Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

2

Certification of alternative aviation fuels and blend components  

SciTech Connect (OSTI)

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

3

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

4

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

5

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

6

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

7

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

8

Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Diesel Fuel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Diesel Fuel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel

9

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

10

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

11

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

12

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

13

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

14

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

15

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

16

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

17

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

18

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

19

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

20

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

22

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

23

Impact of Biodiesel on Fuel System Component Durability  

SciTech Connect (OSTI)

A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

Terry, B.

2005-09-01T23:59:59.000Z

24

Mid-Blend Ethanol Fuels - Implementation Perspectives | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mid-Blend Ethanol Fuels - Implementation Perspectives Mid-Blend Ethanol Fuels - Implementation Perspectives Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel...

25

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

26

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

27

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

28

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

29

Alternative Fuels Data Center: Biodiesel Production and Blending Equipment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Blending Equipment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Equipment Tax Credit on AddThis.com... More in this section... Federal State

30

Alternative Fuels Data Center: Biodiesel Blend Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Biodiesel Blend Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The

31

Alternative Fuels Data Center: Biofuels Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Blend Use Biofuels Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blend Use Requirement Whenever possible, governmental entities and state educational institutions must fuel diesel vehicles with biodiesel blends containing at least 2%

32

Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Blending Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with

33

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

34

Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Distribution Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Distribution Mandate All state-owned diesel fueling facilities must provide fuel containing at

35

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

36

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit A biodiesel blender located in Indiana may receive a credit of $0.02 per gallon of blended biodiesel produced at a facility located in Indiana. The

37

Alternative Fuels Data Center: Biodiesel Blend Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Biodiesel Blend Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Tax Exemption Biodiesel blends of at least 20% (B20) that are used for personal, noncommercial use by the individual that produced the biodiesel portion of

38

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

39

Alternative Fuels Data Center: Biodiesel Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Tax Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of the cost of qualified equipment used for storing or blending biodiesel with

40

Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Retailer Tax Credit Retailers whose total diesel sales consist of at least 50% biodiesel blends

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

42

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

43

Alternative Fuels Data Center: Biofuel Blending Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blending Biofuel Blending Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blending Contract Regulation Any provision in a contract between a fuel wholesaler and a refiner or

44

Alternative Fuels Data Center: Biodiesel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Use Biodiesel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Use Requirement Any diesel-powered vehicle the state, county or local government, school district, community college, public college or university, or mass transit

45

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

46

Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Blending Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Blending Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production and Blending Tax Credit

47

Alternative Fuels Data Center: Supply of Petroleum Products for Blending  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Supply of Petroleum Supply of Petroleum Products for Blending with Biofuels to someone by E-mail Share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Facebook Tweet about Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Twitter Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Google Bookmark Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Delicious Rank Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on Digg Find More places to share Alternative Fuels Data Center: Supply of Petroleum Products for Blending with Biofuels on AddThis.com... More in this section... Federal

48

BLENDING PROBLEM A refinery blends four petroleum components into three grades of  

E-Print Network [OSTI]

BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

Shier, Douglas R.

49

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

50

Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2  

E-Print Network [OSTI]

58 45 51 H Content (% mass) 13.6 14.5 15.5 14.3 15.1 Heat of Combust. (MJ/kg) 43.3 43.8 44.4 43.8 441 Table S1. Fuel Properties. JP-8 Blend-1 FT-1 Blend-2 FT-2 Feedstock Petroleum Petroleum & Natural Gas Natural Gas Petroleum & Coal Coal Sulfur (ppm by mass) 1148 699 19 658 22 Alkanes (% vol.) 50

Meskhidze, Nicholas

51

Mid-Blend Ethanol Fuels ? Implementation Perspectives  

Broader source: Energy.gov (indexed) [DOE]

Wall" * E15 is the answer to the question nobody asked * E85 has no market penetration * GHG Rulemaking removes incentives for OEMs to produce FFV vehicles Page 15 Mid Blend...

52

Properties and Performance of Levulinate Esters as Diesel Blend Components  

Science Journals Connector (OSTI)

The esters were treated with the cetane-enhancing compound 2-ethyl hexyl nitrate and were tested as blends with diesel fuel in a 2008 model year Cummins ISB engine with the measurement of regulated pollutant emissions over the federal heavy duty diesel transient cycle. ... The various approaches to biomass conversion can be divided into two general types: thermochemical (gasification, pyrolysis, acid hydrolysis, combustion, and liquefaction) and biochemical (fermentation, enzymatic hydrolysis, and anaerobic and aerobic digestion). ...

Earl Christensen; Aaron Williams; Stephen Paul; Steve Burton; Robert L. McCormick

2011-10-05T23:59:59.000Z

53

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

SciTech Connect (OSTI)

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

54

Degradation studies on acid–base blends for both LT and intermediate T fuel cells  

Science Journals Connector (OSTI)

Abstract In this study the ex-situ and in-situ behavior of acid–base blend membranes from sulfonated polyethersulfone and a partially fluorinated sulfonated polymer (prepared by condensation of decafluorobipenyl with bisphenol AF, followed by sulfonation of the obtained polymer) and two different polybenzmidazoles (F6-PBI and PBIOO®) was investigated. Two types of acid–base blend membranes from the abovementioned polymers were prepared and characterized: acid–base blend membranes with a molar excess of acidic blend component for low-T H2 fuel cells (LT-FC) where the proton conductivity is overtaken by the sulfonic acid groups, and blend membranes comprising a molar excess of basic blend component which were subsequently doped with phosphoric acid for the usage in intermediate-T H2 fuel cells (IT-FC) where the network of phosphoric acid molecules in the membrane provides the proton conduction. For elucidation of the radical stability of the membranes, the membranes were subjected to Fenton's Reagent and were operated in a H2-PEMFC. After these tests, the membranes were investigated via SEC for molecular weight degradation. As a result, correlations could be found between degradation of the blend membranes in the fuel cell and after Fenton's test. Moreover, at IT-FC membranes, a correlation could be found between doping degree and fuel cell performance which are discussed in this paper. One of the membranes, a H3PO4-doped base-excess membrane from sPSU and PBIOO showed an excellent performance in an IT-FC at 180 °C of 0.85 A/cm2@0.5 V without pressurization of the reactant gases.

A. Chromik; J.A. Kerres

2013-01-01T23:59:59.000Z

55

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

56

Alternative Fuels Data Center: Installation of Alternative Fuel Components  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Installation of Installation of Alternative Fuel Components in Vehicles to someone by E-mail Share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Facebook Tweet about Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Twitter Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Google Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Delicious Rank Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Digg Find More places to share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on AddThis.com... More in this section... Federal

57

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

58

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

59

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

60

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

62

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

Stefanopoulou, Anna

63

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

64

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

65

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

66

Rapid Monitoring of Hydrocarbon Blending Stocks in Modified Aviation Turbine Fuels  

Science Journals Connector (OSTI)

......JP-4 jet fuel. For JP-4 turbine fuel, the analysis is relatively...blending stocks in JP-4 aviation turbine fuel. Introduction High resolution...principal Air Force aviation turbine fuel, and the incorporation...Scientific). The column's efficiency was measured and found to be......

P.C. Hayes; Jr.; E.W. Pitzer

1984-10-01T23:59:59.000Z

67

Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification  

Science Journals Connector (OSTI)

A nonlinear optimization model is developed in this work to analyze biodiesel–ethanol–diesel (BED) ternary blending processes. The model establishes optimal blends to improve the system profitability given production costs, market demand, and fuel prices while meeting multiple property criteria such as kinematic viscosity, density, lower heating value, cloud point, cetane number, fuel stability and sulfur content. Pertinent fuel mixing rules for predicting the fuel properties of BED blends were extrapolated from previous works and applied as constraints to the present model. Several dynamic and/or uncertainty factors were explored in further depth to quantify their impacts on the fuel composition of BED blends including petro-diesel supply reduction, diesel production cost, diesel blends market retail price, and policy changes on bio-fuel subsidies. By examining key optimization sensitivity analysis such as shadow prices and opportunity costs, the crucial limits or constraints on fuel specifications can be identified and used to proactively identify and promote the development of potential additives. The model also suggests the government policy of simultaneously implementing bio-fuel tax credits and mandates may not have a higher contribution to promoting bio-fuel production than the case only with tax credits for the firms with the goal of profit maximization. The firms enable 5–8% increase of the optimal profit from BED blends by utilizing ethanol derived from food waste feedstocks instead of edible biomass.

Jiefeng Lin; Gabrielle Gaustad; Thomas A. Trabold

2013-01-01T23:59:59.000Z

68

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

69

Chapter 30 - Biofuel Economics and Policy: The Renewable Fuel Standard, the Blend Wall, and Future Uncertainties  

Science Journals Connector (OSTI)

Abstract Biofuels are currently in a state of flux. The main operative policy for biofuels in the United States is the Renewable Fuel Standard (RFS). It specifies a minimum quantity of four different types of biofuels that must be blended each year in the United States through 2022. However, the United States also faces what is called the blend wall, which is a physical limit on blending given that the United States blends at a 10% rate. The blend wall upper limit is now below the RFS lower limit for corn ethanol, and that is causing problems with the administration of the RFS. This chapter explains how the RFS functions and then examines alternatives to the current administration of the RFS. The RFS is critical for cellulosic biofuels and biodiesel, and its elimination would likely end use of those fuels. Corn ethanol, however, is now much less expensive than gasoline and would continue.

Wallace E. Tyner

2015-01-01T23:59:59.000Z

70

Heavy Alcohols as a Fuel Blending Agent for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations p-21ramirez.pdf More Documents & Publications HD...

71

Meet changing fuel requirements with online blend optimization  

SciTech Connect (OSTI)

Compania Espanola de Petroleos (CEPSA) embarked on an overall refinery automation program, with state-of-the-art gasoline blending being one of the highest priorities. The result of this effort is a sophisticated computerized gasoline blending system using offline LPs for initial optimal recipe calculation, an online LP for real-time blend recipe reformulation using online analyzers for blending model adjustment, complete automation of blending sequence startup and shutdown, generation of end of blend quality performance reports, and real-time integration between lab, tank gauging, plant information, and blending systems. The entry of Spain in the EEC brought with it the need to quickly adapt to the requirements of an openly competitive marketplace emphasizing no lead, oxygenated, high performance gasolines and ISO 9000 quality standards. The blending system allowed CEPSA to produce lowest cost, minimum giveaway gasolines, while having the flexibility to produce a wide variety of modern gasolines serving the Western European market. The paper describes the blender architecture, optimizer linear programming, man machine interface, and results from the blending system.

Diaz, A. [Compania Espanola de Petroleos, S.A., Cadiz (Spain). Algeciras Refinery; Barsamian, J.A. [ABB Simcon Inc., Bloomfield, NJ (United States)

1996-02-01T23:59:59.000Z

72

Advanced Petroleum Based Fuels Research at NREL  

Broader source: Energy.gov (indexed) [DOE]

Fuel Impacts on Current and Emerging Engines Goals and Objectives * VTP Task 3: Petroleum displacing fuels and fuel blending components - Study combustion and emissions...

73

Performance of a direct diesel engine using aviation fuels blended with biodiesel  

Science Journals Connector (OSTI)

In this study, jet fuel (JF) and railroad fuel (D2) with SME blends (5%, 20%, 50%) were used in a four-cylinder, naturally aspirated, direct (DI) diesel engine. The engine was operated under full load and tested at various speeds to determine the engine's performance and exhaust emission characteristics. The experimental results show that as the SME ratio of the fuels increases, the break specific fuel consumption (BSFC) and exhaust temperature increase; the SME and its blends show a slight drop in engine performance. In this experiment, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and smoke opacity values were measured for each fuel. The results of the emission tests revealed that the oxygen content of SME provided a significant reduction in CO and smoke opacity emissions. However, when the test engine was fuelled by SME and its blends, NOx emissions increased.

Burak Gökalp; Hakan Serhad Soyhan; Halil ?brahim Sarac

2012-01-01T23:59:59.000Z

74

The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition  

Science Journals Connector (OSTI)

Abstract In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.

Seongyool Ahn; Gyungmin Choi; Duckjool Kim

2014-01-01T23:59:59.000Z

75

Exhaust emissions and mutagenic effects of diesel fuel, biodiesel and biodiesel blends  

Science Journals Connector (OSTI)

Abstract The replacement of petroleum-derived fuels by renewable biogenic fuels has become of worldwide interest with the environmental effects being scientifically investigated. Biodiesel has been proven to be a suitable alternative to petrodiesel and blending up to 20% biodiesel with petrodiesel is policy promoted in the USA and the EU. To investigate the influence of blends on the exhaust emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) using blends of rapeseed-derived biodiesel and petrodiesel. Regulated and non-regulated exhaust compounds were measured and their mutagenic effects were determined using the Bacterial Reverse Mutation Assay (Ames-Test) according to OECD Guideline 471. Exhaust emissions of blends were approximately linearly dependent on the blend composition, particularly when considering regulated emissions. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust emissions. In detail, an increase of the mutagenic potential was found for blends with the maximum observed for B20. From this point of view, B20 must be considered as a critical blend when petrodiesel and biodiesel are used as binary mixtures.

Olaf Schröder; Jürgen Bünger; Axel Munack; Gerhard Knothe; Jürgen Krahl

2013-01-01T23:59:59.000Z

76

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network [OSTI]

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

77

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

78

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS  

Office of Scientific and Technical Information (OSTI)

Annual Technical Progress Report for Project Entitled "Impact Annual Technical Progress Report for Project Entitled "Impact of DME-Diesel Fuel Blend Properties on Diesel Fuel Injection Systems" May 16, 2002 - May 15, 2003 Elana M. Chapman, Andre Boehman, Kimberly Wain, Wallis Lloyd, Joseph M. Perez, Donald Stiver, Joseph Conway Report Issue Date: June 2003 DOE Award Number: DE-FC26-01NT41115 The Pennsylvania State University The Energy Institute University Park, PA 16802 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

79

Evaluation of Fuel Properties of Butanol?Biodiesel?Diesel Blends and Their Impact on Engine Performance and Emissions  

Science Journals Connector (OSTI)

Values of specific fuel consumption of engine when fueled with different blends and pure diesel at different speeds are shown in Figure 4. ... Chandra, R.; Kumar, R. Fuel properties of some stable alcohol?diesel microemulsions for their use in compression ignition engines Energy Fuels 2007, 21, 3410– 3414 ... Liu, B.; Huang, Z.; Miao, H.; Di, Y.; Jiang, D.; Zeng, K. Combustion and emissions of a DI diesel engine fuelled with diesel?oxygenate blends Fuel 2008, 87, 2691– 2697 ...

Rakhi N. Mehta; Mousumi Chakraborty; Pinakeswar Mahanta; Parimal A. Parikh

2010-07-15T23:59:59.000Z

80

Pilot plant assessment of blend properties and their impact on critical power plant components  

SciTech Connect (OSTI)

A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends  

Science Journals Connector (OSTI)

Abstract The need to produce energy from poor quality carbonaceous materials has increased, in order to reduce European dependency on imported fuels, diversify the use of new and alternative fuels and to guarantee secure energy production routes. The valorisation of a poor quality solid residual fuel (SRF), with high content of ash and volatile matter, through its conversion into fuel gas was studied. The rise of gasification temperature and equivalent ratio (ER) led to higher gas yields and to lower undesirable gaseous components, though higher ER values led to a gas with lower energetic content. To reduce the negative effect of SRF unfavourable characteristics and to diversify the feedstocks used, SRF blended with three different types of biomass wastes: forestry pine, almond shells and olive bagasse was co-gasified. The use of biomass wastes tested was valuable for SRF gasification, as there was an increase in the overall reactivity and in H2 production and a reduction of about 55% in tar released, without great changes in gas yield and in its HHV. The use of natural minerals mixed with silica sand was also studied with the aim of improving SRF gasification performance and fuel gas quality. The best results were obtained in presence of dolomite, as the lowest tar and H2S contents were obtained, while an increase in gas yield was observed. Co-gasification of this poor quality SRF blended with biomass wastes in presence of dolomite increased gas yield by 25% while tar contents decreased by 55%.

Filomena Pinto; Rui Neto André; Carlos Carolino; Miguel Miranda; Pedro Abelha; Daniel Direito; Nikos Perdikaris; Ioannis Boukis

2014-01-01T23:59:59.000Z

82

Cell Component Accelerated Stress Test Protocols for PEM Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Accelerated Stress Test Protocols for PEM...

83

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

84

Fuel Cell Subsystems and Components | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Subsystems and Components Fuel Cell Subsystems and Components As recommended by the 2004 National Research Council report, the program continues to increase its support...

85

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

86

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02anitescu.pdf More Documents & Publications...

87

The relationship between the thermoplastic behavior of blends and their component coals  

SciTech Connect (OSTI)

The thermoplastic behaviors of a number of coking coal blends were measured using proton magnetic resonance thermal analysis (PMRTA) to determine to what extent they were affected by interactions between the component coals. Most blends showed evidence that at temperatures near their temperatures of maximum fluidity the extent to which they fused was different to that expected if the coals did not interact. Only blends of coking coals of different rank fused to a greater extent than expected in the absence of interactions. Semi-anthracite, low rank coals and charcoal reduced the extent of fusion of coking coals to values below those expected if they were acting as inert diluents. These interactions are interpreted as being mediated by transfer of volatile material between the coals on heating.

