfolio. On average, over the last 10 years, approximately 33 percent of the coal purchased was in the form of spot contracts. While lower quality, cheaper fuels reduce fuel costs; unit capacity, availability, and ...

2007-12-20T23:59:59.000Z

404

Evidence for long range movement of Bi-2212 within the filament bundle on melting and its significant effect on J  

E-Print Network (OSTI)

. The measurement of the Ag area (the white fraction of the images) for each sample was made by image analysisEvidence for long range movement of Bi-2212 within the filament bundle on melting and its.1088/0953-2048/24/7/075016 Evidence for long range movement of Bi-2212 within the filament bundle on melting and its significant

McQuade, D. Tyler

405

April 15, 1993 / Vol. 18, No. 8 / OPTICS LETTERS 565 Confocal microscopy through a fiber-optic imaging bundle  

E-Print Network (OSTI)

). In the system of Fig. 1, one end of a fiber-optic imaging bundle is placed at the focal plane of lens LiApril 15, 1993 / Vol. 18, No. 8 / OPTICS LETTERS 565 Confocal microscopy through a fiber-optic microscope with a fiber-optic imaging bundle is presented, and experimental results are shown todemonstrate

Gmitro, Arthur F.

406

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

407

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

408

A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy  

SciTech Connect

For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

Rozon, Daniel; Shen Wei [Institut de Genie Nucleaire (Canada)

2001-05-15T23:59:59.000Z

409

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

410

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

411

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

412

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

413

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

414

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

415

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

416

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

417

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

418

MELCOR simulation of the PBF (Power Burst Facility) severe fuel damage test 1-1  

DOE Green Energy (OSTI)

This paper describes a MELCOR version 1.7.1 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-1 test. The input data for the simulation was obtained from the SFD 1-1 Test Results Report and from SCDAP input. Results are presented for the transient two-phase interface level in the core, fuel and clad temperatures at various elevations in the fuel bundle, clad oxidation, hydrogen generation, fission product release, and heat transfer to the surrounding structures. Comparisons are made with experimental data and predictions from STCP and the NRC's mechanistic code SCDAP (version 18). 6 refs., 12 figs.

Madni, I.K.

1989-01-01T23:59:59.000Z

419

Irradiated Fuels Examination Laboratory (IFEL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Fuels Examination Laboratory Irradiated Fuels Examination Laboratory May 30, 2013 The Irradiated Fuels Examination Laboratory (IFEL) was initially designed and constructed to permit the safe handling of increasing levels of radiation in the chemical, physical, and metallurgical examination of nuclear reactor fuel elements and reactor parts. The IFEL was constructed in 1963 and is a two-story brick building with a partial basement. The front or northern-most section is a single-story office area. The two story area to the immediate rear houses the cell complex, the operating areas, and other supporting activities. The office area is isolated from the main part of the building, so the office area can be excluded from the secondary containment zone. The facility has a gross floor area of about 27,000 ft2.

420

New Experimental Studies of Thermal-Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR (New Experimental Studies of Thermal-hydraulics of Rod Bundles) project is a multi-year collaborative endeavor of EPRI, Electricit de France (EDF), and Commissariat lEnergie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2008-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The UNEP Project CD4CDM BUNDLING SMALL-SCALE CDM PROJECTS  

E-Print Network (OSTI)

costs and low sales realizations deter project developers from offering Carbon Emission Reductions (CER it hard to bear high up-front costs and risk capital for running projects through the CDM marketThe UNEP Project CD4CDM BUNDLING SMALL-SCALE CDM PROJECTS December, 2004 H V Kumar S V Kulkarni

422

Tubular Surface Evolution for Segmentation of the Cingulum Bundle From DW-MRI  

E-Print Network (OSTI)

Tubular Surface Evolution for Segmentation of the Cingulum Bundle From DW-MRI Vandana Mohan1 Diffusion-Weighted Imagery (DW-MRI) of the brain. The CB is a tube-like structure in the brain, but vary globally. Standard region-based segmentation tech- niques adapted to DW-MRI are not suitable here

Paris-Sud XI, Université de

423

New Experimental Studies of Thermal-Hydraulics in Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

The NESTOR (New Experimental Studies of Thermal-Hydraulics of Rod Bundles) project is a multiyear collaborative endeavor of EPRI, Electricitde France (EDF), and Commissariat l'Energie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to axial offset anomaly (AOA) in pressurized water reactor (PWR) cores.

2006-12-19T23:59:59.000Z

424

New Experimental Studies of Thermal-Hydraulics of Rod Bundles (NESTOR)  

Science Conference Proceedings (OSTI)

NESTOR (New Experimental Studies of Thermal-hydraulics of Rod Bundles) project is a multiyear collaborative endeavor of EPRI, Electricite de France (EDF), and Commissariat a l'Energie Atomique (CEA). The project is aimed at elucidating thermal-hydraulics unknowns pertaining to the problem of axial offset anomaly (AOA) in PWR cores.

