Sample records for frontier high energy

  1. Towards hadronic shower timing with CALICE Analog Hadron Calorimeter, Calorimetry for High Energy Frontier

    E-Print Network [OSTI]

    Ramilli, M

    2015-01-01T23:59:59.000Z

    Towards hadronic shower timing with CALICE Analog Hadron Calorimeter, Calorimetry for High Energy Frontier

  2. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20T23:59:59.000Z

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  3. Energy Frontier Research Centers | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural...

  4. Snowmass Energy Frontier Simulations

    E-Print Network [OSTI]

    Jacob Anderson; Aram Avetisyan; Raymond Brock; Sergei Chekanov; Timothy Cohen; Nitish Dhingra; James Dolen; James Hirschauer; Kiel Howe; Ashutosh Kotwal; Tom LeCompte; Sudhir Malik; Patricia Mcbride; Kalanand Mishra; Meenakshi Narain; Jim Olsen; Sanjay Padhi; Michael E. Peskin; John Stupak III; Jay G. Wacker

    2013-09-01T23:59:59.000Z

    This document describes the simulation framework used in the Snowmass Energy Frontier studies for future Hadron Colliders. An overview of event generation with {\\sc Madgraph}5 along with parton shower and hadronization with {\\sc Pythia}6 is followed by a detailed description of pile-up and detector simulation with {\\sc Delphes}3. Details of event generation are included in a companion paper cited within this paper. The input parametrization is chosen to reflect the best object performance expected from the future ATLAS and CMS experiments; this is referred to as the "Combined Snowmass Detector". We perform simulations of $pp$ interactions at center-of-mass energies $\\sqrt{s}=$ 14, 33, and 100 TeV with 0, 50, and 140 additional $pp$ pile-up interactions. The object performance with multi-TeV $pp$ collisions are studied for the first time using large pile-up interactions.

  5. Department of Energy Hosts Inaugural Energy Frontier Research...

    Office of Science (SC) Website

    News & Events DOE Announcements Department of Energy Hosts Inaugural Energy Frontier Research Center Summit Energy Frontier Research Centers (EFRCs) EFRCs Home Centers...

  6. Frontier Associates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight Best PracticeFrey| OpenFrontier

  7. Pushing the Frontier of High-Definition Ion Mobility Spectrometry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS. Pushing the Frontier of High-Definition Ion Mobility Spectrometry Using FAIMS. Abstract: Differential ion...

  8. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹ ›Energy.gov ToWelcome

  9. DOE to Award $100 Million for Energy Frontier Research Centers...

    Office of Science (SC) Website

    to Award 100 Million for Energy Frontier Research Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC...

  10. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory

  11. Systematic Analysis of Frontier Energy Collider Data

    E-Print Network [OSTI]

    Bruce Knuteson

    2005-04-23T23:59:59.000Z

    Ignorance of the form new physics will take suggests the importance of systematically analyzing all data collected at the energy frontier, with the goal of maximizing the chance for discovery both before and after the turn on of the LHC.

  12. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11T23:59:59.000Z

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  13. Theoretical Research at the High Energy Frontier: Cosmology, Neutrinos, and Beyond

    SciTech Connect (OSTI)

    Krauss, Lawrence M; Vachaspati, Tanmay; Parikh, Maulik

    2013-03-06T23:59:59.000Z

    The DOE theory group grew from 2009-2012 from a single investigator, Lawrence Krauss, the PI on the grant, to include 3 faculty (with the addition of Maulik Parikh and Tanmay Vachaspati), and a postdoc covered by the grant, as well as partial support for a graduate student. The group has explored issues ranging from gravity and quantum field theory to topological defects, energy conditions in general relativity, primordial magnetic fields, neutrino astrophysics, quantum phases, gravitational waves from the early universe, dark matter detection schemes, signatures for dark matter at the LHC, and indirect astrophysical signatures for dark matter. In addition, we have run active international workshops each year, as well as a regular visitor program. As well, the PI's outreach activities, including popular books and articles, and columns for newspapers and magazines, as well as television and radio appearances have helped raise the profile of high energy physics internationally. The postdocs supported by the grant, James Dent and Roman Buniy have moved on successfully to a faculty positions in Louisiana and California.

  14. Links | NEES - EFRC | University of Maryland Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences U.S. Department of Energy, EFRC Program Energy Frontier Community The University of Maryland, College Park Sandia National Laboratories The University of California,...

  15. Frontiers in Planetary and Stellar Magnetism through High-Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hwang, project co-PI Frontiers in Planetary and Stellar Magnetism through High-Performance Computing PI Name: Jonathan Aurnou PI Email: aurnou@ucla.edu Institution: University...

  16. Frontier Renewables LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight Best PracticeFrey|Frontier Renewables

  17. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appropriate acknowledgment of the facility or equipment and its supporting agency. EFRC management reference document Energy Frontier Research Centers Acknowledgments of Support...

  18. USC-CHEVRON FRONTIERS OF ENERGY RESOURCES SUMMER CAMP

    E-Print Network [OSTI]

    Shahabi, Cyrus

    to genuine challenges, such as the estimation of business costs for hypothetical conversion of coal powerUSC-CHEVRON FRONTIERS OF ENERGY RESOURCES SUMMER CAMP CHALLENGES FUTURE ENERGY ENGINEERS the 2013 Frontiers of Energy Resources Summer Camp this past June. The program, sponsored by Chevron

  19. Life at the Frontiers of Energy Research Video Contest | U.S...

    Office of Science (SC) Website

    Life at the Frontiers of Energy Research Video Contest Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events...

  20. News | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews ReleasesNews andNews

  1. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here WesternWelcomeUpcomingHome

  2. Energy Frontier Research Center Events

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergency Information Home

  3. Energy Frontier Research Center News

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergency Information Homenews/ The

  4. Energy Frontier Research Centers | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory Materials

  5. Publications | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014 2013 2012 2011 2010 2009Publications

  6. Research | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PV thrust,Research Home Below

  7. Resources | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the InorganicResourcesResources

  8. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian2016 AnnualEnergy Innovation

  9. Publications | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|PublicationsNozik PublicationsHome By

  10. Publications | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|PublicationsNozik PublicationsHome

  11. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  12. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

    2011-11-02T23:59:59.000Z

    'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  13. EFRC Overview | University of Texas Energy Frontier Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the EFRC The Center for Nano- and Molecular Science and Technology (CNM) at The University of Texas at Austin is the site of an Energy Frontier Research Center (EFRC) funded...

  14. Center for Frontiers of Subsurface Energy Security | Center for Frontiers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here WesternWelcome toAbout CEN

  15. Energy Conversion, an Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment

  16. Sandia Energy - Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergy

  17. Energy Conversion, an Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy Duty Vehicle Efficiency Energy

  18. Energy Conversion, an Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergyHeavy Duty Vehicle Efficiency EnergyDirector's

  19. SEPTEMBER 3, 2013 LASPE NEWSLETTER USC-CHEVRON FRONTIERS OF ENERGY RESOURCES SUMMER

    E-Print Network [OSTI]

    Shahabi, Cyrus

    solutions to genuine challenge questions, such as the estimation of business costs for hypotheticalSEPTEMBER 3, 2013 LASPE NEWSLETTER PAGE 22 USC-CHEVRON FRONTIERS OF ENERGY RESOURCES SUMMER CAMP CHALLENGES FUTURE ENERGY ENGINEERS This past June, 24 outstanding high school students and 2 science teachers

  20. Frontier, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier, North Dakota:

  1. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03T23:59:59.000Z

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  2. The Center for Frontiers of Subsurface Energy Security (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff

    2011-11-03T23:59:59.000Z

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  3. Sandia National Laboratories: Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science, News, News & Events,...

  4. Electricity: The Energy of Tomorrow (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff

    2011-11-03T23:59:59.000Z

    'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Electricity: The Energy of Tomorrow (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Abruna, Hector D. (Director, Energy Materials Center at Cornell) [Director, Energy Materials Center at Cornell; emc2 Staff

    2011-05-01T23:59:59.000Z

    'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  6. Energy Frontier Research Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and meeting future energy storage requirements. CEES research focuses on advancing lithium-ion battery science and technology, as these batteries offer the best opportunity...

  7. Archive - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologiesVehicle PartsAnnual EnergyApply for

  8. Media - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologies | BlandineMedia Media

  9. Frontier Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: EnergyFrisco, Texas:

  10. Frontier Power Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight Best PracticeFrey|

  11. Energy Frontier Research Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory EnergyFuels

  12. About - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAbout About Center

  13. About Us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome toAboutAboutUs About UsAbout Us

  14. Contact CEFRC - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite Map Homehome / ContactContact CEFRC

  15. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite MapContact Us Contact

  16. Useful Links - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed FuelFAQ » Useful Links

  17. Annual Reports - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3.EnergyAug412 Archive

  18. People - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, Taxes Payroll, Taxes PayrollPeople

  19. Principal Investigators - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases Archive PublicationsEconomy »Principal

  20. Principal Investigators | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases Archive PublicationsEconomy

  1. Research - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by Websitehome /Request a

  2. Parking - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalms Village Resort B aParking Print Finding

  3. Payment Options - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalms Village95-1999)Paul J.Paving

  4. Solar Frontier K K | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlas (PACADecker Mack GmbHK Jump

  5. 2015 FAQ - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember 2014 Fri,5July 2015

  6. 2010 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004 Tue,March8Energy Scope 20100 2010 Session

  7. Frontier Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:

  8. Other Matters - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass andOther Libraries OtherFAQ » Other

  9. Frontiers in Science Lectures focus on saving energy through

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLectures » Frontiers

  10. adVancing frontiers in energy and

    E-Print Network [OSTI]

    Merica and the World. front cover: researchers at Pnnl are delivering new knowledge about the processing and use of glass for hazardous waste stabilization and storage. above: Pnnl's work in vehicle emissions is helping to achieve the energy security, environmental footprint, and economic performance we need as a nation. Pnnl

  11. Chemistry: Theory - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and TransportChemistryTheory

  12. Course Descriptions - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCourse Clusters Course Clusters

  13. DOE Energy Frontier Research Centers (EFRCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePART I SECTION ADMSEDOE /DOEJimLost

  14. Emergency Contacts - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabeth O'Malley DeputyEly8,8CBL is

  15. Lecture Notes - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartment ofmarkers toLeave

  16. Lecturers - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartment ofmarkers

  17. Administration - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA AccountManagementRequirements

  18. Check Out - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015 FAQ Useful Links

  19. Sample Projects - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety,andWHYSample

  20. Past Sessions - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysicsParticipantsPartners of thePast EventsPast SULI

  1. Publications - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|Publications ResourcesSensingLeeMajor

  2. Research Teams - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading Room ElectronicResearchResearchResearch

  3. 2011 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004August 2011 Wed,2011 Cost of Wind20111and

  4. 2012 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004August 2011CHPRC ReportKristen Nicole2012

  5. 2013 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustApril 20133 Audit2013 NUFOPlasmaUSon

  6. 2014 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014 2014 Second-Quarter Financial4

  7. Alcohol Fuels - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, adefaultRuns for CY2.4 June

  8. Application - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal Facility Agreement and 2015 FAQ News, Events

  9. Application Schedule - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal Facility Agreement and 2015 FAQ

  10. Biodiesel - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplexMaterial Science |Materials

  11. CEFRC Newsletters - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0LinkA Look at theCCICDContact

  12. Foundation Fuels - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & News 2008Fossil

  13. Events - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /Email Announcements12:25 p.m. - EmergencyEvents 2011

  14. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2011-11-03T23:59:59.000Z

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  15. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Energy Savers [EERE]

    for inclusion in future program roadmaps. Frontiers will support advancing program roadmap-driven R&D activities that contribute to core program technological areas. It is...

  16. EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff

    2011-11-03T23:59:59.000Z

    'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  17. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff

    2011-11-03T23:59:59.000Z

    'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  18. Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 12, 2015 This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  19. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Jan Jaworski (Director, Center for Advanced Biofuel Systems) [Director, Center for Advanced Biofuel Systems; Sayre, Richard T. (previous Director) [previous Director; CABS Staff

    2011-05-01T23:59:59.000Z

    'CABS: Green Energy for our Nation's Future' was submitted by the Center for Advanced Biofuel Systems (CABS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  20. Enabling Energy Efficiency (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Coltrin, Mike (Acting Director, EFRC for Solid State Lighting Science); Simmons, Jerry; SSLS Staff

    2011-11-03T23:59:59.000Z

    'Enabling Energy Efficiency' was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratory; University of Massachusetts, Lowell; University of New Mexico; Northwestern University; Philips Lumileds Lighting; and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift Forces

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift ForcesCenter

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift ForcesCenterCenter

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLift

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLiftCenter (LMI-EFRC)

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLiftCenter

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienertLiftCenterCenter

  8. Environmental Frontier of Sustainability

    E-Print Network [OSTI]

    Takada, Shoji

    A A Global Environmental Studies Frontier of Sustainability Science Akihisa MORI, Global Environmental Studies Satoshi KONISHI, Institute of Advanced Energy, etc Integrated Research Bld This class is designed for graduate students to acknowledge research frontier of Sustainability Science

  9. Battle against Phonons (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Chen, Gang (Director, Solid-State Solar-Thermal Energy Conversion Center); S3TEC Staff

    2011-11-02T23:59:59.000Z

    'Battle against Phonons' was submitted by the Solid-State Solar-Thermal Energy Conversion (S3TEC) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for the special award, 'Best with Popcorn'. S3TEC, an EFRC directed by Gang Chen at the Massachusetts Institute of Technology is a partnership of scientists from four research institutions: MIT (lead), Oak Ridge National Laboratory, Boston College, and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Solid-State Solar Thermal Energy Conversion Center is 'to create novel, solid-state materials for the conversion of sunlight into electricity using thermal and photovoltaic processes.' Research topics are: solar photovoltaic, photonic, metamaterial, optics, solar thermal, thermoelectric, phonons, thermal conductivity, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, defect tolerant materials, and scalable processing.