Sakurovs, R.

1999-07-01T23:59:59.000Z

88

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

89

Effect of Bioethanol Blended Diesel Fuel and Engine Load on Spray, Combustion, and Emissions Characteristics in a Compression Ignition Engine  

Science Journals Connector (OSTI)

Yan et al.(8) investigated the combustion and emission characteristics of diesel engines fueled with ethanol–diesel blended fuel in a single cylinder diesel engine. ... Figure 11 shows the indicated specific fuel consumption (ISFC) characteristics of diesel–bioethanol blended fuels at various engine loads. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Su Han Park; In Mo Youn; Yunsung Lim; Chang Sik Lee

2012-07-03T23:59:59.000Z

90

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network [OSTI]

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

91

Performance and Emissions of a Compression-Ignition Engine Fueled with Dimethyl Ether and Rapeseed Oil Blends  

Science Journals Connector (OSTI)

Sorenson and Mikkelsen2 had studied DME in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Meanwhile, these parameters are compared with those of pure diesel fuel in order to clarify the effect of blends on the combustion and emission of engines (a CI engine cannot run for much longer of a period with pure DME fuel, so a comparison is only made with pure diesel fuel). ... Moreover, owing to the lower calorific value of the blend compared to diesel fuel, the fuel supply amount per cycle for blend operation is enlarged by increasing the plunger stroke of the fuel pump in order to make the power and torque output of the blends approach those of the corresponding diesel engine. ...

Wang Ying; Zhou Longbao

2007-04-20T23:59:59.000Z

92

Detailed HCCI Exhaust Speciation- ORNL Reference Fuel Blends  

Broader source: Energy.gov [DOE]

·Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI engine emissions.

93

NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-01-01T23:59:59.000Z

94

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

95

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

96

Cell Component Accelerated Stress Test Protocols for PEM Fuel...  

Broader source: Energy.gov (indexed) [DOE]

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) Revised May...

97

Truck loading rack blending  

SciTech Connect (OSTI)

Blending, the combining of two or more components to make a single product, has become widely used in most loading rack applications. Blending should not be confused with additive injection, which is the injection of very small doses of enhancers, detergents and dyes into a product stream. Changes in the environmental protection laws in the early 90`s have put increasing demands on marketing terminals with regards to reformulated fuels and environmental protection concerns. As a result of these new mandates, terminals have turned to blending at the loading rack as an economical and convenient means in meeting these new requirements. This paper will discuss some of these mandates and how loading rack blending is used for different applications. Various types of blending will also be discussed along with considerations for each method.

Boubenider, E. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

98

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

99

Air and oxy-fuel combustion behaviour of petcoke/lignite blends  

Science Journals Connector (OSTI)

The pyrolysis and combustion behaviour of a petroleum coke (petcoke), an indigenous lignite and their 70/30 wt.% blend in air and oxy-fuel conditions were investigated by using non-isothermal thermo-gravimetric method (TGA) coupled with Fourier transform infrared (FTIR) spectrometer. Blend samples were prepared by mixing lignite, which has low calorific value, high ash and moisture contents with petcoke that has high calorific value, low ash and moisture content, in the proportion of 70:30. Pyrolysis tests were carried out in nitrogen and carbon dioxide environments which are the main diluting gases of air and oxy-fuel environments, respectively. Pyrolysis curves of parent fuels and their blend reveal close resemblance up to 700 °C in both N2 and CO2 environments. At higher temperatures, further weight loss taking place in N2 and CO2 atmospheres is attributed to calcite decomposition and CO2-char gasification reaction, respectively. Gasification reaction leads to significant increase in CO and COS formation as observed in FTIR evolution profiles. Almost identical experimental and theoretical pyrolysis profiles of the blend samples show that there is no synergy between the parent fuels of the blend in both pyrolysis environments. Combustion experiments were carried out in four different atmospheres; air, oxygen-enriched air environment (30% O2–70% N2), oxy-fuel environment (21% O2–79% CO2) and oxygen-enriched oxy-fuel environment (30% O2–70% CO2). Combustion experiments show that replacing nitrogen in the gas mixture by the same concentration of CO2 leads to delay in combustion (lower maximum rate of weight loss and higher burnout temperatures). Overall comparison of derivative thermogravimetry (DTG) profiles shows that effect of oxygen content on combustion characteristics is more significant than that of diluting gas in the combustion environment. At elevated oxygen levels, profiles shift through lower temperature zone, peak and burnout temperatures decrease, weight loss rate increases significantly and complete combustion is achieved at lower temperatures and shorter times. Theoretical and experimental combustion profiles of the blend mainly display different trends, which indicate synergistic interactions between lignite and petcoke during their combustion in different environments.

Nur Sena Yuzbasi; Nevin Selçuk

2012-01-01T23:59:59.000Z

100

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

102

Performance and Emissions of a Compression Ignition Engine Fueled with Diesel/Oxygenate Blends for Various Fuel Delivery Advance Angles  

Science Journals Connector (OSTI)

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus and Ofner,2 and Sorenson and Mikkelsen3 have studied dimethyl ether (DME) in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Although some previous work has revealed the characteristics of diesel/ethanol blends in a compression ignition engine (Satge de Caro et al.,14 Ali et al.15), there, however, is still much work that needs to be done in regard to the application of diesel/methanol blends in compression ignition engines, especially in clarifying the basic combustion and emission. ...

Zuohua Huang; Hongbing Lu; Deming Jiang; Ke Zeng; Bing Liu; Junqiang Zhang; Xibin Wang

2005-02-02T23:59:59.000Z

103

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

104

Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.  

SciTech Connect (OSTI)

Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium by mixing high fissile feed from new sources (e.g., spent UO{sub 2} pins) with the low fissile material recovered from the recycled transmutation fuel. The blending of the fuels is anticipated to aid the multi-recycle of the transuranics. A systematic study of blending strategies (for both IMF and MOX) has been initiated and is currently ongoing. This work extends the previous study that considered separation strategies for plutonium, neptunium, and americium recycling in MOX, CORAIL, and IMF{sub 6} by considering blending schemes and approach to continuous recycle. Plutonium and americium are recycled in order to reduce the intermediate term (100 to 1500 years after spent fuel irradiation) decay heat of the disposed waste which accounts for the bulk of the repository heating. Since the long-term released dose from the repository is dominated by neptunium, it is sensible to consume it by transmutation in a reactor, as well. Curium accounts for {approx}0.6% of the TRU mass in spent UO{sub 2} fuel ({approx}0.008% of the heavy metal), but does constitute significantly higher fractions in spent transmutation fuels. This initial evaluation will focus on blending strategies for the multirecycling of Pu+Np+Am. The impact of curium recycle will be investigated as part of the systematic study of blending strategies. The initial study focuses on understanding a simple strategy for IMF recycle and blending. More complex strategies (i.e., heterogeneous assemblies) will be evaluated later in the year, including enriched uranium support options. Currently, a preliminary study of a serial blending strategy has been performed in order to evaluate the impact of blending on the performance of the IMF recycle and to evaluate the potential for continuous or infinite recycle. The continuous recycle of Pu+Np+Am in IMF would allow for complete destruction of all heat contributing actinides in the same LWRs that originally produced them. The only transuranics sent to the repository would be those lost in reprocessing and curium if it is not eventually recycled.

Hoffman, E. A.; Nuclear Engineering Division

2005-04-29T23:59:59.000Z

105

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

106

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

SciTech Connect (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

107

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

108

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

109

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

110

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

111

Fuel Cell Animation- Fuel Cell Components (Text Version)  

Broader source: Energy.gov [DOE]

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

112

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

113

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

114

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect (OSTI)

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

115

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

116

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel  

Science Journals Connector (OSTI)

Effect of Injection Pressure on the Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Methanol-blended Diesel Fuel ... Recently, the use of diesel engines has increased by virtue of their low fuel consumption and high efficiencies. ... Tests on the engine fuelled with diesel only were made, and the performance evaluated to form a basis for comparison for those of ethanol-diesel dual fuelling. ...

Mustafa Canakci; Cenk Sayin; Ahmet Necati Ozsezen; Ali Turkcan

2009-05-04T23:59:59.000Z

117

Heavy Alcohols as a Fuel Blending Agent for Compression Ignition Engine Applications  

Broader source: Energy.gov [DOE]

Blends of Phytol and diesel (by volume) were compared against baseline diesel experiments and simulations

118

Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges  

SciTech Connect (OSTI)

This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

Cappelli, Mark; Mungal, M Godfrey

2014-10-28T23:59:59.000Z

119

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content  

E-Print Network [OSTI]

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

Alvarez, Pedro J.

120

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.  

SciTech Connect (OSTI)

Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

Herbinet, O; Pitz, W J; Westbrook, C K

2009-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and blended exclusively...

122

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

123

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

124

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

125

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

126

Electrochemical sensor for monitoring electrochemical potentials of fuel cell components  

DOE Patents [OSTI]

An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

1993-01-01T23:59:59.000Z

127

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Presentation by Acumentrics...

128

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM  

Science Journals Connector (OSTI)

Investigation of Biodiesel–Diesel Fuel Blends on Combustion Characteristics in a Light-Duty Diesel Engine Using OpenFOAM ... (1) In addition, biodiesel can be used in existing compression ignition (CI) or diesel engines with minimal or no modifications because its physicochemical characteristics are very similar to those of fossil diesel. ... However, when CME, PME, and SME are blended with 50 vol % of diesel fuel, the general trend as discussed above is not reproduced. ...

Harun Mohamed Ismail; Hoon Kiat Ng; Suyin Gan; Xinwei Cheng; Tommaso Lucchini

2012-11-12T23:59:59.000Z

129

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

130

Engine performance and emissions from the combustion of low-temperature Fischerâ??Tropsch synthetic diesel fuel and biodiesel rapeseed methyl ester blends  

Science Journals Connector (OSTI)

The combustion of oxygenated biodiesel (rapeseed methyl ester (RME)) improves the engine-out particulate matter, hydrocarbon and carbon monoxide (CO) emissions, while the low-temperature Fischerâ??Tropsch synthetic paraffinic diesel fuel improves engine-out NOx, CO, hydrocarbon and particulate matter emissions. Blending synthetic diesel (SD) fuel with oxygenated biodiesel could unlock potential performance synergies in the fuel properties (e.g. O2 content in RME and high cetane number of the synthetic fuels) of such blends and benefit engine performance and emissions. The combustion of synthetic diesel fuel/RME blend, named synthetic diesel B50, has shown similar combustion characteristics to diesel fuel, while simultaneous improvements in engine efficiency and smoke-NOx trade-off were achieved by taking advantage of the fuel's properties. The engine thermal efficiency was dependent on the fuel type, and followed the general trend: synthetic diesel > SDB50 > diesel > RME. Therefore, it has been shown that the design of a synthetic fuel with properties similar to the fuel blends presented in this work could improve engine-out NOx, smoke and hydrocarbon emissions and maintain or improve engine performance.

Kampanart Theinnoi; Athanasios Tsolakis; Sathaporn Chuepeng; Andrew P.E. York; Roger F. Cracknell; Richard H. Clark

2009-01-01T23:59:59.000Z

131

Development of decision support system to select the best fuel blend in IC engines to enhance the energy efficiency  

Science Journals Connector (OSTI)

This paper describes an application of hybrid MCDM technique for the selection of optimum blend in fish oil biodiesel among the six alternative fuel blends diesel, B20, B40, B60, B80 and B100 which is prepared by varying the amount of diesel with biodiesel. Brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), smoke, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), ignition delay (ID), combustion duration (CD) and maximum rate of pressure rise (MRPR) are considered as evaluation criteria. A single cylinder, constant speed and direct injection diesel engine with a rated output of 4.4 kW was used for exploratory analysis of evaluation criteria at different load conditions. The proposed model, fuzzy analytical hierarchy process (FAHP) is integrated with elimination et and choice translating reality (ELECTRE) to evaluate the optimum blend. Here the FAHP is used to determine the relative weights of the criteria, whereas ELECTRE is used for obtaining the final ranking of alternative blends.

G. Sakthivel; M. Ilangkumaran

2013-01-01T23:59:59.000Z

132

Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol  

Science Journals Connector (OSTI)

Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min?1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, \\{NOx\\} emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

C.S. Cheung; Yage Di; Zuohua Huang

2008-01-01T23:59:59.000Z

133

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

134

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USCAR FUEL CELL TECH TEAM USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) Revised May 26, 2010 Fuel cells, especially for automotive propulsion, must operate over a wide range of operating and cyclic conditions. The desired operating range encompasses temperatures from below the freezing point to well above the boiling point of water, humidity from ambient to saturated, and half-cell potentials from 0 to >1.5 volts. Furthermore, the anode side of the cell may be exposed to hydrogen and air during different parts of the driving and startup/shutdown cycles. The severity in operating conditions is greatly exacerbated by the transient and cyclic nature of

135

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

136

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

137

Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gas?Hydrogen Blends  

Science Journals Connector (OSTI)

It can be seen that the laminar-burning velocity of hydrogen is 5 times that of natural gas and that the quenching distance of hydrogen is one-third that of natural gas, while the latter is beneficial to reduce the unburned hydrocarbons near the wall and from the top-land crevice. ... The signal of cylinder pressure was acquired for every 0.5 deg CA, the acquisition process covered 254 completed cycles, and the averaged value of these 254 cycles was outputted as the pressure data for calculation of the combustion parameters. ... Two factors are considered to influence the cylinder pressure:? one is the increase in flame propagation speed or combustion speed with the increase of the hydrogen fraction in the blends, and this will cause a rapid rising in the cylinder pressure and bring a higher value of the peak cylinder pressure; another is the decrease in the heating value of the fuel blends with the increase of the hydrogen fraction in natural gas?hydrogen blends, and this will decrease the volumetric heat release rate and the cylinder pressure rising, leading to the lower value of the peak cylinder pressure. ...

Zuohua Huang; Bing Liu; Ke Zeng; Yinyu Huang; Deming Jiang; Xibin Wang; Haiyan Miao

2007-08-15T23:59:59.000Z

138

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

139

Blend Membranes of Highly Phosphonated Polysulfone and Polybenzimidazoles for High Temperature Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Energy, Office of Hydrogen, Fuel Cells and InfrastructureD. Kreuer, and J. Maier, Fuel Cells 5, 335 2. M. A. Hickner,Proton Exchange Membrane Fuel Cells R. A. Potrekar † , K. T.

Potrekar, Ravindra

2014-01-01T23:59:59.000Z

140

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Tax Credit Licensed biodiesel blenders are eligible for a tax credit for special fuel, including diesel, blended with biodiesel to create a biodiesel blend. The tax...

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

E-Print Network [OSTI]

Uptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimumof droplet dynamics in PEM fuel-cell gas flow channels has

Das, Prodip K.

2013-01-01T23:59:59.000Z

142

Detonations in Hydrocarbon Fuel Blends J.M. Austin and J.E. Shepherd  

E-Print Network [OSTI]

.3), nitrogen dilutions (fuel-oxygen to fuel-air), and initial pressures (20-130 kPa). The cell widths of the JP to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 #12;and carbon, but addition of more than about 75 % (by fuel mass) carbon monoxide results in a significant increase in cell

Low, Steven H.

143

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration  

Broader source: Energy.gov [DOE]

Presentation by Acumentrics Corporation for Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration March 16, 2010

144

DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

This document describes test protocols to assess the performance and durability of fuel cell components intended for automotive applications.

145

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

146

Fuel Cells for Transportation FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION1  

E-Print Network [OSTI]

Fuel Cells for Transportation FY 2001 Progress Report 113 V. PEM STACK COMPONENT COST REDUCTION1 A. High-Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes Mark K polymer electrolyte membrane (PEM) fuel cell components and pilot manufacturing processes to facilitate

147

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

148

Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends combining with EGR  

Science Journals Connector (OSTI)

An experimental study on the effect of hydrogen fraction and EGR rate on the combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends was investigated. The results show that flame development duration, rapid combustion duration and total combustion duration are increased with the increase of EGR rate and decreased with the increase of hydrogen fraction in the blends. Hydrogen addition shows larger influence on flame development duration than that on rapid combustion duration. The coefficient of variation of the indicated mean effective pressure increases with the increase of EGR rate. And hydrogen addition into natural gas decreases the coefficient of variation of the indicated mean effective pressure, and this effectiveness becomes more obviously at high EGR rate. Engine fueled with natural gas–hydrogen blends combining with proper EGR rate can realize the stable low temperature combustion in gas engine.

