Sample records for fuel automated management

  1. Facilities Automation and Energy Management

    E-Print Network [OSTI]

    Jen, D. P.

    1983-01-01T23:59:59.000Z

    Computerized facilities automation and energy management systems can be used to maintain high levels of facilities operations efficiencies. The monitoring capabilities provides the current equipment and process status, and the analysis...

  2. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Linking Continuous Energy Management and Open AutomatedKeywords: Continuous Energy Management, Automated Demandlinking continuous energy management and continuous

  3. Automated Transportation Management System (ATMS) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy's (DOE's) Automated Transportation Management System is an integrated web-based logistics management system allowing users to manage inbound and outbound freight...

  4. Automated Fuel Dispensing System Form Instructions

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Automated Fuel Dispensing System Form Instructions If additional forms are necessary to provide(s) are hired and will be obtaining fuel, an Add Driver Form MUST be submitted for entry into the web database and/or diesel fuel to operate. Note: When a new vehicle, golf cart (gasoline), etc., is placed

  5. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01T23:59:59.000Z

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  6. automated file management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OverviewManaged Lanes OverviewManaged Lanes OverviewManaged Lanes Overview 2012 Road Vehicle Automation Workshop2012 Road Vehicle Automation Workshop Engineering Websites...

  7. automated transportation management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OverviewManaged Lanes OverviewManaged Lanes OverviewManaged Lanes Overview 2012 Road Vehicle Automation Workshop2012 Road Vehicle Automation Workshop Engineering Websites...

  8. V-132: IBM Tivoli System Automation Application Manager Multiple...

    Broader source: Energy.gov (indexed) [DOE]

    IBM has acknowledged multiple vulnerabilities in IBM Tivoli System Automation Application Manager PLATFORM: The vulnerabilities are reported in IBM Tivoli System Automation...

  9. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    building electric load management concepts and faster scale dynamic DR using open automation systems.systems are being designed to be compatible with existing open building automationbuilding controls, weather sensitivity and occupancy patterns. Automation - Historically many energy management systems

  10. Automated Information Management via Abductive Logic Agents

    E-Print Network [OSTI]

    Toni, Francesca

    Automated Information Management via Abductive Logic Agents F.Toni 1 Imperial College of Science representation of networks and meta-data via abductive logic programs and make use of the reasoning engine abductive logic pro- grams are equipped with for checking as well as enforcing the properties represented

  11. Automated Home Energy Management (AHEM) Standing Technical Committee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Management (AHEM) Standing Technical Committee Strategic Plan - February 2012 Automated Home Energy Management (AHEM) Standing Technical Committee Strategic Plan -...

  12. Automated transportation management system (ATMS) software project management plan (SPMP)

    SciTech Connect (OSTI)

    Weidert, R.S., Westinghouse Hanford

    1996-05-20T23:59:59.000Z

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  13. Automated Transportation Management System (ATMS)

    Office of Environmental Management (EM)

    s lading, fre * W * C S * A * H * E * * O 0 mated T artment of Ene tation Manage ated web-base lowing users freight shipm arly developm E Inspector G t opportunitie al...

  14. Fuel Cell Systems Air Management

    E-Print Network [OSTI]

    Air Management Honeywell TIAX UTC Mechanology, LLC · Turbocompressor for PEM Fuel Cells · Hybrid-Machined Thin Film H2 Gas Sensors - ATMI · Sensor Development for PEM Fuel Cell Systems ­ Honeywell · Gallium

  15. Management issues in automated audit analysis

    SciTech Connect (OSTI)

    Jackson, K.A.; Hochberg, J.G.; Wilhelmy, S.K.; McClary, J.F.; Christoph, G.G.

    1994-03-01T23:59:59.000Z

    This paper discusses management issues associated with the design and implementation of an automated audit analysis system that we use to detect security events. It gives the viewpoint of a team directly responsible for developing and managing such a system. We use Los Alamos National Laboratory`s Network Anomaly Detection and Intrusion Reporter (NADIR) as a case in point. We examine issues encountered at Los Alamos, detail our solutions to them, and where appropriate suggest general solutions. After providing an introduction to NADIR, we explore four general management issues: cost-benefit questions, privacy considerations, legal issues, and system integrity. Our experiences are of general interest both to security professionals and to anyone who may wish to implement a similar system. While NADIR investigates security events, the methods used and the management issues are potentially applicable to a broad range of complex systems. These include those used to audit credit card transactions, medical care payments, and procurement systems.

  16. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11T23:59:59.000Z

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Development of a Graphical User Interface for In-Core Fuel Management Using MCODE

    E-Print Network [OSTI]

    Romano, Paul Kollath

    In the present work, a graphical user interface is developed to automate in-core fuel management using MCODE, an MCNP-ORIGEN linkage code. Data abstraction is achieved by means of five object classes that define the run, ...

  18. Design and implementation of an automated battery management platform

    E-Print Network [OSTI]

    Toksoz, Tuna

    2012-01-01T23:59:59.000Z

    This thesis describes the design and the implementation of the hardware platform for automated battery management with battery changing/charging capability for autonomous UAV missions with persistency requirement that ...

  19. Automated Home Energy Management Standing Technical Committee Presentation

    Broader source: Energy.gov [DOE]

    This presentation outlines the goals of the Automated Home Energy Management Standing Technical Committee, as presented at the Building America Spring 2012 Stakeholder meeting on February 29, 2012, in Austin, Texas.

  20. HFIR spent fuel management alternatives

    SciTech Connect (OSTI)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  1. HFIR spent fuel management alternatives

    SciTech Connect (OSTI)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-10-15T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems` Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

  2. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  3. AUTOMATED TEAM PROJECT MANAGEMENT AND EVALUATION THROUGH INTERACTIVE WEB MODULES

    E-Print Network [OSTI]

    Lockwood, John W.

    AUTOMATED TEAM PROJECT MANAGEMENT AND EVALUATION THROUGH INTERACTIVE WEB MODULES John W. Lockwood lockwood@ipoint.vlsi.uiuc.edu ABSTRACT Team projects represent an important aspect of the micro- electronic in team projects. Evalu- ation of an individual's performance requires a fair compar- ison of the team

  4. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Energy Savers [EERE]

    03: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and...

  5. Comparison of spent nuclear fuel management alternatives

    SciTech Connect (OSTI)

    Beebe, C.L.; Caldwell, M.A,

    1996-09-01T23:59:59.000Z

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions.

  6. EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final...

  7. NREL: Energy Systems Integration - ESIF Fueling Robot Automates Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademyCapabilities Photo of a

  8. Automated brush plating process for solid oxide fuel cells

    DOE Patents [OSTI]

    Long, Jeffrey William (Pittsburgh, PA)

    2003-01-01T23:59:59.000Z

    A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.

  9. Fuel consumption analyses for urban traffic management

    SciTech Connect (OSTI)

    Bowyer, D.P.; Akcelik, R.; Biggs, D.C.

    1986-12-01T23:59:59.000Z

    A primary output from the fuel consumption research conducted by the Australian Road Research Board (ARRB) is the ARRB Special Report, Guide to Fuel Consumption Analyses. This article briefly summarizes the background of the guide, describes its major features, and considers its relevance to urban traffic management decision. The guide was a result of a technical audit of studies relating to energy consumption in traffic and transport systems. A brief summary of the audit process and findings is given. The guide is intended primarily as an aid to effective use of fuel consumption models in the design of traffic management schemes. The forms of four interrelated fuel consumption models of the guide are described and their likely transferability to various situations is indicated. Each traffic and fuel consumption model is appropriate to a particular scale of traffic system. This link is shown for several selected traffic models. As an example, a discussion of the importance of accurate fuel consumption estimates for the case of priority control at a particular intersection is given.

  10. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    January 2008. Biography Mary Ann Piette is a Staff ScientistAutomated Demand Response Mary Ann Piette, Sila Kiliccote,

  11. Used Fuel Management System Interface Analyses - 13578

    SciTech Connect (OSTI)

    Howard, Robert; Busch, Ingrid [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States); Nutt, Mark; Morris, Edgar; Puig, Francesc [Argonne National Laboratory (United States)] [Argonne National Laboratory (United States); Carter, Joe; Delley, Alexcia; Rodwell, Phillip [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Hardin, Ernest; Kalinina, Elena [Sandia National Laboratories (United States)] [Sandia National Laboratories (United States); Clark, Robert [U.S. Department of Energy (United States)] [U.S. Department of Energy (United States); Cotton, Thomas [Complex Systems Group (United States)] [Complex Systems Group (United States)

    2013-07-01T23:59:59.000Z

    Preliminary system-level analyses of the interfaces between at-reactor used fuel management, consolidated storage facilities, and disposal facilities, along with the development of supporting logistics simulation tools, have been initiated to provide the U.S. Department of Energy (DOE) and other stakeholders with information regarding the various alternatives for managing used nuclear fuel (UNF) generated by the current fleet of light water reactors operating in the United States. An important UNF management system interface consideration is the need for ultimate disposal of UNF assemblies contained in waste packages that are sized to be compatible with different geologic media. Thermal analyses indicate that waste package sizes for the geologic media under consideration by the Used Fuel Disposition Campaign may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded and being loaded into the dry storage canisters currently in use. The implications of where and when the packaging or repackaging of commercial UNF will occur are key questions being addressed in this evaluation. The analysis demonstrated that thermal considerations will have a major impact on the operation of the system and that acceptance priority, rates, and facility start dates have significant system implications. (authors)

  12. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOE Patents [OSTI]

    Goller, Glen J. (West Springfield, MA); Breault, Richard D. (Coventry, CT)

    1980-01-01T23:59:59.000Z

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  13. Huizenga leads safety of spent fuel management, radioactive waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  14. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03T23:59:59.000Z

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  15. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Office of Environmental Management (EM)

    Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

  16. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  17. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect (OSTI)

    Lammert, M.; Gonder, J.

    2014-07-01T23:59:59.000Z

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  18. Automated Transportation Management System (ATMS) Software Project Management Plan (SPMP). Revision 2

    SciTech Connect (OSTI)

    Weidert, R.S.

    1995-05-26T23:59:59.000Z

    As a cabinet level federal agency with a diverse range of missions and an infrastructure spanning the United States, the US Department of Energy (DOE) has extensive freight transportation requirements. Performance and management of this freight activity is a critical function. DOE`s Transportation Management Division (TMD) has an agency-wide responsibility for overseeing transportation activities. Actual transportation operations are handled by government or contractor staff at the field locations. These staff have evolved a diverse range of techniques and procedures for performing transportation functions. In addition to minimizing the economic impact of transportation on programs, facility transportation staff must be concerned with the increasingly complex task of complying with complex shipment safety regulations. Maintaining the department`s safety record for shipping hazardous and radioactive materials is a primary goal. Use of automation to aid transportation functions is not widespread within DOE, though TMD has a number of software systems designed to gather and analyze data pertaining to field transportation activities. These systems are not integrated. Historically, most field facilities have accomplished transportation-related tasks manually or with minimal computer assistance. At best, information and decision support systems available to transportation staffs within the facilities are fragmented. In deciding where to allocate resources for automation, facility managers have not tended to give the needs of transportation departments a high priority. This diversity causes TMD significant difficulty in collecting data for use in managing department-wide transportation activities.

  19. A DISTRIBUTED INTELLIGENT AUTOMATED DEMAND RESPONSE BUILDING MANAGEMENT SYSTEM

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30T23:59:59.000Z

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load during the study period was 1175 kW. Several new tools facilitated this work, such as the Smart Energy Box, the distributed load controller or Energy Information Gateway, the web-­based DR controller (dubbed the Central Load-­Shed Coordinator or CLSC), and the Demand Response Capacity Assessment & Operation Assistance Tool (DRCAOT). In addition, an innovative data aggregator called sMAP (simple Measurement and Actuation Profile) allowed data from different sources collected in a compact form and facilitated detailed analysis of the building systems operation. A smart phone application (RAP or Rapid Audit Protocol) facilitated an inventory of the building’s plug loads. Carbon dioxide sensors located in conference rooms and classrooms allowed demand controlled ventilation. The extensive submetering and nimble access to this data provided great insight into the details of the building operation as well as quick diagnostics and analyses of tests. For example, students discovered a short-­cycling chiller, a stuck damper, and a leaking cooling coil in the first field tests. For our final field tests, we were able to see how each zone was affected by the DR strategies (e.g., the offices on the 7th floor grew very warm quickly) and fine-­tune the strategies accordingly.

  20. Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended to serve both

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract--Implementation of Distribution Automation (DA) and Demand Side Management (DSM) intended with differentiate QoS in a multitasking environment. I. INTRODUCTION ODERN society demands a reliable and high by the distribution utility for the security. REMPLI (Remote Energy Management over Power Lines and Internet) system

  1. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

    Broader source: Energy.gov [DOE]

    Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

  2. A liquid water management strategy for PEM fuel cell stacks

    E-Print Network [OSTI]

    Van Nguyen, Trung; Knobbe, M. W.

    2003-02-25T23:59:59.000Z

    Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

  3. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17T23:59:59.000Z

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  4. Safeguards and security concept for the Secure Automated Fabrication (SAF) and Liquid Metal Reactor (LMR) fuel cycle, SAF line technical support

    SciTech Connect (OSTI)

    Schaubert, V.J.; Remley, M.E.; Grantham, L.F.

    1986-02-21T23:59:59.000Z

    This report is a safeguards and security concept system review for the secure automated fabrication (SAF) and national liquid metal reactor (LMR) fuel programs.

  5. Y-12 Plant decontamination and decommissioning Technology Logic Diagram for Building 9201-4: Volume 3, Technology evaluation data sheets: Part B, Decontamination; robotics/automation; waste management

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This volume consists of the Technology Logic Diagrams (TLDs) for the decontamination, robotics/automation, and waste management areas.

  6. Fuel reforming for scramjet thermal management and combustion optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the composition of the cracked fuel entering the combustor, an accurate predictive model of the thermalFuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ of the main issues of hypersonic flight is the thermal management of the overall vehicle and more specifically

  7. Constraint Management in Fuel Cells: A Fast Reference Governor Approach

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    admissible current demand to the fuel cell based on on-line optimization of a scalar parameter and onConstraint Management in Fuel Cells: A Fast Reference Governor Approach Ardalan Vahidi Ilya Kolmanovsky Anna Stefanopoulou Abstract-- The air supply system in a fuel cell may be susceptible

  8. Meeting Minutes from Automated Home Energy Management System Expert Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004 Meeting Materials:September

  9. Automated Home Energy Management (AHEM) Standing Technical Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplace Charging Summit U.S.3

  10. Automated Home Energy Management Standing Technical Committee Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplace Charging Summit U.S.3

  11. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    SciTech Connect (OSTI)

    Portsmouth, J.H. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-12-31T23:59:59.000Z

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  12. V-132: IBM Tivoli System Automation Application Manager Multiple

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivileges |Vulnerabilities |

  13. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  14. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  15. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  16. Development of advanced mixed oxide fuels for plutonium management

    SciTech Connect (OSTI)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01T23:59:59.000Z

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  17. Risk and Responsibility Sharing in Nuclear Spent Fuel Management

    E-Print Network [OSTI]

    De Roo, Guillaume

    With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

  18. EM Hosts Used Fuel Management Workshop

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM’s Office of Nuclear Materials Disposition held a workshop with Swedish executives earlier this month to learn about their approaches to designing a national waste management program.