  10. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02T23:59:59.000Z

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  11. Saving the Sun for a Rainy Day (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Bullock, R. Morris (Director, Center for Molecular Electrocatalysis); CME Staff

    2011-11-02T23:59:59.000Z

    'Saving the Sun for a Rainy Day' was submitted by the Center for Molecular Electrocatalysis (CME) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pensylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.

  12. UNC EFRC: Fuels from Sunlight (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Meyer, Thomas J. (Director, UNC EFRC: Solar Fuels and Next Generation Photovoltaics); UNC EFRC Staff

    2011-11-02T23:59:59.000Z

    'Fuels from Sunlight' was submitted by the University of North Carolina (UNC) EFRC: Solar Fuels and Next Generation Photovoltaics to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. The UNC EFRC directed by Thomas J. Meyer is a partnership of scientists from six institutions: UNC (lead), Duke University, University of Florida, North Caroline Central University, North Carolina State University, and the Research Triangle Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Solar Fuels and Next Generation Photovoltaics is 'to combine the best features of academic and translational research to study light/matter interactions and chemical processes for the efficient collection, transfer, and conversion of solar energy into chemical fuels and electricity.' Research topics are: catalysis (CO{sub 2}, hydrocarbons, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, photonic, solar electrodes, photosynthesis, fuel cells, CO{sub 2} (convert), greenhosue gas, hydrogen (fuel), interfacial characterization, novel materials synthesis, charge transport, and self-assembly.

  13. Search for the ANSER (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff

    2011-11-02T23:59:59.000Z

    'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  14. Liquid Sunshine to Fuel Your Car (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Cosgrove, Daniel (Director, Center for Lignocellulose Structure and Formation) [Director, Center for Lignocellulose Structure and Formation; CLSF Staff

    2011-05-01T23:59:59.000Z

    'Liquid Sunshine to Fuel Your Car' was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Caroline State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.

  15. Liquid Sunshine to Fuel Your Car (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Cosgrove, Daniel (Director, Center for Lignocellulose Structure and Formation); CLSF Staff

    2011-11-02T23:59:59.000Z

    'Liquid Sunshine to Fuel Your Car' was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Caroline State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.

  16. New Energy Frontier: Balancing Energy Development on Federal Lands | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis EngineCity, New York:Energy

  17. Department of Energy to Host Inaugural Energy Frontier Research Center

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment ofthe Santa SusanaSummit |

  18. Solar Fuels and Next Generation Photovoltaics: The UNC-CH Energy Frontier Research Center

    SciTech Connect (OSTI)

    Meyer, Thomas J.; Papanikolas, John M.; Heyer, Catherine M.

    2011-01-01T23:59:59.000Z

    The UNC Energy Frontier Research Center: Solar Fuels and Next Generation Photovoltaics is funded by a $17.5 M grant from the US Department of Energy. Its mission is to conduct basic research that will enable a revolution in the collection and conversion of sunlight into storable solar fuels and electricity.

  19. Electrical Energy Storage A DOE ENERGY FRONTIER RESEARCH CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research communityElectricity Glossary

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership LeadershipQuadruply BondedCenter

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership LeadershipQuadruply

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership LeadershipQuadruplyCenter

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership LeadershipQuadruplyCenterCenter

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadership

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter (LMI-EFRC) 2015

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter (LMI-EFRC) 2015Center

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter (LMI-EFRC)

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter (LMI-EFRC)Center

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter (LMI-EFRC)CenterCenter

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenter

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenter (LMI-EFRC)

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenter (LMI-EFRC)Center

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenter

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenterCenter (LMI-EFRC)

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenterCenter

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenterCenterCenter

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeaturedLeadershipCenterCenterCenterCenterCenter

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center Organization Center

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center Organization CenterCenter

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center Organization

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center OrganizationCenter (LMI-EFRC)

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center OrganizationCenter

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center OrganizationCenterCenter

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - Center OrganizationCenterCenterCenter

  6. New Frontiers in Energy Summit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartment of EnergyFYEnergyEnergyby

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item

  8. New Frontiers in Energy Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNewEnergy Services »New

  9. Energy Frontier Research Centers: Helping Win the Energy Innovation Race (2011 EFRC Summit Keynote Address, Secretary of Energy Chu)

    ScienceCinema (OSTI)

    Chu, Steven (DOE Secretary of Energy)

    2012-03-14T23:59:59.000Z

    Secretary of Energy Steven Chu gave the keynote address at the 2011 EFRC Summit and Forum. In his talk, Secretary Chu highlighted the need to "unleash America's science and research community" to achieve energy breakthroughs. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  10. FORGE: The Next Frontier of Renewable Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA Support Services forEnergyFORGE: The

  11. Department of Energy Hosts Inaugural Energy Frontier Research Center Summit

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals »AwakeBrookhavenColoradoDOEDecemberDelaware|

  12. Frontier County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California: EnergyofFronius744778°,

  13. Department of Energy to Host Energy Frontier Research Center Summit |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.Contamination ControlDecisionsGeothermalPolicy Actto AdvanceDepartment of

  14. Combustion Energy Research Fellows - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April »

  15. Energy Department to Award $100 Million for Energy Frontier Research

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005 |Challenge 2013-2014Centers |

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |Center (LMI-EFRC)

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |Center

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |CenterCenter

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |CenterCenterCenter

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance |CenterCenterCenterCenter

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsurance

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenter (LMI-EFRC) 4

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenter (LMI-EFRC)

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenter

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenterCenter

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenterCenterCenter

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass toInsuranceCenterCenterCenterCenter

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9, 2012 The

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9, 2012

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9, 2012Center

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9,

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9,Center

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC) 9,CenterCenter

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC)

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC)Center

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter (LMI-EFRC)CenterCenter

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenter

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenter (LMI-EFRC) Large-area

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenter (LMI-EFRC)

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenter (LMI-EFRC)Center

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenter

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenterCenter (LMI-EFRC)

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenterCenter

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenterCenterCenter

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenterCenterCenterCenter

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest NewsbiomassCenterCenterCenterCenterCenterCenter

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - Eli Yablonovitch Principal

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - Eli Yablonovitch

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - Eli YablonovitchCenter

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - Eli

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter (LMI-EFRC) - Eli

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter (LMI-EFRC) -

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter (LMI-EFRC) -Center

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter (LMI-EFRC)

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter (LMI-EFRC)Center

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenter

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenter (LMI-EFRC) -

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenter (LMI-EFRC)

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenter

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) - EliCenterCenterCenter

  4. Department of Energy to Host Energy Frontier Research Center Summit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E L D * A L A R AFY'07toNational

  5. Where are the Frontiers of Energy Research in a Stormy World?

    E-Print Network [OSTI]

    Companies: The Baton Passes from US/Japan to China #12;1. Top 10 Solar Companies: The Baton Passes from USWhere are the Frontiers of Energy Research in a Stormy World? 1 #12;The March of Solar of its environment more than regular academic research Don't Happy, Be Worry #12;4 1. Top 10 Solar

  6. Carbon in Underland (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff

    2011-11-02T23:59:59.000Z

    'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.

  7. Energy Frontier Research Centers: A View from Senior EFRC Representatives (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Drell, Persis (SLAC); Armstrong, Neal (University of Arizona); Carter, Emily (Princeton University); DePaolo, Don (Lawrence Berkeley National Laboratory); Gunnoe, Brent (University of Virginia)

    2012-03-16T23:59:59.000Z

    A distinguished panel of scientists from the EFRC community provide their perspective on the importance of EFRCs for addressing critical energy needs at the 2011 EFRC Summit. Persis Drell, Director at SLAC, served as moderator. Panel members are Neal Armstrong (Director of the Center for Interface Science: Solar Electric Materials, led by the University of Arizona), Emily Carter (Co-Director of the Combustion EFRC, led by Princeton University. She is also Team Leader of the Heterogeneous Functional Materials Center, led by the University of South Caroline), Don DePaolo (Director of the Center for Nanoscale Control of Geologic CO2, led by LBNL), and Brent Gunnoe (Director of the Center for Catalytic Hydrocarbon Functionalization, led by the University of Virginia). The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  8. Lecture & Dining Halls - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearning from

  9. Major Lectures & Conference Papers - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6,Bradbury Science

  10. Environmental Frontier of Sustainability Science

    E-Print Network [OSTI]

    Takada, Shoji

    A Global Environmental Studies Frontier of Sustainability Science Akihisa MORI, Global Environmental Studies Satoshi KONISHI, Institute of Advanced Energy, etc Master July 14 frontier of Sustainability Science. Sustainability Science is a new academic field that was lately created

  11. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff

    2011-11-02T23:59:59.000Z

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  12. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02T23:59:59.000Z

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  13. EES and Batteries: The Basics | University of Texas Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES AND BATTERIES: THE BASICS Virtually all portable electronic devices, including cell phones, PDAs and laptop computers, rely on chemical energy stored in batteries. Batteries...

  14. Argonne named in several DOE Energy Frontier Research Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are often named among the top technologies that could revolutionize energy efficiency, electric grids, engines, windmill turbines and more. Wai Kwok leads Argonne's efforts for...

  15. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hosted by theHelp2Energy

  16. Events | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeeches EnergyActiveTechnologiesCenter Events

  17. Energy Frontier Research Centers (EFRCs) | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmergingPartnership toCenter About /

  18. Full Updated List of Publications Now Available Online! | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ResearchFrequentlyResearch

  19. Highlights | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3Education » HigherCenter

  20. Intranet | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOfviaInterns and

  1. Energy Frontier | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergency Information Homenews/Energy

  2. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWaterCoolEnergy-EfficientoutLaboratory EnergyFuels |

  3. Apply: Building Energy Efficiency Frontiers and Incubator Technologies

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americasfor aApplication foror(BENEFIT)

  4. NEES - EFRC | University of Maryland Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O N A

  5. NEESConnect | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O N

  6. News Story | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews Releases

  7. News | NEES - EFRC | University of Maryland Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews ReleasesNews andNewsApril

  8. News, Events & Publications - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNews ReleasesNewsNews NewsNews

  9. NEES - EFRC | University of Maryland Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$altMagnet TimeTheYou

  10. PNNL: Center for Molecular Electrocatalysis - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNewsOur site

  11. 2015 Combustion Summer School - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are ABOUTBlandineusers /

  12. CEFRC In Pictures - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home AboutCBFO JobCCEI'sCEFRC

  13. CEFRC Intranet (Members Only) - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES Home Home AboutCBFO

  14. Calendars | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMission Welcomeforat

  15. Sandia Energy - Sandia's Frontier Observatory for Research In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffects of Wave-EnergyIvanpahto StudyGeothermal

  16. Sandia Energy - Sandia's Frontier Observatory for Research In...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    site potentially indicates the presence of high subsurface temperature with little fluid and permeable rock at depth. Sandia and its partnering national laboratory, government...