Erjiang Hu; Zuohua Huang; Bing Liu; Jianjun Zheng; Xiaolei Gu

2009-01-01T23:59:59.000Z

149

Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract A systematic study was conducted to evaluate and compare the effects of blending five different oxygenated compounds, diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA) and butanol (Bu) with ultralow sulfur diesel (ULSD), on engine performance, particulate mass concentrations, organic (OC) and elemental (EC) carbon fractions of the particles and particle size distributions from a single cylinder, direct injection stationary diesel engine with the engine working at a constant engine speed and at three engine loads. A small increase in the brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) was observed with the use of oxygenates blended with ULSD. All five oxygenates were found to be effective at reducing particulate mass emissions at medium and high engine loads, with butanol being the most effective and DGM being the least effective. Analysis of the relative contribution of changes in the OC and EC emissions to the reduction of particulate matter indicated that under the same oxygen content, EC made a dominant contribution to the reduction of particulate mass. The results also indicated that reduction in both particle mass and number emissions was affected not only by the oxygen content, but also by the chemical structure and thermophysical properties of oxygenates as well as engine operating conditions.

Zhi-Hui Zhang; Rajasekhar Balasubramanian

2015-01-01T23:59:59.000Z

150

Effects of Bioethanol-Blended Diesel Fuel on Combustion and Emission Reduction Characteristics in a Direct-Injection Diesel Engine with Exhaust Gas Recirculation (EGR)  

Science Journals Connector (OSTI)

Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea ... As a fuel for compression engines, bioethanol-blended diesel fuels have some different trends on the exhaust emission characteristics according to the engine load. ... The paper begins with an introduction of general information on the nature of emissions of exhaust gases, including the toxicity and causes of emissions for both spark-ignition and diesel engines. ...

Su Han Park; Junepyo Cha; Chang Sik Lee

2010-06-03T23:59:59.000Z

151

NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)  

SciTech Connect (OSTI)

Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

Moriarty, K.; Clark, W.

2011-02-01T23:59:59.000Z

152

Rapid Monitoring of Hydrocarbon Blending Stocks in Modified Aviation Turbine Fuels  

Science Journals Connector (OSTI)

......stocks in JP-4 aviation turbine fuel. Introduction High resolution capillary gas chromatography affords...principal Air Force aviation turbine fuel, and the incorporation...Model 3700 capillary gas chromatographic system...Products), to remove residual oxygen and/or water......

P.C. Hayes; Jr.; E.W. Pitzer

1984-10-01T23:59:59.000Z

153

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents [OSTI]

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

154

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

155

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Accelerated Stress Test Protocols for PEM Fuel Cells, Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies

156

A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions  

Science Journals Connector (OSTI)

Abstract This study was aimed at synthesizing a novel soluble hybrid nanocatalyst to decrease emissions i.e., nitrogen oxide compounds (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and soot, of a DI engine fueled with diesel–biodiesel blends. Moreover, enhancement of performance parameters i.e. power, torque and fuel consumption was also simultaneously targeted. The hybrid nanocatalyst containing cerium oxide on amide-functionalized multiwall carbon nanotubes (MWCNT) was investigated using two types of diesel–biodiesel blends (B5 and B20) at three concentrations (30, 60 and 90 ppm). The results obtained revealed that high surface area of the soluble nano-sized catalyst particles and their proper distribution along with catalytic oxidation reaction resulted in significant overall improvements in the combustion reaction specially in B20 containing 90 ppm of the catalyst B20(90 ppm). More specifically, all pollutants i.e., NOx, CO, HC and soot were reduced by up to 18.9%, 38.8%, 71.4% and 26.3%, respectively, in B20(90 ppm) compared to neat B20. The innovated fuel blend also increased engine performance parameters i.e., power and torque by up to 7.81%, 4.91%, respectively, and decreased fuel consumption by 4.50%.

Mehrdad Mirzajanzadeh; Meisam Tabatabaei; Mehdi Ardjmand; Alimorad Rashidi; Barat Ghobadian; Mohammad Barkhi; Mohammad Pazouki

2015-01-01T23:59:59.000Z

157

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

158

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

159

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

160

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preparation of liquid motor fuel components from oil shale gasification products  

Science Journals Connector (OSTI)

The gasification of shale from two domestic deposits (Kashpirskoe and Leningradskoe) and the subsequent transformation of the products of this process into the components of liquid motor fuels were studied.

B. I. Katorgin; A. L. Lapidus

2011-04-01T23:59:59.000Z

162

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and prescribed methods for the inspection and testing of alcohol blended fuels, petroleum products, biodiesel, and biodiesel blends; Labeling requirements for devices...

163

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blending Equipment Tax Exemption Qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel is exempt from state property...

164

Review article Components manufacturing for solid oxide fuel cells  

E-Print Network [OSTI]

-stabilized zirconia, YSZ) and the electrocatalyst (lanthanum manganite for the cathode and nickel metal for the anode are stressed. Especially for planar cell designs, the chromium contamination of the cathode and interfacial; Processing; Interconnect materials 1. Introduction Worldwide, several developers of solid oxide fuel cell

Gleixner, Stacy

165

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

166

Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte  

DOE Patents [OSTI]

An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

2011-05-10T23:59:59.000Z

167

Investigation on characteristics of ionization current in a spark-ignition engine fueled with natural gas–hydrogen blends with BSS de-noising method  

Science Journals Connector (OSTI)

Investigation on ionization current characteristic in a spark-ignition engine fueled with natural gas, natural gas–hydrogen bends and gasoline was conducted. Blind Source Separation (BSS) de-noising method is employed to separate the ionization current signal from the interference of spark tail generated by ignition discharge. Cylinder pressure was recorded, and local temperature at spark plug gap is calculated using AVL-FIRE simulation code. Results show that the simulated cylinder pressures are in good agreement with those of measured and the spark tail and ionization current can be separated using BSS method. Front flame stage and post flame stage in ionization current can be used to analyze the combustion characteristics of natural gas–hydrogen blends. De-noised current shows that the appearance of front flame stage and post flame stage (including the peaks in the stages) fueled with natural gas is postponed and compared with that fueled with gasoline, and the appearance of front flame stage and post flame stage advance with the increase of hydrogen fraction in natural gas–hydrogen blends. In addition, the amplitude of ionization currents in both front flame and post flame (including the two peaks) fueled with natural gas gives lower values compared with those fueled with gasoline and hydrogen addition can increase the amplitude. Maximum post flame current shows similar trend to maximum cylinder pressure and it has good correlation between the timing of maximum post flame current and the timing of maximum cylinder pressure. High correlation coefficient between maximum post flame current and maximum pressure is presented.

Zhongquan Gao; Xiaomin Wu; Hui Gao; Bing Liu; Jie Wang; Xiangwen Meng; Zuohua Huang

2010-01-01T23:59:59.000Z

168

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

169

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

170

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

that meet ASTM specification D6751. Blended biodiesel is a blend of biodiesel with petroleum diesel fuel so that the volume percentage of biodiesel in the blend is at least 2%...

171

A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends  

Broader source: Energy.gov [DOE]

Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes.

172

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect (OSTI)

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

173

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network [OSTI]

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

174

A two-component heavy fuel oil evaporation model for CFD studies in marine Diesel engines  

Science Journals Connector (OSTI)

Abstract The paper presents an evaporation model for Heavy Fuel Oil (HFO) combustion studies. In the present work, HFO is considered as a mixture of a heavy and a light fuel component, with the thermophysical properties of the heavy component calculated from the recently introduced model of Kyriakides et al. (2009) [1]. The model proposes a proper treatment of convective heat transfer to the evaporating fuel droplets. Computational Fluid Dynamics (CFD) simulations of HFO spray combustion in constant volume chambers are performed, utilizing a modified characteristic time combustion model. The results are in good agreement with literature experimental data. Computational results for a two-stroke marine Diesel engine also compare favorably against experiments. The present development yields a basis for detailed CFD studies of HFO combustion in large marine Diesel engines.

Nikolaos Stamoudis; Christos Chryssakis; Lambros Kaiktsis

2014-01-01T23:59:59.000Z

175

Quality Assessment of Biodiesel and Biodiesel Blends | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quality Assessment of Biodiesel and Biodiesel Blends Quality Assessment of Biodiesel and Biodiesel Blends The results of a quality survey of B20 fuel in the United States were...

176

Prediction of the Effects of Ethanol-Diesel Fuel Blends on Diesel Engine Performance Characteristics, Combustion, Exhaust Emissions, and Cost  

Science Journals Connector (OSTI)

Bilgin et al.’s and ?ahin’s experimental studies which have been used in comparisons with numerical results of the present model have been performed in a single cylinder diesel engine at Karadeniz Technical University, Engineering Faculty Mechanical Engineering Department Internal Combustion Engines Laboratory. ... Durgun, O. A practical method for calculation engine cycles Union of Chambers of Turkish Engineers and Architects, Chamber of Mech. ... Dieselhols (blends of diesels, biodiesels, and alcohols) have received considerable attention because of their low emission of CO2. ...

Z. ?ahin; O. Durgun

2009-02-10T23:59:59.000Z

177

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

engines. A biodiesel blend is defined as any fuel produced by blending biodiesel with petroleum-based diesel to produce a fuel suitable for use in diesel engines. (Reference Idaho...

178

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

179

Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide Fuel Cell Balance of Plant Oxide Fuel Cell Balance of Plant & Stack Component Integration Norman Bessette Acumentrics Corporation March 16, 2010 Acumentrics Corporation *Based in Westwood, Mass. *~40,000 sq. ft facility *Profitable * Critical disciplines in-house El t i l E i i Strategic Partners Electrical Engineering Mechanical Engineering Chemical Engineering Thermal Modeling Ceramics Processing Manufacturing Sales & Marketing Automation Finance Scalable, Ruggedized Power - Combat Proven Take Almost Any Generator Plug into Clean Power Provided by Acumentrics RUPS And Be Ready For Continuous Communications

180

Reducing Emissions of Persistent Organic Pollutants from a Diesel Engine by Fueling with Water-Containing Butanol Diesel Blends  

Science Journals Connector (OSTI)

An increasing energy demand and environmental pollution has motivated a search for bio-fuels, such as bio-diesels(1, 2) and bio-alcohols,(3, 4) that can be used as alternative fuels for diesel engines. ... In general, both bio-diesel and bio-alcohols, such as ethanol and butanol, have the advantages of higher brake thermal efficiency (BTE) and lower emissions of particulate matter (PM), carbon monoxide (CO) and hydrocarbons (HC). ... Diesel Engine and Test Cycle ...

Yu-Cheng Chang; Wen-Jhy Lee; Hsi-Hsien Yang; Lin-Chi Wang; Jau-Huai Lu; Ying I. Tsai; Man-Ting Cheng; Li-Hao Young; Chia-Jui Chiang

2014-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Review of Chromatographic Characterization Techniques for Biodiesel and Biodiesel Blends  

Science Journals Connector (OSTI)

......determination of the biodiesel content of...blends of biodiesel in conventional...Sciences and Engineering Division...characterization of biodiesel and its blends...addressed. Introduction Biodiesel...commercial fuels. These fuels......

R. E. Pauls

2011-05-01T23:59:59.000Z

182

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blend being sold. The labeling must follow established labeling specifications for petroleum-based fuels. An alternative fuel producer may provide the retailer with a label...

183

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E"...

184

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with propane or...

185

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with...

186

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

over the vehicle's useful life. Low carbon fuels include hydrogen, biomethane, electricity, or natural gas blends of at least 90%. State agencies must phase in fuel economy...

187

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

deadline. Fueling equipment for natural gas, liquefied petroleum gas (propane), electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between...

188

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

using alternative fuel. Recognized alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

189

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

190

Making premium diesel fuel  

SciTech Connect (OSTI)

For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

Pipenger, G. [Amalgamated Inc., Fort Wayne, IN (United States)

1997-02-01T23:59:59.000Z

191

Properties, performance and emissions of biofuels in blends with gasoline.  

E-Print Network [OSTI]

??The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding… (more)

Eslami, Farshad

2013-01-01T23:59:59.000Z

192

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Broader source: Energy.gov [DOE]

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

193

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

194

Combustion and Emission Characteristics of a Direct-Injection Diesel Engine Fueled with Diesel?Diethyl Adipate Blends  

Science Journals Connector (OSTI)

The advantage of a diesel engine compared with a gasoline engine is the fuel economy benefits; however, the high NOx and smoke emissions still remain the main obstacles for the increasing application of diesel engines with the increasing concerns for environmental protection and implementation of more stringent exhaust gas regulations, thus further reduction in engine emissions becomes one of major tasks in engine development. ... In the application of pure oxygenated fuels, Fleisch et al.,1 Kapus et al.,2 and Sorenson et al.3 have studied dimethyl ether (DME) in the modified diesel engine, and their results showed that the engine could achieve ultralow emission prospects without fundamental change in combustion systems. ... Murayama, T.; Zheng, M.; Chikahisa, T. Simultaneous reduction of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate; SAE paper 952518, Society of Automotive Engineers:? Warrendale, PA, 1995. ...

Yi Ren; Zuohua Huang; Haiyan Miao; Deming Jiang; Ke Zeng; Bing Liu; Xibin Wang

2007-04-19T23:59:59.000Z

195

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: Energy.gov [DOE]

Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

196

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether  

E-Print Network [OSTI]

Ignition Using Isooctane, Ethanol and Natural Gas - AModel for High Temperature Ethanol Oxidation," Internationalof Bio-Derived Carbon from Ethanol-in-Diesel Blends in the

Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

2005-01-01T23:59:59.000Z

197

Optimal power management and powertrain components sizing of fuel cell/battery hybrid electric vehicles based on particle swarm optimisation  

Science Journals Connector (OSTI)

Combining a Fuel Cell (FC), as primary power source, with a Battery Energy System (BES), as an auxiliary source, for high power demands is a promising approach for future hybrid electric vehicles (HEV). The powertrain control strategy and the component sizing significantly affect the vehicle performance, cost, vehicle efficiency and fuel economy. This paper presents a developed control strategy for optimising the power sharing between sources and components sizing by using Particle Swarm Optimisation (PSO) algorithm. This control strategy implemented on FC/Battery hybrid electric vehicle in order to achieve the best performance with minimum fuel consumption and minimum powertrain components sizing for a given driving cycle with high efficiency. The powertrain and the proposed control strategy have been simulated by Matlab/Simulink. The simulation results have demonstrated that the optimal sizing of the powertrain of FC/battery components and the minimum fuel consumption have been improved by applying the PSO control strategy.

Omar Hegazy; Joeri Van Mierlo

2012-01-01T23:59:59.000Z

198

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report IV.D Fuel Cell Stack Subsystem and Components  

E-Print Network [OSTI]

-Tolerant PEM Fuel Cell Stack System Tim Rehg (Primary Contact), Nguyen Minh (Program Manager) Honeywell electrolyte membrane (PEM) fuel cell stack system comprised of a PEM fuel cell stack and the supporting gas, thermal, and water management subsystems. The PEM fuel cell stack system will be capable of integration

199

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

dispensers? Blender pumps are fuel dispensers that draw fuel from two separate storage tanks and can dispense preprogrammed blends of those two fuels. Many conventional stations...

200

Interim report re: component parts for proton-exchange membrane fuel cells  

SciTech Connect (OSTI)

The purpose of the first phase of the grant project is to design, develop and test a simplified fuel cell electrode structure for use in proton-exchange membrane fuel cells (''PEMFC''). By simplifying the structure of the electrode, mass production manufacturing efficiencies can be brought into play which will result in significant cost reductions for this fuel cell component. With a reduction in the cost of this key fuel cell component overall costs for PEMFC's can be brought within the commercialization target range of about US$100 per kilowatt for the fuel cell stack. Fuel cell electrodes are necessarily ''multi-layered'' composites. Multi-layers are required because of the several functions that the electrode must be able to perform in the working PEM fuel cell. The current generation of state-of-the-art porous fuel cell electrodes for PEMFC's is comprised of three primary layers. The first layer is the catalyst layer. Since hydrogen is the fuel used in this project and air is used as the oxidant, the catalyst must be capable of adsorbing hydrogen and oxygen from the air. While work is constantly on-going with respect to new hydrogen or oxygen catalysts, the best available catalyst at present for both of the reactant gases is platinum. To be effective, the catalyst (1) must be exposed to a constant flow of the respective reactant gas; (2) must be in intimate contact with the proton-exchange membrane; and (3) must be a finely divided catalyst and have a large specific surface area, especially on the oxidant side where the electrochemical reaction is slower by several orders of magnitude. The second layer is the substrate layer. The substrate layer provides structural support for the finely divided catalyst. It also functions as an electronic junction for conducting electricity produced by the electrochemical reaction from the catalyst layer to the bipolar plate of the fuel cell. In state-of-the-art PEMFC's, this layer is comprised of carbon particles (onto which the catalyst has been deposited) and a binder material. In Dr. Mahlon Wilson's fuel cell electrode design, the binder material is liquid Nafion. By using liquid Nafion, the membrane is effectively extended into a third spatial dimension. This extension of the membrane serves to increase the effective catalyst surface area per real geometric unit of fuel cell area, which is quite important for the reasons discussed above. In the more traditional Los Alamos design, the binder is liquid Teflon, which is mixed with the catalyzed carbon particles and then sintered to create hydrophobic gas pores in the substrate layer. In order to extend the membrane into a third spatial dimension with this type of electrode, liquid Nafion is then applied to the substrate and allowed to seep through the sintered Teflon pores into the substrate/catalyst layer. The third layer is the backing layer. The backing layer is normally comprised of either carbon cloth or porous carbon paper. The purpose of the backing layer is (1) to conduct electricity generated by the electrochemical reaction; (2) to provide structural support for the substrate layer and (3) to allow the reactant gases to enter and leave the substrate/catalyst layers. Thus, in state-of-the-art fuel cell electrode design, the electrode is a ''triple layer composite'', consisting of the catalyst layer, the substrate layer and the backing layer. The triple layer composite electrode, when hot-pressed to the proton-exchange membrane, is strong enough to prevent the membrane from expanding in the localized area of the fuel cell electrode. This strength is significant because membrane expansion could otherwise damage the electrode and adversely affect its electronic conductivity. While triple layer composite electrodes function well, their structure does not readily lend itself to mass production. Consequently, fuel cell electrodes are extremely expensive to manufacture. For example, E-Tek of Natrick, Massachusetts, the leading manufacturer of fuel cell electrodes in this country, has quoted a mass production price of $0.30 per s

George Marchetti

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

5, 1206712102, 2005 Alternative fuel  

E-Print Network [OSTI]

ACPD 5, 12067­12102, 2005 Alternative fuel blends and regional air quality J.-F. Vinuesa et al and Physics Discussions Impacts of using reformulated and oxygenated fuel blends on the regional air quality License. 12067 #12;ACPD 5, 12067­12102, 2005 Alternative fuel blends and regional air quality J

Paris-Sud XI, Université de

202

Proton NMR characterization of gasoline–ethanol blends  

Science Journals Connector (OSTI)

Abstract Nuclear magnetic resonance (NMR) can be conveniently used for accurate measurement of water and ethanol concentrations in gasoline–ethanol fuel blends. The spectra also contain information on proton exchange rates. In addition, NMR pulsed-field-gradient diffusion measurement allows estimation of ethanol–water clusters and viscosity of the fuel blends.