  19. US Department of Energy automated transportation management system

    SciTech Connect (OSTI)

    Thomas, T.M. [Dept. of Energy, Germantown, MD (United States); Frost, D.M.; Lopez, C.A. [MELE Associates, Rockville, MD (United States)] [and others

    1996-12-31T23:59:59.000Z

    The US Department of Energy (DOE) has approximately 80 facilities throughout the United States that specialize in either scientific research, engineering, technology, production, and/or waste management activities. These facilities can best be described as Government Owned, Contractor Operated (GOCO) sites, and vary in size from very small laboratories to large industrial plant type facilities. Each of these GOCO`s have varying needs for transportation of materials into and/or out of their facility. Therefore, Traffic Management operations will differ from site to site due to size and the internal or site specific mission. The DOE Transportation Management Division (TMD) has the corporate responsibility to provide a well managed transportation management program for the safe, efficient, and economical transportation of all DOE-owned materials. To achieve this mission, TMD provides oversight, and when necessary, resources to assist in ensuring regulatory compliance in the packaging and shipment of DOE-owned materials. A large part of TMD`s responsibility is to develop, administer, and provide policies and guidance concerning department-wide transportation and packaging operations. This responsibility includes overall Transportation Management policies and programs for the packaging and movement of all DOE materials, including radioactive materials, other hazardous materials/substances, and hazardous wastes. TMD formulates policies and guidance that assist the DOE Field Elements and GOCO`s in meeting TMD`s goal for safe, efficient and economical transportation. Considering there are at least 80 shipping and receiving sites, the challenge encountered by TMD has been the difficulty in managing such a diverse transportation community.

  20. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01T23:59:59.000Z

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  1. Stochastic Programming Model for Fuel Treatment Management 

    E-Print Network [OSTI]

    Kabli, Mohannad Reda A

    2014-04-28T23:59:59.000Z

    Due to the increased number and intensity of wild fires, the need for solutions that minimize the impact of fire are needed. Fuel treatment is one of the methods used to mitigate the effects of fire at a certain area. In this thesis, a two...

  2. Stochastic Programming Model for Fuel Treatment Management

    E-Print Network [OSTI]

    Kabli, Mohannad Reda A

    2014-04-28T23:59:59.000Z

    Due to the increased number and intensity of wild fires, the need for solutions that minimize the impact of fire are needed. Fuel treatment is one of the methods used to mitigate the effects of fire at a certain area. In this thesis, a two...

  3. Weatherman: Automated, Online, and Predictive Thermal Mapping and Management

    E-Print Network [OSTI]

    Chase, Jeffrey S.

    consumption, and cooling capacity; this dictates an approach that formulates management policies for each data a representative data center show that automatic thermal mapping can predict accurately the heat distribution settings, workload distribution, and power consumption. I. INTRODUCTION Power consumption and heat

  4. International trade and waste and fuel managment issue, 2006

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2006-01-15T23:59:59.000Z

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

  5. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect (OSTI)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12T23:59:59.000Z

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  6. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  7. EFFECTS OF VARIABLE-PRIORITY TRAINING ON AUTOMATION-RELATED COMPLACENCY: PERFORMANCE AND EYE MOVEMENTS

    E-Print Network [OSTI]

    Parasuraman, Raja

    2-346 EFFECTS OF VARIABLE-PRIORITY TRAINING ON AUTOMATION-RELATED COMPLACENCY: PERFORMANCE AND EYE in reducing automation-related complacency was examined. Participants were trained under one of three). They subsequently monitored an automated system while simultaneously performidg tracking and fuel management tasks

  8. Advances in fuel management and on-line core monitoring

    SciTech Connect (OSTI)

    Stout, R.B.; Hansen, L.E.; Patten, T.W.

    1988-01-01T23:59:59.000Z

    Advanced Nuclear Fuels Corporation (ANF) has developed and implemented advanced core power distribution monitoring methods for BWRs and PWRs based on the three dimensional nodal simulator codes used for incore fuel management design and analysis. The use of these methods has resulted in a more accurate assessment of the core power distribution and corresponding increased operating margins. These increased margins allow for more economical fuel cycle designs. Since the initial application in 1982, ANF has made enhancements to the incore monitoring system. These enhancements have permitted more rapid analysis of local power changes, power distribution projections during ascent to full power and on-line statistical analysis of the incore detector signal. The on-line analysis implemented in BWRs has also been developed for application PWRs. In the future, reactors are expected to operate with longer fuel cycles, more aggressive low radial leakage loadings, load follow and use higher burnup fuel. These advances will require more burnable neutron absorbers and more sophisticated fuel designs. To accommodate these advances, the fuel management methodologies and measurement system will require improvements. The state-of-the-art methods provided by ANF provide incore monitoring systems compatible with these expected needs.

  9. Automated dredging and disposal alternatives management system (ADDAMS). Environmental effects of dredging. Technical note

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This technical note describes the current capabilities and availability of the Automated Dredging and Disposal Alternatives Management System (ADDAMS). The technical note replaces the earlier Technical Note EEDP-06-12, which should be discarded. Planning, design, and management of dredging and dredged material disposal projects often require complex or tedious calculations or involve complex decision-making criteria. In addition, the evaluations often must be done for several disposal alternatives or disposal sites. ADDAMS is a personal computer (PC)-based system developed to assist in making such evaluations in a timely manner. ADDAMS contains a collection of computer programs (applications) designed to assist in managing dredging projects. This technical note describes the system, currently available applications, mechanisms for acquiring and running the system, and provisions for revision and expansion.

  10. International trade and waste and fuel managment issue, 2007

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2007-01-15T23:59:59.000Z

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: New plants with high safety and availability, by Bill Poirier, Westinghouse Electric Company; Increased reliability and competitiveness, by Russell E. Stachowski, GE Energy, Nuclear; Fuel for long-term supply of nuclear power, by Kumiaki Moriya, Hitachi, Ltd., Japan; Super high burnup fuel, By Noboru Itagaki and Tamotsu Murata, Nuclear Fuel Industries LTD., Japan; Zero fuel failures by 2010, by Tom Patten, AREVA NP Inc.; Decommissioning opportunities in the UK, by David Brown and William Thorn, US Department of Commerce; Industry's three challenges, by Dale E. Klein, US Nuclear Regulatory Commission; and, A step ahead of the current ABWR's, compiled by Claire Zurek, GE Energy.

  11. Water Management in Polymer Electrolyte Membrane (PEM) Fuel Cells

    E-Print Network [OSTI]

    Petta, Jason

    ;Data Compilation ­What's Important? 1. SlugVolume (Dimensionless) Required to calculate how much power the channel (P_slug) Required to calculate how much power it takes to remove a slug Pslug #12;Square ChannelWater Management in Polymer Electrolyte Membrane (PEM) Fuel Cells Catherine Chan & Lauren Isbell

  12. US Spent (Used) Fuel Status, Management and Likely Directions- 12522

    SciTech Connect (OSTI)

    Jardine, Leslie J. [L. J. Jardine Services, Consultant, Dublin CA, 94568 (United States)

    2012-07-01T23:59:59.000Z

    As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of accumulated spent fuel from the utilities. There are technical solutions for continuing the safe storage of spent fuel for 100 years or more and these solutions will be implemented by the US utilities that need to keep their nuclear power plants operating while the unknown political events are played out to establish future US policy decisions that can remain in place long enough regarding accumulated spent fuel inventories to implement any new US spent fuel centralized storage or disposition policy by the US government. (author)

  13. Interface agreement for the management of FFTF Spent Nuclear Fuel

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-02-02T23:59:59.000Z

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. The mission of the Fast Flux Test Facility (FFTF) Transition Project is to place the facility in a radiologically and industrially safe shutdown condition for turnover to the Environmental Restoration Contractor (ERC) for subsequent D&D. To satisfy both project missions, FFTF SNF must be removed from the FFTF and subsequently dispositioned. This documented provides the interface agreement between FFTF Transition Project and SNF Project for management of the FFTF SNF.

  14. International trade and waste and fuel managment issue, 2008

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2008-01-15T23:59:59.000Z

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons, Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.

  15. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01T23:59:59.000Z

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  16. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01T23:59:59.000Z

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  17. Test Automation Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation #12;Test Automation Outline Test Automation Mousavi: Test Automation #12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs

  18. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  19. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    SciTech Connect (OSTI)

    Martinez-Frances, N.; Timm, W.; Rossbach, D. [AREVA, AREVA NP, Erlangen (Germany)

    2012-07-01T23:59:59.000Z

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main design criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)

  20. Automated ground maintenance and health management for autonomous unmanned aerial vehicles

    E-Print Network [OSTI]

    Dale, Daniel R., M. Eng. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Automated ground maintenance is a necessity for multi-UAV systems. Without such automation, these systems will become more of a burden than a benefit as human operators struggle to contend with maintenance operations for ...

  1. Spent fuel management in France: Reprocessing, conditioning, recycling

    SciTech Connect (OSTI)

    Giraud, J.P.; Montalembert, J.A. de [COGEMA, Cedex (France)

    1994-12-31T23:59:59.000Z

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m{sup 3} per year of mine tailings. By the year 2000, less than 500 m{sup 3} of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory.

  2. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Hill, Thomas J

    2005-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

  3. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect (OSTI)

    Permana, Sidik [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Waris, Abdul; Subhki, Muhamad Nurul [Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Ismail, [BAPETEN (Indonesia)

    2010-12-23T23:59:59.000Z

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.

  4. Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle

    E-Print Network [OSTI]

    Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle M a high efficiency energy management control strategy for a hybrid fuel cell vehicle. The proposed the model of a real hybrid car, "Smile" developed by FAAM, using a stack of fuel cells as the primary power

  5. International trade and waste and fuel management issue, 2009

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2009-01-15T23:59:59.000Z

    The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power in Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.

  6. EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    DOE prepared a EIS that evaluated the potential environmental impacts of treatment and management of DOE-owned sodium bonded spent nuclear fuel.

  7. Modeling Water Management in Polymer-Electrolyte Fuel Cells

    SciTech Connect (OSTI)

    Department of Chemical Engineering, University of California, Berkeley; Weber, Adam; Weber, Adam Z.; Balliet, Ryan; Gunterman, Haluna P.; Newman, John

    2007-09-07T23:59:59.000Z

    Fuel cells may become the energy-delivery devices of the 21st century with realization of a carbon-neutral energy economy. Although there are many types of fuel cells, polymerelectrolyte fuel cells (PEFCs) are receiving the most attention for automotive and small stationary applications. In a PEFC, hydrogen and oxygen are combined electrochemically to produce water, electricity, and waste heat. During the operation of a PEFC, many interrelated and complex phenomena occur. These processes include mass and heat transfer, electrochemical reactions, and ionic and electronic transport. Most of these processes occur in the through-plane direction in what we term the PEFC sandwich as shown in Figure 1. This sandwich comprises multiple layers including diffusion media that can be composite structures containing a macroporous gas-diffusion layer (GDL) and microporous layer (MPL), catalyst layers (CLs), flow fields or bipolar plates, and a membrane. During operation fuel is fed into the anode flow field, moves through the diffusion medium, and reacts electrochemically at the anode CL to form hydrogen ions and electrons. The oxidant, usually oxygen in air, is fed into the cathode flow field, moves through the diffusion medium, and is electrochemically reduced at the cathode CL by combination with the generated protons and electrons. The water, either liquid or vapor, produced by the reduction of oxygen at the cathode exits the PEFC through either the cathode or anode flow field. The electrons generated at the anode pass through an external circuit and may be used to perform work before they are consumed at the cathode. The performance of a PEFC is most often reported in the form of a polarization curve, as shown in Figure 2. Roughly speaking, the polarization curve can be broken down into various regions. First, it should be noted that the equilibrium potential differs from the open-circuit voltage due mainly to hydrogen crossover through the membrane (i.e., a mixed potential on the cathode) and the resulting effects of the kinetic reactions. Next, at low currents, the behavior of a PEFC is dominated by kinetic losses. These losses mainly stem from the high overpotential of the oxygen-reduction reaction (ORR). As the current is increased, ohmic losses become a factor in lowering the overall cell potential. These ohmic losses are mainly from ionic losses in the electrodes and separator. At high currents, mass-transport limitations become increasingly important. These losses are due to reactants not being able to reach the electrocatalytic sites. Key among the issues facing PEFCs today is water management. Due to their low operating temperature (< 100 C), water exists in both liquid and vapor phases. Furthermore, state-of-the-art membranes require the use of water to provide high conductivity and fast proton transport. Thus, there is a tradeoff between having enough water for proton conduction (ohmic losses), but not too much or else the buildup of liquid water will cause a situation in which the reactant-gas-transport pathways are flooded (mass-transfer limitations). Figure 3 displays experimental evidence of the effects of water management on performance. In Figure 3(a), a neutron image of water content displays flooding near the outlet of the cell due to accumulation of liquid water and a decrease in the gas flowrates. The serpentine flow field is clearly visible with the water mainly underneath the ribs. Figure 3(b) shows polarization performance at 0.4 and 0.8 V and high-frequency resistance at 0.8 V as a function of cathode humidification temperature. At low current densities, as the inlet air becomes more humid, the membrane resistance decreases, and the performance increases. At higher current densities, the same effect occurs; however, the higher temperatures and more humid air also results in a lower inlet oxygen partial pressure.

  8. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  9. FUEL DEVICE APPLICATION Use this application to request a fuel device to access the University of Michigan (U-M) Parking and Transportation

    E-Print Network [OSTI]

    Kirschner, Denise

    FUEL DEVICE APPLICATION Use this application to request a fuel device to access the University of Michigan (U-M) Parking and Transportation Services (PTS) service stations for fuel. A fuel device owned and managed by PTS Fleet Services equipped with an automated fuel device. Please read the Use

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  11. Robust Optimal Control Strategies for a Hybrid Fuel Cell Power Management System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Robust Optimal Control Strategies for a Hybrid Fuel Cell Power Management System David Hern strategies are proposed for the power management subsystem of a hybrid fuel cell/supercapacitor power generation system. The control strate- gies are based on different control configurations involving the power

  12. An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Vehicles

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    An Energy Management Controller to Optimally Trade Off Fuel Economy and Drivability for Hybrid Abstract--Hybrid Vehicle fuel economy performance is highly sensitive to the energy management strategy used to regulate power flow among the various energy sources and sinks. Optimal non-causal solutions

  13. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01T23:59:59.000Z

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  14. EIS-0279: Spent Nuclear Fuel Management, Aiken, South Carolina | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western22,EERE:8: Supplement4: RecordFinalRecord ofof

  15. Alternative Fuels Data Center: Strategies for Fleet Managers to Conserve

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions toSchoolAlternatives Fees

  16. Impact of Battery Management on Fuel Efficiency Validity | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum TechnologyEnergyImaging Ahead ofinEnergy

  17. Cold start fuel management of port-fuel-injected internal combustion engines

    E-Print Network [OSTI]

    Cuseo, James M. (James Michael)

    2005-01-01T23:59:59.000Z

    The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

  18. Huizenga leads safety of spent fuel management, radioactive waste

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartmentAdministrationto Submit a FOIA

  19. NNSS Alternative Fuel Vehicle Management Program receives federal award |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministration takesSecurity

  20. Sandia Energy - Recent Sandia International Used Nuclear Fuel Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H. KobosRandall T. Cygan

  1. Nuclear Regulatory Commission's Integrated Strategy for Spent Fuel Management

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640 FederalDepartment ofNRC's Integrated Strategy

  2. 2013 Faculty Publications A Cloud-Based Framework for Automating MODFLOW Simulations for Aquifer Management

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    2013 Faculty Publications A Cloud-Based Framework for Automating MODFLOW Simulations for Aquifer Performance-Based Liquefaction Triggering Models for the SPT. Seismological Society of America 2013 Annual. A Simplified Uniform Hazard Liquefaction Analysis Procedure for Bridges. Transportation Research Record. Kevin

  3. Design and fuel management of PWR cores to optimize the once-through fuel cycle

    E-Print Network [OSTI]

    Fujita, Edward Kei

    The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current

  4. FUSION- A Knowledge Management System for Fuel Cell Optimization

    E-Print Network [OSTI]

    Jane Hunter; Kwok Cheung; Suzanne Little; John Drennan

    Fuel cells are highly complex multi-component systems. Their efficiency depends on their internal nanostructure and the complex chemical and physical processes occurring across their internal interfaces. Significant

  5. A decision-support model for managing the fuel inventory of a Panamanian generating company

    E-Print Network [OSTI]

    Perez-Franco, Roberto, 1976-

    2004-01-01T23:59:59.000Z

    Bahia Las Minas Corp (BLM) is a fuelpowered generating company in the Panamanian power system. The purpose of this thesis is to design and evaluate a decision-support model for managing the fuel inventory of this company. ...