  17. Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Russell, Thomas P; Lahti, Paul M. (PHaSE - Polymer-Based Materials for Harvesting Solar Energy) [PHaSE - Polymer-Based Materials for Harvesting Solar Energy; PHaSE Staff

    2011-05-01T23:59:59.000Z

    'Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst' was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennyslvania State University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  18. Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Russell, Thomas P; Lahti, Paul M. (PHaSE - Polymer-Based Materials for Harvesting Solar Energy); PHaSE Staff

    2011-11-03T23:59:59.000Z

    'Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst' was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennyslvania State University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. Traveling to Princeton (NEW) - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site Map OrganizationFAQ » Traveling to

  20. How to Apply - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010a Wind Turbine Works HowHow

  1. U.S. DOE Energy Frontier Research Center Announcements

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC) Mapping the ImpactSCDOE Office ofThe Life ofdoe-announcements/

  2. Photo of the Week: The Cosmic Frontier | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4 Photo of the13,ofThe 2014The

  3. Schedule of Events - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onofCNMS,

  4. PNNL: Center for Molecular Electrocatalysis - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics OneOutreach Efforts Excitement

  5. People | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, Taxes Payroll,

  6. Research | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PV thrust,Research

  7. Visitor Info | NEES - EFRC | University of Maryland Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite MapScienceVentilationVisitor Hanford

  8. 2010-2011 Publications & Lectures - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004 Tue,March8Energy Scope 20100100

  9. 2011 EFRC Summit & Forum - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004August 2011 Wed,2011 Cost of Wind EnergyEFRC

  10. Grid Storage and the Energy Frontier Research Centers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity ofEnergy

  11. Oscillatory Magneto Conductance in Carbon Atom Wires | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and OrganizationalOriginal Research

  12. Frontiers of Energy Resources Saturday, June 26th

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Hydrocarbons Everywhere RTH 324 Dr. Noah Malmstadt 3:00 pm Break 3:15 pm Fossil Fuels,Oil and Gas RTH 3243:15 pm Fossil Fuels,Oil and Gas RTH 324 Dr. Iraj Ershaghi 5:00 pm Dinner EVK 6:30 pm Computer / Research. Warner Williams 10:30 am Energy Supplies and Demand RTH 324 Dr. Donald Paul 12:00 pm Lunch EVK 1:30 pm

  13. Highlights | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand Modeling EricHighlights LANSCenter

  14. Chemistry and Transport - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and Transport Chemistry and

  15. Chemistry: Mechanism and Experiment - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and TransportChemistry

  16. Logistics & Fees - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging in Logging inLogistics User

  17. Check In & Registration - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating

  18. UNC Energy Frontier Research Center Center for Solar Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 - 194 - 40UNC

  19. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1Grid Intensity

  20. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1Grid IntensityFermilab and

  1. 2010 1st Annual CEFRC Conference - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004 Tue,March8 POWERSeptemberNovember

  2. 2011 2nd Annual CEFRC Conference - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004August 2011 Wed, 08/31/2011Center 2nd

  3. Frontiers In Science public lectures: Harvesting energy from air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently

  4. EFRC management reference document Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering HowAnaDynamic SwitchingE xProcess |EEOEFRC

  5. Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

    2011-11-02T23:59:59.000Z

    'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

  6. Frontiers of Astrophysics - Workshop Summary

    E-Print Network [OSTI]

    Heino Falcke; Peter L. Biermann

    1997-11-07T23:59:59.000Z

    We summarize recent results presented in the astrophysics session during a conference on ``Frontiers of Contemporary Physics''. We will discuss three main fields (High-Energy Astrophysics, Relativistic Astrophysics, and Cosmology), where Astrophysicists are pushing the limits of our knowledge of the physics of the universe to new frontiers. Since the highlights of early 1997 were the first detection of a redshift and the optical and X-ray afterglows of gamma-ray bursts, as well as the first well-documented flares of TeV-Blazars across a large fraction of the electromagnetic spectrum, we will concentrate on these topics. Other topics covered are black holes and relativistic jets, high-energy cosmic rays, Neutrino-Astronomy, extragalactic magnetic fields, and cosmological models.

  7. The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful

    E-Print Network [OSTI]

    Feldman, J.

    The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful Jon Feldman Senior Consultant Hatch Consulting Mississauga, Ontario, Canada ABSTRACT Improvements... in technology certainly playa pivotal role in the quest for increased energy efficiency. However, sophisticated industrial energy users are increasingly learning that technology alone cannot drive long-tenn, sustainable reductions in energy cost. The role...

  8. Moving from Petroleum to Plants to Energize our World (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    McCann, Maureen (Director, Center for Direct Catalytic Conversion of Biomass to Biofuels); C3Bio Staff

    2011-11-03T23:59:59.000Z

    'Moving from Petroleum to Plants to Energize our World' was submitted by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. C3Bio, an EFRC directed by Maureen McCann at Purdue University is a partnership between five institutions: Purdue (lead), Argonne National Laboratory, National Renewable Energy Laboratory, Northeastern University, and the University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02T23:59:59.000Z

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  10. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2011-11-03T23:59:59.000Z

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  11. Frontiers in Microbiology: Envisioning a Curriculum Unit for High School Biology

    SciTech Connect (OSTI)

    Mark Bloom

    2004-06-18T23:59:59.000Z

    Microbiology is undergoing a quiet revolution. Techniques such as polymerase chain reaction, high throughput DNA sequencing, whole genome shotgun sequencing, DNA microarrays, and bioinformatics analyses are greatly aiding our understanding of the estimated one billion species of microbes that inhabit the Earth. Unfortunately, the rapid pace of research in microbiology stands in contrast to the much slower pace of change in educational reform. Biological Sciences Curriculum Study (BSCS) hosted a two-day planning meeting to discuss whether or not a new curriculum unit on microbiology is desirable for the high school audience. Attending the meeting were microbiologists, high school biology teachers, and science educators. The consensus of the participants was that an inquiry-based unit dealing with advances in microbiology should be developed for a high school biology audience. Participants established content priorities for the unit, discussed the unit's conceptual flow, brainstormed potential student activities, and discussed the role of educational technology for the unit. As a result of the planning meeting discussions, BSCS staff sought additional funding to develop, disseminate, and evaluate the Frontiers in Microbiology curriculum unit. This unit was intended to be developed as a replacement unit suitable for an introductory biology course. The unit would feature inquiry-based student activities and provide approximately four weeks of instruction. As appropriate, activities would make use of multimedia. The development and production processes would require about two years for completion. Unfortunately, BSCS staff was not able to attract sufficient funding to develop the proposed curriculum unit. Since there were some unexpended funds left over from the planning meeting, BSCS requested and received permission from DOE to use the balance of the funds to prepare background materials about advances in microbiology that would be useful to teachers. These materials were developed and placed on the BSCS Web site (http://www.bscs.org).

  12. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28T23:59:59.000Z

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D? experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  13. Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Alivisatos, Paul (Director, LBNL); Crabtree, George (ANL); Dresselhaus, Mildred (MIT); Ratner, Mark (Northwestern University)

    2012-03-14T23:59:59.000Z

    A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imagination?, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center) [Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center; FIRST Staff

    2011-05-01T23:59:59.000Z

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  15. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff

    2011-11-02T23:59:59.000Z

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  16. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen, Director

    2011-04-01T23:59:59.000Z

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  17. Energy at the Frontier : low carbon energy system transitions and innovation in four prime mover countries

    E-Print Network [OSTI]

    Arajo, Kathleen M

    2013-01-01T23:59:59.000Z

    All too often, discussion about the imperative to change national energy pathways revolves around long timescales and least cost economics of near-term energy alternatives. While both elements certainly matter, they don't ...

  18. U.S. Department of Energy Announces Energy Frontier Research Centers Summit

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation& Forum | Department of Energy Energy

  19. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Energy Science: Remarks from Steve Chu at the Scientific Symposium Held in his Honor

    SciTech Connect (OSTI)

    Chu, Steve

    2008-08-30T23:59:59.000Z

    Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize, presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium in his honor. The symposium was held August 30, 2008 in Berkeley.

  20. Some Frontiers of Accelerator Physics

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    Some Frontiers of Accelerator Physics A.M. Sessler OctoberSOME FRONTIERS OF ACCELERATOR PHYSICS* Andrew M. Sessleris Some Frontiers of Accelerator Physics and it is most

  1. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    E-Print Network [OSTI]

    Somorjai, G.A.

    2010-01-01T23:59:59.000Z

    Biointerfaces, and Renewable Energy Conversion bychemistry) and develop renewable energy based processes.biointerfaces, and renewable energy conversion chemistry. In

  2. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing...

  3. Frontiers in Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLectures » Frontiers in Science

  4. High energy astrophysical processes

    E-Print Network [OSTI]

    Todor Stanev

    2005-04-18T23:59:59.000Z

    We briefly review the high energy astrophysical processes that are related to the production of high energy $\\gamma$-ray and neutrino signals and are likely to be important for the energy loss of high and ultrahigh energy cosmic rays. We also give examples for neutrino fluxes generated by different astrophysical objects and describe the cosmological link provided by cosmogenic neutrinos.

  5. Microfluidics Expanding the Frontiers of Microbial Ecology

    E-Print Network [OSTI]

    Rusconi, Roberto

    Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, ...

  6. Nuclear polarization study: New frontiers for tests of QED in heavy highly charged ions

    E-Print Network [OSTI]

    Volotka, Andrey V

    2015-01-01T23:59:59.000Z

    A systematic investigation of the nuclear-polarization effects in one- and few-electron heavy ions is presented. The nuclear-polarization corrections in the zeroth and first orders in $1/Z$ are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown, that the nuclear-polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in strong electromagnetic field and the determination of fundamental constants.

  7. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03T23:59:59.000Z

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  8. High performance computing and communications: Advancing the frontiers of information technology

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental in the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.

  9. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  10. Left-Right Symmetric Models at the High-Intensity Frontier

    E-Print Network [OSTI]

    Castillo-Felisola, Oscar; Helo, Juan C; Kovalenko, Sergey G; Ortiz, Sebastian E

    2015-01-01T23:59:59.000Z

    We study constraints on Left-Right Symmetric models from searches of semileptonic decays of $D$, $D_{s}$, $B$ mesons, mediated by heavy neutrinos $N$ with masses $m_N\\sim $ GeV that go on their mass shell leading to a resonant enhancement of the rates. Using these processes we examine, as a function of $m_N$ and $M_{W_R}$, the physics reach of the recently proposed high-intensity beam dump experiment SHiP, which is expected to produce a large sample of $D_s$ mesons. We compare these results with the corresponding reach of neutrinoless double beta decay experiments, as well as like-sign dilepton searches with displaced vertices at the LHC. We conclude that the SHiP experiment has clear advantages in probing the Left-Right Symmetric models for heavy neutrinos in the GeV mass range.

  11. Mapping the Frontier of New Wind Power Potential | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment of EnergyManagementORNLManufacturing's Wake-UpMapping

  12. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd Allen

    2014-04-01T23:59:59.000Z

    Scientific Successes The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain boundaries due to the more dense dislocation arrays associated with large angle boundaries; this observation has potentially important ramifications for thermal transport in the high burn-up rim region of light water reactor fuel. A variable charge interatomic potential has been developed that not only provides an accurate representation of the fluorite UO2 phase, it is further capable of describing continuous stoichiometry changes from UO2 to hyper-stoichiometric UO2+x, to U4O9 and U3O7, and possibly to orthorhombic U3O8. This is the first potential that features many-body effects in all possible interactions (U-U, U-O and O-O) combined with the variable charge. A theoretical proof has been formulated showing that it is necessary to use the so-called model C phase field approach, consisting of Cahn-Hilliard and Allen-Cahn equations, to describe void evolution in irradiated materials. This work resolved a longstanding literature controversy regarding how to model voids at the mesoscale. A novel cluster dynamics model has been developed for the nucleation of voids and loops in UO2 under irradiation. This model is important in understanding the defect state of UO2 after irradiation and, more importantly, reveals off-stoichiometric states of irradiated UO2 that are critical for understanding the impact of irradiation on thermal transport. Personnel Successes

  13. #SpaceWeek: Science on the Cosmic Frontier | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIARenewable

  14. Experiments at the Energy Frontier | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1,Energy ConsumersExperimental TestNew PhaseEnergy

  15. Mapping the Frontier of New Wind Power Potential | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart,Department of Energy † Allowsmap shows

  16. Center for Bio-Inspired Solar Fuel Production | An Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here WesternWelcome to the

  17. DOE to Award $100 Million for Energy Frontier Research Centers | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National Laboratory LaboratoryMaterials for

  18. Diluted magnetic semiconductors based on Sb2-xVxTe3 | Energy Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,Energy

  19. Working Group Report: Computing for the Intensity Frontier

    SciTech Connect (OSTI)

    Rebel, B.; Sanchez, M.C.; Wolbers, S.

    2013-10-25T23:59:59.000Z

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  20. Energy Frontier Research Centers (EFRCs) Homepage | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergency Information Homenews/

  1. Combustion Energy Frontier Research Center Post-Doctoral Position in Advanced Combustion Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian2016 AnnualEnergy

  2. Combustion Energy Frontier Research Center Post-Doctoral Position in Advanced Combustion Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i tCollaboration MarchCanadian2016 AnnualEnergyEFRC seeks

  3. Center for Frontiers of Subsurface Energy Security (CFSES) | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National Laboratory Laboratory Policy (LP)(SC)U.S.Office of

  4. Energy Frontier Research in Extreme Environments (EFree) | U.S. DOE Office

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven National LaboratoryJeffrey L KrauseEarth System(SC)of Science

  5. Life at the Frontiers of Energy Research Video Contest | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansasLawrence BerkeleyScience

  6. Frontiers in Energy Research: Bringing Science to the Public in Three Easy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton Plasma Physics09, To:Steps |

  7. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01T23:59:59.000Z

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  8. Optics measurement algorithms and error analysis for the proton energy frontier

    E-Print Network [OSTI]

    Langner, A

    2015-01-01T23:59:59.000Z

    Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) ?-functions (?). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased...