A. Turanov; A.K. Khitrin

2014-01-01T23:59:59.000Z

203

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

204

Reduced Turbine Emissions Using Hydrogen-Enriched Fuels R.W. Schefer  

E-Print Network [OSTI]

-blended methane and air were studied to evaluate the potential improvements in flame stability as hydrogen replaces methane as the primary fuel component. INTRODUCTION The development of advanced combustion value fuels containing significant hydrogen are often produced as a by-product in Coal- Gasification

205

Properties, Behavior and Material Compatibility of Hydrogen, Natural Gas and Blends — Materials Testing and Design Requirements for Hydrogen Components and Tanks  

Broader source: Energy.gov [DOE]

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

206

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is 0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate...

207

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume...

208

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blender Tax Credit A licensed fuel supplier who blends biodiesel or green diesel with diesel fuel may claim an income tax credit of 0.05 per gallon for fuel containing...

209

New Formic Acid Fuel Cell Orientations to Reduce the Cost of Cell Components.  

E-Print Network [OSTI]

??Formic acid fuel cells show the potential of outperforming or replacing direct methanol fuel cells. A number of issues need to be overcome in order… (more)

Holtkamp, John Calvin

2009-01-01T23:59:59.000Z

210

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

211

Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)  

SciTech Connect (OSTI)

This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

2012-10-01T23:59:59.000Z

212

Elastomer Compatibility Testing of Renewable Diesel Fuels  

SciTech Connect (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

213

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Ethanol Definitions and Retail Requirements Biodiesel blend stock must be at least 99% biodiesel (no more than 1% diesel fuel) and meet ASTM specification D6751....

214

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of producing or blending diesel fuel containing at least 2% biodiesel or green diesel. Eligible direct costs must have been incurred after December 31, 2002. A...

215

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

216

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, electricity, and hydrogen. A vehicle may receive one rebate in its lifetime. Only AFVs...

217

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

the federal government. Recognized alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

218

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

For the purpose of this requirement, alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

219

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

liquefied natural gas, ethanol blends of 70% (E70) or greater, hydrogen, propane, or electricity, or (with the exception of buses, snowplows, and construction vehicles) have a fuel...

220

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

or conversion cost of two or more AFVs. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other...

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

222

Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels  

DOE Patents [OSTI]

A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

2013-04-30T23:59:59.000Z

223

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

224

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

225

The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report  

SciTech Connect (OSTI)

Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

George A. Marchetti

1999-12-15T23:59:59.000Z

226

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly… (more)

Hussain, Mohammed Mujtaba

2008-01-01T23:59:59.000Z

227

Balance of Plant (BoP) Components Validation for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pump Combustor? Radiator H 2 recirc pmp Coolant Loop Water Separator Cathode Loop Anode Loop Air Compressor 90 kWe Air management Fuel management Stack Integration Compressor...

228

An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel  

Science Journals Connector (OSTI)

Abstract This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P engine power, torque and specific fuel consumption. The mean values of engine power were increased in the range of 59.14–69.5 kW with increasing the engine speed. The engine power did not show significant difference for all the fuel blends except for the D65B25E10, 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P engine speed ranged from 1600 to 2000 rpm. The engine specific fuel consumption was increased significantly when the engine speed ranged from 1900 to 2000 rpm. The engine specific fuel consumption was greater for all the fuel blends when compared to neat diesel fuel. The D93B5E2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D86B10E4 and D79B15E6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application.

Seyed Reza Hassan-beygi; Vahideh Istan; Barat Ghobadian; Mohammad Aboonajmi

2013-01-01T23:59:59.000Z

229

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

SciTech Connect (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

230

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Use Requirement At least 50% of state vehicles using petroleum diesel fuel must use a minimum blend of 5% biodiesel (B5) or other biofuel approved by the U.S....

231

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be...

232

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, electricity, or any other fuel that the U.S. Department of Energy has determined is...

233

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

as the price of the biodiesel blend is not more than 0.10 per gallon as compared to the price of diesel fuel. Individuals operating state-owned motor vehicles must purchase fuel...

234

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel comprised of mono-alkyl esters of long chain fatty acids from biologically derived oil and fats. A biodiesel blend is defined as a fuel comprised of a specified ratio of...

235

Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives  

Broader source: Energy.gov [DOE]

A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

236

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

SciTech Connect (OSTI)

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

237

Applying x-ray digital imaging to the verification of cadmium in fuel-storage components  

SciTech Connect (OSTI)

The High Flux Isotope Reactor utilizes large underwater fuel-storage arrays to stage irradiated fuel before it is shipped from the facility. Cadmium is required as a thermal neutron absorber in these fuel-storage arrays to produce an acceptable margin of nuclear subcriticality during both normal and off-normal operating conditions. Due to incomplete documentation from the time of their fabrication, the presence of cadmium within two stainless-steel parts of fuel-storage arrays must be experimentally verified before they are reused in new fuel-storage arrays. A cadmium-verification program has been developed in association with the Waste Examination and Assay Facility located at the Oak Ridge national Laboratory to nondestructively examine these older shroud assemblies. The program includes the following elements (1) x-ray analog imaging, (2) x-ray digital imaging, (3) prompt-gamma-ray spectroscopy measurements, and (4) neutron-transmission measurements. X-ray digital imaging utilizes an analog-to-digital convertor to record attenuated x-ray intensities observed on a fluorescent detector by a video camera. These x-ray intensities are utilized in expressions for cadmium thickness based upon x-ray attenuation theory.

Dabbs, R.D.; Cook, D.H.

1997-03-01T23:59:59.000Z

238

Comparative Study on Engine Performance and Diesel Emissions with European Diesel Fuel (DF)?Diethylene Glycol Dimethyl Ether (DGM) and Fischer?Tropsch (FT)?DGM Blends  

Science Journals Connector (OSTI)

† Department of Energy and Process Engineering ... The general picture of the methyl- and methylene-related vibrations in the DF used here confirms the results of the GC analyses; i.e., that the DF resembles a n-alkane-dominated hydrocarbon mixture. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Rudolf Schmid; Johan Einar Hustad

2010-03-30T23:59:59.000Z

239

Balance of Plant (BoP) Components Validation for Fuel Cells  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

240

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact… (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

242

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current… (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

243

Durability testing of medium speed diesel engine components designed for operating on coal/water slurry fuel  

SciTech Connect (OSTI)

Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.

McDowell, R.E.; Giammarise, A.W.; Johnson, R.N.

1994-04-01T23:59:59.000Z

244

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

245

HIGH PERFORMANCE BLENDS AND COMPOSITES: PART (I) CLAY AEROGEL/POLYMER COMPOSITES PART (II) MECHANISTIC INVESTIGATION OF COLOR GENERATION IN PET/MXD6 BARRIER BLENDS.  

E-Print Network [OSTI]

??High performance in polymer blends and composites can be achieved through the addition of a strong filler component into a polymer matrix. The overall physical… (more)

Bandi, Suneel A

2006-01-01T23:59:59.000Z

246

Intact and Degraded Component Criticality Calculations of N Reactors Spent Nuclear Fuel  

SciTech Connect (OSTI)

The objective of this calculation is to perform intact and degraded mode criticality evaluations of the Department of Energy's (DOE) N Reactor Spent Nuclear Fuel codisposed in a 2-Defense High-Level Waste (2-DHLW)/2-Multi-Canister Overpack (MCO) Waste Package (WP) and emplaced in a monitored geologic repository (MGR) (see Attachment I). The scope of this calculation is limited to the determination of the effective neutron multiplication factor (k{sub eff}) for both intact and degraded mode internal configurations of the codisposal waste package. This calculation will support the analysis that will be performed to demonstrate the technical viability for disposing of U-metal (N Reactor) spent nuclear fuel in the potential MGR.

L. Angers

2001-01-31T23:59:59.000Z

247

MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING  

SciTech Connect (OSTI)

Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

Vormelker, P

2006-11-14T23:59:59.000Z

248

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Carolina Incentives and Laws Carolina Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Retail Incentive Expired: 06/30/2012 Ethanol retailers selling fuel blends of at least 70% ethanol (E70) are eligible for a $0.05 incentive per gallon of ethanol blended fuel sold, provided that the fuel is subject to the South Carolina motor fuel user fee. Additionally, biodiesel retailers are eligible for a $0.25 incentive per gallon of biodiesel (B100) sold as pure biodiesel or as part of a biodiesel blend, provided that the blend contains at least 2% biodiesel (B2). These incentives apply only to fuel sold before July 1, 2012.

249

Dry halide method for separating the components of spent nuclear fuels  

DOE Patents [OSTI]

The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

Christian, Jerry Dale (Idaho Falls, ID); Thomas, Thomas Russell (Rigby, ID); Kessinger, Glen F. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

250

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

251

An isoteniscope was used to measure the V.P. of different fuel blends. This apparatus allows us to take measurements over a wide range of  

E-Print Network [OSTI]

.B. *** Biofuels are increasingly being used in the aviation industry. Vapor pressure (V.P.) is the main parameter understand the combustion process in jet engines. An experimental apparatus was set up and data was collected for a 50/50* surrogate mixture of Biojet and Jet-A fuel to find the relation of their V.P. with temperature

Barthelat, Francois

252

Study of multi-component fuel premixed combustion using direct numerical simulation  

E-Print Network [OSTI]

of and the relative species proportions in these gases however vary considerably. The Syngas obtained by coal gasification is mostly composed of hydrogen and carbon monoxide with varying levels of carbon dioxide, water and other trace species [2, 3]. The relative... proportions of the predominant gases vary widely depending on the gasification process and the ratio of hydrogen to carbon monoxide mole fractions in the fuel, fH2 = XH2/XCO, is typically larger than 0.1 and it can be as high as 3 [1, 2, 4, 5, 6, 7, 8...

Nikolaou, Zacharias M.

2014-04-29T23:59:59.000Z

253

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

· Flows between which tanks in which time periods · Inventories/concentrations for tanks in each period for many applications 4 · Gasoline and crude oil blending · Raw material feed scheduling · Storage. "no bounds" on concentration total inventory mass balance in tanks inventory mass balance by component

Grossmann, Ignacio E.

254

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

problem is a general model for many applications, and it is difficult to solve · Gasoline and crude oil tanks in which time periods · Inventories/concentrations for tanks in each period · Maximum total profit total inventory mass balance in tanks inventory mass balance by component in blending tanks

Grossmann, Ignacio E.

255

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

SciTech Connect (OSTI)

Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

2011-09-23T23:59:59.000Z

256

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

257

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

258

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

259

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

260

Stocks of Motor Gasoline Blending Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

187,013 192,571 196,254 197,510 206,627 210,238 1983-2015 PADD 1 46,448 47,840 50,373 50,816 56,416 58,286 2004-2015 PADD 2 38,944 40,652 41,331 43,698 45,607 47,017 2004-2015 PADD...

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Component Standard Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robert Burgess (Primary Contact), William Buttner, Matthew Post, Carl Rivkin, Chad Blake National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3823 Email: robert.burgess@nrel.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractor: SAE International, Troy, MI Project Start Date: Fiscal Year (FY) 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Support development of new codes and standards * required for commercialization of hydrogen technologies. Create code language that is based on the latest scientific *

262

Hydrogen Materials and Components Compatibility - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete Canadian Standards Association (CSA) Test * Method for Evaluating Material Compatibility for Compressed Hydrogen Applications - Phase I - Metals (CHMC1) document Issue Sandia report reflecting updated content from * Technical Reference website

263

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

264

Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a  

E-Print Network [OSTI]

significantly improve the fuel economy of FCHVs. Rodatz et al. [2] used the equivalent consumption minimization combination in maximizing the fuel economy. For the engine scaling, in particular, they replaced the linear strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid

Peng, Huei

265

Sandia National Laboratories: blending feedstock varieties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

blending feedstock varieties Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

266

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine  

Science Journals Connector (OSTI)

Effect of n-Butanol Blending with a Blend of Diesel and Biodiesel on Performance and Exhaust Emissions of a Diesel Engine ... Mechanical Engineering, Batman University, Batman 72100, Turkey ... Diesel engines are widely used for transportation, energy production, and agricultural and industrial applications because of their high fuel conversion efficiencies and durability. ...

S?ehmus Altun; Cengiz O?ner; Fevzi Yas?ar; Hamit Adin

2011-06-22T23:59:59.000Z

267

Alternative transportation fuels and air quality  

Science Journals Connector (OSTI)

Alternative transportation fuels and air quality ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ...

Tai Y. Chang; Robert H. Hammerle; Steven M. Japar; Irving T. Salmeen

1991-07-01T23:59:59.000Z

268

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

269

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

270

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

by the sale of Energy Policy Act of 1992 (EPAct) credits to cover the incremental cost of purchasing fuel containing biodiesel blends of at least 20% (B20) for state fleet...

271

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

0.24 per gallon. E85 is defined as an alternative fuel that is a blend of denatured ethanol and hydrocarbon and typically contains 85% ethanol by volume, but must contain at...

272

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and 68-1359...

273

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

which provides grants of up to 2,500 to cover the cost of cleaning existing fuel tanks in preparation for storing biodiesel blends of at least 20% (B20) for use in public...

274

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles). Waivers may be granted for fleets...

275

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the 0.30 per gallon state fuel excise tax. The exemption does not...

276

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blends must comply with ASTM specification D7467-10. Biodiesel produced from palm oil is not considered biodiesel fuel unless the palm oil is waste oil or grease collected...

277

Numerical Model Investigation for Potential Methane Explosion and Benzene Vapor Intrusion Associated with High-Ethanol Blend  

E-Print Network [OSTI]

Associated with High-Ethanol Blend Releases Jie Ma, Hong Luo, George E. DeVaull,§ William G. Rixey, and Pedro ABSTRACT: Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could conditions exist. Ethanol- derived methane may also increase the vapor intrusion potential of toxic fuel

Alvarez, Pedro J.

278

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

279

Effect of use of low oxygenate gasoline blends upon emissions from California vehicles. Final report  

SciTech Connect (OSTI)

The objective of this project was to investigate the emissions effects of low-oxygenate gasoline blends on exhaust and evaporative emissions from a test fleet of California certified light-duty autos. Thirteen vehicles were procured and tested using four gasoline-oxygenate blends over three test cycles. The four gasoline blends were: Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and 'match' and 'splash' blends of ethanol (in the 'match' blend the fuel Reid Vapor Pressure (RVP) is held constant, while in the 'splash' blend the fuel RVP is allowed to increase). Hydrocarbon and carbon monoxide exhaust emissions were generally reduced for the oxygenated blends, the exception being the 'splash-blended' ethanol gasoline which showed mixed results. Older technology vehicles (e.g., non-catalyst and oxidation catalyst) showed the greatest emissions reductions regardless of gasoline blend, while later technology vehicles showed the smallest reductions. Evaporative emissions and toxics were generally reduced for ETBE, while results for the other blends were mixed.

Born, G.L.; Lucas, S.V.; Scott, R.D.; DeFries, T.H.; Kishan, S.