  6. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  7. FY 1999 Spent Nuclear Fuel Interim Management Plan

    SciTech Connect (OSTI)

    Dupont, M.

    1998-12-21T23:59:59.000Z

    This document has been prepared to present in one place the near and long-term plans for safe management of SRS SNF inventories until final disposition has been identified and implemented.

  8. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    SciTech Connect (OSTI)

    Danko, A.D.

    1995-12-22T23:59:59.000Z

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ``provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.`` The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning.

  9. The French national program for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Giraud, J.P.; Demontalembert, J.A. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31T23:59:59.000Z

    From its very beginning, the French national program for spent fuel and HLW management is aimed at the recycling of energetic materials and the safe disposal of nuclear waste. Spent fuel reprocessing is the cornerstone of this program, since it directly opens the way to energetic material recycling, waste minimization and safe conditioning. It is complemented by the HLW management program which is defined by the HLW disposal regulation and the Waste Act issued in 1991.

  10. Federal Energy and Water Management Award Winner 22nd Operations Group Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergyEnergy ManagementRabel, Elizabeth

  11. Technical strategy for the management of INEEL spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents evaluations, findings, and recommendations of the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Task Team. The technical strategy developed by the Task Team includes stabilization, near term storage, packaging, transport, and ultimate disposal. Key issues identified and discussed include waste characterization, criticality, packaging, waste form performance, and special fuels. Current plans focus on onsite needs, and include three central elements: (1) resolution of near-term vulnerabilities, (2) consolidation of storage locations, and (3) achieving dry storage in transportable packages. In addition to the Task Team report, appendices contain information on the INEEL spent fuel inventory; regulatory decisions and agreements; and analyses of criticality, packaging, storage, transportation, and system performance of a geological repository. 16 refs., 6 figs., 4 tabs.

  12. Fuels, Engines, and Emissions Research Center 2 Managed by UT-Battelle

    E-Print Network [OSTI]

    Fuels, Engines, and Emissions Research Center #12;2 Managed by UT-Battelle for the U.S. Department of Energy Fuels, Engines, and Emissions Research .... a comprehensive laboratory for advanced transportation in transportation efficiency and emissions. Engine Cells Chassis Dyno Lab Models and Controls Analytical Labs

  13. Fire Effects and Fuel Management in Mediterranean Ecosystems in Spain1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Fire Effects and Fuel Management in Mediterranean Ecosystems in Spain1 Ricardo VĂ©lez2 1 Presented, California. 2 Doctor Ingeniero de Montes, ICONA - Forest Fire Section, Madrid Spain. Abstract: Forest fuels in the Mediterranean eco- systems of Spain are characterized by generalized pyrophytism and large accumulations

  14. Summary of non-US national and international fuel cycle and radioactive waste management programs 1982

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.

    1982-08-01T23:59:59.000Z

    Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

  15. Total Recall: System Support for Automated Availability Management Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geoffrey M. Voelker

    E-Print Network [OSTI]

    Savage, Stefan

    Total Recall: System Support for Automated Availability Management Ranjita Bhagwan, Kiran Tati, Yu of California, San Diego Abstract Availability is a storage system property that is both highly desired and yet and with only a cursory understanding of how the config- uration will impact overall performance or availability

  16. Knowledge Representation Concepts for Automated SLA Management Adrian Paschke and Martin Bichler1

    E-Print Network [OSTI]

    Cengarle, María Victoria

    of service supply chain and assume a central position in popular IT service management standards such as ITIL (www.itil.co.uk). As a consequence, IT service providers need to manage, execute and maintain thousands

  17. Towards Solid IT Change Management: Automated Detection of Conflicting IT Change Plans

    E-Print Network [OSTI]

    Kemper, Alfons

    Infrastructure Library (ITIL), is concerned with the management of changes to networks and services to satisfy Change Management [1], a core process of the Information Technology Infrastructure Library (ITIL) [2 of confidence and optimization. To ensure this, ITIL proposes a Change Management process comprising

  18. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Thomas Hill; Denzel L. Fillmore

    2005-10-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

  19. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  20. U-047: Siemens Automation License Manager Bugs Let Remote Users Deny

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfactTuscarora Phase IIDOE OGainService or Execute

  1. Application of Automated Controls for Voltage and Reactive Power Management - Initial Results

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply CommentsTransmission:TransmissionTransmissionDesierto U.S.

  2. National Report Joint Convention on the Safety of Spent Fuel Management and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNationalOverview | Department ofon

  3. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    SciTech Connect (OSTI)

    N /A

    2000-08-04T23:59:59.000Z

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate little difference in the environmental impacts among alternatives. DOE has identified electrometallurgical treatment as its Preferred Alternative for the treatment and management of all sodium-bonded spent nuclear fuel, except for the Fermi-1 blanket fuel. The No Action Alternative is preferred for the Fermi-1 blanket spent nuclear fuel.

  4. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLecturesFuel Cell

  5. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    SciTech Connect (OSTI)

    Denney, R.D.

    1995-10-01T23:59:59.000Z

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP.

  6. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01T23:59:59.000Z

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  7. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-04-14T23:59:59.000Z

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  9. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Mark K. Gee

    2008-10-01T23:59:59.000Z

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

  10. Final Report: Development of a Thermal and Water Management System for PEM Fuel Cell

    SciTech Connect (OSTI)

    Zia Mirza, Program Manager

    2011-12-06T23:59:59.000Z

    This final program report is prepared to provide the status of program activities performed over the period of 9 years to develop a thermal and water management (TWM) system for an 80-kW PEM fuel cell power system. The technical information and data collected during this period are presented in chronological order by each calendar year. Balance of plant (BOP) components of a PEM fuel cell automotive system represents a significant portion of total cost based on the 2008 study by TIAX LLC, Cambridge, MA. The objectives of this TWM program were two-fold. The first objective was to develop an advanced cooling system (efficient radiator) to meet the fuel cell cooling requirements. The heat generated by the fuel cell stack is a low-quality heat (small difference between fuel cell stack operating temperature and ambient air temperature) that needs to be dissipated to the ambient air. To minimize size, weight, and cost of the radiator, advanced fin configurations were evaluated. The second objective was to evaluate air humidification systems which can meet the fuel cell stack inlet air humidity requirements. The moisture from the fuel cell outlet air is transferred to inlet air, thus eliminating the need for an outside water source. Two types of humidification devices were down-selected: one based on membrane and the other based on rotating enthalpy wheel. The sub-scale units for both of these devices have been successfully tested by the suppliers. This project addresses System Thermal and Water Management.

  11. The Impact of the Katy Management of Automated Curriculum System on Planning for Learning, Delivery of Instruction and Evaluation of Student Learning as Perceived by Teachers in the Katy Independent School District in Texas

    E-Print Network [OSTI]

    Hogue, Sharon L.

    2011-10-21T23:59:59.000Z

    The purpose of this study was to determine teachers’ perceptions of the relationship of the Katy Management of Automated Curriculum (KMAC) system developed by Katy ISD in Katy, Texas, on planning for learning, delivery of instruction and evaluation...

  12. Savannah River Site, Spent Nuclear Fuel Management, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1998-12-24T23:59:59.000Z

    The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel (20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some programmatic material stored at SRS for repackaging and dry storage pending shipment offsite).

  13. Emerging challenges in cognitive ergonomics: managing swarms of self-organizing agent-based automation

    E-Print Network [OSTI]

    Lee, John D.

    Emerging challenges in cognitive ergonomics: managing swarms of self-organizing agent safety and e ciency. Addressing these problems will require the ®eld of cognitive ergonomics to consider-based description of well- de®ned scenarios. Cognitive ergonomics must develop an understanding of the basic

  14. Characterization program management plan for Hanford K basin spent nuclear fuel

    SciTech Connect (OSTI)

    TRIMBLE, D.J.

    1999-07-19T23:59:59.000Z

    The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng.

  15. Appendix III to OMB Circular No. A-130 -Security of Federal Automated Information Resources

    E-Print Network [OSTI]

    Appendix III to OMB Circular No. A-130 - Security of Federal Automated Information Resources A automated information security programs; assigns Federal agency responsibilities for the security of automated information; and links agency automated information security programs and agency management

  16. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  17. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect (OSTI)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01T23:59:59.000Z

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  18. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  19. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  20. Spent Nuclear Fuel Project document control and Records Management Program Description

    SciTech Connect (OSTI)

    MARTIN, B.M.

    2000-05-18T23:59:59.000Z

    The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

  1. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect (OSTI)

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28T23:59:59.000Z

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  2. Office Automation Document Preparation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    .2 Distinctions 1.3 Facilities 1.3.1 Document Preparation 1.3.2 Records Management 1.3.3 Communication 1 organizations contemplating the installation of document-preparation systems. * Administrative managersOffice Automation and Document Preparation for the v' University of North Carolina at Chapel Hill

  3. Draft Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    SciTech Connect (OSTI)

    N /A

    1999-07-30T23:59:59.000Z

    This document summarizes the U.S. Department of Energy's ''Draft Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel''. In addition to information concerning the background, purpose and need for the proposed action, and the National Environmental Policy Act process, this summary describes the characteristics of sodium-bonded spent nuclear fuel, the proposed treatment methods, the proposed facilities, the alternatives considered, and the environmental consequences of these alternatives. A glossary is included at the end to assist the reader with some of the technical terms used in this document.

  4. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    SciTech Connect (OSTI)

    Hill, L.F.

    1997-10-30T23:59:59.000Z

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors.

  5. 45USDA Forest Service Gen. Tech. Rep. PSW-GTR-158. 1995. Legal Barriers to Fuel Management1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Ecosystems, February 15-17, 1994, Walnut Creek, California. 2Fire and Hazardous Materials Program Manager45USDA Forest Service Gen. Tech. Rep. PSW-GTR-158. 1995. Legal Barriers to Fuel Management1 Anita E resources and resource management is low on the list of priorities for this state's lawmakers. BEWARE

  6. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  8. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01T23:59:59.000Z

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  9. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    SciTech Connect (OSTI)

    Bryant, J.W.

    1994-01-01T23:59:59.000Z

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  10. The benefits of an advanced fast reactor fuel cycle for plutonium management

    SciTech Connect (OSTI)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-12-31T23:59:59.000Z

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.

  11. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  12. INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2009-12-01T23:59:59.000Z

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  13. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01T23:59:59.000Z

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  14. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect (OSTI)

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01T23:59:59.000Z

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  15. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2006-03-15T23:59:59.000Z

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine the most appropriate means of implementing micro-grids and the costs and processes involved with their extended operation. With the development and availability of fuel cell based stand-alone power plants, an electrical mini-grid, encompassing several connected residential neighborhoods, has become a viable concept. A primary objective of this project is to define the parameters of an economically efficient fuel cell based mini-grid. Since pure hydrogen is not economically available in sufficient quantities at the present time, the use of reforming technology to produce and store excess hydrogen will also be investigated. From a broader perspective, the factors that bear upon the feasibility of fuel cell based micro-grid connected neighborhoods are similar to those pertaining to the electrification of a small town with a localized power generating station containing several conventional generating units. In the conventional case, the town or locality would also be connected to the larger grid system of the utility company. Therefore, in the case of the fuel cell based micro-grid connected neighborhoods, this option should also be available. The objectives of this research project are: To demonstrate that smart energy management of a fuel cell based micro-grid connected neighborhood can be efficient and cost-effective;To define the most economical micro-grid configuration; and, To determine how residential micro-grid connected fuel cell(s) can contribute to America's hydrogen energy future.

  16. Test Automation Ant JUnit Test Automation

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Test Automation Ant JUnit Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2012 Mousavi: Test Automation #12;Test Automation Ant JUnit Outline Test Automation Ant JUnit Mousavi: Test Automation #12;Test Automation Ant JUnit Why? Challenges of Manual Testing

  17. Aspects of automation mode confusion

    E-Print Network [OSTI]

    Wheeler, Paul H. (Paul Harrison)

    2007-01-01T23:59:59.000Z

    Complex systems such as commercial aircraft are difficult for operators to manage. Designers, intending to simplify the interface between the operator and the system, have introduced automation to assist the operator. In ...

  18. Design and Implementation of an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities. CEC-Fully Automated Demand Response Tests in Large Facilities.Management and Demand Response in Commercial Building. ,

  19. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    SciTech Connect (OSTI)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01T23:59:59.000Z

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  20. Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505

    SciTech Connect (OSTI)

    Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

    2013-07-01T23:59:59.000Z

    One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  3. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  4. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  5. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada); Goodwin, Derek [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)] [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  6. Professional Science Masters’ in Advanced Energy and Fuels Management at Southern Illinois University Carbondale

    SciTech Connect (OSTI)

    Mondal, Kanchan [Southern Illinois University, Carbondale

    2014-12-08T23:59:59.000Z

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent graduates seeking specialized training prior to entering the energy industry workforce as well as working professionals in the energy industry who require additional training and qualifications for further career advancement. It is expected that the students graduating from the program will be stewards of effective, sustainable and environmentally sound use of these resources to ensure energy independence and meet the growing demands. The application of this Professional Science Masters’ (PSM) program is in the fast evolving Fuels Arena. The PSM AEFM is intended to be a terminal degree which will prepare the graduates for interdisciplinary careers in team – oriented environment. The curriculum for this program was developed in concert with industry to dovetail with current and future demands based on analysis and needs. The primary objective of the project was to exploit the in house resources such as existing curriculum and faculty strengths and develop a curriculum with consultations with industry to meet current and future demands. Additional objectives was to develop courses specific to the degree and to provide the students with a set of business skills in finance accounting and sustainable project management. The PSM program consists of a 36-hour curriculum structured in accord with the PSM model originally developed by the Sloan Foundation. Students are required to take 9 credit hours of business courses, 9 credit hours of science and engineering courses, 3 credit hours of policy related courses and a total of 9 credit hours of electives in business, science, engineering and policy. The program is designed to be completed in one academic year (based on full time study), with additional course work to be completed in the preceding summer semester and the capstone internship to be completed in the final summer semester.