  9. DOE Awards $377 Million in Funding for 46 Energy Frontier Research Centers

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » ContactDepartment ofaProjects | DepartmentExpert|

  10. Complex Hydrides-A New Frontier for Future Energy Applications | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingthMeasurementsMay-20,-2015 Sign In

  11. Approaches to renewable energy storage focus of Frontiers in Science talk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederal Facility Agreement andKevinApply

  12. Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop

    SciTech Connect (OSTI)

    Zolandz, Dorothy

    2012-03-28T23:59:59.000Z

    An interactive, multidisciplinary, public workshop, organized by a group of experts in biochemistry, biophysics, chemical and biomolecular engineering, chemistry, microbial metabolism, and protein structure and function, was held on January 6-7, 2011 in Washington, DC. Fundamental insights into the biological energy capture, storage, and transformation processes provided by speakers was featured in this workshop?which included topics such as microbes living in extreme environments such as hydrothermal vents or caustic soda lakes (extremophiles)? provided a fascinating basis for discussing the exploration and development of new energy systems. Breakout sessions and extended discussions among the multidisciplinary groups of participants in the workshop fostered information sharing and possible collaborations on future bioinspired research. Printed and web-based materials that summarize the committee?s assessment of what transpired at the workshop were prepared to advance further understanding of fundamental chemical properties of biological systems within and between the disciplines. In addition, webbased materials (including two animated videos) were developed to make the workshop content more accessible to a broad audience of students and researchers working across disciplinary boundaries. Key workshop discussion topics included: Exploring and identifying novel organisms; Identifying patterns and conserved biological structures in nature; Exploring and identifying fundamental properties and mechanisms of known biological systems; Supporting current, and creating new, opportunities for interdisciplinary education, training, and outreach; and Applying knowledge from biology to create new devices and sustainable technology.

  13. Tactical Action Plan: Powering the Energy Frontier (An Appendix to the Strategic Roadmap 2024)

    SciTech Connect (OSTI)

    none,

    2014-01-01T23:59:59.000Z

    The Tactical Action Plan identifies and describes the Western-wide tasks and activities, existing and new, needed to fully achieve the goals in Strategic Roadmap 2024. Each activity in the TAP chart is briefly described in this document and also linked to the Critical Pathway it supports. As the TAP is a list of specific strategies and actions susceptible to changing environments and needs, the TAP will be updated more frequently as Western progresses towards its goals. The TAP is organized into seven Strategic Target Areas that serve as Westerns priorities and areas of focus for the next two to three years. These Target Areas are: Power and Transmission Related Services; Energy Infrastructure; Partnership and Innovation; Asset Management; Safety and Security; Communication; and Human Capital Management and Organization Structure. Target Areas are also used to create the agencys annual performance targets, which measure progress and implementation of the TAP, and the status of which will be reported regularly.

  14. Ultra High Energy Fermions

    E-Print Network [OSTI]

    Burra G. Sidharth

    2015-04-07T23:59:59.000Z

    The LHC in Geneva is already operating at a total energy of $7 TeV$ and hopefully after a pause in 2012, it will attain its full capacity of $14 TeV$ in 2013. These are the highest energies achieved todate in any accelerator. It is against this backdrop that it is worthwhile to revisit very high energy collisions of Fermions (Cf. also \\cite{bgspp}). We will in fact examine their behaviour at such energies.

  15. LANL | Physics | High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the intensity frontier On the trail of one of the greatest mysteries in physics, researchers on the Long Baseline Neutrino Experiment (LBNE) seek to discover why...

  16. High Energy Photoproduction

    E-Print Network [OSTI]

    J. M. Butterworth; M. Wing

    2005-09-15T23:59:59.000Z

    The experimental and phenomenological status of high energy photoproduction is reviewed. Topics covered include the structure of the photon, production of jets, heavy flavours and prompt photons, rapidity gaps, energy flow and underlying events. The results are placed in the context of the current understanding of QCD, with particular application to present and future hadron and lepton colliders.

  17. Ultra High Energy Behaviour

    E-Print Network [OSTI]

    Burra G. Sidharth

    2011-03-18T23:59:59.000Z

    We reexamine the behaviour of particles at Ultra Highe energies in the context of the fact that the LHC has already touched an energy of $7 TeV$ and is likely to attain $14 TeV$ by 2013/2014.Consequences like a possible new shortlived interaction within the Compton scale are discussed.

  18. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31T23:59:59.000Z

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  19. Experimental And Theoretical High Energy Physics Research At UCLA

    SciTech Connect (OSTI)

    Cousins, Robert D. [University of California Los Angeles] [University of California Los Angeles

    2013-07-22T23:59:59.000Z

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERNs Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  20. High-energy detector

    DOE Patents [OSTI]

    Bolotnikov, Aleksey E. (South Setauket, NY); Camarda, Giuseppe (Farmingville, NY); Cui, Yonggang (Upton, NY); James, Ralph B. (Ridge, NY)

    2011-11-22T23:59:59.000Z

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  1. High Energy Neutrino Telescopes

    E-Print Network [OSTI]

    K. D. Hoffman

    2008-12-18T23:59:59.000Z

    This paper presents a review of the history, motivation and current status of high energy neutrino telescopes. Many years after these detectors were first conceived, the operation of kilometer-cubed scale detectors is finally on the horizon at both the South Pole and in the Mediterranean Sea. These new detectors will perhaps provide us the first view of high energy astrophysical objects with a new messenger particle and provide us with our first real glimpse of the distant universe at energies above those accessible by gamma-ray instruments. Some of the topics that can be addressed by these new instruments include the origin of cosmic rays, the nature of dark matter, and the mechanisms at work in high energy astrophysical objects such as gamma-ray bursts, active galactic nuclei, pulsar wind nebula and supernova remnants.

  2. HIGH ENERGY PHYSICS AT TUFTS UNIVERSITY FINAL REPORT

    SciTech Connect (OSTI)

    Goldstein, Gary R; Oliver, William P; Napier, Austin; Gallagher, Hugh R

    2012-07-18T23:59:59.000Z

    In this Final Report, we the researchers of the high energy physics group at Tufts University summarize our works and achievements in three frontier areas of elementary particle physics: (i) Neutrino physics at the Intensity Frontier, (ii) Collider physics at the Energy Frontier, and (iii) Theory investigations of spin structure and quark-gluon dynamics of nucleons using quantum chromodynamics. With our Neutrino research we completed, or else brought to a useful state, the following: Data-taking, physics simulations, physics analysis, physics reporting, explorations of matter effects, and detector component fabrication. We conducted our work as participants in the MINOS, NOvA, and LBNE neutrino oscillation experiments and in the MINERvA neutrino scattering experiment. With our Collider research we completed or else brought to a useful state: Data-taking, development of muon system geometry and tracking codes, software validation and maintenance, physics simulations, physics analysis, searches for new particles, and study of top-quark and B-quark systems. We conducted these activities as participants in the ATLAS proton-proton collider experiment at CERN and in the CDF proton-antiproton collider experiment at Fermilab. In our Theory research we developed QCD-based models, applications of spin phenomenology to fundamental systems, fitting of models to data, presenting and reporting of new concepts and formalisms. The overarching objectives of our research work have always been: 1) to test and clarify the predictions of the Standard Model of elementary particle physics, and 2) to discover new phenomena which may point the way to a more unified theoretical framework.

  3. Frontiers in Science Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)FrequentlyLectures » Frontiers in

  4. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Yagmur Tourun

    2010-01-08T23:59:59.000Z

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  5. Aspen Winter Conferences on High Energy

    SciTech Connect (OSTI)

    multiple speakers, presenters listed on link below

    2011-02-12T23:59:59.000Z

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, ?New Data From the Energy Frontier.? There were 54 formal talks, and a considerable number of informal discussions held during the week. The week?s events included a public lecture (?The Hunt for the Elusive Higgs Boson? given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics caf? geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was ?Indirect and Direct Detection of Dark Matter.? It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled ?What Makes Up Dark Matter.? There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics caf? to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  6. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14T23:59:59.000Z

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  7. Particle Diffraction at High Energies

    E-Print Network [OSTI]

    Vladimir A. Petrov

    1998-04-27T23:59:59.000Z

    A brief ideological and historical review of problems of high energy diffractive scattering is given.

  8. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Computing Home Energy Research Advanced Scientific Computing Research (ASCR) High Performance Computing High Performance Computingashoter2015-03-18T21:41:24+00:00...

  9. Opening New Frontiers in Power Generation

    E-Print Network [OSTI]

    Haile, Sossina M.

    FUEL CELLS Opening New Frontiers in Power Generation U . S . D e p a r t m e n t o f E n e r g y in the power generation industry. Fuel cells have the potential to truly revolutionize power generation. Fuel by subjecting it to steam and high temperatures. In order to use coal, biomass, or a range of hydrocarbon wastes

  10. High Energy Physics from High Performance Computing

    E-Print Network [OSTI]

    T. Blum

    2009-08-06T23:59:59.000Z

    We discuss Quantum Chromodynamics calculations using the lattice regulator. The theory of the strong force is a cornerstone of the Standard Model of particle physics. We present USQCD collaboration results obtained on Argonne National Lab's Intrepid supercomputer that deepen our understanding of these fundamental theories of Nature and provide critical support to frontier particle physics experiments and phenomenology.

  11. A Phenomenological Cost Model for High Energy Particle Accelerators

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2014-04-15T23:59:59.000Z

    Accelerator-based high-energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the colliders has progressed immensely, while the beam energy, luminosity, facility size, and cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. In this paper we derive a simple scaling model for the cost of large accelerators and colliding beam facilities based on costs of 17 big facilities which have been either built or carefully estimated. Although this approach cannot replace an actual cost estimate based on an engineering design, this parameterization is to indicate a somewhat realistic cost range for consideration of what future frontier accelerator facilities might be fiscally realizable.

  12. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May BeAdministration |High

  13. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May BeAdministration |High

  14. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs Boson May BeAdministration |High

  15. A View to the FutureBERKELEY LAB 2005/2006 REPORT A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16

    E-Print Network [OSTI]

    Knowles, David William

    A View to the FutureBERKELEY LAB 2005/2006 REPORT #12;A Note from the Director / 2 Energy Technologies and Environmental Solutions / 4 Living Systems and Quantitative Biology / 8 Frontiers in Nanoscience / 12 Exploring Matter and Energy in the Universe / 16 X-Ray and Ultrafast Science / 20 Advanced

  16. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B. [Florida State University; Adams, Todd [Florida State University; Askew, Andrew [Florida State University; Berg, Bernd [Florida State University; Blessing, Susan K. [Florida State University; Okui, Takemichi [Florida State University; Owens, Joseph F. [Florida State University; Reina, Laura [Florida State University; Wahl, Horst D. [Florida State University

    2014-12-01T23:59:59.000Z

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the groups theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  17. Hydrostatic Level Sensors as High Precision Ground Motion Instrumentation for Tevatron and Other Energy Frontier Accelerators

    SciTech Connect (OSTI)

    Volk, James; Hansen, Sten; Johnson, Todd; Jostlein, Hans; Kiper, Terry; Shiltsev, Vladimir; Chupyra, Andrei; Kondaurov, Mikhail; Medvedko, Anatoly; Parkhomchuk, Vasily; Singatulin, Shavkat

    2012-01-01T23:59:59.000Z

    Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.

  18. This paper is adapted from a chapter in: L. Grandinetti (ed.), "Grid Computing and New Frontiers of High Performance Processing." Elsevier, 2005.

    E-Print Network [OSTI]

    , magnetic fusion energy sciences, chemical sciences, and bioinformatics. Except for nuclear physics ­ and is the principal federal funding agency of ­ the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. [It also] manages fundamental research programs in basic energy sciences

  19. Frontiers in Cosmic Rays

    E-Print Network [OSTI]

    Luis A. Anchordoqui; Charles D. Dermer; Andreas Ringwald

    2004-02-27T23:59:59.000Z

    This rapporteur review covers selected results presented in the Parallel Session HEA2 (High Energy Astrophysics 2) of the 10th Marcel Grossmann Meeting on General Relativity, held in Rio de Janeiro, Brazil, July 2003. The subtopics are: ultra high energy cosmic ray anisotropies, the possible connection of these energetic particles with powerful gamma ray bursts, and new exciting scenarios with a strong neutrino-nucleon interaction in the atmosphere.

  20. Vehicle Technologies Office Merit Review 2015: High Energy High...

    Office of Environmental Management (EM)

    High Energy High Power Battery Exceeding PHEV-40 Requirements Vehicle Technologies Office Merit Review 2015: High Energy High Power Battery Exceeding PHEV-40 Requirements...

  1. High Energy Density Capacitors

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  2. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25T23:59:59.000Z

    To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins...

  3. High Energy Physics Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunitieshighlights/ The Office ofabout/jobs/

  4. High energy photon emission

    E-Print Network [OSTI]

    Jabs, Harry

    1997-01-01T23:59:59.000Z

    photons, neutrons, charged particles, and fission fragments were used to study the reaction 160 + 238 U at a projectile energy of 50 MeV/u. Inverse slope values of the photon spectra were extracted for inclusive data and data of higher multiplicities...