1994-02-01T23:59:59.000Z

280

Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach  

SciTech Connect (OSTI)

Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

282

Purification Testing for HEU Blend Program  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is working to dispose of the inventory of enriched uranium (EU) formerly used to make fuel for production reactors. The Tennessee Valley Authority (TVA) has agreed to take the material after blending the EU with either natural or depleted uranium to give a {sup 235}U concentration of 4.8 percent low-enriched uranium will be fabricated by a vendor into reactor fuel for use in TVA reactors. SRS prefers to blend the EU with existing depleted uranium (DU) solutions, however, the impurity concentrations in the DU and EU are so high that the blended material may not meet specifications agreed to with TVA. The principal non-radioactive impurities of concern are carbon, iron, phosphorus and sulfur. Neptunium and plutonium contamination levels are about 40 times greater than the desired specification. Tests of solvent extraction and fuel preparation with solutions of SRS uranium demonstrate that the UO{sub 2} prepared from these solutions will meet specifications for Fe, P and S, but may not meet the specifications for carbon. The reasons for carbon remaining in the oxide at such high levels is not fully understood, but may be overcome either by treatment of the solutions with activated carbon or heating the UO{sub 3} in air for a longer time during the calcination step of fuel preparation.Calculations of the expected removal of Np and Pu from the solutions show that the specification cannot be met with a single cycle of solvent extraction. The only way to ensure meeting the specification is dilution with natural U which contains no Np or Pu. Estimations of the decontamination from fission products and daughter products in the decay chains for the U isotopes show that the specification of 110 MEV Bq/g U can be met as long as the activities of the daughters of U- 235 and U-238 are excluded from the specification.

Thompson, M.C. [Westinghouse Savannah River Company, AIKEN, SC (United States); Pierce, R.A.

1998-06-01T23:59:59.000Z

283

Effects of moisture on wear of components lubricated with diesel fuel. Interim report, May 1996--September 1997  

SciTech Connect (OSTI)

The durability of some fuel injection systems on compression-ignition engines will be adversely affected by fuels of significantly low lubricity. Previous work has shown that fuel-lubricated wear is sensitive to the availability of moisture, particularly in severely refined fuels, which are designed to minimize exhaust emissions. The effects of moisture may be particularly relevant in a marine environment in which sea water is used as ballast in the fuel tanks. Traditional, less-refined fuels contain natural corrosion inhibitors that reduce oxidative wear, although alternate wear mechanisms may still affect long-term durability. However, no detailed study bas been performed to define the effects of water contamination and its relationship to fuel composition. Standardized laboratory-scale tests that show good correlation with wear in full-scale fuel injection systems for ground vehicles are available. In the present work, the standard procedures for the HFRR and BOCLE/SLBOCLE apparatus were modified to show the effects of both dissolved and emulsified water on fuel-lubricated wear. The results indicate that the lubricity of all but the most severely hydrotreated fuels are insensitive to contamination by either deionized or salt water. Moreover, the relatively short aeration period used in the ASTM D 5001 and D 6078 BOCLE test procedures has no measurable effect on water concentration in the test fuel sample.

Lacey, P.I.; Erwin, J.

1999-03-01T23:59:59.000Z

284

Stack Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stack Components Stack Components Nancy L. Garland Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Fuel Cell Team FORS 5G-086 (202) 586-5673 nancy.garland@ee.doe.gov Stack Components F u e l P r o c e s s o r Bipolar Plate Cathode + Anode - Electrolyte H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate e - e - O 2 O 2 O 2 e - H+ Bipolar Plate Bipolar Plate Cathode + Anode - Electrolyte H+ H+ H+ H+ HYDROGEN OXYGEN Example shown is for acidic electrolytes Bipolar Plate Bipolar Plate e - e - e - e - O 2 O 2 O 2 O 2 O 2 O 2 e - e - H+ H+ Power Stack Component Barriers $10 Other Bipolar Plates Membranes Electrodes $25 $5 $5 Fuel Cell Power Systems $45/kW BARRIERS * Stack material cost/manufacturing * Durability * Electrode performance * Thermal and water management Stack Component Targets

285

Evaluation of Ethanol Blends for PHEVs using Simulation and Engine...  

Broader source: Energy.gov (indexed) [DOE]

Use modeling, simulation and component-in-the-loop techniques to provide system optimization for advanced powertrain components Use of alternative fuels to decrease U.S....

286

NREL: Learning - Alternative Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

287

100% Pet coke or pet coke blends combustion  

SciTech Connect (OSTI)

Information is outlined on the combustion of 100 percent petroleum coke or petroleum coke blends. Data are presented on NISCO overviews; fuel (coke) characteristics; delayed coke analysis (1995-96); limestone characteristics/effects; limestone preparation; ash characteristics; vortex finders; agglomerization; and NISCO performance results.

Swindle, D.L.

1996-12-31T23:59:59.000Z

288

Bench-Top Engine System for Fast Screening of Alternative Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx...

289

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect (OSTI)

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

290

Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane  

Broader source: Energy.gov [DOE]

The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

291

Mid-Level Ethanol Blends  

Energy Savers [EERE]

Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOEEERE Vehicle Technologies Program Annual Merit Review and Peer...

292

Emissions and engine performance from blends of soya and canola methyl esters with ARB {number_sign}2 diesel in a DCC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, California ARB No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emissions trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with delays in engine timing and technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transits (except in California, which mandates ARB diesel).

Spataru, A.; Romig, C.

1995-12-31T23:59:59.000Z

293

Emissions and engine performance from blends of soya and canola methyl esters with ARB No. 2 diesel in a DDC 6V92TA MUI engine  

SciTech Connect (OSTI)

A Detroit Diesel 6V92TA MUI engine was operated on several blends of EPA No. 2 diesel, soya methyl ester (SME) and canola methyl ester (CME). Various fuels and fuel blend characteristics were determined and engine emissions from these fuels and blends were compared. Increasing percentages of SME and CME blended with either ARB or EPA diesels led to increased emissions of NO{sub x}, CO{sub 2} and soluble particulate matter. Also noted were reductions in total hydrocarbons, CO and insoluble particulate matter. Chassis dynamometer tests conducted on a 20/80 SME/ARB blend showed similar emission trends. The data suggest that certain methyl ester/No. 2 diesel blends in conjunction with technologies that reduce the soluble fraction of particulate emissions merit further exploration as emissions reducing fuel options for North American mass transit sectors (except California, which mandates ARB diesel).

Spataru, A.; Romig, C. [ADEPT Group, Inc., Los Angeles, CA (United States)

1995-11-01T23:59:59.000Z

294

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

295

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

296

Alternative Fuels Data Center: Alternative Fuel Tax Rates  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax Rates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Rates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Rates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Rates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Rates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Rates Blended fuels that contain at least 10% gasoline or diesel are taxed at the full tax rates of gasoline ($0.30 per gallon) or diesel ($0.312 per

297

Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

298

Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels  

SciTech Connect (OSTI)

Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

Naik, C V; Westbrook, C K

2009-04-08T23:59:59.000Z

299

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to 15% of the cost of qualified equipment used for storing or blending biodiesel with petroleum diesel offered for sale. Biodiesel must be made entirely from components produced in...

300

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies  

Broader source: Energy.gov (indexed) [DOE]

understood and accounted for, they can be introduced at higher blending levels. * Non-petroleum based fuels are relatively new and not fully understood. * Current vehicles are...

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: State and Local Governments - Renewable Fuel Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

blends of ethanol or alternative fuels. Adopting an implementation plan that can ease measurement and verification burdens and help ensure the target is met Avoiding trigger...

302

LANL disassembles "pits," makes mixed-oxide fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the MOX facility in South Carolina, the plutonium oxide from LANL will be blended with depleted uranium, fabricated into MOX fuel, and irradiated in domestic nuclear...

303

Droplet combustion studies of hydrocarbon-monopropellant blends  

Science Journals Connector (OSTI)

Abstract An experimental investigation was conducted to characterize the monopropellant droplet combustion of pure and blended isopropyl nitrate (IPN), suspended on quartz fibers in a quiescent atmosphere. The blends were prepared by mixing varying percentages by weight of IPN with less viscous n-heptane, as well as highly viscous desensitizer dibutyl sebacate (DBS). Ignition was achieved by using a heated 60 ?m Nichrome wire. The dependence of the burning rate constant of pure IPN on initial droplet diameter was investigated in the droplet size range of 0.79–1.97 mm. The blended IPN studies were carried out with initial droplet diameters of 2 and 1.5 mm for IPN-n-heptane and IPN-DBS blends respectively, to characterize the effect of gravimetric composition. The experiments revealed a strong dependence of IPN burning rate on droplet size. The IPN-DBS blends were characterized by severe micro-explosions, further atomizing the droplet, governed by the preferential evaporation of IPN over DBS. However, micro-explosions were conspicuously absent in case of IPN-n-heptane blends due to simultaneous gasification of both components.

Anirudha Ambekar; Arindrajit Chowdhury; Suryanarayana Challa; D. Radhakrishna

2014-01-01T23:59:59.000Z

304

Alternative Fuels Data Center: Renewable Fuel Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Labeling Requirement Biodiesel and ethanol blend dispensers must be affixed with decals

305

How fuel composition affects on-board reforming for fuel cell vehicles.  

SciTech Connect (OSTI)

Different blends of gasoline range hydrocarbons were investigated to determine the effect of aromatic, naphthenic, and paraffinic content on performance in an autothermal reformer. In addition, we investigated the effects of detergent, antioxidant, and oxygenate additives. These tests indicate that composition effects are minimal at temperatures of 800C and above, but at lower temperatures or at high gas hourly space velocities (GHSV approaching 100,000 h{sup -1} ) composition can have a large effect on catalyst performance. Fuels high in aromatic and naphthenic components were more difficult to reform. In addition, additives, such as detergents and oxygenates were shown to decrease reformer performance at lower temperatures.

Kopasz, J. P.; Miller, L. E.; Applegate, D. V.; Chemical Engineering

2003-01-01T23:59:59.000Z

306

Flammability of diesel fuels with various compositions  

SciTech Connect (OSTI)

This paper reports on a study of the flammability of a number of fuels and blends, in relation to their physicochemical properties, particularly the volatility; these studies were performed in a specially designed simulator. The following fuels were used in the studies: a hydrotreated straight-run diesel fuel L; a catalytic gas oil; diesel fuel A; blends of diesel fuels L and A with cetaine, alpha-methylnaphthalene, undecane, and docosane; and a blend of fuel L, A-72 gasoline, and the additive TsGN. The physicochemical properties of the test fuels are shown. It is shown that the flammability of fuels with various compositions in a diesel engine is more correctly evaluated on the basis of the ignition delay period, which can be calculated from the cetane number and other physicochemical property indexes of fuels for a particular set of engine operating conditions.

Gureev, A.A.; Kamfer, G.M.; Prigul'skii, G.B.

1986-09-01T23:59:59.000Z

307

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Kansas Incentives and Laws Kansas Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuel Blending Equipment Tax Incentives Expired: 01/01/2012 A Storage and Blending Equipment Credit is available for the purchase, construction, or installation of qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel. The equipment must be installed at a fuel terminal, refinery, or biofuel production facility. The tax credit is equal to 10% of the qualified investment for the first $10,000,000 invested, and 5% of the investment in excess of $10,000,000. The credit may be taken in 10 equal annual

308

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

309

Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.  

E-Print Network [OSTI]

is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. ResearchRelatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10

310

Combined Impact of Branching and Unsaturation on the Autoignition of Binary Blends in a Motored Engine  

Science Journals Connector (OSTI)

From this test condition, a homogeneous charge of fuel and intake air can be achieved. ... The test fuels were prepared by addition of 5–20 vol % diisobutylene into n-heptane and isooctane. ... The 15 and 20 vol % blends of diisobutylene in isooctane were not able to reach high temperature heat release in the CFR engine system under these test conditions. ...

Dongil Kang; Stephen Kirby; John Agudelo; Magín Lapuerta; Khalid Al-Qurashi; André L. Boehman

2014-09-29T23:59:59.000Z

311

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

SciTech Connect (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

312

Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends  

Science Journals Connector (OSTI)

The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of ...

Ni Zhang; Zuohua Huang; Xiangang Wang; Bin Zheng

2011-03-01T23:59:59.000Z

313

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

314

Blended Straight-Run Gasolines with Composite Additives Containing Watery Ethanol  

Science Journals Connector (OSTI)

Cranking and antiknock properties of gasoline-alcohol blends based on straight-run gasoline with additives containing watery ethanol and other ... components are studied. The composition of the gasoline-alcohol b...

Yu. O. Beiko; A. P. Pavlovskii; O. A. Beiko

2014-01-01T23:59:59.000Z

315

Controlling the hydrogenic fuel inventory in plasma facing components (PFCs) will be necessary for the successful operation of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

defect defect existing defect Surface before ion implantation T collecting and distorting lattice incident ion W atom T in lattice T 2 T 2 + nm + + + + T ions are implanted into the tungsten (W) lattice and diffuse through it until they are trapped at a defect (typically a missing or diplaced W atom). The pressure of T atoms in the lattice can also be so high that they displace W atoms creating more traps. Such high pressures are enhanced by the slow recombination and release of T 2 . Contact: Bruce Lipschultz blip@psfc.mit.edu 617-253-8636 Fusion 'fuel economy' studied under reactor-like conditions New results from the Alcator C-Mod tokamak raise concerns about retention of tritium fuel in the metal walls of fusion reactors like ITER. Recent experiments on Alcator C-Mod, the first diverted tokamak with all metal walls, showed

316

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

The vehicle power source includes the engine or motor and associated wiring, fuel lines, engine coolant system, fuel storage containers, and other components. (Reference...

317

Kinetic Modeling Study of the Ignition Process of Homogeneous Charge Compression Ignition Engine Fueled with Three-Component Diesel Surrogate  

Science Journals Connector (OSTI)

School of Energy & Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China ... Such a computational study is also expected to provide insight into the fundamental understanding of the choice of neat constituents for the surrogate mixture and their relative proportions. ... The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. ...

Gan Xiao; Yusheng Zhang; Jing Lang

2013-02-11T23:59:59.000Z

318

Sulfur meter for blending coal at Plant Monroe: Final report  

SciTech Connect (OSTI)

An on-line sulfur analyzer, installed at the Detroit Edison, Monroe Power station, was placed into service and evaluated for coal blending optimization to minimize the cost of complying with changing stack gas sulfur dioxide regulations. The project involved debugging the system which consisted of an /open quotes/as-fired/close quotes/ sampler and nuclear source sulfur analyzer. The system was initially plagued with mechanical and electronic problems ranging from coal flow pluggages to calibration drifts in the analyzer. Considerable efforts were successfully made to make the system reliable and accurate. On-line testing showed a major improvement in control of sulfur dioxide emission rates and fuel blending optimization equivalent to as much as $6 million in fuel costs at the time of the evaluation. 7 refs., 14 figs., 12 tabs.

Trentacosta, S.D.; Yurko, J.O.

1988-04-01T23:59:59.000Z

319

Method to blend separator powders  

DOE Patents [OSTI]

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

320

Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report  

SciTech Connect (OSTI)

The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

McCormick, R. L.; Westbrook, S. R.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TABLES4.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

includes blending of fuel ethanol and an adjustment to correct for the imbalance of motor gasoline blending components. c Beginning in 1981, excludes blending components. d A...

322

Advanced Fuels Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

323

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Recent Federal Actions This list includes recent federal actions, such as Federal Register notices and rulemaking actions, agency directives or agency communications, that are all publicly available. These actions relate to alternative fuels and vehicles, fuel blends, hybrid vehicles, and idle reduction and fuel economy measures. When rulemakings are finalized, they will move to the list of

324

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

325

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

326

Alternative Fuels Data Center: P-Series  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

P-Series to someone by P-Series to someone by E-mail Share Alternative Fuels Data Center: P-Series on Facebook Tweet about Alternative Fuels Data Center: P-Series on Twitter Bookmark Alternative Fuels Data Center: P-Series on Google Bookmark Alternative Fuels Data Center: P-Series on Delicious Rank Alternative Fuels Data Center: P-Series on Digg Find More places to share Alternative Fuels Data Center: P-Series on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels P-Series P-Series fuels are blends of natural gas liquids (pentanes plus), ethanol, and methyltetrahydrofuran (MeTHF), a biomass co-solvent. P-Series fuels are clear, colorless, 89-93 octane, liquid blends used either alone or mixed with gasoline in any proportion in flexible fuel vehicles. These fuels are

327

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

328

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

329

The effects of heavy fuels on the M/V Bill Elmer  

SciTech Connect (OSTI)

This paper describes the operational experience of using blended or heavy fuels for inland marine service. The experience outlined here is with a vessel retrofitted to specifically use 2000 Redwood No. 1, seconds, fuel and designed to increase blended fuel-oil viscosity rising as high as 3500 Redwood. An engine teardown was performed and no abnormal wear was noticed.

Molin, W.A.; Barras, B.; Welchel, R.O.

1985-01-01T23:59:59.000Z

330

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect (OSTI)

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

331

Compliant fuel cell system  

DOE Patents [OSTI]

A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

Bourgeois, Richard Scott (Albany, NY); Gudlavalleti, Sauri (Albany, NY)

2009-12-15T23:59:59.000Z

332

Effect of Fuel Ethanol on Subsurface Microorganisms and its Influence on Biodegradation of BTEX Compounds.  