2005-12-05T23:59:59.000Z

425

Rod Bundle Heat Transfer for Pressurized Water Reactors at Operating Conditions  

Science Conference Proceedings (OSTI)

Currently available heat transfer correlations for subcooled forced convection and subcooled boiling have not been validated with rod-array data at typical PWR fluid conditions. At the present time, rod bundle heat transfer processes cannot be analyzed with sufficient accuracy to make sound decisions regarding changes that might avoid an Axial Offset Anomaly (AOA).

2000-07-14T23:59:59.000Z

426

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management  

SciTech Connect

This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

1994-06-01T23:59:59.000Z

427

Research and development of americium-containing mixed oxide fuel for fast reactors  

SciTech Connect

The present status of the R and D program for americium-containing MOX fuel is reported. Successful achievements for development of fabrication technology with remote handling and evaluation of irradiation behavior together with evaluation of thermo-chemical properties based on the out-of-pile experiments are mentioned with emphasis on effects of Am addition on the MOX fuel properties. (authors)

Tanaka, Kosuke; Osaka, Masahiko; Sato, Isamu; Miwa, Shuhei; Koyama, Shin-ichi; Ishi, Yohei; Hirosawa, Takashi; Obayashi, Hiroshi; Yoshimochi, Hiroshi; Tanaka, Kenya [Japan Atomic Energy Agency: 4002 Narita-cho, O-arai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan)

2007-07-01T23:59:59.000Z

428

55Home Power #21 February / March 1991 ALTERNATIVES TO FOSSIL FUELED  

E-Print Network (OSTI)

be handled by the same devices that regulate natural gas and it will work in burners or as a fuel is a simple hydrocarbon gas which occurs in natural gas and can also be obtained from anaerobic bacterial replacement for fossil fuel gases (natural gas or liquified petroleum gases such as propane or butane). It can

429

Noise impact evaluation of a power generating station and a refuse?derived fuel facility  

Science Conference Proceedings (OSTI)

Community noiseimpact assessment of a planned addition of refuse?derived fuel (RDF) facility adjacent to a fossil?fueled power plant was conducted using a computerized atmospheric sound propagation model. Close?in measurements of power plant operation and coal handling system were used for station input

V. M. Lee; W. L. Knoll

1979-01-01T23:59:59.000Z

430

A Fuel Channel Design for CANDU-SCWR  

Science Conference Proceedings (OSTI)

The CANDU{sup R}-Supercritical Water Reactor (CANDU-SCWR) is one of the six reactor concepts being considered by the Generation-IV International Forum (GIF) for international collaborative R and D. With SCW coolant, the thermodynamic efficiency is increased to over 40%. The CANDU-SCWR is moderated using heavy water, and it has fuel bundles residing inside horizontal pressure tubes, similar to the current CANDU design. The coolant, however, is light water at 25 MPa, with an inlet temperature of 350 deg. C and an outlet temperature of 625 deg. C. Because of the high temperature and high pressure of the coolant, the standard CANDU pressure tube design cannot be used. This paper presents one of the insulated pressure tube designs being considered for the CANDU-SCWR fuel channels. Unlike current CANDU reactors, the proposed CANDU-SCWR fuel channel does not use calandria tubes to separate the pressure tubes from the moderator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about 80 deg. C. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the relatively cold pressure tube. The material selection for each fuel channel component depends on its function. The fuel sheaths and the perforated liner must have high corrosion resistance in SCW, although their resident times are significantly different. The insulator must have high thermal resistance and corrosion resistance in SCW, plus sufficient strength to bear the weight of the fuel bundles without significant thickness reduction during its design life. The pressure tube is the pressure boundary material, so it must have high strength to contain the coolant. One common requirement for all in-core fuel channel components is that they should be as neutron transparent as possible. The irradiation deformation of all these components must also be considered in their design. This paper presents the design of this fuel channel, reviews existing data for materials, indicates where more data are required, and summarizes our plans to obtain these data. (authors)

Chow, C.K.; Bushby, S.J.; Khartabil, H.F. [Atomic Energy of Canada, Ltd. (Canada)

2006-07-01T23:59:59.000Z

431

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

432

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

433

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

434

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

435

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

436

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

437

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

438

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

439

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

440

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

Note: This page contains sample records for the topic "fuel bundle handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

442

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

443

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

444

Development and implementation of automated radioactive materials handling systems  

SciTech Connect

Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation.

Jacoboski, D.L.

1992-12-01T23:59:59.000Z

445

Optimizing Ash Handling - SmartAshTM System Evaluation  

Science Conference Proceedings (OSTI)

High ash levels in electrostatic precipitator (ESP) hoppers are notorious for increasing particulate matter (PM) emissions and plume opacity. Conventional means of monitoring hopper ash levels and fly ash handling system performance have been time-consuming and problematic. Neundorfer, Inc., has developed a fly ash conveying system-monitoring package (SmartAshSystem) that provides improved monitoring of fly ash removal process parameters and provides graphical depictions of ash system performance. Additi...