  7. FORMOSA-B: A Boiling Water Reactor In-Core Fuel Management Optimization Package II

    SciTech Connect (OSTI)

    Karve, Atul A.; Turinsky, Paul J. [North Carolina State University (United States)

    2000-07-15T23:59:59.000Z

    As part of the continuing development of the boiling water reactor in-core fuel management optimization code FORMOSA-B, the fidelity of the core simulator has been improved and a control rod pattern (CRP) sampling capability has been added. The robustness of the core simulator is first demonstrated by benchmarking against core load-follow depletion predictions of both SIMULATE-3 and MICROBURN-B2 codes. The CRP sampling capability, based on heuristic rules, is next successfully tested on a fixed fuel loading pattern (LP) to yield a feasible CRP that removes the thermal margin and critical flow constraint violations. Its performance in facilitating a spectral shift flow operation is also demonstrated, and then its significant influence on the cost of thermal margin is presented. Finally, the heuristic CRP sampling capability is coupled with the stochastic LP optimization capability in FORMOSA-B - based on simulated annealing (SA) - to solve the combined CRP-LP optimization problem. Effectiveness of the sampling in improving the efficiency of the SA adaptive algorithm is shown by comparing the results to those obtained with the sampling turned off (i.e., only LP optimization is carried out for the fixed reference CRP). The results presented clearly indicate the successful implementation of the CRP sampling algorithm and demonstrate FORMOSA-B's enhanced optimization features, which facilitate the code's usage for broader optimization studies.

  8. Oak Ridge K-25 Site Technology Logic Diagram. Volume 3, Technology evaluation data sheets; Part B, Remedial action, robotics/automation, waste management

    SciTech Connect (OSTI)

    Fellows, R.L. [ed.

    1993-02-26T23:59:59.000Z

    The Oak Ridge K-25 Technology Logic Diagram (TLD), a decision support tool for the K-25 Site, was developed to provide a planning document that relates environmental restoration (ER) and waste management (WN) problems at the Oak Ridge K-25 Site. The TLD technique identifies the research necessary to develop these technologies to a state that allows for technology transfer and application to waste management, remediation, decontamination, and decommissioning activities. The TLD consists of four separate volumes-Vol. 1, Vol. 2, Vol. 3A, and Vol. 3B. Volume 1 provides introductory and overview information about the TLD. Volume 2 contains logic diagrams. Volume 3 has been divided into two separate volumes to facilitate handling and use. This volume 3 B provides the Technology Evaluation Data Sheets (TEDS) for ER/WM activities (Remedial Action Robotics and Automation, Waste Management) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than each technology in Vol. 2. The TEDS are arranged alphanumerically by the TEDS code number in the upper right corner of each data sheet. Volume 3 can be used in two ways: (1) technologies that are identified from Vol. 2 can be referenced directly in Vol. 3 by using the TEDS codes, and (2) technologies and general technology areas (alternatives) can be located in the index in the front of this volume.

  9. AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report

    SciTech Connect (OSTI)

    William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

    2005-06-01T23:59:59.000Z

    The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel/coolant compatibility, fuel fabrication, and fuel irradiation behavior. In addition, the U.S. and Canada both

  10. Decision support systems for automated terminal area air traffic control

    E-Print Network [OSTI]

    Pararas, John Demetrios

    1982-01-01T23:59:59.000Z

    This work studies the automation of the terminal area Air Traffic Management and Control (ATM/C) system. The ATM/C decision-making process is analyzed and broken down into a number of "automation functions". Each of these ...

  11. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong (Amy); Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01T23:59:59.000Z

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  12. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH’S UINTA BASIN

    SciTech Connect (OSTI)

    Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

    2012-10-01T23:59:59.000Z

    Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

  13. This document is the result of a major interdisciplinary effort to synthesize our understanding of the cumulative watershed effects of fuel management. This

    E-Print Network [OSTI]

    understanding of the cumulative watershed effects of fuel management. This document is the product of more thanForeword This document is the result of a major interdisciplinary effort to synthesize our topics include overviews of the effects of fuel management on both terrestrial and aquatic watershed

  14. [Alternative fuel vehicles for clean cities]. Final report from the City of Philadelphia Managing Director`s Office

    SciTech Connect (OSTI)

    Hadalski, J.M.

    1995-09-30T23:59:59.000Z

    The City of Philadelphia was awarded a grant for the ``development of a Public Information Component for the Clean Cities Program involving alternative fuels usage within the city of Philadelphia and the surrounding counties in the Philadelphia region``. During the summer of 1993, it was felt that the public needed considerable information on the costs, benefits, emission data, conversion information, and infrastructure requirements. Embodied in the 1993 proposal was the notion that a model could be developed within some type of structure charged with the tasks of market introduction of alternative fuels in the Greater Philadelphia area in a concerted, comprehensive way. As originally envisioned, in executing this grant, the City had several objectives in mind. Among these were the following: the organizing of various media events to showcase alternative fuels usage; (2) to begin a networking process with fleet managers in the area; (3) to provide sources of information to fleet managers and others interested in, and concerned with the conversion to alternative fuels; (4) documentation on research and analysis associated with alternative fuels.

  15. Fuel Cell-Shaft Power Packs (FC-SPP) Frank Elefsen, Centre Manager, Ph.D., and Sten Frandsen, Head of Section

    E-Print Network [OSTI]

    Fuel Cell-Shaft Power Packs (FC-SPP) Frank Elefsen, Centre Manager, Ph.D., and Sten Frandsen, Head and an improved environment. 1 Fuel Cell-Shaft Power Packs (FC-SPP) A. Background In line with the growing global technology is receiving a great deal of attention. Hydrogen and fuel cells have the potential to replace

  16. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the major national security imperatives of this century. Get Expertise Rod Borup MPA-11, Fuel Cell Program Manager Email Andrew Dattelbaum MPA-11 Group Leader Email Melissa Fox...

  17. EM Safely and Efficiently Manages Spent Nuclear Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013MeetingEM SSAB Local1

  18. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-94 December 1994

  19. Strategy for the Management and Disposal of Used Nuclear Fuel and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of StaffingStorage Water HeatersYears 2003 - 2008Strategy

  20. Strategy for the Management and Disposal of Used Nuclear Fuel and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of StaffingStorage Water HeatersYears 2003 -

  1. DOE - Office of Legacy Management -- Colorado Fuel and Iron - NY 0-08

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen LabSouth,Clive DisposalFuel

  2. Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof42.2 (April 2012)the

  3. Biodiesel_Fuel_Management_Best_Practices_Report.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting | Department of Energy

  4. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    SciTech Connect (OSTI)

    CARTER, R.P.

    1999-11-19T23:59:59.000Z

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  7. Automated Surface Observing System: Standby Power Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplaceAutomated SteelAutomated

  8. automated home monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Terms Design, Measurement, Management Keywords Home Automation, Load Monitoring, Smart Grid 1 control for many years, and are be- ing widely deployed in early smart grid...

  9. automated volumetric grid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mentations use orchestration Turner, Ken 9 An automated energy management system in a smart grid context MIT - DSpace Summary: The ongoing transformation of electric grids into...

  10. 16.459 Humans & Automation Seminar February 6, 2002

    E-Print Network [OSTI]

    Goldwasser, Shafi

    Airliner cockpit procedure examination Nuclear power plant automation evaluation Air combat situation Knowledge Procedural Knowledge Tasks · Manage battle space · Evaluate track · Plan specific threat response

  11. automated container terminals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    terminal area air traffic control MIT - DSpace Summary: This work studies the automation of the terminal area Air Traffic Management and Control (ATMC) system. The ATMC...

  12. Building America Expert Meeting: Minutes from Automated Home...

    Energy Savers [EERE]

    the U.S. Department of Energy Building America program expert meeting titled "Automated Home Energy Management System," held on October 1-2, 2010 in Denver, Colorado....

  13. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  14. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  15. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOE Patents [OSTI]

    Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT); Johnsen, Richard (New Fairfield, CT)

    2007-04-10T23:59:59.000Z

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  16. Strategy for the Management and Disposal of Used Nuclear Fuel and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlanHigh-Level Radioactive Waste |

  17. Strategy for the Management and Disposal of Used Nuclear Fuel and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlanHigh-Level Radioactive Waste

  18. Public Acceptability of and Preferences for Used Nuclear Fuel Management in the U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803| DepartmentPseudogaps, Polarons, and

  19. Water Management In PEM Fuel Cell -? A Lattice-Boltzmann Modeling Approach

    SciTech Connect (OSTI)

    Shiladitya Mukherjee; James Vernon Cole; Kunal Jain; Ashok Gidwani

    2009-06-01T23:59:59.000Z

    In Proton Exchange Membrane Fuel Cells (PEMFCs), water management and the effective transport of water through the gas-diffusion-layer (GDL) are key issues for improved performance at high power density and for durability during freeze-thaw cycles. The diffusion layer is a thin (~150-350{micro}m), porous material typically composed of a web of carbon fibers and particles, and is usually coated with hydrophobic Teflon to remove the excess water through capillary action. In-situ diagnostics of water movement and gas-reactant transport through this thin opaque substrate is challenging. Numerical analyses are typically based on simplified assumptions, such as Darcy's Law and Leverett functions for the capillary pressure. The objective of this work is to develop a high fidelity CFD modeling and analysis tool to capture the details of multiphase transport through the porous GDL. The tool can be utilized to evaluate GDL material design concepts and optimize systems based on the interactions between cell design, materials, and operating conditions. The flow modeling is based on the Lattice Boltzmann Method (LBM). LBM is a powerful modeling tool to simulate multiphase flows. Its strength is in its kinetic theory based foundation, which provides a fundamental basis for incorporating intermolecular forces that lead to liquid-gas phase separation and capillary effects without resorting to expensive or ad-hoc interface reconstruction schemes. At the heart of the solution algorithm is a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The solution advances by a streaming and collision type algorithm, mimicking actual molecular physics, which makes it suitable for porous media involving complex boundaries. We developed a numerical scheme to reconstruct various porous GDL microstructures including Teflon loading. Single and multiphase LBM models are implemented to compute permeability. Predicted values are in good agreement with measured data. The present modeling approach resolves the GDL microstructures and captures the influence of fiber orientation on permeability and the influence of Teflon loading on the development of preferential flow paths through the GDL. These observations can potentially guide the development of novel GDL materials designed for efficient removal of water.

  20. Automation, Energy Conservation and Common Sense

    E-Print Network [OSTI]

    Hester, D.

    1981-01-01T23:59:59.000Z

    and contains 5 million square feet of administration office and research laboratory space. An Engineering study to investigate an automated computer controlled energy management system has been completed. The study objectives were to identify system parameters...

  1. Fuzzy Based Energy Management Control of A Hybrid Fuel Cell Auxiliary Power System

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    battery auxiliary power unit (APU) for remote applications where a fuel cell is the main energy source for decentralized or distributed energy production, such as telecom, remote sites or even for military applications by hydrogen cartridges a fuel cell has nearly no noise operation, providing electricity and heat with water

  2. Test Automation with TTCN-3 -State of the Art and a Future Perspective

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Test Automation with TTCN-3 - State of the Art and a Future Perspective Ina Schieferdecker TU.schieferdecker@fokus.fraunhofer.de Abstract. Test automation encompasses all activities to automate various steps in the overall testing process including automation of test management, test generation, or test execution. The standardized

  3. International management of spent fuel storage : technical alternatives and constraints, topical report

    E-Print Network [OSTI]

    Miller, Marvin M.

    1978-01-01T23:59:59.000Z

    Some of the important technical issues involved in the implementation of a spent fuel storage regime under international auspices are discussed. In particular, we consider: the state of the art as far as the different ...

  4. Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a

    E-Print Network [OSTI]

    Peng, Huei

    Management and Design Optimization of Fuel Cell/Battery Hybrid Vehicles #12;Journal of Power Sources, Vol.165 strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid management strategy and component sizing affect vehicle performance and fuel economy considerably in hybrid

  5. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  6. Automation Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplaceAutomatedofNREL

  7. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27T23:59:59.000Z

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  9. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    SciTech Connect (OSTI)

    Taylor, L.L.; Shikashio, R.

    1993-09-01T23:59:59.000Z

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

  10. Pressurized water reactor in-core nuclear fuel management by tabu search

    E-Print Network [OSTI]

    Hill, Natasha J.; Parks, Geoffrey T.

    2014-08-24T23:59:59.000Z

    Energy July 29, 2014 search for loading patterns (LPs) that maximized the energy production over a cycle, sub-15 ject to constraints on power peaking and fuel burn-up. Kim et al. (1987) developed a16 two-stage procedure for maximizing cycle length...

  11. Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144

    SciTech Connect (OSTI)

    Smith, Thomas P. [Cameco Corporation, Port Hope, Ontario (Canada)] [Cameco Corporation, Port Hope, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid climate, deep groundwater and favourable geology help ensure permanent waste isolation. Combined with a state of the art multi-layer landfill liner system, the Grand View facility represents an ideal choice to minimize environmental liability. Marginally contaminated wastes from operations within the Fuel Services Division are typically loaded into PacTec IP-2 rated Intermediary Bulk Containers and then transported by road to a nearby rail siding. The Intermediary Bulk Containers are then loaded in US Ecology owned gondola rail-cars. The gondolas are then transported via Canadian Pacific and Union Pacific railroads to the US Ecology Rail Transfer facility located in Mayfield, Idaho. The Intermediary Bulk Containers are unloaded into trucks for transport to the disposal facility located approximately 32 miles away. (authors)

  12. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  13. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect (OSTI)

    Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

    2013-07-01T23:59:59.000Z

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  14. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  15. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect (OSTI)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01T23:59:59.000Z

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  16. Spent Fuel Test-Climax: technical measurements data management system description and data presentation

    SciTech Connect (OSTI)

    Carlson, R.C.

    1985-08-01T23:59:59.000Z

    The Spent Fuel Test-Climax (SFT-C) was located 420 m below surface in the Climax Stock granite on the Nevada Test Site. The test was conducted under the technical direction of the Lawrence Livermore National Laboratory (LLNL) as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) for the US Department of Energy. Eleven canisters of spent nuclear reactor fuel were emplaced, along with six electrical simulators, in April-May 1980. The spent fuel canisters were retrieved and the electrical simulators de-energized in March-April 1983. During the test, just over 1000 MW-hr of thermal energy was deposited in the site, causing temperature changes 100{sup 0}C near the canisters, and about 5{sup 0} in the tunnels. More than 900 channels of geotechnical, seismological, and test status data were recorded on nearly continuous basis for about 3-1/2 years, ending in September 1983. Most geotechnical instrumentation was known to be temperature sensitive, and thus would require temperature compensation before interpretation. Accordingly, a 10-in. reel of digital tape was off-loaded and shipped to Livermore every 4 to 8 weeks, where the data were verified, organized into 45 one-million-word files, and temperature corrected. The purpose of this report is to document the receipt and processing of the data by LLNL Livermore personnel, present facts about the history of the instruments which may be important to the interpretation of the data, present the data themselves in graphical form for each instrument over its operating lifetime, document the forms and locations in which the data will be archived, and offer the data to the geotechnical community for future use in understanding and predicting the effects of the storage of heat-generating waste in hard rocks such as granite.

  17. Assessing and Managing the Risks of Fuel Compounds: Ethanol Case Study

    SciTech Connect (OSTI)

    Layton, D.W.; Rice, D.W.

    2002-02-04T23:59:59.000Z

    We have implemented a suite of chemical transport and fate models that provide diagnostic information about the behavior of ethanol (denoted EtOH) and other fuel-related chemicals released to the environment. Our principal focus is on the impacts to water resources, as this has been one of the key issues facing the introduction of new fuels and additives. We present analyses comparing the transport and fate of EtOH, methyl tertiary butyl ether (MTBE), and 2,2,4 trimethyl pentane (TMP) for the following cases (1) discharges to stratified lakes, subsurface release in a surficial soil, (3) cross-media transfer from air to ground water, and (4) fate in a regional landscape. These compounds have significantly different properties that directly influence their behavior in the environment. EtOH, for example, has a low Henry's law constant, which means that it preferentially partitions to the water phase instead of air. An advantageous characteristic of EtOH is its rapid biodegradation rate in water; unlike MTBE or TMP, which degrade slowly. As a consequence, EtOH does not pose a significant risk to water resources. Preliminary health-protective limits for EtOH in drinking water suggest that routine releases to the environment will not result in levels that threaten human health.