E-Print Network [OSTI]

??Ethanol is used as fuel in neat form in some countries (Brazil and India) or blended with gasoline (Europe, Canada and the United States). The… (more)

Araujo, Daniela

2006-01-01T23:59:59.000Z

333

High-activity fuel cell catalyst layers via block copolymer nanocomposites.  

E-Print Network [OSTI]

??Current polymer electrolyte membrane fuel cell (PEMFC) catalyst layers are disordered blends of carbon-supported platinum catalyst in an ionomeric matrix. The objective of this research… (more)

Alabi, Toheeb Bola

2008-01-01T23:59:59.000Z

334

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

335

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling  

Science Journals Connector (OSTI)

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling ... Schematic of diesel in-line blending and distribution infrastructure. ...

Sérgio M. S. Neiro; Valéria V. Murata; José M. Pinto

2014-06-13T23:59:59.000Z

336

The Fusibility of Blended Coal Ash  

Science Journals Connector (OSTI)

Ash fusibility temperatures (AFT) of coal ash are found at temperatures below the predicted liquidus temperature and, for ashes from blended coals, are generally nonlinear with respect to the blend proportion. ... ashing. ...

G. W. Bryant; G. J. Browning; H. Emanuel; S. K. Gupta; R. P. Gupta; J. A. Lucas; T. F. Wall

2000-02-25T23:59:59.000Z

337

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

Development of catalysts and reactor systems for producing alcohol-based fuels from coal-derived synthesis gases is outlined. Also, utilization of alcohol-based fuels either as gasoline blending stocks at 10-20% addition rates or as straight-run fuels is discussed. (Refs. 4).

Greene, M.I.

1982-08-01T23:59:59.000Z

338

A new future for carbohydrate fuel cells  

Science Journals Connector (OSTI)

Abstract The development of renewable energy sources to reduce our dependence on limiting fossil fuel reserves continues to be a critical research initiative. Utilizing the abundant high energy content of carbohydrates contained in biomass (cellulose and hemicellulose) must be considered to be an important contribution to our overall energy budget. Carbohydrate-derived furan-based liquid fuels and especially ethanol are becoming important added components forming gasoline blends to lower overall fossil fuel use. Alternate renewable energy processes that more efficiently use the carbohydrate energy content are desirable and would lower the overall carbohydrate input requirement for energy production. Recently, new catalysts have shown the feasibility of efficiently transporting the 24 electrons in glucose to fuel cell electrodes making possible the direct conversion of the stored energy in carbohydrates into electricity with the benign formation of carbonate and water as products. The conversion of glycerol, a byproduct of biodiesel production, into three-carbon carbohydrates provides another opportunity to produce electricity from an abundant carbohydrate source. New developments in catalyst systems promise to make carbohydrate fuel cells an important part of future energy strategies.

G.D. Watt

2014-01-01T23:59:59.000Z

339

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

340

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect (OSTI)

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Cell Component Accelerated Stress Test Protocols for PEM...  

Broader source: Energy.gov (indexed) [DOE]

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells This document describes test protocols...

342

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

343

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

The Missouri Renewable Fuel Standard The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small engine should run fine on E10, but only specially designed vehicles can use E85. 4. You are not required to label your dispensers disclosing the ethanol content if you are selling E10. However, you are required to label your dispensers if you are selling E85.

344

Gasoline and Diesel Fuel Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Fuel Pump Components History WHAT WE PAY FOR IN A GALLON OF DIESEL FUEL Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage)...

345

Module 5: Fuel Cell Systems  

Broader source: Energy.gov [DOE]

This course covers the systems required to operate a fuel cell engine, the components and functionality of each fuel cell system

346

Alternative Fuels Data Center: Biodiesel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Definition Biodiesel Definition to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Definition on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Definition on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Definition on Google Bookmark Alternative Fuels Data Center: Biodiesel Definition on Delicious Rank Alternative Fuels Data Center: Biodiesel Definition on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Definition Biodiesel is defined as a renewable, biodegradable fuel derived from agricultural plant oils or animal fats that meet ASTM specification D6751. Blended biodiesel is a blend of biodiesel with petroleum diesel fuel so

347

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alabama Incentives and Laws Alabama Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biodiesel Use in School Buses and Government Vehicles Archived: 05/31/2012 The Alabama Legislature encourages the use of biodiesel blends in the state. The legislature urges public school systems to use blends of 20% biodiesel (B20) in all diesel-powered school buses and encourages state entities to use biodiesel blends of at least 5% (B5) in diesel-powered motor vehicles. (Reference Senate Joint Resolution 14 and 15, 2009) Biofuels Research and Development Support Archived: 05/31/2012 The Alabama Department of Economic and Community Affairs administers the

348

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Montana Incentives and Laws Montana Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Promotion Archived: 07/01/2012 The state of Montana encourages the use of alternative fuels and fuel blends to the extent that doing so produces environmental and economic benefits to the citizens of Montana. The Montana Legislature recommends several guidelines for the development of a state alternative fuels policy, including the following: 1) encourage the use of self-sufficient markets; 2) any state alternative fuels program should have measurable benefits and state agencies must communicate these benefits to the public; 3) state and

349

Experimental Study of Biodiesel Blends’ Effects on Diesel Injection Processes  

Science Journals Connector (OSTI)

It can be said that a lot of studies performed with biodiesel are mere emissions and performances comparisons against a standard diesel fuel using multicylinder engines and fundamental combustion and overall injections aspects are not being completely addressed yet. ... Emissions variations from 2 different engine models and 2 driving cycles were also obsd. ... Lujan, J. M.; Tormos, B.; Salvador, F. J.; Gargar, K. Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: Preliminary study (I). ...

José M. Desantes; Raúl Payri; Antonio García; Julien Manin

2009-05-13T23:59:59.000Z

350

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions  

Science Journals Connector (OSTI)

Diesel Particle Filter and Fuel Effects on Heavy-Duty Diesel Engine Emissions ... Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels ...

Matthew A. Ratcliff; A. John Dane; Aaron Williams; John Ireland; Jon Luecke; Robert L. McCormick; Kent J. Voorhees

2010-10-01T23:59:59.000Z

351

Radiation effects on polypropylene/polybutylene blends  

SciTech Connect (OSTI)

Polymer blends of polypropylene and polybutylene have been found to exhibit substantial maintenance of structural integrity after exposure to ionizing radiation. This radiation resistance has been found to be related to processing conditions and the resulting morphology of the blend. This article discusses (a) the processing conditions and the resulting mechanical properties after irradiation and (b) the role of morphology in this unexpected blend property.

Rolando, R.J. (3M Engineering Systems and Technology, St. Paul, MN (United States))

1993-06-01T23:59:59.000Z

352

Alternative Fuels Data Center: Ethanol Feedstocks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Feedstocks to Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Feedstocks Map of the United States BioFuels Atlas Use this interactive map to compare biomass feedstocks and biofuels by

353

Alternative Fuels Data Center: Biodiesel Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Related Links on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

354

Alternative Fuels Data Center: Ethanol Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find More places to share Alternative Fuels Data Center: Ethanol Related Links on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

355

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

356

Performance of Biofuels and Biofuel Blends  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete 4 Relevance Objective: Solve technical problems that are preventing expanded markets for current and future biofuels and biofuel blends Necessary to achieve MYPP...

357

Effect of ethylene-vinyl acetate copolymer-based depressants on the low-temperature properties of components of light- and heavy-grade marine fuels  

Science Journals Connector (OSTI)

The possibility of using ethylene copolymers with vinyl acetate as additives for light and heavy distillate marine fuels for improving their low-temperature properties has...

N. K. Kondrasheva

2013-09-01T23:59:59.000Z

358

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

359

The Impact of Alternative Fuels on Combustion Kinetics  

SciTech Connect (OSTI)

The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

Pitz, W J; Westbrook, C K

2009-07-30T23:59:59.000Z

360

CRC fuel rating program: road octane performance of oxygenates in 1982 model cars  

SciTech Connect (OSTI)

Because of the widespread interest in the use of alcohols and ethers as gasoline blending components, this program was conducted to evaluate the effects of several oxygenates on gasoline octane performance and to evaluate the effects of car design features such as engine and transmission type. Five oxygenates were evaluated at two nominal concentrations, 5 and 10 volume%, at both regular- and premium-grade octane levels: methanol (MeOH), ethanol (ETOH), isopropanol (IPA), tertiary butanol (TBA), and methyl tertiary butyl ether (MTBE). A blend of 5% MeOH and 5 percent TBA was also tested at both octane levels. Twenty-eight unleaded fuels, including four hydrocarbon fuels, two hydrocarbon fuels plus toluene, and twenty-two oxygenated fuels, were rated in duplicate in thirty-eight cars using the Modified Uniontown Technique (CRC Designation F-28-75 described in Appendix C), plus some additional instructions. All testing was done on chassis dynamometers. Ratings were obtained at full throttle with all thirty-eight cars, and at the most critical part-throttle condition (occurring with manifold vacuum of 4 in. Hg (13.5 kPa) or greater above the full-throttle vacuum) with nine cars.

Not Available

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Biobutanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biobutanol to someone Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Biobutanol Biobutanol is a 4-carbon alcohol (butyl alcohol) produced from the same feedstocks as ethanol including corn, sugar beets, and other biomass feedstocks. Butanol is generally used as an industrial solvent in products such as lacquers and enamels, but it also can be blended with other fuels

362

EffectsIntermediateEthanolBlends.pdf | Department of Energy  

Office of Environmental Management (EM)

ctsIntermediateEthanolBlends.pdf More Documents & Publications Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009...

363

Intermediate Ethanol Blends: Plans and Status | Department of...  

Energy Savers [EERE]

Intermediate Ethanol Blends: Plans and Status Intermediate Ethanol Blends: Plans and Status Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

364

Effects of Intermediate Ethanol Blends on Legacy Vehicles and...  

Office of Environmental Management (EM)

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

365

Advancing Biorefining of Distiller's Grain and Corn Stover Blends...  

Broader source: Energy.gov (indexed) [DOE]

Advancing Biorefining of Distiller's Grain and Corn Stover Blends Advancing Biorefining of Distiller's Grain and Corn Stover Blends This fact sheet summarizes a U.S. Department of...

366

Effect of Biodiesel Blends on NOx Emissions | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Blends on NOx Emissions Effect of Biodiesel Blends on NOx Emissions Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007)....

367

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

368

Green emitting phosphors and blends thereof  

DOE Patents [OSTI]

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

369

PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)  

SciTech Connect (OSTI)

The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

CERTA, P.J.

2006-02-22T23:59:59.000Z

370

Performance Synergies between Low-Temperature and High-Temperature Fischer?Tropsch Diesel Blends  

Science Journals Connector (OSTI)

With both LTFT and HTFT diesels being nontraditional, alternative diesel fuels that can be used directly in the current fuelling infrastructure, the objective of this study was to investigate the potential synergies in fuel properties with blends of LTFT diesel and HTFT DHT diesel. ... Regulated exhaust emissions measured over the engine dynamometer test cycle in grams of pollutant per unit of mechanical energy delivered by the engine (g/kW h) included total hydrocarbon (THC), generally referred to as HC, CO, carbon dioxide (CO2), NOx, and PM. ... However, the general consumer should most probably not be able to notice the difference in volumetric fuel consumption. ...

Delanie Lamprecht; Luis P. Dancuart; Kaveer Harrilall

2007-08-31T23:59:59.000Z

371

The effects of blending hydrogen with methane on engine operation, efficiency, and emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-01-0474 -01-0474 The effects of blending hydrogen with methane on engine operation, efficiency, and emissions Thomas Wallner and Henry K. Ng Argonne National Laboratory Robert W. Peters University of Alabama at Birmingham Copyright © 2007 SAE International ABSTRACT Hydrogen is considered one of the most promising future energy carriers and transportation fuels. Because of the lack of a hydrogen infrastructure and refueling stations, widespread introduction of vehicles powered by pure hydrogen is not likely in the near future. Blending hydrogen with methane could be one solution. Such blends take advantage of the unique combustion properties of hydrogen and, at the same time, reduce the demand for pure hydrogen. In this paper, the authors analyze the combustion properties of hydrogen/methane

372

Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Job Fuel Job Creation Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Job Creation Tax Credit Businesses involved in alternative fuel vehicle (AFV) and component

373

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

This paper summarizes results of a research program which was undertaken to find the most advantageous method of using methanol in gasoline blends. It is demonstrated that a mixture called methanol and C/sub 2/C/sub 6/ saturated alcohols, called Alkanol fuel, has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Extensive property data and test results are tabulated, plotted, and discussed. Economic considerations are included. 4 refs.

Greene, M.I.

1982-08-01T23:59:59.000Z

374

Alternative Fuels Data Center: Biodiesel Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Specifications Biodiesel produced or sold in the state, including for the purpose of blending with petroleum diesel, must meet ASTM specification D6751.

375

"The submitted manuscript has been authored by a contractor of the U.S.  

E-Print Network [OSTI]

OF FIGURES Figure 1. Gasoline Blending Components v. Alternative Fuels as Sources of Non BENEFITS OF NEAT AND BLENDED GTL FUELS . . . . . . . . . . . . . . . . 19 6. GREENHOUSE GAS EMISSIONS

376

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Installation of Alternative Fuel Components in Vehicles A propane or compressed natural gas (CNG) carburetion system installer who collects an installation service fee must hold an...

377

Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report  

SciTech Connect (OSTI)

NREL tested Philippines coconut biodiesel samples of neat and blended fuels. Results show that the current fuel quality standards were met with very few exceptions. Additional testing is recommended.

Alleman, T. L.; McCormick, R. L.

2006-01-01T23:59:59.000Z

378

DPF Performance with Biodiesel Blends  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

379

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

380

Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373  

SciTech Connect (OSTI)

In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: E15  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E15 to someone by E15 to someone by E-mail Share Alternative Fuels Data Center: E15 on Facebook Tweet about Alternative Fuels Data Center: E15 on Twitter Bookmark Alternative Fuels Data Center: E15 on Google Bookmark Alternative Fuels Data Center: E15 on Delicious Rank Alternative Fuels Data Center: E15 on Digg Find More places to share Alternative Fuels Data Center: E15 on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E15 The U.S. Environmental Protection Agency (EPA) defines E15 as gasoline blended with 10.5% to 15% ethanol. In 2011, EPA approved E15 for use in conventional vehicles of model year 2001 and newer, through a Clean Air Act

382

Alternative Fuels Data Center: E85 Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85 Specifications to E85 Specifications to someone by E-mail Share Alternative Fuels Data Center: E85 Specifications on Facebook Tweet about Alternative Fuels Data Center: E85 Specifications on Twitter Bookmark Alternative Fuels Data Center: E85 Specifications on Google Bookmark Alternative Fuels Data Center: E85 Specifications on Delicious Rank Alternative Fuels Data Center: E85 Specifications on Digg Find More places to share Alternative Fuels Data Center: E85 Specifications on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Specifications ASTM International developed specifications for E85-a gasoline-ethanol blend containing 51% to 83% ethanol-to ensure proper vehicle starting,

383

Alternative Fuels Data Center: Status Update: E25 Dispensers Certified, E15  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E25 E25 Dispensers Certified, E15 Warranty Upgraded, and Testing on Ethanol Blends Continues (May 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: E25 Dispensers Certified, E15 Warranty Upgraded, and Testing on Ethanol Blends Continues (May 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: E25 Dispensers Certified, E15 Warranty Upgraded, and Testing on Ethanol Blends Continues (May 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: E25 Dispensers Certified, E15 Warranty Upgraded, and Testing on Ethanol Blends Continues (May 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: E25 Dispensers Certified, E15 Warranty Upgraded, and Testing on Ethanol Blends Continues (May 2010) on Delicious

384

A Blended Space for Tourism: Genesee Village Country & Museum  

E-Print Network [OSTI]

A Blended Space for Tourism: Genesee Village Country & Museum Abstract Blended spaces are spaces on this enables us to provide general guidance and framework on the design of blended spaces for digital tourism. Author Keywords Design, Tourism, Blended Spaces, User Experience ACM Classification Keywords H.5.2 User

Deussen, Oliver

385

High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus’ process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

None

2009-12-01T23:59:59.000Z

386

Combustion analysis of a direct injection diesel engine when fuelled with sunflower methyl ester and its diesel blends  

Science Journals Connector (OSTI)

Uncertainty in the availability of petroleum-based fuels in the near future and stringent pollution norms have triggered a search for renewable and clean-burning fuels. The use of vegetable oil as an alternative fuel has for long been in the pipeline, but its direct use has been limited because of its higher viscosity. In this work, sunflower oil was taken as feedstock and the feasibility of sunflower oil methyl ester (SFME) as an alternative fuel for diesel engines was investigated. Tests were conducted in a 4.4 kW, single cylinder, naturally aspirated direct injection diesel engine. It was observed that the premixed combustion phase of SFME and its blends were less intense compared with diesel oil. In addition, it was observed that SFME and its blends had slightly lower thermal efficiency and lower tailpipe emissions than diesel oil.

G. Lakshmi Narayana Rao; S. Saravanan; P. Selva Ilavarasi; G. Devasagayam

2009-01-01T23:59:59.000Z

387

Intermediate Ethanol Blends: Plans and Status  

Energy Savers [EERE]

* 60,000 E85 stations vs 1,200 today. Background * DOE intermediate ethanol blend test plan development began March 2007 - DOE funding: 14.6M (2007 & 2008) - Organizational...