2007-11-21T23:59:59.000Z

446

EURISOL-DS Multi-Megawatt Target: Remote Handling Equipment  

E-Print Network (OSTI)

The design proposed within Task #2 of the EURISOL Design Study for the remote handling of the mercury converter target and its associated loop is presented with particular emphasis on achieving rapid turn-around during routine maintenance.The converter target needs to be completely exchanged every four months due to the high irradiation damage sustained. Other components are less susceptible to damage but may need periodic maintenance; in particular the on-line isotopic separation unit in the mercury loop.

Cyril Kharoua, Olivier Choisnet, Yacine Kadi, Karel Samec (CERN)

447

Safety aspects of large-scale handling of hydrogen  

DOE Green Energy (OSTI)

Since the decade of the 1950s, there has been a large increase in the quantity of hydrogen, especially liquid hydrogen, that has been produced, transported, and used. The technology of hydrogen, as it relates to safety, has also developed at the same time. The possible sources of hazards that can arise in the large-scale handling of hydrogen are recognized, and for the most part, sufficiently understood. These hazard sources are briefly discussed. 26 refs., 4 figs.

Edeskuty, F.J.; Stewart, W.F.

1988-01-01T23:59:59.000Z

448

CLASSIFICATION OF THE MGR WASTE HANDLING BUILDING ELECTRICAL SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste handling building electrical system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

S.E. Salzman

1999-08-31T23:59:59.000Z

449

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

450

Draft Environmental Assessment on the Remote-handled Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

451

Automatic Continuous Commissioning of Measurement Instruments in Air Handling Units  

E-Print Network (OSTI)

This paper presents a robust strategy based on a condition-based adaptive statistical method for automatic commissioning of measurement instruments typically employed in air-handling units (AHU). The multivariate statistic method, principal component analysis (PCA), is adopted and modified to monitor the air handling process. Two PCA models are built corresponding to the heat balance and pressure-flow balance of the air-handling process. Sensor faults can be detected and isolated using the Q-statistic and the Q-contribution plot. The fault isolation ability against typical component faults is improved using knowledge-based analysis. A novel condition-based adaptive scheme is developed to update the PCA models with the operation conditions for continuous online application. A commissioning tool is developed to implement the strategy. Simulation tests and field tests in a building in Hong Kong were conducted to validate the automatic commissioning strategy for typical AHU. The integration of the tool with a building management system (BMS) and its application is demonstrated.

Xiao, F.; Wang, S.

2006-01-01T23:59:59.000Z

452

METHODS OF HANDLING AND LAUNDERING BERYLLIUM-CONTAMINATED GARMENTS  

SciTech Connect

In beryllium industries, it has been the general practice to supply workers with protective clothing. Problems in handling and laundering this clothing were investigated. These problems include: potential hazard to laundry workers and subsequent wearers of the clothing, special laundering techniques, methods to determine the degree of contamination on garments, and determining the most desirable types of garments for the purpose. Four methods to determine the degree of contamination discussed include the shake test, the vacuum test, the rinse test, and the smear test. Assuming conventional laundering procedures have been used, the potential hazard to subsequent wearers of the garment is minimal. Standards for determining adequacy of laundry are suggested. These ar 0.1 mu g Be/cm/sup 2/ as determined by the vacuum test, or 200 mu g Be/garment as determined by the rinse test. Possible hazard to those handling contaminated garments could be significant. This hazard is best controlled simply by use of wet methods. Included in this report is the summary of a survey conducted to determine how these problems are handled in other beryllium industries. (auth)

Cohen, J.J.

1963-04-01T23:59:59.000Z

453

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

454

DOE - Office of Legacy Management -- Colorado Fuel and Iron - NY 0-08  

Office of Legacy Management (LM)

Fuel and Iron - NY 0-08 Fuel and Iron - NY 0-08 FUSRAP Considered Sites Site: Colorado Fuel and Iron (NY.0-08 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Watervliet , New York NY.0-08-1 Evaluation Year: 1987 NY.0-08-1 Site Operations: Site was a contractor to DuPont. Exact nature of operations is not clear. No records to indicate that radioactive materials were handled at the site. NY.0-08-1 Site Disposition: Eliminated NY.0-08-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Colorado Fuel and Iron NY.0-08-1 - DOE Memorandum/Checklist; S.Jones to the File; Subject:

455

Preliminary concepts for detecting national diversion of LWR spent fuel  

SciTech Connect

Preliminary concepts for detecting national diversion of LWR spent fuel during storage, handling and transportation are presented. Principal emphasis is placed on means to achieve timely detection by an international authority. This work was sponsored by the Department of Energy/Office of Safeguards and Security (DOE/OSS) as part of the overall Sandia Fixed Facility Physical Protection Program.

Sonnier, C.S.; Cravens, M.N.

1978-04-01T23:59:59.000Z

456

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

457

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

DOE Green Energy (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

458

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

459

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

460

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,