  18. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National...

  19. Advanced Fuel Reformer Development Putting the `Fuel' in Fuel Cells

    E-Print Network [OSTI]

    in North Haven, CT · Two major platform technologies under development ­ RCL® catalytic combustors for gas with Microlith® Catalytic Reactors very high surface area Ultra compact Short contact time Rapid thermal response controller, AGB) Reformate Flow Control Thermal balance é Fuel, Air, Water #12;Reformer Controls · Automated

  20. CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT

    E-Print Network [OSTI]

    , Contract Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director gas, propane, ethanol, electricity, alternative diesel fuels such as biodiesel and Fischer Tropsch, natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer

  1. Multiplex automated genome engineering

    DOE Patents [OSTI]

    Church, George M; Wang, Harris H; Isaacs, Farren J

    2013-10-29T23:59:59.000Z

    The present invention relates to automated methods of introducing multiple nucleic acid sequences into one or more target cells.

  2. Charmaine Toy Automation Engineer,

    E-Print Network [OSTI]

    Horowitz, Roberto

    @me.berkeley.edu Nonstationary Velocity Profiles for Emergency Vehicles on Automated Highways This paper explores the notion and usefulness of nonstationary velocity profiles for high priority emergency vehicle transit on automatedCharmaine Toy Automation Engineer, DiCon Fiberoptics, Inc., Richmond, CA 94804 e-mail: charm

  3. Automated Transportation Logistics and Analysis System (ATLAS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplaceAutomated

  4. Advancing Toward Test Automation through Effective Manual Testing

    E-Print Network [OSTI]

    . This paper will walk through a best practice scenario for using Manual Tester to more naturally organize test Automation through Effective Manual Testing Bob Levy, Lead Product Manager ­ Functional Test Dennis ElenburgAdvancing Toward Test Automation through Effective Manual Testing May 2005 Advancing Toward Test

  5. Field Demonstration of Automated Demand Response for Both Winter and

    E-Print Network [OSTI]

    ) is a demand-side management strategy to reduce electricity use during times of high peak electric loads;1 Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings of a series of field test of automated demand response systems in large buildings in the Pacific Northwest

  6. Computerized Maintenance Management Systems

    Broader source: Energy.gov [DOE]

    Computerized maintenance management systems (CMMS) are a type of management software that perform functions in support of operations and maintenance (O&M) programs. The software automates most of the logistical functions performed by O&M staff.

  7. Joint Genome Institute's Automation Approach and History

    E-Print Network [OSTI]

    Roberts, Simon

    2006-01-01T23:59:59.000Z

    Joint Genome Institute’s Automation Approach and Historythroughput environment; – automation does not necessarilyissues “Islands of Automation” – modular instruments with

  8. Automation without predictability is a recipe for failure Raja R. Sambasivan & Gregory R. Ganger

    E-Print Network [OSTI]

    Automation without predictability is a recipe for failure Raja R. Sambasivan & Gregory R. Ganger-3890 Abstract Automated management seems a must, as distributed systems and datacenters continue to grow in scale and complexity. But, automation of performance problem diagnosis and tuning relies upon

  9. years, the economists were right. De-spite massive automation of millions

    E-Print Network [OSTI]

    years, the economists were right. De- spite massive automation of millions of jobs, more Americans horses actually Thriving in the Automated Economy Two management experts show why labor's race against automation will only be won if we partner with our machines. They advise government regulators not to stand

  10. A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Real-Time Navigation Architecture for Automated Vehicles in Urban Environments Gang Chen presents a novel navigation architec- ture for automated car-like vehicles in urban environments. Motion with fully automated driving capabilities. A fleet of such vehicles would form a managed transportation

  11. Genetic algorithms for delays evaluation in networked automation systems , S. Amari, J-J. Lesage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    communication technology at different levels in the industrial organizations; management and automation. Currently, many automation producers and alliances developed their own industrial Ethernet standard (NeumannGenetic algorithms for delays evaluation in networked automation systems B. Addad n , S. Amari, J

  12. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  13. Nuclear fuel post-irradiation examination equipment package

    SciTech Connect (OSTI)

    DeCooman, W.J. [AREVA NP Inc., Lynchburg, VA (United States); Spellman, D.J. [UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    Hot cell capabilities in the U.S. are being reviewed and revived to meet today's demand for fuel reliability, tomorrow's demands for higher burnup fuel and future demand for fuel recycling. Fuel reliability, zero tolerance for failure, is more than an industry buzz. It is becoming a requirement to meet the rapidly escalating demands for the impending renaissance of nuclear power generation, fuel development, and management of new waste forms that will need to be dealt with from programs such as the Global Nuclear Energy Partnership (GNEP). Fuel performance data is required to license fuel for higher burnup; to verify recycled fuel performance, such as MOX, for wide-scale use in commercial reactors; and, possibly, to license fuel for a new generation of fast reactors. Additionally, fuel isotopic analysis and recycling technologies will be critical factors in the goal to eventually close the fuel cycle. This focus on fuel reliability coupled with the renewed interest in recycling puts a major spotlight on existing hot cell capabilities in the U.S. and their ability to provide the baseline analysis to achieve a closed fuel cycle. Hot cell examination equipment is necessary to determine the characteristics and performance of irradiated materials that are subjected to nuclear reactor environments. The equipment within the hot cells is typically operated via master-slave manipulators and is typically manually operated. The Oak Ridge National Laboratory is modernizing their hot cell nuclear fuel examination equipment, installing automated examination equipment and data gathering capabilities. Currently, the equipment has the capability to perform fuel rod visual examinations, length and diametrical measurements, eddy current examination, profilometry, gamma scanning, fission gas collection and void fraction measurement, and fuel rod segmentation. The used fuel postirradiation examination equipment was designed to examine full-length fuel rods for both Boiling Water Reactors and Pressurized Water Reactors. (authors)

  14. An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

    E-Print Network [OSTI]

    Polany, Rany

    2012-01-01T23:59:59.000Z

    Automation . . . . . . . . . . . . . . . . . . . . . . iii 3Automation . . . . . . . . . . . . . . . . . . . . . . 5Dashboard/Cockpit Automation . . . . . . . . . . . . .

  15. Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center 

    E-Print Network [OSTI]

    Parham, Neil A.

    2010-07-14T23:59:59.000Z

    . Excess reactivity was added to the core in the form of graphite reflectors on all sides of the core, additional fuel, and fuel followed control rods to counteract the effects of fuel burnup and samarium build up in the fuel. General Atomic FLIP (Fuel... a large graphite block on the west face of the reactor (the thermal column); in each case the depletion rate for both FLIP and 20/30 was very similar. The expected lifetime of the 20/30 fuel was shown to be longer than FLIP as well...

  16. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 6.0 Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment ofEnergy 3 Fuel Cell2| Department

  17. A Distributed Facilities Automation System For IBM Buildings

    E-Print Network [OSTI]

    Houle, W. D. Sr.

    to the host would be via an IBM-supplied local communications network protocol. Remote appli cations would include process control, security, energy manage ment, facilities automation or any other automation application. The remote systems... of these areas which are affected are: - HVAC - Chemical Processes Control - Utilities Generation - Tank Farm Monitoring Resource Management - Solvent Supply and Recovery Systems - DI Water Distribution - Sewage and Waste Treatment Plant Control...

  18. Energy Automation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolis Jump to: navigation,NouvellesAutomation Systems

  19. Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Supple, Derek R. (Derek Richard)

    2007-01-01T23:59:59.000Z

    Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

  20. Architectures of Test Automation 1 High Volume Test AutomationHigh Volume Test Automation

    E-Print Network [OSTI]

    Architectures of Test Automation 1 High Volume Test AutomationHigh Volume Test Automation Cem Kaner Institute of Technology October 2003 #12;Architectures of Test Automation 2 Acknowledgements developed a course on test automation architecture, and in the Los Altos Workshops on Software Testing

  1. Copyright (c) Cem Kaner, Automated Testing. 1 Software Test Automation:Software Test Automation

    E-Print Network [OSTI]

    Copyright (c) Cem Kaner, Automated Testing. 1 Software Test Automation:Software Test Automation: A RealA Real--World ProblemWorld Problem Cem Kaner, Ph.D., J.D. #12;Copyright (c) Cem Kaner, Automated Testing. 2 This TalkThis Talk The most widely used class of automated testing tools leads senior software

  2. High Volume Test Automation 1 High Volume Test AutomationHigh Volume Test Automation

    E-Print Network [OSTI]

    High Volume Test Automation 1 High Volume Test AutomationHigh Volume Test Automation Keynote Automation 2 AcknowledgementsAcknowledgements · Many of the ideas in this presentation were initially jointly developed with Doug Hoffman,as we developed a course on test automation architecture, and in the Los Altos

  3. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms

    Broader source: Energy.gov (indexed) [DOE]

    rate * 30%-60% fuel savings possible - With same vehicle and powertrain - Would require vehicletraffic flow automation to actually achieve * On today's roads only incremental...

  4. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager...

  5. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  6. Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Draper, Robert (Pittsburgh, PA)

    2012-01-17T23:59:59.000Z

    A solid oxide fuel cell (400) is made having a tubular, elongated, hollow, active section (445) which has a cross-section containing an air electrode (452) a fuel electrode (454) and solid oxide electrolyte (456) between them, where the fuel cell transitions into at least one inactive section (460) with a flattened parallel sided cross-section (462, 468) each cross-section having channels (472, 474, 476) in them which smoothly communicate with each other at an interface section (458).

  7. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    SciTech Connect (OSTI)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20T23:59:59.000Z

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  8. activity management system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automated management agents whose behavior also has to dynamically change to reflect the evolution of the system being managed. Policies are a means of specifying and influencing...

  9. Energy Management of DVS-DPM Enabled Embedded Systems Powered by Fuel Cell-Battery Hybrid Source

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    minimization policy and an optimal fuel flow control policy. The proposed method, when applied to a randomized and embedded systems General Terms: Algorithms, Design Keywords: DPM, DVS, fuel cell, hybrid power, embedded system 1. INTRODUCTION Energy minimization has always been a critical design criteria for portable

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Promotion The Florida Department of Management Services (DMS), in coordination with the Florida Department of Transportation (DOT), must conduct an analysis of fuel...

  11. Automated diagnostics scoping study. Final report

    SciTech Connect (OSTI)

    Quadrel, R.W.; Lash, T.A.

    1994-06-01T23:59:59.000Z

    The objective of the Automated Diagnostics Scoping Study was to investigate the needs for diagnostics in building operation and to examine some of the current technologies in automated diagnostics that can address these needs. The study was conducted in two parts. In the needs analysis, the authors interviewed facility managers and engineers at five building sites. In the technology survey, they collected published information on automated diagnostic technologies in commercial and military applications as well as on technologies currently under research. The following describe key areas that the authors identify for the research, development, and deployment of automated diagnostic technologies: tools and techniques to aid diagnosis during building commissioning, especially those that address issues arising from integrating building systems and diagnosing multiple simultaneous faults; technologies to aid diagnosis for systems and components that are unmonitored or unalarmed; automated capabilities to assist cause-and-effect exploration during diagnosis; inexpensive, reliable sensors, especially those that expand the current range of sensory input; technologies that aid predictive diagnosis through trend analysis; integration of simulation and optimization tools with building automation systems to optimize control strategies and energy performance; integration of diagnostic, control, and preventive maintenance technologies. By relating existing technologies to perceived and actual needs, the authors reached some conclusions about the opportunities for automated diagnostics in building operation. Some of a building operator`s needs can be satisfied by off-the-shelf hardware and software. Other needs are not so easily satisfied, suggesting directions for future research. Their conclusions and suggestions are offered in the final section of this study.

  12. MASS: An automated accountability system

    SciTech Connect (OSTI)

    Erkkila, B.H.; Kelso, F.

    1994-08-01T23:59:59.000Z

    All Department of Energy contractors who manage accountable quantities of nuclear materials are required to implement an accountability system that tracks, and records the activities associated with those materials. At Los Alamos, the automated accountability system allows data entry on computer terminals and data base updating as soon as the entry is made. It is also able to generate all required reports in a timely Fashion. Over the last several years, the hardware and software have been upgraded to provide the users with all the capability needed to manage a large variety of operations with a wide variety of nuclear materials. Enhancements to the system are implemented as the needs of the users are identified. The system has grown with the expanded needs of the user; and has survived several years of changing operations and activity. The user community served by this system includes processing, materials control and accountability, and nuclear material management personnel. In addition to serving the local users, the accountability system supports the national data base (NMMSS). This paper contains a discussion of several details of the system design and operation. After several years of successful operation, this system provides an operating example of how computer systems can be used to manage a very dynamic data management problem.

  13. Proceedings of the 1993 international conference on nuclear waste management and environmental remediation. Volume 2: High level radioactive waste and spent fuel management

    SciTech Connect (OSTI)

    Ahlstroem, P.E.; Chapman, C.C.; Kohout, R.; Marek, J. [eds.

    1993-12-31T23:59:59.000Z

    This conference was held in 1993 in Prague, Czech Republic to provide a forum for exchange of state-of-the-art information on radioactive waste management. Volume 2 contains 109 papers divided into the following sections: recent developments in environmental remediation technologies; decommissioning of nuclear power reactors; environmental restoration site characterization and monitoring; decontamination and decommissioning of other nuclear facilities; prediction of contaminant migration and related doses; treatment of wastes from decontamination and decommissioning operations; management of complex environmental cleanup projects; experiences in actual cleanup actions; decontamination and decommissioning demolition technologies; remediation of obsolete sites from uranium mining and milling; ecological impacts from radioactive environmental contamination; national environmental management regulations--issues and assessments; significant issues and strategies in environmental management; acceptance criteria for very low-level radioactive wastes; processes for public involvement in environmental activities and decisions; recent experiences in public participation activities; established and emerging environmental management organizations; and economic considerations in environmental management. Individual papers have been processed separately for inclusion in the appropriate data bases.

  14. Cognitive Engineering Automation and Human

    E-Print Network [OSTI]

    Parasuraman, Raja

    · Home automation · Robotics · Unmanned vehicles (UAVs and UGVs) · Drug design/Molecular geneticsCognitive Engineering PSYC 530 Automation and Human Performance Raja Parasuraman #12;Overview Automation-Related Accidents Levels and Stages of Automation Information Acquisition and Analysis Decision

  15. RF test bench automation Description

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

  16. Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls

    E-Print Network [OSTI]

    Lang, Kevin R., 1980-

    2006-01-01T23:59:59.000Z

    An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

  17. Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion

    E-Print Network [OSTI]

    Romano, Paul K. (Paul Kollath)

    2009-01-01T23:59:59.000Z

    Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able to ...

  18. management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 EvaluationWHITE ROCK LOS ALAMOSI05/%2A en

  19. apex nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

  20. DOE Hydrogen & Fuel Cell Overview

    Broader source: Energy.gov (indexed) [DOE]

    t t 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U S D f E Overview U.S....