  5. High energy neutrino cross sections

    E-Print Network [OSTI]

    M. H. Reno

    2004-10-07T23:59:59.000Z

    The theoretical status of the neutrino-nucleon cross section is reviewed for incident neutrino energies up to E_nu=10^12 GeV, including different approaches to high energy extrapolations. Nonstandard model physics may play a role at ultrahigh energies. The cases of mini-black hole production and electroweak instanton contributions are discussed as examples in the context of ultrahigh energy neutrino scattering.

  6. High Energy Cost Grants | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresented By:DanielHigh Energy Cost

  7. Intensity Frontier Instrumentation

    SciTech Connect (OSTI)

    Kettell S.; Rameika, R.; Tshirhart, B.

    2013-09-24T23:59:59.000Z

    The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked Who ordered that? upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

  8. High-energy Cosmic Rays

    E-Print Network [OSTI]

    Thomas K. Gaisser; Todor Stanev

    2005-10-11T23:59:59.000Z

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the `knee' above $10^{15}$ eV and the `ankle' above $10^{18}$ eV. An important question is whether the highest energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  9. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01T23:59:59.000Z

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  10. High West Energy, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHiflux LtdTechnoHigh

  11. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Position in Direct Numerical Simulations of Low-Dimensional Reacting Flows The Combustion EFRC seeks outstanding applicants for the position of post-doctoral research...

  12. >> eece.wustl.edu The Department of Energy,

    E-Print Network [OSTI]

    Subramanian, Venkat

    External support for Consortium for Clean Coal Utillization: $12m Dept. of Energy Frontier Research

  13. PRACTICAL NEUTRON DOSIMETRY AT HIGH ENERGIES

    E-Print Network [OSTI]

    McCaslin, J.B.

    2010-01-01T23:59:59.000Z

    of High-Energy Accelerators, New York, April, 1957. USAECShielding of High-Energy Accelerators, New York, April 1957.Shielding of High-Energy Accelerators, New York, April 1957.

  14. Frontiers in Computational and Information Sciences Seminar Series

    E-Print Network [OSTI]

    Frontiers in Computational and Information Sciences Seminar Series "An Overview of the SciDAC-3 California Information Sciences Institute Abstract Over the next five years (2012--2016), computational scientists working on behalf of the Department of Energy's Office of Science (DOE SC) will exploit a new

  15. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O'Gallagher, Joseph J. (Flossmoor, IL)

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  16. High flux solar energy transformation

    DOE Patents [OSTI]

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09T23:59:59.000Z

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  17. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22T23:59:59.000Z

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

  18. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    SciTech Connect (OSTI)

    Hewett, J.L.; Weerts, H.; Brock, R.; Butler, J.N.; Casey, B.C.K.; Lu, Z.T.; Wagner, C.E.M.; Dietrich, M.R.; Djurcic, Z.; Goodman, M.; Green, J.P.; Holt, R.J.; Mueller, P.; Paley, J.; Reimer, P.; Singh, J.; Upadhye, A. (High Energy Physics); ( PHY); (Stanford Linear Accelerator Center); (Univ. of Michigan); (Fermi National Accelerator Laboratory)

    2012-06-05T23:59:59.000Z

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantum mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the univ

  19. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  20. Ultra High Energy Neutrino Astronomy

    E-Print Network [OSTI]

    V. Berezinsky

    2005-05-11T23:59:59.000Z

    The short review of theoretical aspects of ultra high energy (UHE) neutrinos and superGZK neutrinos. The sources and diffuse fluxes of UHE neutrinos are discussed. Much attention is given to comparison of the cascade and cosmic ray upper bounds for diffuse neutrino fluxes. Cosmogenic neutrinos and neutrinos from the mirror mater are considered as superGZK neutrinos.

  1. Ultra High Energy Cosmic Rays

    E-Print Network [OSTI]

    Todor Stanev

    2004-11-04T23:59:59.000Z

    We discuss theoretical issues and experimental data that brought the ultra high energy cosmic rays in the list of Nature's greatest puzzles. After many years of research we still do not know how astrophysical acceleration processes can reach energies exceeding 10$^{11}$ GeV. The main alternative {\\em top-down} mechanism postulates the existence of super massive $X$-particles that create a particle spectrum extending down to the observed energy through their decay channels. The propagation of nuclei and photons from their sources to us adds to the puzzle as all particles of these energies interact with the ambient photons, mostly of the microwave background. We also describe briefly the main observational results and give some information on the new experiments that are being built and designed now.

  2. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE

  3. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE0 DOE

  4. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE0 DOE09

  5. Frontier market analysis : a case study of Iraq's real estate industry

    E-Print Network [OSTI]

    Watkins, Steven C., Jr. (Steven Charles)

    2010-01-01T23:59:59.000Z

    Success in frontier markets could mean high returns for real estate developers and investors. In order to succeed, companies must determine how to provide their products or services in an environment that may not necessarily ...

  6. High Energy Gas Fracturing Test

    SciTech Connect (OSTI)

    Schulte, R.

    2001-02-27T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  7. High Impact Technology Catalyst | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy-efficient commercial building technologies. Through the High Impact Technology Catalyst program, initiated in 2014, the U.S. Department of Energy (DOE) identifies...

  8. Research Frontiers Cutting-Edge Research

    E-Print Network [OSTI]

    Takada, Shoji

    Research Frontiers Cutting-Edge Research in Kyoto University Kyoto University is known. Some of them exhibit circularly polarized light (CPL) with unprecedented anisotropy factors: they emit

  9. NERSC Frontiers in Advanced Storage Technology Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

  10. internationalmagazine advancing the frontiers

    E-Print Network [OSTI]

    Canet, Lonie

    relatively little energy. The result of 4.5 billion years of evolution, nature's subtle, complex processes'smostpressing challenges, including the environment, energy sustainability, or even the econo- my. Catalysts derived from microalgae, self-assembly processes, and smart hybrid materials are among these solu- tions. Indeed, nature

  11. Frontiers, Opportunities, and Challenges in Biochemical and Chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2....

  12. Los Alamos engineer selected to participate in NAE's 2012 "Frontiers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moody to participate in "Frontiers of Engineering" Los Alamos engineer selected to participate in NAE's 2012 "Frontiers of Engineering" symposium Engineers between 30 to 45 who are...

  13. Frontiers in Science Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ResearchFrequently AskedFrom

  14. Imaging the High Energy Cosmic Ray Sky

    E-Print Network [OSTI]

    Haviland, David

    Imaging the High Energy Cosmic Ray Sky PETTER HOFVERBERG Licentiate Thesis Stockholm, Sweden 2006 #12;#12;Licentiate Thesis Imaging the High Energy Cosmic Ray Sky Petter Hofverberg Particle

  15. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10T23:59:59.000Z

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  16. Computing Frontier: Distributed Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEvents Computing

  17. Frontiers in Science Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton Plasma Physics09, To:Steps

  18. Energy Star Helps Manufacturers To Achieve High Energy Performance

    E-Print Network [OSTI]

    Dutrow, E.; Hicks, T.

    2001-01-01T23:59:59.000Z

    From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U...

  19. Energy Star Helps Manufacturers To Achieve High Energy Performance

    E-Print Network [OSTI]

    Dutrow, E.; Hicks, T.

    From personal electronic devices to homes and office buildings, ENERGY STAR is a recognized symbol of high quality energy performance which enables consumers, home buyers, and businesses to make informed energy decisions. Now, the U...

  20. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  1. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    J. L. Hewett; H. Weerts; R. Brock; J. N. Butler; B. C. K. Casey; J. Collar; A. de Gouvea; R. Essig; Y. Grossman; W. Haxton; J. A. Jaros; C. K. Jung; Z. T. Lu; K. Pitts; Z. Ligeti; J. R. Patterson; M. Ramsey-Musolf; J. L. Ritchie; A. Roodman; K. Scholberg; C. E. M. Wagner; G. P. Zeller; S. Aefsky; A. Afanasev; K. Agashe; C. Albright; J. Alonso; C. Ankenbrandt; M. Aoki; C. A. Arguelles; N. Arkani-Hamed; J. R. Armendariz; C. Armendariz-Picon; E. Arrieta Diaz; J. Asaadi; D. M. Asner; K. S. Babu; K. Bailey; O. Baker; B. Balantekin; B. Baller; M. Bass; B. Batell; J. Beacham; J. Behr; N. Berger; M. Bergevin; E. Berman; R. Bernstein; A. J. Bevan; M. Bishai; M. Blanke; S. Blessing; A. Blondel; T. Blum; G. Bock; A. Bodek; G. Bonvicini; F. Bossi; J. Boyce; R. Breedon; M. Breidenbach; S. J. Brice; R. A. Briere; S. Brodsky; C. Bromberg; A. Bross; T. E. Browder; D. A. Bryman; M. Buckley; R. Burnstein; E. Caden; P. Campana; R. Carlini; G. Carosi; C. Castromonte; R. Cenci; I. Chakaberia; M. C. Chen; C. H. Cheng; B. Choudhary; N. H. Christ; E. Christensen; M. E. Christy; T. E. Chupp; E. Church; D. B. Cline; T. E. Coan; P. Coloma; J. Comfort; L. Coney; J. Cooper; R. J. Cooper; R. Cowan; D. F. Cowen; D. Cronin-Hennessy; A. Datta; G. S. Davies; M. Demarteau; D. P. DeMille; A. Denig; R. Dermisek; A. Deshpande; M. S. Dewey; R. Dharmapalan; J. Dhooghe; M. R. Dietrich; M. Diwan; Z. Djurcic; S. Dobbs; M. Duraisamy; B. Dutta; H. Duyang; D. A. Dwyer; M. Eads; B. Echenard; S. R. Elliott; C. Escobar; J. Fajans; S. Farooq; C. Faroughy; J. E. Fast; B. Feinberg; J. Felde; G. Feldman; P. Fierlinger; P. Fileviez Perez; B. Filippone; P. Fisher; B. T. Flemming; K. T. Flood; R. Forty; M. J. Frank; A. Freyberger; A. Friedland; R. Gandhi; K. S. Ganezer; A. Garcia; F. G. Garcia; S. Gardner; L. Garrison; A. Gasparian; S. Geer; V. M. Gehman; T. Gershon; M. Gilchriese; C. Ginsberg; I. Gogoladze; M. Gonderinger; M. Goodman; H. Gould; M. Graham; P. W. Graham; R. Gran; J. Grange; G. Gratta; J. P. Green; H. Greenlee; R. C. Group; E. Guardincerri; V. Gudkov; R. Guenette; A. Haas; A. Hahn; T. Han; T. Handler; J. C. Hardy; R. Harnik; D. A. Harris; F. A. Harris; P. G. Harris; J. Hartnett; B. He; B. R. Heckel; K. M. Heeger; S. Henderson; D. Hertzog; R. Hill; E. A Hinds; D. G. Hitlin; R. J. Holt; N. Holtkamp; G. Horton-Smith; P. Huber; W. Huelsnitz; J. Imber; I. Irastorza; J. Jaeckel; I. Jaegle; C. James; A. Jawahery; D. Jensen; C. P. Jessop; B. Jones; H. Jostlein; T. Junk; A. L. Kagan; M. Kalita; Y. Kamyshkov; D. M. Kaplan; G. Karagiorgi; A. Karle; T. Katori; B. Kayser; R. Kephart; S. Kettell; Y. K. Kim; M. Kirby; K. Kirch; J. Klein; J. Kneller; A. Kobach; M. Kohl; J. Kopp; M. Kordosky; W. Korsch; I. Kourbanis; A. D. Krisch; P. Krizan; A. S. Kronfeld; S. Kulkarni; K. S. Kumar; Y. Kuno; T. Kutter; T. Lachenmaier; M. Lamm; J. Lancaster; M. Lancaster; C. Lane; K. Lang; P. Langacker; S. Lazarevic; T. Le; K. Lee; K. T. Lesko; Y. Li; M. Lindgren; A. Lindner; J. Link; D. Lissauer; L. S. Littenberg; B. Littlejohn; C. Y. Liu; W. Loinaz; W. Lorenzon; W. C. Louis; J. Lozier; L. Ludovici; L. Lueking; C. Lunardini; D. B. MacFarlane; P. A. N. Machado; P. B. Mackenzie; J. Maloney; W. J. Marciano; W. Marsh; M. Marshak; J. W. Martin; C. Mauger; K. S. McFarland; C. McGrew; G. McLaughlin; D. McKeen; R. McKeown; B. T. Meadows; R. Mehdiyev; D. Melconian; H. Merkel; M. Messier; J. P. Miller; G. Mills; U. K. Minamisono; S. R. Mishra; I. Mocioiu; S. Moed Sher; R. N. Mohapatra; B. Monreal; C. D. Moore; J. G. Morfin; J. Mousseau; L. A. Moustakas; G. Mueller; P. Mueller; M. Muether; H. P. Mumm; C. Munger; H. Murayama; P. Nath; O. Naviliat-Cuncin; J. K. Nelson; D. Neuffer; J. S. Nico; A. Norman; D. Nygren; Y. Obayashi; T. P. O'Connor; Y. Okada; J. Olsen; L. Orozco; J. L. Orrell; J. Osta; B. Pahlka; J. Paley; V. Papadimitriou; M. Papucci; S. Parke; R. H. Parker; Z. Parsa; K. Partyka; A. Patch; J. C. Pati; R. B. Patterson; Z. Pavlovic; G. Paz; G. N. Perdue; D. Perevalov; G. Perez; R. Petti; W. Pettus; A. Piepke; M. Pivovaroff; R. Plunkett; C. C. Polly; M. Pospelov; R. Povey; A. Prakesh; M. V. Purohit; S. Raby; J. L. Raaf; R. Rajendran; S. Rajendran; G. Rameika; R. Ramsey; A. Rashed; B. N. Ratcliff; B. Rebel; J. Redondo; P. Reimer; D. Reitzner; F. Ringer; A. Ringwald; S. Riordan; B. L. Roberts; D. A. Roberts; R. Robertson; F. Robicheaux; M. Rominsky; R. Roser; J. L. Rosner; C. Rott; P. Rubin; N. Saito; M. Sanchez; S. Sarkar; H. Schellman; B. Schmidt; M. Schmitt; D. W. Schmitz; J. Schneps; A. Schopper; P. Schuster; A. J. Schwartz; M. Schwarz; J. Seeman; Y. K. Semertzidis; K. K. Seth; Q. Shafi; P. Shanahan; R. Sharma; S. R. Sharpe; M. Shiozawa; V. Shiltsev; K. Sigurdson; P. Sikivie; J. Singh; D. Sivers; T. Skwarnicki; N. Smith; J. Sobczyk; H. Sobel; M. Soderberg; Y. H. Song; A. Soni; P. Souder; A. Sousa; J. Spitz; M. Stancari; G. C. Stavenga; J. H. Steffen