388

Imaginative play with blended reality characters  

E-Print Network [OSTI]

The idea and formative design of a blended reality character, a new class of character able to maintain visual and kinetic continuity between the fully physical and fully virtual; the technical underpinnings of its unique ...

Robert, David Yann

2011-01-01T23:59:59.000Z

389

Biodiesel Production and Blending Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

blended biodiesel does not qualify. The biodiesel tax credit is applied against the corporation income tax imposed under KRS 141.040 and/or the limited liability entity tax (LLET) imposed under KRS...

390

Continuous blending of dry pharmaceutical powders  

E-Print Network [OSTI]

Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

Pernenkil, Lakshman

2008-01-01T23:59:59.000Z

391

Storage Stability of Biodiesel and Biodiesel Blends  

Science Journals Connector (OSTI)

Storage Stability of Biodiesel and Biodiesel Blends ... The biodiesels were selected to represent unstable material (D) with an induction time of 0.5 h and moderately stable material (B) with an induction time of 3.1 h. ...

Robert L. McCormick; Steven R. Westbrook

2009-10-16T23:59:59.000Z

392

Chemical Kinetic Research on HCCI & Diesel Fuels  

Energy Savers [EERE]

fuel * a primary reference fuel for diesel * Include both high and low temperature chemistry important to model low temperature combustion modes Improve component models for...

393

WI Biodiesel Blending Progream Final Report  

SciTech Connect (OSTI)

The Wisconsin State Energy Office�¢����s (SEO) primary mission is to implement cost�¢���effective, reliable, balanced, and environmentally�¢���friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

Redmond, Maria E; Levy, Megan M

2013-04-01T23:59:59.000Z

394

DOE Cell Component Accelerated Stress Test Protocols for PEM...  

Broader source: Energy.gov (indexed) [DOE]

CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) March 2007 Fuel cells, especially for...

395

Influence of coal thermoplastic properties on coking pressure generation: Part 2 – A study of binary coal blends and specific additives  

Science Journals Connector (OSTI)

A number of coal blends and pitch/coal blends were evaluated using rheometry, thermogravimetric analysis and microscopy to confirm and further elucidate the coking pressure mechanism previously proposed by Duffy et al. (2007) [1]. We confirm that blending a low rank, high fluidity, low coking pressure coal, with a high rank, low fluidity, high coking pressure coal can significantly reduce the coking pressure associated with the latter. Interestingly, blending does not necessarily result in a fluidity that is midway between that of the two coals; sometimes the fluidity of the blend is less than that of the low fluidity coal, especially when the coals are significantly different in rank. This occurs because the increase in complex viscosity (?*) through resolidification of the low rank, high fluidity coal counteracts the reduction in ?* resulting from softening of the high rank, low fluidity coal. It has also been confirmed that the ?* of the resultant blend can be estimated from the ?* of each component coal using a logarithmic additivity rule commonly employed for polymer blends. Polarised light microscopy has indicated that the degree of mixing between coals of different rank is minimal, with fusion restricted to the particle surface. It is therefore inappropriate to think of such a coal blend in the same way as a single coal, since each component coal behaves relatively independently. This limited fusion is important for understanding the coking pressure mechanism for blends. It is proposed here that the lower rank coal, which softens at lower temperature, is able to expand into the interparticle voids between the high rank coal that is yet to soften, and these voids can create channels for volatiles to traverse. Then, and importantly, when the high rank coal begins to expand, the pore structure developed in the resolidified structures of the low rank coal can facilitate removal of volatiles, while the resolidified material may also act as a suitable sorbent for volatile matter. This is considered to be the primary mechanism by which coal blending is able to alleviate coking pressure, and applies to addition of inert material also. Addition of a coal tar pitch was found to increase fluidity but also to extend the thermoplastic range to lower temperatures. This caused an increase in the swelling range, which was accompanied by a long plateau in ?*, a feature which has previously been observed for certain high fluidity, high pressure coals. Elasticity and ?* at the onset of expansion were also higher for both the pitch impregnated coals and the high pressure blends, which supports previous findings for singly charged high pressure coals, and confirms the potential use of such criteria for identifying potentially dangerous coals/blends.

John J. Duffy; Merrick R. Mahoney; Karen M. Steel

2010-01-01T23:59:59.000Z

396

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

397

ESS 2012 Peer Review - Acid Based Blend Membranes for Redox Flow Batteries - Alan Cisar, Lynntech  

Broader source: Energy.gov (indexed) [DOE]

Acid Based Blend Membranes for Redox Flow Batteries Acid Based Blend Membranes for Redox Flow Batteries DOE Grant No: DE-SC0006306 Alan Cisar* and Chris Rhodes Lynntech, Inc., 2501 Earl Rudder Freeway South, College Station, TX 77845 *E-mail: alan.cisar@lynntech.com, Phone: 979.764.2311 Prof. Arumugam Manthiram University of Texas, Austin, TX 78712 Prof. Fuqiang Liu University of Texas Arlington, Arlington, TX 76019 Conclusions Lynntech, in conjunction with the University of Texas and the University of Texas at Arlington, developed a new series of low-cost polymer blend membranes with high proton conductivity and ultralow vanadium ion permeability. The proton conductivity and physical properties of these membranes are tunable by adjusting the ratio of acid and base components. Membrane conductivity was found to be more critical to

398

Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine  

Science Journals Connector (OSTI)

The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine and to compare the outcomes to that of the D2 fuel. Engine performances exhaust emissions and some other important parameters were observed as a function of engine load and speed. In addition the effect of modifying compression ratio was also carried out in this study. From the engine experimental work neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2 operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO CO2 and HC were also lower using blended mixtures and in its neat form. However NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

Mazlan Said; Azhar Abdul Aziz

2012-01-01T23:59:59.000Z

399

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

400

Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity  

SciTech Connect (OSTI)

In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature ? ? (T ? T{sub c})/T (where T{sub c} is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed.

Dudowicz, Jacek; Freed, Karl F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Douglas, Jack F. [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States) [The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States); Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

2014-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effect of Oxygenated Fuel on Combustion and Emissions in a Light-Duty Turbo Diesel Engine  

Science Journals Connector (OSTI)

The influence of fuel oxygen content on soot reduction in diesel engines is well-known. ... Fuel consumption was determined by weighing the fuel at the beginning and end of each test mode or each fuel blend through a Sartorius precision scale, with an accuracy of ±2 g. ... studies on effects of oxygenated fuels in conjunction with single and split fuel injections were conducted at high and low loads on a Caterpillar SCOTE DI diesel engine. ...

Juhun Song; Kraipat Cheenkachorn; Jinguo Wang; Joseph Perez; André L. Boehman; Philip John Young; Francis J. Waller

2002-01-15T23:59:59.000Z

402

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

2012-01-01T23:59:59.000Z

403

Alternative Fuels Data Center: E85 Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85 Definition to E85 Definition to someone by E-mail Share Alternative Fuels Data Center: E85 Definition on Facebook Tweet about Alternative Fuels Data Center: E85 Definition on Twitter Bookmark Alternative Fuels Data Center: E85 Definition on Google Bookmark Alternative Fuels Data Center: E85 Definition on Delicious Rank Alternative Fuels Data Center: E85 Definition on Digg Find More places to share Alternative Fuels Data Center: E85 Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume and complies with the most current ASTM specification

404

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

405

Fuel Cell Experience & Opportunities: U.S. Postal Service  

Broader source: Energy.gov [DOE]

Overview of fuel cell experience and opportunities in installation, vechicle components, and vehicle programs

406

THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES  

SciTech Connect (OSTI)

Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

Durbin, Thomas

2001-08-05T23:59:59.000Z

407

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

408

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

409

Conformational properties of blends of cyclic and linear polymer melts  

Science Journals Connector (OSTI)

An adapted version of the annealing algorithm to identify primitive paths of a melt of ring polymers is presented. This algorithm ensures that the primitive path length becomes zero for nonconcatenated rings, and that no entanglements are observed. The bond-fluctuation model was used to simulate ring-linear blends with N=150 and 300 monomers. The primitive path length and the average number of entanglements of the linear component were found to be independent of the blend composition. In contrast, the primitive path length and the average number of entanglements on a ring molecule increased approximately linearly with the fraction of linear chains, and for large N, they approached values comparable with linear chains. Threading of ring molecules by linear chains, and ring-ring interactions were observed only in the presence of linear chains. It is conjectured that for large N, these latter interactions facilitate the formation of a percolating entangled network, thereby resulting in a disproportionate retardation of the dynamical processes.

Gopinath Subramanian and Sachin Shanbhag

2008-01-14T23:59:59.000Z

410

Alcohol-based fuels from syngases. [Alkanol fuels  

SciTech Connect (OSTI)

Explains how a mixture of methanol and C/sub 2/-C/sub 6/ saturated alcohols (Alkanol fuel) has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Summarizes the technical and economic advantages of producing and utilizing Alkanol fuels. Although methanol is cheaper, Alkanols represent a higher-quality fuel product with lower-oxygen content and higher hydrogen content. Increasing the methanol content of the Alkanol mixture has the potential to reduce the Alkanols cost of production to the equivalent of that of methanol on a constant heating value basis. The optimal composition will depend on production costs as well as on the properties of Alkanol mixtures necessary to generate a premium, synthetic transportation fuel. The Mobil M-Gasoline Process is an alternative route to converting methanol to synthetic transportation fuels. Concludes that development of the Alkanols Process is in its early stages and further work needs to be done in identifying and solving potential technical bottlenecks related to catalyst stability/selectivity and recovery of water-free Alkanol fuel mixtures. Current work is involved in the study of the performance and stability of several catalyst candidates utilizing a slurry reaction system and in the identification of optimal compositions of Alkanols for use as gasoline blending stocks.

Greene, M.I.

1982-08-01T23:59:59.000Z

411

Mid-Level Ethanol Blends | Department of Energy  

Office of Environmental Management (EM)

2009 -- Washington D.C. ft05knoll.pdf More Documents & Publications Mid-Level Ethanol Blends Test Program Intermediate Ethanol Blends: Plans and Status Biofuels Quality Surveys...

412

Mid-Level Ethanol Blends Test Program | Department of Energy  

Office of Environmental Management (EM)

Blends Test Program Mid-Level Ethanol Blends Test Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 --...

413

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Energy Savers [EERE]

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

414

The viscoelastic properties of linear-star blends  

E-Print Network [OSTI]

In order to understand the nature of polydispersity and characterize the effect of branching architecture, the model blend of linear and star polymer, which is the simplest branched polymer, is contrived. In this blend system, chain dynamics...

Lee, Jung Hun

2000-01-01T23:59:59.000Z

415

Htfiffi m'* Effects of Alternative Fuels on Vehicle Emissions  

E-Print Network [OSTI]

in the atmosphere. For many r.ears, the primary vehicie fuels used have been gasoline and diesel fuels. These iuels: gasoline, gasoline-ethanol l'rlends, diesel, biodiesel blends, LPG lquefied petroleurn gas) ancl CNG for gasoline, and at lorv concentrzrtiofls c?]11 be used r.vithout r-eilcle rnodiilcadons. Ethiurol can

416

Impact of Sugarcane Renewable Fuel on In-Use Gaseous and Particulate Matter Emissions from a Marine Vessel  

Science Journals Connector (OSTI)

In-use emissions aboard a Stalwart class vessel, the T/S State of Michigan, were measured from a four-stroke marine diesel generator operating on two fuels: ultra-low-sulfur diesel (ULSD) fuel and ULSD mixed with Amyris renewable diesel (S33; 33% by volume) produced from sugarcane feedstocks with 67% by volume ULSD. ... A model 6V92TA Detroit Diesel Corporation diesel engine (9.0 L) was fueled on blends of 10, 20, 30 and 40% soydiesel-diesel fuel. ... Fueling with biodiesel/diesel fuel blends reduced particulate matter (PM), total hydrocarbons (THC) and CO, while increasing NOx. ...

Nicholas R. Gysel; Robert L. Russell; William A. Welch; David R. Cocker; III; Sujit Ghosh

2014-04-30T23:59:59.000Z

417

Ethanol Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

418

Alternative Fuels Data Center: Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Tax Exemption Biodiesel is exempt from the $0.30 per gallon state motor fuel tax. Biodiesel may be blended with other fuel for use in motor vehicles, but

419

Emission of Nanosize Particles in the Process of Nanoclay Blending  

Science Journals Connector (OSTI)

Blending is one of the dustiest operations in the process of developing new fire-safe polyurethane foams. This paper presents the results of an investigation of the emission of nanosize particles released Nanofil®5 nanoclay is blended. Ten 5–20 ... Keywords: nanoclay, blending, emission of nanosize particles

Elzbieta Jankowska; Wojciech Zatorski

2009-02-01T23:59:59.000Z

420

Lyapunov-based Optimizing Control of Nonlinear Blending Process  

E-Print Network [OSTI]

. I. INTRODUCTION Blending processes arise in a wide range of industries, for example gasoline1 Lyapunov-based Optimizing Control of Nonlinear Blending Process Tor A. Johansen£ , Daniel Sb. ££ Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Lyapunov-based Optimizing Control of Nonlinear Blending Processes  

E-Print Network [OSTI]

processes arise in a wide range of industries, for example gasoline blending [1], [2], [3], [4], food1 Lyapunov-based Optimizing Control of Nonlinear Blending Processes Tor A. Johansen , Daniel Sb. Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

422

NOx Emissions of Alternative Diesel Fuels:? A Comparative Analysis of Biodiesel and FT Diesel  

Science Journals Connector (OSTI)

This study explores the diesel injection and combustion processes in an effort to better understand the differences in NOx emissions between biodiesel, Fischer?Tropsch (FT) diesel, and their blends with a conventional diesel fuel. Emissions studies were ...

James P. Szybist; Stephen R. Kirby; André L. Boehman

2005-05-14T23:59:59.000Z

423

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel economies for diesel vehicles, electric vehicles, and10%, /85%) Low-GHG FT diesel blends Electric charging & H2study, such as diesel hybrid electric vehicles (D HEVs). The

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

424

Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio  

Broader source: Energy.gov [DOE]

Our research shows that fuel can be blended to have a low ignition quality, which is desirable for high-efficiency advanced combustion, and with a high n-paraffin content to reduce CO and THC.

425

Nuclear Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

426

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect (OSTI)

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

427

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

428

Exciting careers blending engineering, science, and ecology  

E-Print Network [OSTI]

Exciting careers blending engineering, science, and ecology New Opportunities Making the world://bee.oregonstate.edu/ecoe Ecological Engineering is: · Ecosystem restoration and habitat design at multiple scales · Watershed · Phytoremediation and bioremediation · Industrial ecology · Constructed wetlands and tidal marshlands · Mitigation

Tullos, Desiree

429

Alternative Fuels Data Center: Biodiesel Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Production Biodiesel Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production and Distribution on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

430

Impact of Biofuel Blending on Diesel Soot Oxidation: Implications for Aftertreatment  

SciTech Connect (OSTI)

Control strategies for diesel particulate filters (DPFs) remain one of the most important aspects of aftertreatment research and understanding the soot oxidation mechanism is key to controlling regeneration. Currently, most DPF models contain simple, first order heterogeneous reactions oxidation models with empirically fit parameters. This work improves the understanding of fundamental oxidation kinetics necessary to advance the capabilities of predictive modeling, by leading to better control over regeneration of the device. This study investigated the effects of blending soybean-derived biodiesel fuel on diesel particulate emissions under conventional combustion from a 1.7L direct injection, common rail diesel engine. Five biofuel blend levels were investigated and compared to conventional certification diesel for the nanostructure, surface chemistry and major constituents of the soluble organic fraction (SOF) of diesel particulate matter (PM), and the relationship between these properties and the particulate oxidation kinetics.

Strzelec, Andrea [ORNL; Toops, Todd J [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, David [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin; Vander Wal, Dr. Randy [NASA-Glenn Research Center, Cleveland

2009-01-01T23:59:59.000Z

431

Evaluation of thermal stresses in planar solid oxide fuel cells as a function of thermo-mechanical properties of component materials  

E-Print Network [OSTI]

, cathode and anode materials for SOFC and their effect on thermally induced stresses in SOFC stacks. Since a mismatch in Coefficient of Thermal Expansion (CTE) and Elastic moduli between the materials causes the development of detrimental thermal stresses... the development of the advanced flat plate (Planar) SOFC. Along with the SOFC design as a whole, advance materials were being developed for the various components. In the early 1970s, Nickel/YSZ, doped In 2 O 3 , and CoCr 2 O 3 were used as anode, cathode...