  1. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    A design flow for building automation and control systems,’’Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

  2. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  3. Development of Building Automation and Control Systems

    E-Print Network [OSTI]

    Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

    2012-01-01T23:59:59.000Z

    design flow for building automation systems that focuses onflow for building automation and control systems,’’ in Proc.Development of Building Automation and Control Systems Yang

  4. Automated Lattice Perturbation Theory

    SciTech Connect (OSTI)

    Monahan, Christopher

    2014-11-01T23:59:59.000Z

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  5. Automated pavement crack detection

    E-Print Network [OSTI]

    Rao, Ashok Madhava

    1991-01-01T23:59:59.000Z

    : Electrical Engineering AUTOMATED PAVEMENT CRACK DETECTION A Thesis by ASHOK MADHAVA RAO Approved as to style and content by . c Norman C. Grisw d (Chair of Committ ) Nasser Kehtarnavaz (Member) g, J~, Karan Watson Robert L. Lytt (Member) Jo W.... Howze (Head of Department) December 1991 111 ABSTRACT Automated Pavement Crack Detection. (December 1991) Ashok Madhava, Rao, B. E. , Mysore University Chair of Advisory Committee: Norman. C. Griswold Due to load, environmental and structural...

  6. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    SciTech Connect (OSTI)

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16T23:59:59.000Z

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

  7. Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center

    E-Print Network [OSTI]

    Parham, Neil A.

    2010-07-14T23:59:59.000Z

    Basic was used to create a user interface and for pre-and post-processing of MCNP and ORIGEN2 output. MCNP was used to determine the flux for all fuel and control rods within the core while ORIGEN2 used this flux along with the power history to calculate...

  8. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect (OSTI)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y. (Decision and Information Sciences); ( EVS); ( NE)

    2012-07-06T23:59:59.000Z

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical

  9. Siting and Transportation for Consolidated Used Nuclear Fuel Management Facilities: A Proposed Approach for a Regional Initiative to Begin the Dialogue - 13562

    SciTech Connect (OSTI)

    Thrower, Alex W. [The Thrower Group LLC, Richmond, VA (United States)] [The Thrower Group LLC, Richmond, VA (United States); Janairo, Lisa [Council of State Governments-Midwestern Office, Sheboygan, WI (United States)] [Council of State Governments-Midwestern Office, Sheboygan, WI (United States)

    2013-07-01T23:59:59.000Z

    The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. The Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)

  10. General approach to automation of FLASH subsystems

    E-Print Network [OSTI]

    General approach to automation of FLASH subsystems Boguslaw Kosda #12;Agenda Motivation Nature of automation software for high energy experiments. Ultimate role of the automation software: Maximization of lasers availability. Automation of routine activities as startup, shutdown ... Continuous monitoring

  11. Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase-out scenario

    SciTech Connect (OSTI)

    Fazion, C.; Rineiski, A.; Salvatores, M.; Schwenk-Ferrero, A.; Romanello, V.; Vezzoni, B.; Gabrielli, F. [Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01T23:59:59.000Z

    Most Partitioning and Transmutation (PT) studies implicitly presuppose the continuous use of nuclear energy. In this case the development of new facilities or the modification of the fuel cycle can be justified in the long-term as an important feature in order to improve sustainability by minimizing radioactive waste and reducing the burden at waste disposal. In the case of a country with nuclear energy phase-out policy, the PT option might have also an important role for what concerns the final disposal strategies of the spent fuel. In this work three selected scenarios are analyzed in order to assess the impact of PT implementation in a nuclear energy phase out option. The scenarios are: -) Scenario 1: Identification of Research/Development activities needs for a technological development of PT while postponing the decision of PT implementation; -) Scenario 2: Isolated application of PT in a phase-out context; and -) Scenario 3: Implementation of PT in a European context. In order to facilitate the discrimination among the 3 scenarios, a number of figures of indicators have been evaluated for each scenario. The selected indicators are: the mass of High Level Waste (HLW), Uranium inventory, thermal output of HLW, Radiotoxicity, Fuel cycle secondary waste associated to the PT operation, and Facility capacity/number requirements. The reduction, due to PT implementation, of high level wastes masses and their associated volumes can be significant. For what concerns the thermal output and radiotoxicity a significant impact can be also expected. However, when assessing these two indicators the contribution coming from already vitrified waste should also not be neglected. Moreover, an increase of secondary waste inventory is also expected. On the contrary, the increase of fission product inventories due to the operation of the transmutation system has a relatively limited impact on the fuel cycle.

  12. Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification

    SciTech Connect (OSTI)

    Hansen, Brady; Miller, William

    2011-10-28T23:59:59.000Z

    This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

  13. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01T23:59:59.000Z

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  14. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  18. Drastic Productivity Gain for Large-Truck Operations with Automated Trailer Steering

    E-Print Network [OSTI]

    Su, Xiao

    ] · A Solution Concept: Automated Trailer Steering · Elimination of Off-tracking (Vehicle Dynamics Only) ­ Models & simulation with ad hoc steering angles [2007] ­ LQR-RWA active control for high speeds [2007] ­ CommandDrastic Productivity Gain for Large-Truck Operations with Automated Trailer Steering via Fuel

  19. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, Curtis D. (Albuquerque, NM); Blair, Dianna S. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Reber, Stephen D. (Corrales, NM)

    1999-01-01T23:59:59.000Z

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  20. Evaluatoni of Automated Utility Bill Calibration Methods | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19Energy Evaluatoni of Automated

  1. Automated Steel Cleanliness Analysis Tool (ASCAT) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplaceAutomated Steel

  2. Automation World Features New White Paper on Wireless Security | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New White Paper on

  3. Automated Surface Observing System: Standby Power Options | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource1-01 Audit LetterYear 2015Energy Automated

  4. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24T23:59:59.000Z

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  5. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    E-Print Network [OSTI]

    Tobin, S. J.

    2010-01-01T23:59:59.000Z

    Spent Nuclear Fuel Recycling Facility – 8032,” Waste ManagementSpent Nuclear Fuel by Self-Induced X-ray,” Annual Meeting of the Institute of Nuclear Material Management,

  6. OVTP Merit Review EPAct State & Alternative Fuel Provider Data...

    Office of Environmental Management (EM)

    OVTP Merit Review EPAct State & Alternative Fuel Provider Data Collection and Management OVTP Merit Review EPAct State & Alternative Fuel Provider Data Collection and Management...

  7. Findings from the 2004 Fully Automated Demand Response Tests in Large

    E-Print Network [OSTI]

    LBNL-58178 Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities M;Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities September 7, 2005 Mary Ann Manager Dave Michel Contract 500-03-026 Sponsored by the California Energy Commission PIER Demand Response

  8. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    Protocol for Building Automation and Control  Networks.  Protocol for Building Automation and Control  Networks, Demand Response Automation Server  Demand Response Research 

  9. Environmental data and analyses for the proposed management of spent nuclear fuel on the DOE Oak Ridge Reservation

    SciTech Connect (OSTI)

    Socolof, M.L.; Curtis, A.H.; Blasing, T.J. [and others

    1995-08-01T23:59:59.000Z

    DOE needs to continue the safe and efficient management of SNF on ORR, based on the requirement for future SNF storage capacity and implementation of the ROD for the PEIS. DOE is proposing to implement the ROD through proper management of SNF on ORR, including the possible construction and operation of a dry cask storage facility. This report describes the potentially affected environment and analyzes impacts on various resources due to the proposed action. The information provided in this report is intended to support the Environmental Assessment being prepared for the proposed activities. Construction of the dry cask storage facility would result in minimal or no impacts on groundwater, surface water, and ecological resources. Contaminated soils excavated during construction would result in negligible risk to human health and to biota. Except for noise from trucks and equipment, operation of the dry cask storage facility would not be expected to have any impact on vegetation, wildlife, or rare plants or animals. Noise impacts would be minimal. Operation exposures to the average SNF storage facility worker would not exceed approximately 0.40 mSv/year (40 mrem/year). The off-site population dose within an 80-km (50-mile) radius of ORR from SNF operations would be less than 0.052 person-Sv/year (5.2 person-rem/year). Impacts from incident-free transportation on ORR would be less than 1.36 X 10{sup -4} occupational fatal cancers and 4.28 X 10{sup -6} public fatal cancers. Credible accident scenarios that would result in the greatest probable risks would cause less than one in a million cancer fatalities to workers and the public.

  10. Automated Microbial Genome Annotation

    SciTech Connect (OSTI)

    Land, Miriam [DOE Joint Genome Institute at Oak Ridge National Laboratory

    2009-05-29T23:59:59.000Z

    Miriam Land of the DOE Joint Genome Institute at Oak Ridge National Laboratory gives a talk on the current state and future challenges of moving toward automated microbial genome annotation at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  11. Paper presented at the 4th International Conference Working on Safety, Crete, Greece, 2008 Functional modeling for risk assessment of automation in a changing air

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Functional modeling for risk assessment of automation in a changing air traffic management environment R or to let automation act autonomously. The Functional Resonance Analysis Method (FRAM) provides a framework from ERASMUS automation. Various instantiations of a partial model resulting from the application

  12. automated serum chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Test Automation Test Automation Mohammad Mousavi Eindhoven University of Technology, The Netherlands Software Testing 2013 Mousavi: Test Automation 12;Test Automation...

  13. Engineering Project Management Using The Engineering Cockpit

    E-Print Network [OSTI]

    Engineering Project Management Using The Engineering Cockpit A collaboration platform for project managers and engineers Thomas Moser, Richard Mordinyi, Dietmar Winkler and Stefan Biffl Christian Doppler Laboratory "Software Engineering Integration for Flexible Automation Systems" Vienna University of Technology

  14. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. The Energy Box : comparing locally automated control strategies of residential electricity consumption under uncertainty

    E-Print Network [OSTI]

    Livengood, Daniel James

    2011-01-01T23:59:59.000Z

    The Energy Box is an always-on background processor automating the temporal management of one's home or small business electrical energy usage. Cost savings are achieved in a variety of environments, ranging from at pricing ...

  16. Bayouth & Koopman 1 Functional Evolution of an Automated Highway

    E-Print Network [OSTI]

    Koopman, Philip

    -carrying capacity and fuel economy by eliminating human driver inefficiencies. Automating the vehicle also presents infrastructure support functions. This family of three models is used to present the needs of baseline autonomous tactical vehicle operation, the benefits of adding inter-vehicle communications, and the benefits of adding

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  18. Advancing New Mexico's Alternative Fuels

    Broader source: Energy.gov (indexed) [DOE]

    FUELS P.I. Louise Martinez, ECMD Director Colin Messer, Project Manager New Mexico Energy, Minerals and Natural Resources Department June 19, 2014 Project ID TI048 This...

  19. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-07-01T23:59:59.000Z

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  20. applying proven automation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applying proven automation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Managing Data, Provenance...

  1. DA (Distribution Automation) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DA (Distribution Automation) (Smart

  2. Manz Automation India Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire: EnergyManz Automation India Pvt Ltd

  3. Hirschmann Automation and Control GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation HessHirschmann Automation and Control GmbH

  4. Automated gas chromatography

    DOE Patents [OSTI]

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13T23:59:59.000Z

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  5. Theorie des langages Automates `a pile

    E-Print Network [OSTI]

    Bonzon, Elise

    Th´eorie des langages Automates `a pile Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 62 Th´eorie des langages #12;Automates `a pile Automates `a pile Introduction Rappels sur les piles Automates `a pile : d´efinition Automates `a pile : configurations Les crit`eres d

  6. Methodology for Prototyping Increased Levels of Automation

    E-Print Network [OSTI]

    Valasek, John

    of automation than previous NASA vehicles, due to program requirements for automation, including Automated Ren into a human space flight vehicle, NASA has created the Function-specific Level of Autonomy and Automation Tool levels of automation than previous NASA vehicles. A key technology to the success of the CEV

  7. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuels Tax

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuels TaxNatural Gas

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuels TaxNatural

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuels

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuelsSchool Bus Idle

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuelsSchool Bus

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuelsSchool

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLowFuelsSchoolEthanol

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool BusAlternative Fuel

  1. Advanced Process Management and Implementation

    E-Print Network [OSTI]

    Robinson, J.

    Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

  2. Hanford site Computer Automated Mapping Information System (CAMIS)

    SciTech Connect (OSTI)

    Rush, S.F. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-09-01T23:59:59.000Z

    The Computer Automated Mapping Information System (CAMIS) provides sitewide, networked access to CAD based geographically referenced data. CAMIS allows multiple organizations to maintain and share their data. Information collected and managed according to site-wide standards, enables each organization to focus their limited resources on data issues tied to their own discipline without having to collect or manage reference data outside their respective domains. Sharing information also minimizes redundant data and helps improve the overall quality of the sites` data resources.

  3. Integration of Real-Time Data Into Building Automation Systems

    SciTech Connect (OSTI)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16T23:59:59.000Z

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  5. V-122: IBM Tivoli Application Dependency Discovery Manager Java...

    Broader source: Energy.gov (indexed) [DOE]

    or update to version 7.2.1.4 Addthis Related Articles V-132: IBM Tivoli System Automation Application Manager Multiple Vulnerabilities V-145: IBM Tivoli Federated Identity...

  6. U-052: HP Protect Tools Device Access Manager Unspecified Bug...

    Broader source: Energy.gov (indexed) [DOE]

    Flaw Lets Remote Users Update Firmware with Arbitrary Code U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary Code U-049:...

  7. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect (OSTI)

    STUBBS, A.M.

    2000-12-04T23:59:59.000Z

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.

  8. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well...

  9. Automation of Painted Slate Inspection

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automation of Painted Slate Inspection BY Tim Carew (B.Eng.) carewt@eeng.dcu.ie Submitted...........................................................................................................18 2.1 Prior research on inspection of slates

  10. A preliminary evaluation of a combined tire- and refuse-derived fuel (TDF-RDF)

    SciTech Connect (OSTI)

    Stessel, R.I.; Amari, T.; Themelis, N.J.; Wearnick, I.K.

    1999-07-01T23:59:59.000Z

    In dense urban areas of the US, it is now becoming clear that waste management is far from economically-optimum. Even with the popularity of inexpensive land disposal, hauling and recycling costs are driving up the average waste bill. An historic option has been refuse-derived fuel, or RDF. Difficulties included low energy content and difficulty obtaining uniformity. Today, many resource-recovery technologies used in RDF are finding their way into materials recovery facilities (MRFs), some of which are reviving the automated processing of waste. Any MRF, automated or not, will have residue streams. Currently, one of the most significant problems is waste tires. Local options are difficult to locate in dense urban areas. As fuels, tires typically have energy contents considerably above those for which most solid-fuel combustors are designed, leading to thermal imbalances and various forms of failure. This paper suggests a new fuel that can be either co-fired with coal, or used in its own right in a combustor primarily designed for coal: TDF-RDF. A preliminary examination is undertaken of thermal and emissions characteristics, and possible costs for a few applications of the fuel. Immediately, TDF is already cleaner-burning than many coals, even in sulfur emissions. RDF has been widely-regarded as being similarly cleanly. Posited MRF residue streams should be still cleaner, and more consistent, than RDF. Overall, there is quite a potential for developing a fuel that would allow old coal powerplants in historic urban centers to be better neighbors, while helping with a few problems in municipal waste management.

  11. Valliappa Lakshmanan Automating the Analysis of

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    Geospatial Images January 5, 2012 Springer #12;Contents 1 Automated Analysis of Spatial Grids: MotivationValliappa Lakshmanan Automating the Analysis of Spatial Grids A Practitioner's Guide to Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Challenges in Automated Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1

  12. automation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: of a partial automation since they act on the control part of the vehicle. This increasing automationABV- A Low Speed Automation Project to Study the...

  13. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  14. Resources for Fleet Managers

    Broader source: Energy.gov [DOE]

    Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work...