    2012-05-11T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  2. Fundamental Physics at the Intensity Frontier

    E-Print Network [OSTI]

    Hewett, J L; Brock, R; Butler, J N; Casey, B C K; Collar, J; de Gouvea, A; Essig, R; Grossman, Y; Haxton, W; Jaros, J A; Jung, C K; Lu, Z T; Pitts, K; Ligeti, Z; Patterson, J R; Ramsey-Musolf, M; Ritchie, J L; Roodman, A; Scholberg, K; Wagner, C E M; Zeller, G P; Aefsky, S; Afanasev, A; Agashe, K; Albright, C; Alonso, J; Ankenbrandt, C; Aoki, M; Arguelles, C A; Arkani-Hamed, N; Armendariz, J R; Armendariz-Picon, C; Diaz, E Arrieta; Asaadi, J; Asner, D M; Babu, K S; Bailey, K; Baker, O; Balantekin, B; Baller, B; Bass, M; Batell, B; Beacham, J; Behr, J; Berger, N; Bergevin, M; Berman, E; Bernstein, R; Bevan, A J; Bishai, M; Blanke, M; Blessing, S; Blondel, A; Blum, T; Bock, G; Bodek, A; Bonvicini, G; Bossi, F; Boyce, J; Breedon, R; Breidenbach, M; Brice, S J; Briere, R A; Brodsky, S; Bromberg, C; Bross, A; Browder, T E; Bryman, D A; Buckley, M; Burnstein, R; Caden, E; Campana, P; Carlini, R; Carosi, G; Castromonte, C; Cenci, R; Chakaberia, I; Chen, M C; Cheng, C H; Choudhary, B; Christ, N H; Christensen, E; Christy, M E; Chupp, T E; Church, E; Cline, D B; Coan, T E; Coloma, P; Comfort, J; Coney, L; Cooper, J; Cooper, R J; Cowan, R; Cowen, D F; Cronin-Hennessy, D; Datta, A; Davies, G S; Demarteau, M; DeMille, D P; Denig, A; Dermisek, R; Deshpande, A; Dewey, M S; Dharmapalan, R; Dhooghe, J; Dietrich, M R; Diwan, M; Djurcic, Z; Dobbs, S; Duraisamy, M; Dutta, B; Duyang, H; Dwyer, D A; Eads, M; Echenard, B; Elliott, S R; Escobar, C; Fajans, J; Farooq, S; Faroughy, C; Fast, J E; Feinberg, B; Felde, J; Feldman, G; Fierlinger, P; Perez, P Fileviez; Filippone, B; Fisher, P; Flemming, B T; Flood, K T; Forty, R; Frank, M J; Freyberger, A; Friedland, A; Gandhi, R; Ganezer, K S; Garcia, A; Garcia, F G; Gardner, S; Garrison, L; Gasparian, A; Geer, S; Gehman, V M; Gershon, T; Gilchriese, M; Ginsberg, C; Gogoladze, I; Gonderinger, M; Goodman, M; Gould, H; Graham, M; Graham, P W; Gran, R; Grange, J; Gratta, G; Green, J P; Greenlee, H; Guardincerri, E; Gudkov, V; Guenette, R; Haas, A; Hahn, A; Han, T; Handler, T; Hardy, J C; Harnik, R; Harris, D A; Harris, F A; Harris, P G; Hartnett, J; He, B; Heckel, B R; Heeger, K M; Henderson, S; Hertzog, D; Hill, R; Hinds, E A; Hitlin, D G; Holt, R J; Holtkamp, N; Horton-Smith, G; Huber, P; Huelsnitz, W; Imber, J; Irastorza, I; Jaeckel, J; Jaegle, I; James, C; Jawahery, A; Jensen, D; Jessop, C P; Jones, B; Jostlein, H; Junk, T; Kagan, A L; Kalita, M; Kamyshkov, Y; Kaplan, D M; Karagiorgi, G; Karle, A; Katori, T; Kayser, B; Kephart, R; Kettell, S; Kim, Y K; Kirby, M; Kirch, K; Klein, J; Kneller, J; Kobach, A; Kohl, M; Kopp, J; Kordosky, M; Korsch, W; Kourbanis, I; Krisch, A D; Krizan, P; Kronfeld, A S; Kulkarni, S; Kumar, K S; Kuno, Y; Kutter, T; Lachenmaier, T; Lamm, M; Lancaster, J; Lancaster, M; Lane, C; Lang, K; Langacker, P; Lazarevic, S; Le, T; Lee, K; Lesko, K T; Li, Y; Lindgren, M; Lindner, A; Link, J; Lissauer, D; Littenberg, L S; Littlejohn, B; Liu, C Y; Loinaz, W; Lorenzon, W; Louis, W C; Lozier, J; Ludovici, L; Lueking, L; Lunardini, C; MacFarlane, D B; Machado, P A N; Mackenzie, P B; Maloney, J; Marciano, W J; Marsh, W; Marshak, M; Martin, J W; Mauger, C; McFarland, K S; McGrew, C; McLaughlin, G; McKeen, D; McKeown, R; Meadows, B T; Mehdiyev, R; Melconian, D; Merkel, H; Messier, M; Miller, J P; Mills, G; Minamisono, U K; Mishra, S R; Mocioiu, I; Sher, S Moed; Mohapatra, R N; Monreal, B; Moore, C D; Morfin, J G; Mousseau, J; Moustakas, L A; Mueller, G; Mueller, P; Muether, M; Mumm, H P; Munger, C; Murayama, H; Nath, P; Naviliat-Cuncin, O; Nelson, J K; Neuffer, D; Nico, J S; Norman, A; Nygren, D; Obayashi, Y; O'Connor, T P; Okada, Y; Olsen, J; Orozco, L; Orrell, J L; Osta, J; Pahlka, B; Paley, J; Papadimitriou, V; Papucci, M; Parke, S; Parker, R H; Parsa, Z; Partyka, K; Patch, A; Pati, J C; Patterson, R B; Pavlovic, Z; Paz, G; Perdue, G N; Perevalov, D; Perez, G; Petti, R; Pettus, W; Piepke, A; Pivovaroff, M; Plunkett, R; Polly, C C; Pospelov, M; Povey, R; Prakesh, A; Purohit, M V; Raby, S; Raaf, J L; Rajendran, R; Rajendran, S; Rameika, G; Ramsey, R; Rashed, A; Ratcliff, B N; Rebel, B; Redondo, J; Reimer, P; Reitzner, D; Ringer, F; Ringwald, A; Riordan, S; Roberts, B L; Roberts, D A; Robertson, R; Robicheaux, F; Rominsky, M; Roser, R; Rosner, J L; Rott, C; Rubin, P; Saito, N; Sanchez, M; Sarkar, S; Schellman, H; Schmidt, B; Schmitt, M; Schmitz, D W; Schneps, J; Schopper, A; Schuster, P; Schwartz, A J; Schwarz, M; Seeman, J; Semertzidis, Y K; Seth, K K; Shafi, Q; Shanahan, P; Sharma, R; Sharpe, S R; Shiozawa, M; Shiltsev, V; Sigurdson, K; Sikivie, P; Singh, J; Sivers, D; Skwarnicki, T; Smith, N; Sobczyk, J; Sobel, H; Soderberg, M; Song, Y H; Soni, A; Souder, P; Sousa, A; Spitz, J; Stancari, M; Stavenga, G C; Steffen, J H; Stepanyan, S; Stoeckinger, D; Stone, S; Strait, J; Strassler, M; Sulai, I A; Sundrum, R; Svoboda, R; Szczerbinska, B; Szelc, A; Takeuchi, T; Tanedo, P

    2012-01-01T23:59:59.000Z

    The Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms.

  3. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V. [PI] [PI; Goshaw, Al [Co-PI] [Co-PI; Kruse, Mark [Co-PI] [Co-PI; Oh, Seog [Co-PI] [Co-PI; Scholberg, Kate [Co-PI] [Co-PI; Walter, Chris [Co-PI] [Co-PI

    2013-07-29T23:59:59.000Z

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  4. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29T23:59:59.000Z

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  5. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31T23:59:59.000Z

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  6. High Country Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefei SungrowHelukabel GmbH

  7. 4_scienceFrontiers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 Q4 Q14He(α, X)

  8. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Lee, R W

    2007-10-19T23:59:59.000Z

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a more detailed plans for experiments (Ch. VI), highlighting the uniqueness the HEDS endstation will play in providing mission-relevant HED data and in the development of the field. One of the more exciting aspects of NNSA-relevant experiments on LCLS is that, given the extraordinary investment and consequent advances in accurate atomic-scale simulations of matter (to a large extent via the Accelerated Scientific Computing program sponsored by NNSA), the facility will provide a platform that, for the first time, will permit experiments in the regimes of interest at the time and spatial scales of the simulations. In Chapter III, the report places the potential of LCLS with an HED science endstation in the context of science required by NNSA, as well as explicating the relationship of NNSA and HED science in general. Chapter IV discusses 4th-generation light sources, like LCLS, in the context of other laboratory technologies presently utilized by NNSA. The report concludes, noting that an HED endstation on LCLS can provide access to data in regimes that are relevant to NNSA needs but no mechanism exists for providing such data. The endstation will also serve to build a broad-based community in the 'X-Games' of physics. The science generated by the facility will be a collaboration of NNSA-based laboratory scientists and university-based researchers. The LCLS endstation fulfills the need for an intermediate-scale facility capable of delivering fundamental advances and mission-relevant research in high energy density science.

  9. High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context

    E-Print Network [OSTI]

    Bicknell, Geoff

    High Energy Astrophysics: Overview 1/47 High Energy Astrophysics in Context 1 Some references The following set of volumes is an outstanding summary of the field of High Energy Astrophysics and its relation to the rest of Astrophysics High Energy Astrophysics, Vols. 1,2 and 3. M.S. Longair, Cam- bridge University

  10. High-Pulse-Energy Ultrafast Laser for

    E-Print Network [OSTI]

    Painter, Kevin

    High-Pulse-Energy Ultrafast Laser for Spectroscopy & Micromachining PROBLEM THIS TECHNOLOGY SOLVES. In addition to the OPO, a custom designed ultrafast pump source, provides high pulse energy (.res.hw.ac.uk Professor Derryck Reid (Principal Investigator) www.ultrafast.hw.ac.uk BENEFITS & APPLICATIONS: · High pulse

  11. Participation in high energy physics, Task D

    SciTech Connect (OSTI)

    Lederman, L.M.

    1992-04-01T23:59:59.000Z

    This report discusses the following topics: Communication and Advancement of High Energy Physics; B-Quarks; Secondary Vertex Trigger; and Science Education.

  12. Development of High Energy Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    other high- energy cathodes. Improved the performance of Li-rich, Mn-rich layered composite cathode suitable for PHEV and EV applications. Developed electrolyte additives...

  13. Sandia Energy - High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGridHHigh

  14. High Mesa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to:HidroflotMesa Jump

  15. Langston University - High Energy Physics

    SciTech Connect (OSTI)

    snow, joel

    2012-08-13T23:59:59.000Z

    This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forces that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 the PI took on the role of global Monte Carlo production coordinator for the DZero experiment. In January of 2004 the PI started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with DZero Monte Carlo production. The PI installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI's tenure as production coor

  16. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    Frontiers in Chemical Imaging Seminar Series On the trail of the Chimera The Atom the Chimera is still elusive. 1. Thomas F. Kelly and David J. Larson. Ann Rev. Materials Res 42 (2012) 1. 2

  17. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2005-01-26T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by neutrinos with energies similar to those of the highest energy cosmic rays.