Manisha,

2008-10-10T23:59:59.000Z

432

Effect of different percentages of biodiesel–diesel blends on injection, spray, combustion, performance, and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

Abstract A comparative study of effect of different biodiesel–diesel blends (B5, B10, B15, B20, B25, B50 and B100) on injection, spray, combustion, performance, and emissions of a direct injection diesel engine at constant speed (1500 rpm) was carried out. The penetration distance increased with increase in percentage of biodiesel in diesel due to enhanced in-line fuel pressure. The simulation results indicate the spray penetration with biodiesel–diesel blend up to B15 does not lead to wall impingement but B20 is to be a critical limit of wall impingement (within uncertainty ±1.3%). However, it is observed clearly from the simulation results that probability of wall impingement is more with higher blends (B25, B50 and B100). The ignition delay period decreased with all biodiesel blends due to higher cetane number resulting in less rate of pressure rise and the smooth engine running operation. The engine torque does not change significantly with biodiesel–diesel blends up to 20% (B20). However, the torque reduction is about 2.7% with B100 at the rated load. Carbon monoxide (CO), hydrocarbon (HC) and smoke emissions decreased with all biodiesel–diesel blends. However, oxides of nitrogen (NOx) emission increased in the range of 1.4–22.8% with all biodiesel–diesel blends at rated load due to oxygenated fuel, automatic advance in dynamic injection timing (DIT), higher penetration and higher in-cylinder temperature. A notable conclusion emerged from this study is the optimum biodiesel–diesel blend based on no wall impingement (B15: 0% and B20 ±1.3% uncertainty limit) and increase in \\{NOx\\} emission (B15: 4.1% and B20: 15.6%) in a conventional (unmodified) diesel engine is up to B15.

Subhash Lahane; K.A. Subramanian

2015-01-01T23:59:59.000Z

433

Selection of best biodiesel blend for IC engines: an integrated approach with FAHP-TOPSIS and FAHP-VIKOR  

Science Journals Connector (OSTI)

The aim of this study is to select the best blend using multi-criteria decision-making (MCDM) technique. The six alternative fuel blends diesel, B20, B40, B60, B80 and B100 are prepared by varying the amount of diesel in biodiesel. Brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), smoke, hydrocarbon (HC), carbon monoxide (CO) and carbon dioxide (CO2) are considered as evaluation criteria. A single cylinder, constant speed, direct injection diesel engine (4.4 kW) was used for exploratory analysis of evaluation criteria at different load conditions. Two models fuzzy analytical hierarchy process-technique for order preference by similarity to ideal solution (FAHP-TOPSIS) and VlseKriterijumska Optimizacija I Kompromisno Resenje (FAHP-VIKOR, in Serbian) are proposed to evaluate the best blend. Here, the FAHP is used to analyse the structure of best blend selection and to determine the weights of the criteria. The TOPSIS and VIKOR are used to obtain the final ranking of the blend. [Received: July 10, 2012; Accepted: October 16, 2012].

G. Sakthivel; M. Ilangkumaran; G. Nagarajan; P. Shanmugam

2013-01-01T23:59:59.000Z

434

An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester  

Science Journals Connector (OSTI)

Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

Agung Sudrajad; Ismail Ali; Khalid Samo; Danny Faturachman

2012-01-01T23:59:59.000Z

435

Amon Millner draft short paper submitted to the Interaction Design and Children 2011 conference Modkit: Blending and Extending Approachable Platforms  

E-Print Network [OSTI]

programming environment and the Arduino platform. The demonstration will feature the current Modkit components, activities, and projects that illustrate how the toolkit blends Scratch and Arduino platforms to extend what). General Terms Design, Human Factors, Languages. Keywords Modkit, Scratch, Arduino, informal learning

436

Alternative Fuels Data Center: Biofuels Procurement Preference  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Procurement Biofuels Procurement Preference to someone by E-mail Share Alternative Fuels Data Center: Biofuels Procurement Preference on Facebook Tweet about Alternative Fuels Data Center: Biofuels Procurement Preference on Twitter Bookmark Alternative Fuels Data Center: Biofuels Procurement Preference on Google Bookmark Alternative Fuels Data Center: Biofuels Procurement Preference on Delicious Rank Alternative Fuels Data Center: Biofuels Procurement Preference on Digg Find More places to share Alternative Fuels Data Center: Biofuels Procurement Preference on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Procurement Preference State and county agency contracts awarded for the purchase of diesel fuel must give preference to bids for biofuels or blends of biofuel and

437

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

438

Alternative Fuels Data Center: Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Tax Exemption Beginning January 1, 2014, biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the state fuel

439

Alternative Fuels Data Center: Biodiesel Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definitions Definitions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Definitions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Definitions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Definitions on Google Bookmark Alternative Fuels Data Center: Biodiesel Definitions on Delicious Rank Alternative Fuels Data Center: Biodiesel Definitions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Definitions Biodiesel is defined as any fuel derived in whole or in part from agricultural products, animal fats, or the wastes from these products, and is suitable for use in diesel engines. A biodiesel blend is defined as any

440

Alternative Fuels Data Center: Ethanol Production  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production to Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Production and Distribution Ethanol is a domestically produced alternative fuel that's most commonly made from corn. It can also be made from cellulosic feedstocks, such as

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender Pump Blender Pump Dispensers to someone by E-mail Share Alternative Fuels Data Center: Blender Pump Dispensers on Facebook Tweet about Alternative Fuels Data Center: Blender Pump Dispensers on Twitter Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Google Bookmark Alternative Fuels Data Center: Blender Pump Dispensers on Delicious Rank Alternative Fuels Data Center: Blender Pump Dispensers on Digg Find More places to share Alternative Fuels Data Center: Blender Pump Dispensers on AddThis.com... Blender Pump Dispensers Updated April 2, 2012 Federal and local initiatives to increase the use of ethanol in transportation have resulted in an increase of new ideas and applications for flexible fuel vehicles (FFVs) and E85, a high-level gasoline blend

442

Alternative Fuels Data Center: Biodiesel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Definition Biodiesel Definition to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Definition on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Definition on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Definition on Google Bookmark Alternative Fuels Data Center: Biodiesel Definition on Delicious Rank Alternative Fuels Data Center: Biodiesel Definition on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Definition Biodiesel is defined as a renewable, biodegradable, mono alkyl ester combustible liquid fuel that is derived from agricultural plant oils or animal fats and meets ASTM specification D6751-11b. A biodiesel blend is a

443

Alternative Fuels Data Center: E85 Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to Definition to someone by E-mail Share Alternative Fuels Data Center: E85 Definition on Facebook Tweet about Alternative Fuels Data Center: E85 Definition on Twitter Bookmark Alternative Fuels Data Center: E85 Definition on Google Bookmark Alternative Fuels Data Center: E85 Definition on Delicious Rank Alternative Fuels Data Center: E85 Definition on Digg Find More places to share Alternative Fuels Data Center: E85 Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type E85 Definition E85 is defined as a blend of ethanol and gasoline that contains no more than 85% ethanol and is produced for use in alternative fuel vehicles. E85 must comply with ASTM specification D5798-11. (Reference House File 634,

444

Alternative Fuels Data Center: Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of biodiesel fuel blends containing between 1% and 10% biodiesel made between July 1,

445

Alternative Fuels Data Center: Biodiesel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax to Tax to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Tax on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Tax on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Tax on Google Bookmark Alternative Fuels Data Center: Biodiesel Tax on Delicious Rank Alternative Fuels Data Center: Biodiesel Tax on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Tax Biodiesel and biodiesel blends are taxed at the state motor fuel excise tax rate of $0.22 per gallon. Beginning the fiscal quarter after which a biodiesel production facility in the state reaches a name plate capacity of at least 20 million gallons per year and fully produces at least 10 million

446

Fluidic fuel feed system  

SciTech Connect (OSTI)

This report documents the development and testing of a fluidic fuel injector for a coal-water slurry fueled diesel engine. The objective of this program was to improve the operating life of coal-water slurry fuel controls and injector components by using fluidic technology. This project addressed the application of fluidic devices to solve the problems of efficient atomization of coal-water slurry fuel and of injector component wear. The investigation of injector nozzle orifice design emphasized reducing the pressure required for efficient atomization. The effort to minimize injector wear includes the novel design of components allowing the isolation of the coal-water slurry from close-fitting injector components. Three totally different injectors were designed, fabricated, bench tested and modified to arrive at a final design which was capable of being engine tested. 6 refs., 25 figs., 3 tabs.

Badgley, P.

1990-06-01T23:59:59.000Z

447

Nuclear Fuel Cycle Integrated System Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

448

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

hydrogen Go hydrogen Go Hydrogen-stations Hydrogen Fueling Station Locations by State Hydrogen-stations View Map Graph Hydrogen_li_by_state Hydrogen Incentives and Laws, by State Hydrogen_li_by_state View Map Graph Generated_thumb20130810-31804-1c5lrlb Commuter Responses to the 2008 Oil Price Spike Generated_thumb20130810-31804-1c5lrlb Ways that workers changed their commutes in response to high gasoline prices Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-f64ffe U.S. Consumption of Ethanol and MTBE Oxygenates Generated_thumb20130810-31804-f64ffe Trend of ethanol and MTBE consumption as oxygenates and gasohol blends from 1992-2009 Last update February 2012 View Graph Graph Download Data Generated_thumb20130810-31804-14nv4j5 AFV Acquisitions by Regulated Fleets (by Fuel Type)

449

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Missouri Incentives and Laws Missouri Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biodiesel Fuel Use Incentive Expired: 07/01/2012 Through the 2011-2012 school year, school districts are allowed to establish contracts with nonprofit, farmer-owned, new generation cooperatives to purchase biodiesel blends of 20% (B20) or higher for use in operating buses. Every school district that contracts with an eligible new generation cooperative for biodiesel will receive an additional payment through its state transportation aid payment if there is an incremental cost to purchase the biodiesel. (Reference Missouri Revised Statutes

450

High-Temperature Steam-Treatment of PBI, PEKK, and a PEKK-PBI Blend: A Solid-State NMR and IR Spectroscopic Study  

E-Print Network [OSTI]

and PAEK components in a melt or dry blend systems. In this initial investigation, focus is placed or morphological transformations of the polymers. All changes detectable by 13 C cross-polarization with magic with the PBI component. In this study, the traditional Celazole-type PBI (poly[2,20 -(

Bluemel, Janet

451

Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends  

Science Journals Connector (OSTI)

In this study the performance and emission characteristics of a direct injection diesel engine using castor oil biodiesel (COB)-diesel blended fuels were investigated experimentally and then predicted by artificial neural networks. For this aim castor oil was converted to its biodiesel via transesterification approach. Then the effects of the biodiesel percentage in blend engine load and speed on brake power brake specific fuel consumption (BSFC) nitrogen oxides (NOx) carbon dioxide (CO2) carbon monoxide (CO) and particle matter (PM) have been considered. Fuel blends with various percentages of biodiesel (0% 5% 10% 15% 20% 25% and 30%) at various engine speeds and loads were tested. The results indicated that blends of COB with diesel fuel provide admissible engine performance; on the other side emissions decreased so much. Two types of neural networks a group method of data handling (GMDH) and feed forward were used for modeling of the diesel engine to predict brake power BSFC and exhaust emissions such as CO CO2 NOx and PM values. The comparison results demonstrate the superiority of the feed forward neural networkmodels over GMDH type models in terms of the statistical measures in the training and testing data but in the number of hidden neurons and model simplicity GMDH models are preferred.

M. H. Shojaeefard; M. M. Etghani; M. Akbari; A. Khalkhali; B. Ghobadian

2012-01-01T23:59:59.000Z

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

D6751 and the U.S. Environmental Protection Agency registration and health effects testing program, as written January 1, 2008. Biodiesel blends are defined as blended special...

453

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be labeled with the registered brand name and the volume percentage, or...

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blend Dispenser Labeling Requirement Pumps dispensing ethanol or biodiesel blends must have a label that specifies the percentage of ethanol or biodiesel present in the...

455

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect (OSTI)

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

456

Impact of Driving Behavior on PHEV Fuel Consumption for Different...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain,...

457

Fuel Cells for Transportation - FY 2001 Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells for Transportation - FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION 159.pdf More Documents &...

458

Combustion and Emissions Characterization of Biodiesel Blends in a City-Car Engine  

Science Journals Connector (OSTI)

Whereas in the available literature, most of the researches addressed the multicylinders diesel engine of large displacement;(7, 22-27) only some works have investigated the light duty engines, designed for agricultural purpose and mainly tested for a fixed value of the engine speed. ... Rakopoulos, C. D.; Antonopoulos, K. A.; Rakopoulos, D. C.; Hountalas, D. T.; Giakoumis, E. G.Comparative performance and emissions study of a direct injection Diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins Energy Convers. ... Heywood, J. B. Internal combustion engine fundamentals; Mcgraw-Hill: New York, 1988. ...

Giancarlo Chiatti; Ornella Chiavola; Fulvio Palmieri; Stefano Albertini

2014-07-06T23:59:59.000Z

459

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect (OSTI)

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2008-01-01T23:59:59.000Z

460

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect (OSTI)

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel blending components" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

SciTech Connect (OSTI)

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

462

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

463

Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Intermediate Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 to someone by E-mail Share Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Facebook Tweet about Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Twitter Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Google Bookmark Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Delicious Rank Vehicle Technologies Office: Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 on Digg

464

Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Effects of Intermediate Ethanol Blends Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol, respectively-on emissions, catalyst and engine durability, drivability or operability, and materials associated with these vehicles and engines. This DOE test program includes technical expertise from DOE's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory.

465

Influence of Biodiesel Addition to Fischer?Tropsch Fuel on Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Zhu, R.; Wang, X.; Miao, H.; Huang, Z.; Gao, J.; Jiang, D.Performance and Emission Characteristics of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends Energy Fuels 2009, 23, 286– 293 ... Results showed that, without changing the fuel supply system and the combustion system of a diesel engine, when using blended fuel with increased DMM percentage, break-specific fuel consumption (BSFC) is higher for a smaller lower heating value of DMM, while thermal efficiency increases a little. ... To investigate influences of fuel design on regulated and non-regulated emissions of heavy-duty diesel engines, a Mercedes-Benz OM 906 Euro 3 engine was run with common diesel fuel (DF), first- and second-generation alternative fuels (Gas-to-liq. ...

Md. Nurun Nabi; Johan Einar Hustad

2010-04-14T23:59:59.000Z

466

Performance and emissions of a diesel tractor engine fueled with marine diesel and soybean methyl ester  

Science Journals Connector (OSTI)

Biodiesel is an alternative fuel that is cleaner than petrodiesel. Biodiesel can be used directly as fuel for a diesel engine without having to modify the engine system. It has the major advantages of having high biodegradability, excellent lubricity and no sulfur content. This paper presents the results of investigations carried out in studying the fuel properties of soybean methyl ester (SME) and its blend with marine diesel fuel from 5%, 20% and 50% blends by volume and in running a diesel engine with these fuels. The results indicate that the use of biodiesel produces lower smoke opacity (up to 74%), but higher brake specific fuel consumption (BSFC) (up to 12%) compared to marine fuel (MF). The measured carbon monoxide (CO) emissions of B5 and B100 fuels were found to be 3% and 52% lower than that of the MF, respectively.

B. Gokalp; E. Buyukkaya; H.S. Soyhan

2011-01-01T23:59:59.000Z

467

Alternative Fuels Data Center: Voluntary Biofuels Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Voluntary Biofuels Voluntary Biofuels Program to someone by E-mail Share Alternative Fuels Data Center: Voluntary Biofuels Program on Facebook Tweet about Alternative Fuels Data Center: Voluntary Biofuels Program on Twitter Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Google Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Delicious Rank Alternative Fuels Data Center: Voluntary Biofuels Program on Digg Find More places to share Alternative Fuels Data Center: Voluntary Biofuels Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Biofuels Program In place of the formal Biodiesel Blend Mandate, the Massachusetts Department of Energy Resources (DOER) will launch a voluntary biofuels

468

Alternative Fuels Data Center: ASTM Biodiesel Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

ASTM Biodiesel ASTM Biodiesel Specifications to someone by E-mail Share Alternative Fuels Data Center: ASTM Biodiesel Specifications on Facebook Tweet about Alternative Fuels Data Center: ASTM Biodiesel Specifications on Twitter Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Google Bookmark Alternative Fuels Data Center: ASTM Biodiesel Specifications on Delicious Rank Alternative Fuels Data Center: ASTM Biodiesel Specifications on Digg Find More places to share Alternative Fuels Data Center: ASTM Biodiesel Specifications on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives ASTM Biodiesel Specifications These tables show selected ASTM requirements for B100 and B6 to B20. Note

469

NREL: Vehicles and Fuels Research - Biofuels Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

470

Alternative Fuels Data Center: Biodiesel Warranty Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Warranty Warranty Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Warranty Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Warranty Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Warranty Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Warranty Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Warranty Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Warranty Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Warranty Requirement All new state government diesel vehicles must have a manufacturer's warranty that allows the use of biodiesel blends of 20% (B20) in the

471

Alternative Fuels Data Center: Biodiesel Storage Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Storage Biodiesel Storage Regulations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Storage Regulations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Storage Regulations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Google Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Delicious Rank Alternative Fuels Data Center: Biodiesel Storage Regulations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Storage Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Storage Regulations Underground storage tank regulations apply to all biodiesel blends with the exception of 100% biodiesel (B100). An owner changing the use of an

472

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

473

Alternative Fuels Data Center: Biofuels Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Use Biofuels Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Use Requi