  15. Alternate Fuels: Is Your Waste Stream a Fuel Source?

    E-Print Network [OSTI]

    Coerper, P.

    . The advancement of programmable controls has also dramatically increased the capability and reliability of Alternate Fuel Systems. 148 ESL-IE-92-04-24 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992... ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

  16. Presentation to DOE Fuel Cell Manufacturing Workshop 2011

    E-Print Network [OSTI]

    : JP-8, diesel Fuel Cell Project Scope #12;Soldier Power Unmanned UAV Emergency Power Tactical Vehicle Automation · Production Material · QC during Manufacturing · QC for Product · BOP Hardware · BOP Performance

  17. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  18. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  19. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  20. Integration of automation design information using XML technologies

    E-Print Network [OSTI]

    Integration of automation design information using XML technologies Master of Science Thesis Mika Degree Program Institute of Automation and Control Viinikkala, Mika: Integration of automation design Software Ltd., Metso Automation, and TEKES Department of Automation June 2002 Keywords: System integration

  1. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, O.T.; Lowry, M.E.

    1999-01-05T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  2. Methods for Multisweep Automation

    SciTech Connect (OSTI)

    SHEPHERD,JASON F.; MITCHELL,SCOTT A.; KNUPP,PATRICK; WHITE,DAVID R.

    2000-09-14T23:59:59.000Z

    Sweeping has become the workhorse algorithm for creating conforming hexahedral meshes of complex models. This paper describes progress on the automatic, robust generation of MultiSwept meshes in CUBIT. MultiSweeping extends the class of volumes that may be swept to include those with multiple source and multiple target surfaces. While not yet perfect, CUBIT's MultiSweeping has recently become more reliable, and been extended to assemblies of volumes. Sweep Forging automates the process of making a volume (multi) sweepable: Sweep Verification takes the given source and target surfaces, and automatically classifies curve and vertex types so that sweep layers are well formed and progress from sources to targets.

  3. Automated fiber pigtailing machine

    DOE Patents [OSTI]

    Strand, Oliver T. (Castro Valley, CA); Lowry, Mark E. (Castro Valley, CA)

    1999-01-01T23:59:59.000Z

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  4. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine Allocation ManagementCenter

  5. Alternative Fuel Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware a ndManterEPAct35th

  6. Alternative Fuel Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware a

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPowering

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware aPoweringTools

  9. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'ware

  10. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectric Vehicle

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectric

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicle (NGV)

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicle

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S o'wareElectricVehicleMotor

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO S

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState Highway Electric

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState Highway

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState HighwayPassenger

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState HighwayPassengerLow

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SState

  1. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLow Emission Vehicle

  2. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLow Emission

  3. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLow EmissionBiodiesel

  4. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO SStateLow

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraO

  6. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus Pilot Program The

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus Pilot Program

  8. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus Pilot

  9. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus PilotProhibition of

  10. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus PilotProhibition

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool Bus

  12. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool BusAlternative

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool BusAlternativeMaryland

  14. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchool

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregon joined

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregon joinedRhode

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregon

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregonState Energy

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregonState EnergyWeight

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregonState

  1. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic|AljazeeraOSchoolOregonStateAftermarket

  2. Electrocatalysts for Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnetEffectiveElectricApril 2015

  3. CIMplementation™: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  4. Method and apparatus for automated, modular, biomass power generation

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Lilley, Arthur (Finleyville, PA); Browne, Kingsbury III (Golden, CO); Walt, Robb Ray (Aurora, CO); Duncan, Dustin (Littleton, CO); Walker, Michael (Longmont, CO); Steele, John (Aurora, CO); Fields, Michael (Arvada, CO); Smith, Trevor (Lakewood, CO)

    2011-03-22T23:59:59.000Z

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  5. Method and apparatus for automated, modular, biomass power generation

    DOE Patents [OSTI]

    Diebold, James P; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael; Smith, Trevor

    2013-11-05T23:59:59.000Z

    Method and apparatus for generating a low tar, renewable fuel gas from biomass and using it in other energy conversion devices, many of which were designed for use with gaseous and liquid fossil fuels. An automated, downdraft gasifier incorporates extensive air injection into the char bed to maintain the conditions that promote the destruction of residual tars. The resulting fuel gas and entrained char and ash are cooled in a special heat exchanger, and then continuously cleaned in a filter prior to usage in standalone as well as networked power systems.

  6. Supplement Analysis of Environmental Effects of Changes in DOE's Preferred Alternative for Management of Spent Nuclear Fuel from the K basins at the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrial Technologies

  7. Project Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a project manager in the Fuel Cell Technologies Office in the DOE-EERE Office of Transportation responsible for a wide variety of highly...

  8. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28T23:59:59.000Z

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  10. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  11. Towards Automated Service Composition using Policy Ontology in Building Automation System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Automated Service Composition using Policy Ontology in Building Automation System Son N.crespi}@it-sudparis.eu Abstract--Automated service composition is critical for suc- cessfully implementing Building Automation-service composition; semantic web; policy; ontol- ogy; building automation system; I. INTRODUCTION In building

  12. L3 Informatique Automates et langages formels 4 mars 2009 TD 5 : Automates `a pile

    E-Print Network [OSTI]

    Schmitz, Sylvain

    L3 Informatique Automates et langages formels 4 mars 2009 TD 5 : Automates `a pile Exercice 1 (Exemples d'automates `a pile). Donner un automate `a pile A = Q, , Z, T, q0, z0, F pour chacun des trois pile. Montrer que l'on peut construire un automate `a pile A ´equivalent avec une relation de

  13. ABV-A Low Speed Automation Project to Study the Technical Feasibility of Fully Automated Driving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on vehicle automation since many years. From 1987 to 1995 the European Commission funded the 800 million concepts of vehicles designed as fully automated vehicles [1]. Beyond its fully automation ability Automated Highway System Consortium (NAHSC) that demonstrated about 20 automated vehicles in Demo'97 on I-15

  14. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  15. automated on-line separation-preconcentration: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automation 12;Test Automation Outline Test Automation Mousavi: Test Automation 12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs Mousavi,...

  16. automated on-line solvent: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automation 12;Test Automation Outline Test Automation Mousavi: Test Automation 12;Test Automation Why? Challenges of Manual Testing Test-case design: Choosing inputs Mousavi,...

  17. Robust automated knowledge capture.

    SciTech Connect (OSTI)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01T23:59:59.000Z

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  18. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  19. SUBCONTRACT MANAGEMENT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1 CHAPTER 10 SUBCONTRACT MANAGEMENT

  20. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  2. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    SciTech Connect (OSTI)

    Fensin, Michael L [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types.

  3. EMPLOYEE FUEL ACCESS APPLICATION Use this application to request access for employees to use the campus service stations in conjunction with a fuel

    E-Print Network [OSTI]

    Kirschner, Denise

    EMPLOYEE FUEL ACCESS APPLICATION Use this application to request access for employees to use the campus service stations in conjunction with a fuel access device. In order to obtain fuel from for access. Employee access is not required for the U-M fleet vehicle equipped with an automated fuel device

  4. The automated generation of Web documents that are tailored to the individual reader

    E-Print Network [OSTI]

    DiMarco, Chrysanne

    for the management and presentation of Web documents would be a very important enhance- ment of the Web's current in a system for the manage- ment and presentation of Web documents would be a very important enhancementThe automated generation of Web documents that are tailored to the individual reader Chrysanne Di

  5. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  6. Design and Implementation of an Open, Interoperable AutomatedDemand Response Infrastructure

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2007-10-01T23:59:59.000Z

    This paper describes the concept for and lessons from the development and field-testing of an open, interoperable communications infrastructure to support automating demand response (DR). Automating DR allows greater levels of participation and improved reliability and repeatability of the demand response and customer facilities. Automated DR systems have been deployed for critical peak pricing and demand bidding and are being designed for real time pricing. The system is designed to generate, manage, and track DR signals between utilities and Independent System Operators (ISOs) to aggregators and end-use customers and their control systems.

  7. Participation through Automation: Fully Automated Critical Peak Pricing in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    Figure 2. Demand Response Automation Server and BuildingII system to notify the Automation Server of an up comingoccurs day-ahead). 2. The Automation Server posts two pieces

  8. Automation of Termination: Abstracting CCG through MWG Automation of Termination: Abstracting Calling

    E-Print Network [OSTI]

    Ayala-Rincón, Mauricio

    Automation of Termination: Abstracting CCG through MWG Automation of Termination: Abstracting of Termination: Abstracting CCG through MWG Motivation Termination analysis is a fundamental topic in computer science. While classical results state the undecidability of various termination problems, automated

  9. A Survey of Automated Deduction 

    E-Print Network [OSTI]

    Bundy, Alan

    We survey research in the automation of deductive inference, from its beginnings in the early history of computing to the present day. We identify and describe the major areas of research interest and their applications. ...

  10. Automated Assembly Using Feature Localization

    E-Print Network [OSTI]

    Gordon, Steven Jeffrey

    1986-12-01T23:59:59.000Z

    Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations ...

  11. European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency

    E-Print Network [OSTI]

    Wirth, U.

    2008-01-01T23:59:59.000Z

    Gubelstrasse 22 CH-6301 Zug 00 41 41/ 7 24 55 60 wirth.ulrich@siemens.com European Union Energy Performance of Buildings Directive and The impact of Building Automation on Energy Efficiency Buildings account for 40 percent of global energy... building automation and control and technical building management based on the same may provide a demonstrable contribution to EU savings goals of 20 percent by 2020. The goal of European Directive 2002/91/EC on the total energy efficiency of buildings...

  12. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  13. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  14. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  15. automation simulation system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the future expectations and challenges in process automation and power system automation. Anannya Mukherjee 9 Emergency Vehicle Maneuvers and Control Laws for Automated...

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  17. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  19. DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone | DepartmentEA - 0942 E N v m o N MSUMMARY

  20. PROGRAMMATIC ASSESSMENT OF RADIOACTIVE WASTE MANAGEMENT NUCLEAR FUEL AND WASTE PROGRAMS. Operational Planning and Development (Activity No. AR OS 10 05 K; ONL-WN06)

    SciTech Connect (OSTI)

    None

    1980-06-30T23:59:59.000Z

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: 1) an on-site survey of ORNL radioactive waste management operations; 2) a review of radioactive waste source data, records, and regulatory requirements; 3) an assessment of existing and planned treatment, storage, and control facilities; and 4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The G/C suggestions for improving ORNL waste management operations are summarized. Regulatory requirements governing ORNL waste management operations are discussed. Descriptions and discussions of the radioactive liquid, solid, and gaseous waste systems are presented. The waste operations control complex is discussed.

  1. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A. [AREVA, Tour AREVA, 1 place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01T23:59:59.000Z

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  2. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Spent  Nuclear   Fuel,”   Integrated   Radioactive   Waste   Management  spent  nuclear  fuel”  [42  USC  10101]   as   high-­?level   waste   potentially   neglects   the   waste   management  

  3. One IBM Plant's Approach to Automated Control System Standards

    E-Print Network [OSTI]

    Cilia, J. P.

    Facilities Automation Control System (IPDFACS) standards used in the bidding process, the philosophy behind them, the type of instrumentation specified to be installed, and how to maintain this complex DDDC system. INTRODUCTION The lower cost of chips... ize: - Basic instrumentation - Systems - Specifications - Technician training programs IPDFACS does not represent the only way to design, install and maintain a building au tomation and energy management system, but it does reduce some...

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  5. automated fuel monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supplement Remote Terminal Unit (RTU) data for Supervisory Control and Data Acquisition (SCADA) system, which improves SCADA and other applications. This data integration paradigm...

  6. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01T23:59:59.000Z

    Spent Fuel Library for Assessing Varied Nondestructive Assay Techniques for Nuclear Safeguards," LA-UR 09-01188, ANS Advances in Nuclear Fuel Management

  7. V-177: VMware vCenter Chargeback Manager File Upload Handling...

    Broader source: Energy.gov (indexed) [DOE]

    SOLUTION: Vendor recommends updating to version 2.5.1 Addthis Related Articles U-047: Siemens Automation License Manager Bugs Let Remote Users Deny Service or Execute Arbitrary...

  8. Software-Defined Solutions for Managing Energy Use in Small Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feet with varied uses and operations, but are rarely equipped with a building automation system (BAS) to manage heating, cooling, lighting, and other energy-burning operations. An...

  9. Investigate... Future Fuels

    E-Print Network [OSTI]

    in the Gas Tank? What Does It Take? 9:30 am Using GIS to Map the Wood Supply 11:00 am Forest Management Forest to Processing Plant 2:00 pm Ethanol Production in Lab: Cellulosic Biomass to Liquid Fuel 2:50 pm of Mechanical Engineering · Tim Jenkins, Ph.D. Candidate ­ tree biomass from forest to processing facility

  10. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Environmental Management (EM)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

  11. 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program

    E-Print Network [OSTI]

    , and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies

  12. Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service FirstData

  13. Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID Service

  14. Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDaniel WoodID ServiceData

  15. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll LoveMail andAbout UsManagement

  16. Automation in image cytometry : continuous HCS and kinetic image cytometry

    E-Print Network [OSTI]

    Charlot, David J.

    2012-01-01T23:59:59.000Z

    OF CALIFORNIA, SAN DIEGO Automation in Image Cytometry:xiv Abstract of Dissertation Automation in Image Cytometry:

  17. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  18. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08T23:59:59.000Z

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  19. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  20. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  2. Transport Research Arena Europe 2010, Brussels Towards Highly Automated Driving

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of HAVEit is to develop and investigate vehicle automation beyond ADAS systems, especially highly automated automated vehicles In 2010, two lines of research and development exist in the domain of ground vehicle automation: Either the automation is driving the vehicle fully automated without a human driver

  3. Effective Materials Property Information Management for the 21st Century

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Cebon, David [Cambridge University; Barabash, Oleg M [ORNL

    2011-01-01T23:59:59.000Z

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  4. Disciplined agility for process control & automation

    E-Print Network [OSTI]

    Tibazarwa, Augustine

    2009-01-01T23:59:59.000Z

    Process automation vendors must consider agility as a basis to gain a competitive edge in innovation. Process Automation systems can impact the operating cost of manufacturing equipment, the safe control of large quantities ...

  5. Technical University of Denmark rsted DTU Automation

    E-Print Network [OSTI]

    Technical University of Denmark �rsted · DTU Automation Project: SICAM - SIngle Conversion stage based SICAM using an LC-network Petar Ljusev, MSc., Ph.D. student, �rsted · DTU Automation e-mail: pl

  6. The Automation Of Proof By Mathematical Induction 

    E-Print Network [OSTI]

    Bundy, Alan

    This paper is a chapter of the Handbook of Automated Reasoning edited by Voronkov and Robinson. It describes techniques for automated reasoning in theories containing rules of mathematical induction. Firstly, inductive reasoning is defined and its...

  7. Technical University of Denmark rsted DTU Automation

    E-Print Network [OSTI]

    Technical University of Denmark �rsted · DTU Automation Project: SICAM - SIngle Conversion stage, �rsted · DTU Automation e-mail: pl@oersted.dtu.dk Abstract In this report an isolated PWM DC-AC SICAM

  8. INTRODUCTION Sophisticated automation is becoming ubiq-

    E-Print Network [OSTI]

    Lee, John D.