  18. High Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:Hidralia

  19. FRONTIERS ARTICLE Efficiency enhancement of copper contaminated radial pn junction solar cells

    E-Print Network [OSTI]

    Yang, Peidong

    energy represents one of the most important sustainable and renewable energy sources. The most common power from solar cells [1]. The reason is that crystalline silicon solar cell manufacturingFRONTIERS ARTICLE Efficiency enhancement of copper contaminated radial pn junction solar cells

  20. C1000 Problem Set 4 (Draft 10/16/03; Menke) Frontiers of Science (C1000) Problem Set 4 on Energy Relevant to Green House Gases

    E-Print Network [OSTI]

    Menke, William

    .1 kilowatt) light bulb burning continuously? 3. Data for population and energy consumption for a total of 21 emissions represented by each of these countries or regions. C) What percentage of global consumption societies. Humans require energy derived from food consumption to sustain life. Our cells metabolize

  1. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema (OSTI)

    Ren-Yuan Zhu

    2010-01-08T23:59:59.000Z

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal?s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  2. High Energy Evolution with Pomeron Loops

    E-Print Network [OSTI]

    Michael Lublinsky

    2006-05-02T23:59:59.000Z

    The high energy/density QCD has been widely used for DIS phenomenology with a projectile particle considered as perturbative and dilute. We review some recent attempts to derive a high energy evolution kernel which treats targets and projectiles in a symmetric manner. From theoretical point of view the problem is tightly related to inclusion of Pomeron loops in the evolution. The ultimate goal is to consider high energy scatterings with both projectile and target being dense, the situation faced at RHIC and the LHC.

  3. High-Energy Astrophysics and Cosmology

    E-Print Network [OSTI]

    John Ellis

    2002-10-26T23:59:59.000Z

    Interfaces between high-energy physics, astrophysics and cosmology are reviewed, with particular emphasis on the important roles played by high-energy cosmic-ray physics. These include the understanding of atmospheric neutrinos, the search for massive cold dark matter particles and possible tests of models of quantum gravity. In return, experiments at the LHC may be useful for refining models of ultra-high-energy cosmic rays, and thereby contributing indirectly to understanding their origin. Only future experiments will be able to tell whether these are due to some bottom-up astrophysical mechanism or some top-down cosmological mechanism.

  4. High Energy Scattering Amplitudes of Superstring Theory

    E-Print Network [OSTI]

    Chuan-Tsung Chan; Jen-Chi Lee; Yi Yang

    2005-11-18T23:59:59.000Z

    We use three different methods to calculate the proportionality constants among high-energy scattering amplitudes of different string states with polarizations on the scattering plane. These are the decoupling of high-energy zero-norm states (HZNS), the Virasoro constraints and the saddle-point calculation. These calculations are performed at arbitrary but fixed mass level for the NS sector of 10D open superstring. All three methods give the consistent results, which generalize the previous works on the high-energy 26D open bosonic string theory. In addition, we discover new leading order high-energy scattering amplitudes, which are still proportional to the previous ones, with polarizations orthogonal to the scattering plane. These scattering amplitudes are of subleading order in energy for the case of 26D open bosonic string theory. The existence of these new high-energy scattering amplitudes is due to the worldsheet fermion exchange in the correlation functions and is, presumably, related to the high-energy massive spacetime fermionic scattering amplitudes in the R-sector of the theory.

  5. High-Energy Neutrino Astronomy

    E-Print Network [OSTI]

    F. Halzen

    2004-02-03T23:59:59.000Z

    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of $10^{20}$ and $10^{13}$ eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.

  6. Cosmic absorption of ultra high energy particles

    E-Print Network [OSTI]

    Ruffini, R; Xue, S -S

    2015-01-01T23:59:59.000Z

    This paper summarizes the limits on propagation of ultra high energy particles in the Universe, set up by their interactions with cosmic background of photons and neutrinos. By taking into account cosmic evolution of these backgrounds and considering appropriate interactions we derive the mean free path for ultra high energy photons, protons and neutrinos. For photons the relevant processes are the Breit-Wheeler process as well as the double pair production process. For protons the relevant reactions are the photopion production and the Bethe-Heitler process. We discuss the interplay between the energy loss length and mean free path for the Bethe-Heitler process. Neutrino opacity is determined by its scattering off the cosmic background neutrino. We compute for the first time the high energy neutrino horizon as a function of its energy.

  7. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01T23:59:59.000Z

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  8. Terrestrial Effects of High Energy Cosmic Rays

    E-Print Network [OSTI]

    Atri, Dimitra

    2011-04-26T23:59:59.000Z

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. ...

  9. Research in High Energy Physics. Final report

    SciTech Connect (OSTI)

    Conway, John S.

    2013-08-09T23:59:59.000Z

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  10. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    E-Print Network [OSTI]

    Anders, Andre

    2010-01-01T23:59:59.000Z

    a high current ion source for ultra-low energy ions has beenthe Department of Energy ULTRA-LOW-ENERGY HIGH-CURRENT IONedited by A. Anders. ULTRA-LOW-ENERGY HIGH-CURRENT ION

  11. Nuclear diffractive structure functions at high energies

    E-Print Network [OSTI]

    C. Marquet; H. Kowalski; T. Lappi; R. Venugopalan

    2008-05-30T23:59:59.000Z

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F_{2,A}^D is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  12. High Energy Processes in Pulsar Wind Nebulae

    E-Print Network [OSTI]

    W. Bednarek

    2006-10-11T23:59:59.000Z

    Young pulsars produce relativistic winds which interact with matter ejected during the supernova explosion and the surrounding interstellar gas. Particles are accelerated to very high energies somewhere in the pulsar winds or at the shocks produced in collisions of the winds with the surrounding medium. As a result of interactions of relativistic leptons with the magnetic field and low energy radiation (of synchrotron origin, thermal, or microwave background), the non-thermal radiation is produced with the lowest possible energies up to $\\sim$100 TeV. The high energy (TeV) gamma-ray emission has been originally observed from the Crab Nebula and recently from several other objects. Recent observations by the HESS Cherenkov telescopes allow to study for the first time morphology of the sources of high energy emission, showing unexpected spectral features. They might be also interpreted as due to acceleration of hadrons. However, theory of particle acceleration in the PWNe and models for production of radiation are still at their early stage of development since it becomes clear that realistic modeling of these objects should include their time evolution and three-dimensional geometry. In this paper we concentrate on the attempts to create a model for the high energy processes inside the PWNe which includes existence not only relativistic leptons but also hadrons inside the nebula. Such model should also take into account evolution of the nebula in time. Possible high energy expectations based on such a model are discussed in the context of new observations.

  13. NET-ZERO ENERGY HIGH PERFORMANCE

    E-Print Network [OSTI]

    Farritor, Shane

    , University of Nebraska­Lincoln · Denise Kuehn, Manager, Demand Side and Sustainable Management, Omaha Public was that the largest potential for enhancing energy supplies in this country is making buildings more efficient. "-- Harvey Perlman, UNL Chancellor #12;Net-Zero Energy, High-Performance Green Buildings | 1 INTRODUCTION

  14. Lab's Frontiers in Science lectures focus on epigenetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiers in Science

  15. Fermilab | Science at Fermilab | Experiments & Projects | Cosmic Frontier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focusreceives .1Grid Intensity Frontier

  16. Earthquake triggering discussed in three Frontiers in Science lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet UpdateEarth Week event all aboutFrontiers

  17. Utilization of Wind Energy at High Altitude

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-10T23:59:59.000Z

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

  18. Fundamental Physics Explored with High Intensity Laser

    E-Print Network [OSTI]

    T. Tajima; K. Homma

    2012-09-13T23:59:59.000Z

    Over the last Century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers.

  19. Ultra High Energy Cosmic Ray Accelerators

    E-Print Network [OSTI]

    Angela V. Olinto

    1999-11-09T23:59:59.000Z

    The surprising lack of a high energy cutoff in the cosmic ray spectrum at the highest energies together with an apparently isotropic distribution of arrival directions have strongly challenged most models proposed for the acceleration of ultra high energy cosmic rays. Young neutron star winds may be able to explain the mystery. We discuss this recent proposal after summarizing the observational challenge and plausible acceleration sites. Young neutrons star winds differ from alternative models in the predictions for composition, spectrum, and angular distribution which will be tested in future experiments.

  20. BioEnergy Science Center (BESC) | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Media News and Awards Supporting Organizations Redefining The Frontiers of Bioenergy Home | Science & Discovery | Clean Energy | Facilities and Centers | BioEnergy...

  1. High Energy Particles in the Solar Corona

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; L. Larsen

    2008-04-16T23:59:59.000Z

    Collective Ampere law interactions producing magnetic flux tubes piercing through sunspots into and then out of the solar corona allow for low energy nuclear reactions in a steady state and high energy particle reactions if a magnetic flux tube explodes in a violent event such as a solar flare. Filamentous flux tubes themselves are vortices of Ampere currents circulating around in a tornado fashion in a roughly cylindrical geometry. The magnetic field lines are parallel to and largely confined within the core of the vortex. The vortices may thereby be viewed as long current carrying coils surrounding magnetic flux and subject to inductive Faraday and Ampere laws. These laws set the energy scales of (i) low energy solar nuclear reactions which may regularly occur and (ii) high energy electro-weak interactions which occur when magnetic flux coils explode into violent episodic events such as solar flares or coronal mass ejections.

  2. Astronomy with ultra high-energy particles

    E-Print Network [OSTI]

    Joerg R. Hoerandel

    2008-03-20T23:59:59.000Z

    Recent measurements of the properties of cosmic rays above 10^17 eV are summarized and implications on our contemporary understanding of their origin are discussed. Cosmic rays with energies exceeding 10^20 eV have been measured, they are the highest-energy particles in the Universe. Particles at highest energies are expected to be only marginally deflected by magnetic fields and they should point towards their sources on the sky. Recent results of the Pierre Auger Observatory have opened a new window to the Universe - astronomy with ultra high-energy particles.

  3. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect (OSTI)

    Geoffrey A. Krafft

    2005-09-01T23:59:59.000Z

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  4. TABLE OF CONTENTS A Combinatorial Explosion | Cross-Disciplinary Approach Bridges Gaps to New Frontiers 4

    E-Print Network [OSTI]

    Prodi, Aleksandar

    Gaps to New Frontiers 4 Bending Beams and Extending the Laws of Physics to Focus Electromagnetic Waves with Unparalleled Precision 6 Revolution Evolution On The Net | Harnessing Network Dynamics for a Better Tomorrow 8 with innovative research ideas and projects. This creative energy, in turn, benefits our undergraduate program

  5. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    SciTech Connect (OSTI)

    Wieman, Carl

    2008-08-30T23:59:59.000Z

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  6. Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control

    E-Print Network [OSTI]

    Simunic, Tajana

    Duty-Cycling Buildings Aggressively: The Next Frontier in HVAC Control Yuvraj Agarwal, Bharathan the dominant energy consumer is the HVAC system. Despite this fact, in most buildings the HVAC system is run sensing to guide the operation of a building HVAC system. We show how we can enable aggressive duty

  7. Frontiers in Laser Cooling, Single-Molecule Biophysics, and Enrgy Science: A Talk by Carl Wieman

    ScienceCinema (OSTI)

    Wieman, Carl

    2011-04-13T23:59:59.000Z

    Carl Wieman presents a talk at Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science, a scientific symposium honoring Steve Chu, director of Lawrence Berkeley National Laboratory and recipient of the 1997 Nobel Prize in Physics. The symposium was held August 30, 2008 in Berkeley.

  8. FORGE Home | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORGE Home The Energy Department envisions Frontier Observatory for Research in Geothermal Energy (FORGE) as a dedicated site where scientists and engineers will be able to...

  9. Extremely High Current, High-Brightness Energy Recovery Linac

    SciTech Connect (OSTI)

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; D.M. Gassner; J.G. Grimes; H. Hahn; A. Hershcovitch; H.-C. Hseuh; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; G.T. McIntyre; W. Meng; T.C.N. Nehring; T. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; Z. Segalov; K. Smith; N.W.W. Williams; K.-C. Wu; V. Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; J.R. Delayen; L. W. Funk; P. Kneisel; H.L. Phillips; J.P. Preble

    2005-05-16T23:59:59.000Z

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  10. New INL High Energy Battery Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNewEnergy ServicesEnergyINL High

  11. EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS

    E-Print Network [OSTI]

    Tsang, Chin Fu

    2011-01-01T23:59:59.000Z

    Department of Energy, Energy Storage Division through thegeneration and energy storage, Presented at Frontiers ofIn Proceed- ings of Thermal Energy Storage in Aquifers Work-

  12. High-energy electron beam technology

    SciTech Connect (OSTI)

    Danko, J.C.; Lundin, C.D. (Univ. of Tennessee, Knoxville, TN (United States)); Nolting, E.E. (Naval Surface Warfare Center, White Oak, MD (United States))

    1994-09-01T23:59:59.000Z

    A high-energy electron beam (HEEB) technology was developed under the US Department of Defense (DOD) charged-particle-beam (CPB) directed-energy program. The program's objective was advanced military weapon systems. For the past two decades, charged-particle-beam research focused on producing intense beams and the vehicles to deliver large amounts of electrical energy. The charged-particle beams of interest for weapon systems had particle energies up to 100 MeV, beam currents of tens of kiloamperes, and propagation distances in excess of 100 m. However, such high energy levels are not required for industrial uses of the technology. It is anticipated that these less-aggressive beams will provide an electrical heat source suitable for a variety of materials processing applications, including surface treatment, joining, shock hardening, phase-transformation hardening, peening, shock-wave compaction, and melting. Much more R and D is needed to transfer to industry the high-energy electron beam technology developed in the CPB program. For example, its power as a materials processing tool must be convincingly demonstrated. Also required are compact, reliable accelerators that are relatively simple to use and reasonably priced.