    INTRODUCTION Sophisticated automation is becoming ubiq- uitous, appearing in work environments as di- verse as aviation, maritime operations, process control, motor vehicle operation, and informa- tion retrieval. Automation is technology that actively selects data, transforms information, makes

  9. TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1 Automated Guiding Task of a Flexible Micropart

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1 Automated Guiding Task of a Flexible Micropart Lutz, Member, IEEE Abstract--This paper studies automated tasks based on hybrid force/position control of automated guiding task are presented. Note to Practitioners -- This article's motivation is the need of very

  10. An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive this idea, cybercars were designed as fully automated vehicles [3], thought since its inception as a new

  11. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2002-01-01T23:59:59.000Z

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  12. Svensk Krnbrnslehantering AB Swedish Nuclear Fuel

    E-Print Network [OSTI]

    Döös, Kristofer

    Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24.skb.se. #12;3 Abstract In the safety assessment of a potential repository for spent nuclear fuel

  13. Automated Immobilized Metal Affinity Chromatography System for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Immobilized Metal Affinity Chromatography System for Enrichment of Escherichia coli Phosphoproteome. Automated Immobilized Metal Affinity Chromatography System for Enrichment of...

  14. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances »Contact-InformationFuels DOE would

  15. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton PlasmaEnergyFuel Cell

  16. INTEGRATING AUTOMATION DESIGN INFORMATION WITH XML

    E-Print Network [OSTI]

    INTEGRATING AUTOMATION DESIGN INFORMATION WITH XML Mika Viinikkala, Seppo Kuikka Institute of Automation and Control, Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland Email: mika.viinikkala@tut.fi, seppo.kuikka@tut.fi Keywords: Systems integration, XML, automation design Abstract: This paper presents

  17. Comparison lamps automation CTIO 60 inches Echelle

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Comparison lamps automation CTIO 60 inches Echelle ECH60S5.1 La Serena, December 09, 2009 #12)...............................................................................12 CTIO 60 inches Echelle / Comparison lamps automation, ECH60S5.1 2 #12;Introduction The present document is just a brief summary of the work done automating the 60 inches echelle comparison lamps

  18. TAMPERE UNIVERSITY OF TECHNOLOGY DEPARTMENT OF AUTOMATION

    E-Print Network [OSTI]

    TAMPERE UNIVERSITY OF TECHNOLOGY DEPARTMENT OF AUTOMATION An Intelligent Web Service for Operation 2004 Examiner: Prof. Seppo Kuikka #12;2 Abstract TAMPERE UNIVERSITY OF TECHNOLOGY Automation Degree Program Institute of Automation and Control Jaakkola, Veli-Pekka: An Intelligent Web Service for Operation

  19. Comparison lamps automation CTIO 60 inches CHIRON

    E-Print Network [OSTI]

    Tokovinin, Andrei A.

    Comparison lamps automation CTIO 60 inches CHIRON CHI60HF5.2 La Serena, March 16, 2011 #12;Table)...............................................................................12 CTIO 60 inches Chiron / Comparison lamps automation, CHI60HF5.2 2 #12;Introduction The present document is just a brief summary of the work done automating the 60 inches chiron comparison lamps

  20. Prparation l'agrgation Automates pile

    E-Print Network [OSTI]

    Schmitz, Sylvain

    Préparation à l'agrégation Automates à pile Exercice 1 (Exemples de langages reconnus par automate à pile) Montrer que les langages suivants sont reconnus par automate à pile : 1. Le langage de Dyck. 2. {an bp | 0 pile) 1. Montrer que

  1. Feasible Path Synthesis for Automated Guided Vehicles

    E-Print Network [OSTI]

    Vuik, Kees

    Feasible Path Synthesis for Automated Guided Vehicles Reijer Idema 2005 TU Delft FROG Navigation for Automated Guided Vehicles Author: Reijer Idema Supervisors: prof.dr.ir. P. Wesseling (TU Delft) dr.ir. Kees is a manufacturer of Automated Guided Vehicles. They have developed a multitude of vehicles that transport products

  2. Automated Purge Valve Joseph Edward Farrell, III.

    E-Print Network [OSTI]

    Wood, Stephen L.

    Automated Purge Valve by Joseph Edward Farrell, III. Bachelor of Science Marine Engineering the undersigned committee hereby approve the attached thesis Automated Purge Valve by Joseph Edward Farrell, III.D. Department Head Department of Marine and Environmental Systems #12;iii Abstract Title: Automated Purge Valve

  3. AUTOMATED CRITICAL PEAK PRICING FIELD TESTS

    E-Print Network [OSTI]

    ) for development of the DR Automation Server System This project could not have been completed without extensive: Greg Watson and Mark Lott · C&C Building Automation: Mark Johnson and John Fiegel · Chabot Space AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS

  4. Automated packing systems: Review of industrial implementations.

    E-Print Network [OSTI]

    Whelan, Paul F.

    Automated packing systems: Review of industrial implementations. Paul F. Whelan School in these applications. An outline of one such industrial application, the automated placement of shape templates Mathematics University of Wales Cardiff, Wales. ABSTRACT The problems involved in the automated packing

  5. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on...

  6. Fuel Properties to Enable Lifted-Flame Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Roles & Responsibilities Advanced Model Development Project Management ModelingOptimization Fuel Identification & Property Testing Engine Demonstration Spray Characterization...

  7. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  8. Test plan for the data acquisition and management system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    SciTech Connect (OSTI)

    Widing, M.A.; Dominiak, D.M.; Leser, C.C.; Peerenboom, J.P.; Manning, J.F.

    1995-04-01T23:59:59.000Z

    This report describes the formal test plan that will be used for the data acquisition and management system developed to monitor a bioremediation study by Argonne National Laboratory in association with Sandia National Laboratories. The data acquisition and management system will record the site data during the bioremediation and assist experts in site analysis. The three major subsystems of this system are described in detail in this report. In addition, this report documents the component- and system-level test procedures that will be implemented at each phase of the project. Results of these test procedures are documented in this report.

  9. Hanford spent fuel inventory baseline

    SciTech Connect (OSTI)

    Bergsman, K.H.

    1994-07-15T23:59:59.000Z

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors.

  10. Automotive Fuels - The Challenge for Sustainable Mobility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features NewEnergy Fuels

  11. Biodiesel Fuel

    E-Print Network [OSTI]

    unknown authors

    publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

  12. FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For Manager McKinley Addy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director FUELS AND TRANSPORTATION DIVISION B.B Blevins Executive Director DISCLAIMER

  13. The Effectiveness of Full Actinide Recycle as a Nuclear Waste Management Strategy when Implemented over a Limited Timeframe – Part II: Thorium Fuel Cycle

    E-Print Network [OSTI]

    Lindley, Benjamin A.; Fiorina, Carlo; Gregg, Robert; Franceschini, Fausto; Parks, Geoffrey T.

    2014-12-06T23:59:59.000Z

    water reactors (LWRs) or sodium-cooled fast reactors (SFRs) is considered for uranium (U) fuel cycles. With full actinide recycling, at least 6 generations of SFRs are required in a gradual phase-out of nuclear power to achieve transmutation performance...

  14. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01T23:59:59.000Z

    Spent Fuel Library for Assessing Varied Nondestructive Assay Techniques for Nuclear Safeguards,” Advances in Nuclear Fuel Management

  15. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  16. AUTOMATED REAL TIME PAVEMENT MARKING RETROREFLECTIVITY MEASUREMENTS Norbert H. Maerz, University of Missouri-Rolla, 1006 Kingshighway, Rolla MO, 65409-0660, USA. Tel: (573) 341-

    E-Print Network [OSTI]

    Maerz, Norbert H.

    LASERLUX® : AUTOMATED REAL TIME PAVEMENT MARKING RETROREFLECTIVITY MEASUREMENTS Norbert H. Maerz retroreflectometer is being used to measure the retroreflectivity of pavement lane markings. This vehicle-mounted retroreflectometer provides the measurements needed for proper highway pavement marking management. Quick, simple

  17. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick (Bromley, GB)

    2001-02-27T23:59:59.000Z

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  18. Multi-Recycling of Transuranic Elements in a Modified PWR Fuel Assembly

    E-Print Network [OSTI]

    Chambers, Alex

    2012-10-19T23:59:59.000Z

    with improved spent fuel management technologies; • Enhance energy security by extracting energy recoverable in spent fuel and depleted Uranium ensuring Uranium does not become a limiting resource for nuclear energy; • Improve fuel cycle management, while...

  19. Fuel rail

    SciTech Connect (OSTI)

    Haigh, M.; Herbert, J.D.; O'Leary, J.J.

    1988-09-20T23:59:59.000Z

    This patent describes a fuel rail for a V-configuration automotive type internal combustion engine having a throttle body superimposed over an intake manifold. The throttle body has an air plenum above an induction channel aligned with a throttle bore passage in the manifold for flow or air to the engine cylinders. The rail includes a spacer body mounted sealingly between the throttle body and the manifold of the engine and having air induction passages therethrough to connect the throttle body channels and the manifold, the spacer body having at least on longitudinal bore defining a fuel passage extending through the spacer body, and a fuel injector receiving cups projecting from and communicating with the fuel passage. The spacer body consists of a number of separated spacer members, and rail member means through which the fuel passage runs joining the spacer members together.

  20. Specimen coordinate automated measuring machine/fiducial automated measuring machine

    DOE Patents [OSTI]

    Hedglen, Robert E. (Bethel Park, PA); Jacket, Howard S. (Pittsburgh, PA); Schwartz, Allan I. (Turtle Creek, PA)

    1991-01-01T23:59:59.000Z

    The Specimen coordinate Automated Measuring Machine (SCAMM) and the Fiducial Automated Measuring Machine (FAMM) is a computer controlled metrology system capable of measuring length, width, and thickness, and of locating fiducial marks. SCAMM and FAMM have many similarities in their designs, and they can be converted from one to the other without taking them out of the hot cell. Both have means for: supporting a plurality of samples and a standard; controlling the movement of the samples in the +/- X and Y directions; determining the coordinates of the sample; compensating for temperature effects; and verifying the accuracy of the measurements and repeating as necessary. SCAMM and FAMM are designed to be used in hot cells.

  1. Apparatus for inspecting fuel elements

    DOE Patents [OSTI]

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21T23:59:59.000Z

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  2. Automation Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from

  3. Safety Modeling and Evaluation of Automated Highway Systems1 Ossama Hamouda, Mohamed Kaniche, and Karama Kanoun

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    especially in urban areas. One of the solutions for this problem is automated traffic. Many research programs maneuvers and their severity, are composed with submodels characterizing the configuration of the platoons for vehicles to improve the traffic flow and the highway safety by reducing accidents, while reducing fuel

  4. Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA

    E-Print Network [OSTI]

    Stephens, Scott L.

    Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA Kevin fuels to accumulate where previously frequent fires prevailed (Covington and Moore, 1994; Caprio management and mitigation is quantifying the fuel load and spatial arrangement of combustible material across

  5. Information resource management concepts for records managers

    SciTech Connect (OSTI)

    Seesing, P.R.

    1992-10-01T23:59:59.000Z

    Information Resource Management (ERM) is the label given to the various approaches used to foster greater accountability for the use of computing resources. It is a corporate philosophy that treats information as it would its other resources. There is a reorientation from simply expenditures to considering the value of the data stored on that hardware. Accountability for computing resources is expanding beyond just the data processing (DP) or management information systems (MIS) manager to include senior organization management and user management. Management`s goal for office automation is being refocused from saving money to improving productivity. A model developed by Richard Nolan (1982) illustrates the basic evolution of computer use in organizations. Computer Era: (1) Initiation (computer acquisition), (2) Contagion (intense system development), (3) Control (proliferation of management controls). Data Resource Era: (4) Integration (user service orientation), (5) Data Administration (corporate value of information), (6) Maturity (strategic approach to information technology). The first three stages mark the growth of traditional data processing and management information systems departments. The development of the IRM philosophy in an organization involves the restructuring of the DP organization and new management techniques. The three stages of the Data Resource Era represent the evolution of IRM. This paper examines each of them in greater detail.

  6. Automated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond

    E-Print Network [OSTI]

    Diamond, Richard

    carrying out a proof of operation. In large modern buildings, the energy management and control system to exercise systems while under closed-loop control. The test signals are in the form of setpoint changesAutomated Testing of HVAC Systems for Commissioning Tim Salsbury and Rick Diamond Lawrence Berkeley

  7. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-06-01T23:59:59.000Z

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  8. Make the Most of Your Time: How Should the Analyst Work with Automated Traceability Tools?

    E-Print Network [OSTI]

    Dekhtyar, Alexander

    software engineer or analyst to make decisions or judgments based on the output of an automated tool. For example, a software architect may examine the outputs of a cost benefit analysis tool to decide on a particular architecture; a project manager may examine the output of a risk assessment tool to determine what

  9. Final Draft Building Automation Systems Design and Construction Standards October 3rd

    E-Print Network [OSTI]

    Portman, Douglas

    Standard 10. Graphics Standards 11. Commissioning Requirements 12. Training Requirements 13. Energy Building Automation System Design and Construction Standards University of Rochester Utilities and Energy Management Energy Operations Group Note: Please send any issues or proposed deviations in email to Levi Olsen

  10. A Semi-automated Commissioning Tool for VAV Air Handling Units

    E-Print Network [OSTI]

    and that faults in HVAC systems are widespread in commercial buildings. There is a lack of skilled people between the data analysis tool and the building energy management and control system (EMCS) is harderA Semi-automated Commissioning Tool for VAV Air Handling Units: Functional Test Analyzer 1 2 3 4 5

  11. Automated Testing of Supercomputers ANL/ALCF/TM-13/3 Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust August 2015 Events2-7148 CEnergyAutomated

  12. Automated nutrient analyses in seawater

    SciTech Connect (OSTI)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01T23:59:59.000Z

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  13. Convection automated logic oven control

    SciTech Connect (OSTI)

    Boyer, M.A.; Eke, K.I. [Apollo U.S.A. Inc., Orlando, FL (United States)] [Apollo U.S.A. Inc., Orlando, FL (United States)

    1998-03-01T23:59:59.000Z

    For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.

  14. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    program, demand  response aggregator, demand response  vii WITH AN AGGREGATOR USING OPEN AUTOMATED DEMAND RESPONSE ThisWith an Aggregator Using Open Automated Demand Response is 

  15. Automation of Capacity Bidding with an Aggregator Using Open Automated Demand Response

    E-Print Network [OSTI]

    Kiliccote, Sila

    2011-01-01T23:59:59.000Z

    and industrial facilities.   The long?term vision is to embed the  automation Industrial/Agricultural/Water End?Use Energy Efficiency  Renewable Energy Technologies  Transportation  The Automation 

  16. Automotive Fuel Cell Research and Development Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New WhiteAutomotive

  17. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New

  18. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof EnergyTAGS, PbTeXVince

  19. The effects of level of automation and adaptive automation on human performance, situation awareness and workload in a

    E-Print Network [OSTI]

    Kaber, David B.

    The effects of level of automation and adaptive automation on human performance, situation., 4731 East Forest Peak, Marietta, GA 30066, USA Keywords: Level of automation (LOA); adaptive automation of automation (LOAs) for maintaining operator involvement in complex systems control and facilitating situation

  20. Thorie des Langages -TD 7 AUTOMATES PILE

    E-Print Network [OSTI]

    Bonzon, Elise

    Théorie des Langages - TD 7 AUTOMATES � PILE Exercice 1 - Donnez deux automates à pile (acceptation par pile vide ; par état final) qui reconnaissent chacun des langages suivants : 1. L1 = {anbm|n,m 0 l'automate à pile suivant reconnaissant le langage L par état final : 0 1 3 2 a, Z0/AZ0 , A/ a, A