  13. Calibration in High-Energy Astrophysics Statistical Methods

    E-Print Network [OSTI]

    van Dyk, David

    Calibration in High-Energy Astrophysics Statistical Methods Statistical Computation Empirical Illustrations Accounting for Calibration Uncertainty: High Energy Astrophysics and the PCG Sampler David A. van Dyk Accounting for Calibration Uncertainty #12;Calibration in High-Energy Astrophysics Statistical

  14. High-Powered Lasers for Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNot Logged3 HanfordHarry|High-Powered Lasers

  15. Structures in high-energy fusion data

    E-Print Network [OSTI]

    H. Esbensen

    2012-06-05T23:59:59.000Z

    Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted as caused by the penetration of centrifugal barriers that are well-separated in energy. The structures are most pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing high-energy fusion data for $^{12}$C+$^{16}$O and $^{16}$O+$^{16}$O, and the possibility of observing similar structures in the fusion of heavier systems is discussed.

  16. A high energy photon polarimeter for astrophysics

    E-Print Network [OSTI]

    Eingorn, Maxim; Vlahovic, Branislav; Wojtsekhowski, Bogdan; Urciuoli, Guido Maria; De Persio, Fulvio; Meddi, Franco

    2015-01-01T23:59:59.000Z

    A high-energy photon polarimeter for astrophysics studies in the energy range from 20 MeV to 1000 MeV is considered. The proposed concept uses a stack of silicon micro-strip detectors where they play the roles of both a converter and a tracker. The purpose of this paper is to outline the parameters of such a polarimeter and to estimate the productivity of measurements. Our study supported by a Monte Carlo simulation shows that with a one-year observation period the polarimeter will provide 5.5 % accuracy of the polarization degree for a photon energy of 100 MeV, which would be a significant advance relative to the currently explored energy range of a few MeV. The proposed polarimeter design could easily be adjusted to the specific photon energy range to maximize efficiency if needed.

  17. Engineering of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20High EnergyHigh

  18. Energy-Efficient Melting and Direct Delivery of High Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

  19. Highly Energy Efficient Directed Green Liquor Utilization (D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

  20. Developing new high energy gradient concentration cathode material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new high energy gradient concentration cathode material Developing new high energy gradient concentration cathode material 2009 DOE Hydrogen Program and Vehicle Technologies...

  1. USABC Energy Storage Testing - High Power and PHEV Development...

    Energy Savers [EERE]

    Energy Storage Testing - High Power and PHEV Development USABC Energy Storage Testing - High Power and PHEV Development Presentation from the U.S. DOE Office of Vehicle...

  2. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  3. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  4. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

  5. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

  6. Sandia Energy - High-Resolution Computational Algorithms for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Home Stationary Power Energy Conversion Efficiency Wind Energy Offshore Wind High-Resolution...

  7. Interface Modifications by Anion Acceptors for High Energy Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

  8. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  9. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  10. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...

  11. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  12. Search for High Energy Density Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess|2StanfordOptimizationofSeanHigh

  13. High Bridge, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources Jump to:Hidroflot JumpHigh

  14. High Energy Batteries India Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open EnergyInformation Hess Retail NaturalHiflux Ltd Jump to:High

  15. Global Emergence of Frontier Knowledge November 2013

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    , Infrastructure, Medical and Biologi- cal Engineering, Mineral Resources, Nano Physics, SustainabilityGlobal Emergence of Frontier Knowledge November 2013 Nov. 7th U.Católica (Casa Central) 09:00 Doors, Culture & Body, Earthquakes, Tsunami & Volcanoes, Element & Material Sciences, Food Resource

  16. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    the positions of Professor in the Dept. of Materials Science and Engineering, University of TennesseeFrontiers in Chemical Imaging Seminar Series Presented by Dr. Stephen J Pennycook, Ph.D. Materials properties. Finally, the direct imaging and identification of point defect configurations in monolayer BN

  17. Frontiers in Exploration Workshop Organizing Committee

    E-Print Network [OSTI]

    Sparks, Donald L.

    Mary Firestone, University of California, Berkeley Dan Richter, Duke University Art White, USGS, Menlo., Pregitzer, K., Derry, L., Chorover, J., Chadwick, O., April, R., Anderson, S., Amundson, R., 2006, Frontiers, and in soil chemistry, and can be inferred from histori- cal data and from the geologic re- cord (ANDERSON ET

  18. Frontiers in Global Change Seminar Series

    E-Print Network [OSTI]

    Frontiers in Global Change Seminar Series Aerosol-Cloud Interactions: The Elusive Component particles ("aerosols") exert a net cooling effect by directly scattering and absorption of solar radiation (the "aerosol direct climatic effect"). Aerosols also affect clouds by acting as the seed for droplet

  19. Connecting Accelerator RD to User Needs | U.S. DOE Office of...

    Office of Science (SC) Website

    High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical Physics Advanced Technology...

  20. Sandia National Laboratories: very high solar energy conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    very high solar energy conversion efficiency ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy...

  1. Highly Dispersed Metal Catalyst - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High SchoolBundles to LivingPortal HighlyHydrogen

  2. High Performance Valve Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisiana |HighMaterials High

  3. High Energy Studies of Pulsar Wind Nebulae

    E-Print Network [OSTI]

    Patrick Slane

    2008-11-12T23:59:59.000Z

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the systems, the formation of jets, and the maximum energy of the particles in the nebulae. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples that demonstrate our ability to constrain the above parameters. The association of pulsar wind nebulae with extended sources of very high energy gamma-ray emission are investigated, along with constraints on the nature of such high energy emission.

  4. CEES Frontiers in Energy Research Articles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read some of their contributions: "X-Ray Detection of Manganese Contamination in Lithium-Ion Batteries" by Laila Jaber-Ansari http:www.energyfrontier.usnewsletter201407...

  5. Energy Frontier Research Centers - Technical Summaries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way to new catalysts for water splitting and fuel cells, new materials for solar photovoltaics of various kinds, new ways to use DNA and peptides for preparation of artificial...

  6. Strategic Roadmap 2024: Powering the Energy Frontier

    SciTech Connect (OSTI)

    none,

    2014-05-01T23:59:59.000Z

    Strategic Roadmap 2024 applies our historic mission to the dynamic and evolving industry environment that includes myriad new regulations, the growing presence of interruptible and intermittent generation resources and constraints on our hydro resources. It also ties together Westerns strategy, initiatives, capital budgets and annual targets to move the agency in one direction, continue to meet customer needs and provide the best value as an organization.

  7. High energy hadron-hadron collisions

    SciTech Connect (OSTI)

    Chou, T.T.

    1991-12-01T23:59:59.000Z

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) the e{sup +}e{sup {minus}} annihilation. More recent studies are highlighted below. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which remains to be dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. We discovered that the cluster size of emitted hadrons increases steadily with energy and is close to 2 as we predicted.

  8. Moving Energy

    SciTech Connect (OSTI)

    Rameau, Jon; Crabtree, George; Greene, Laura; Kwok, Wai; Johnson, Peter; Tsvelik, Alexei [Artist

    2013-07-18T23:59:59.000Z

    Representing the Center for Emergent Superconductivity (CES), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CES is to discover new high-temperature superconductors and improve the performance of known superconductors by understanding the fundamental physics of superconductivity.

  9. High energy photon-photon collisions

    SciTech Connect (OSTI)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01T23:59:59.000Z

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  10. A High Energy Nuclear Database Proposal

    E-Print Network [OSTI]

    David A. Brown; Ramona Vogt

    2005-10-13T23:59:59.000Z

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interace. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for intertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  11. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledgeHigh energy

  12. Property:SalinityHIgh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/Positionmaterial JumpSalinityHIgh Jump

  13. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:Hidralia EnergiaFalls,High

  14. Engineering of High Energy Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20High Energy

  15. National Laboratory Frontiers in Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvestingproducts (CDPs)(SC)drawsstars is

  16. Large Scale Computing and Storage Requirements for High Energy Physics

    E-Print Network [OSTI]

    Gerber, Richard A.

    2011-01-01T23:59:59.000Z

    Type Ia supernovae, gamma-ray bursts, X-ray bursts and corerelativistic jet, making a gamma-ray burst, the luminositythose that lead to gamma-ray bursts. The current frontier is

  17. High-Energy Neutrinos from Cosmic Rays

    E-Print Network [OSTI]

    F. Halzen

    2002-06-17T23:59:59.000Z

    We introduce neutrino astronomy from the observational fact that Nature accelerates protons and photons to energies in excess of 10^{20} and 10^{13} eV, respectively. Although the discovery of cosmic rays dates back close to a century, we do not know how and where they are accelerated. We review the facts as well as the speculations about the sources. Among these gamma ray bursts and active galaxies represent well-motivated speculations because these are also the sources of the highest energy gamma rays, with emission observed up to 20 TeV, possibly higher. We discuss why cosmic accelerators are also expected to be cosmic beam dumps producing high-energy neutrino beams associated with the highest energy cosmic rays. Cosmic ray sources may produce neutrinos from MeV to EeV energy by a variety of mechanisms. The important conclusion is that, independently of the specific blueprint of the source, it takes a kilometer-scale neutrino observatory to detect the neutrino beam associated with the highest energy cosmic rays and gamma rays. The technology for commissioning such instruments exists.

  18. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  19. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

  20. Constraints of Dark Energy at High Redshift

    E-Print Network [OSTI]

    Qiping Su; Rong-Gen Cai

    2014-08-24T23:59:59.000Z

    Constrains of dark energy (DE) at high redshift from current and mock future observational data are obtained. It is found that present data give poor constraints of DE even beyond redshift z=0.4, and mock future 2298 type Ia supernove data only give a little improvement of the constraints. We analyze in detail why constraints of DE decrease rapidly with the increasing of redshift. Then we try to improve the constraints of DE at high redshift. It is shown that the most efficient way is to improve the error of observations.

  1. High Performance Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power ProjectHawai'iPresentedHigh PenetrationEnergyHigh

  2. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C. Kim

  3. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C.

  4. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footworke ne rgy data s

  5. High West Energy, Inc (Nebraska) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:HidraliaWells Geothermal ProjectHigh

  6. Development of High Energy Cathode Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials Development of High Energy Cathode

  7. Engineering of High Energy Cathode Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20High Energy Cathode

  8. Engineering of high energy cathode material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in20High EnergyHighhigh

  9. High Energy Neutrino Astronomy: WIN 99

    E-Print Network [OSTI]

    F. Halzen

    1999-04-16T23:59:59.000Z

    Although high energy neutrino astronomy is a multidisciplinary science, gamma ray bursts have become the theoretical focus since recent astronomical observations revealed their potential as cosmic particle accelerators. This spotlight is shared with investigations of the potential of high energy telescopes to observe oscillating atmospheric neutrinos. The Superkamiokande results have boosted atmospheric neutrinos from a calibration tool and a background for doing astronomy, to an opportunity to confirm the evidence for neutrino mass. Nevertheless, the highlights are mostly on the experimental front with the completion of the first-generation Baikal and AMANDA detectors. Neutrino signals from the Lake Baikal detector bode well for the flurry of activities in the Mediterranean. The completed AMANDA telescope announced first light, neutrinos actually, at this meeting.

  10. New Prospects in High Energy Astrophysics

    SciTech Connect (OSTI)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15T23:59:59.000Z

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  11. Prospects of High Energy Laboratory Astrophysics

    SciTech Connect (OSTI)

    Ng, J.S.T.; Chen, P.; /SLAC

    2006-09-21T23:59:59.000Z

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

  12. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13T23:59:59.000Z

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  13. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15T23:59:59.000Z

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  14. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    SciTech Connect (OSTI)

    Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

    2013-07-29T23:59:59.000Z

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  15. High Penetration Solar Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh

  16. Data Preservation in High Energy Physics

    E-Print Network [OSTI]

    Roman Kogler; David M. South; Michael Steder

    2011-11-11T23:59:59.000Z

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and preservation models, technological expectations and governance aspects at local and international levels are examined.

  17. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  18. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  19. Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    E-Print Network [OSTI]

    Adams, T.

    This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering

  20. How Will We Explore Earth's Final Frontier? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    see how technology is helping us understand, utilize and protect the last frontier on earth. At GE Global Research's Rio de Janiero location, researchers are developing...