Powered by Deep Web Technologies
Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Clustering, fronts, and heat transfer in turbulent suspensions of heavy particles  

E-Print Network (OSTI)

Heavy inertial particles transported by a turbulent flow are shown to concentrate in the regions where an advected passive scalar, such as temperature, displays very strong front-like discontinuities. This novel effect is responsible for extremely high levels of fluctuations for the passive field sampled by the particles that impacts the heat fluxes exchanged between the particles and the surrounding fluid. Instantaneous and averaged heat fluxes are shown to follow strongly intermittent statistics and anomalous scaling laws.

Bec, Jeremie; Krstulovic, Giorgio

2014-01-01T23:59:59.000Z

2

IMA Journal of Applied Mathematics (2002) 67, 419439 Modelling thermal front dynamics in microwave heating  

E-Print Network (OSTI)

an electric field is applied to materials with high resistivity, the dipole moments of the molecules alignIMA Journal of Applied Mathematics (2002) 67, 419­439 Modelling thermal front dynamics in microwave July 2000; revised on 6 December 2001] The formation and propagation of thermal fronts in a cylindrical

Xin, Jack

3

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating  

E-Print Network (OSTI)

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, the HAARP heater is the most powerful ionospheric heater, with 3.6GW of effective power using HF heating, Cyclones and localized heating Fran De Aquino Maranhao State University, Physics Department, S

Paris-Sud XI, Université de

4

Metrological tool for the characterization of flame fronts based on the coupling of heat  

E-Print Network (OSTI)

° flame inclination angle due to wind [ ]th i W theoretical radiative heat flux received by the ith target

Boyer, Edmond

5

Fouling of carbon steel heat exchanger caused by iron bacteria  

SciTech Connect

A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

Starosvetsky, J.; Armon, R.; Starosvetsky, D. (Technion-Israel Inst. of Tech. (Israel)); Groysman, A.

1999-01-01T23:59:59.000Z

6

Diabatic Heating and Cooling Rates Derived from In Situ Microphysics Measurements: A Case Study of a Wintertime U.K. Cold Front  

Science Journals Connector (OSTI)

In situ measurements associated with the passage of a kata cold front over the United Kingdom on 29 November 2011 are used to initialize a Lagrangian parcel model for the purpose of calculating rates of diabatic heating and cooling associated with ...

C. Dearden; P. J. Connolly; G. Lloyd; J. Crosier; K. N. Bower; T. W. Choularton; G. Vaughan

2014-09-01T23:59:59.000Z

7

Study of the change of electron temperature inside magnetic island caused by localized radio frequency heating  

SciTech Connect

The change in the electron temperature inside magnetic island caused by localized radio frequency (rf) heating is studied numerically by solving the two-dimensional energy transport equation, to investigate the dependence of the temperature change on the location and width of the rf power deposition along the minor radius and the helical angle, the island width, and the ratio between the parallel and the perpendicular heat conductivity. Based on obtained numerical results, suggestions for optimizing the island stabilization by localized rf heating are made.

Yang, J.; Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Q. [Max-Planck-Institute fuer Plasmaphysik, EURATOM Association, Garching 85748 (Germany); Zhuang, G. [College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

2010-05-15T23:59:59.000Z

8

Thermally induced wave-front distortions in laser windows  

SciTech Connect

A simple analytical expression is given for wave-front distortions and birefringence due to heating in laser windows. (AIP)

Greninger, C.E.

1986-08-01T23:59:59.000Z

9

Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences  

SciTech Connect

Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

Jackson, J. D. [Univ. of Manchester, Manchester (United Kingdom)

2012-07-01T23:59:59.000Z

10

Causes of and methods of preventing heating in feed ingredients and mixed feeds  

E-Print Network (OSTI)

the intensity of respiration and heating in grains and other materialso Recent reports show also that the relative humidity of the interseed atmosphere is a more important factor in determining respira? tory activity than the actual moisture content... glaucus started to grow at about 1U percent moisture, corresponding to a relative humidity of Jh percent in the surrounding atmosphere. AI flavus required a moisture value about 3 percent higher for germination. Several investigators have studied...

Halick, John V.

1956-01-01T23:59:59.000Z

11

PERGAMON International Journal of Heat and Mass Transfer 31 "0888# 750761 99068209:87:,*see front matter 0887 Elsevier Science Ltd[ All rights reserved  

E-Print Network (OSTI)

\\ PERGAMON International Journal of Heat and Mass Transfer 31 "0888# 750Ð761 9906Ð8209:87:,*see Ð 9 Coupled heat and mass transfer of a stagnation point ~ow in a heated porous bed with liquid _lm and Technology\\ Clear Water Bay\\ Kowloon\\ Hong Kong Received 6 November 0886^ in _nal form 13 June 0887 Abstract

Zhao, Tianshou

12

The freezing tendency towards 4-coordinated amorphous network causes increase in heat capacity of supercooled Stillinger-Weber silicon  

E-Print Network (OSTI)

The supercooled liquid silicon, modeled by Stillinger-Weber potential, shows anomalous increase in heat capacity $C_p$, with a maximum $C_p$ value close to 1060 K at zero pressure. We study equilibration and relaxation of the supercooled SW Si, in the temperature range of 1060 K--1070 K at zero pressure. We find that as the relaxation of the metastable supercooled liquid phase initiates, a straight line region (SLR) is formed in cumulative potential energy distributions. The configurational temperature corresponding to the SLR is close to 1060 K, which was earlier identified as the freezing temperature of 4-coordinated amorphous network. The SLR is found to be tangential to the distribution of the metastable liquid phase and thus influences the broadness of the distribution. As the bath temperature is reduced from 1070 K to 1060 K, the effective temperature approaches the bath temperature which results in broadening of the metastable phase distribution. This, in turn, causes an increase in overall fluctuations of potential energy and hence an increase of heat capacity. We also find that during initial stages of relaxation, 4-coordinated atoms form 6-membered rings with a chair--like structure and other structural units that indicate crystallization. Simultaneously a strong correlation is established between the number of chair-shaped 6-membered rings and the number of 4-coordinated atoms in the system. This shows that all properties related to 4-coordinated particles are highly correlated as the SLR is formed in potential energy distributions and this can be interpreted as a consequence of `freezing' of amorphous network formed by 4-coordinated particles.

Pankaj A. Apte; Nandlal Pingua; Arvind Kumar Gautam; Uday Kumar; Soohaeng Yoo Willow; Xiao Cheng Zeng; B. D. Kulkarni

2014-04-10T23:59:59.000Z

13

Cybersecurity Front Burner | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Awareness Program Cybersecurity Front Burner Cybersecurity Front Burner Documents Available for Download November 1, 2014 FRONT BURNER - ISSUE 19 The Cybersecurity Front Burner...

14

Propagating solitary waves along a rapidly moving crack front  

Science Journals Connector (OSTI)

... Much recent research has focused on crack front coherence and roughening. Simplified models (mode III) of fracture as well as more general models of ... the cumulative effect of numerous asperities would be to cause a crack front to continually roughen. We point out that despite this possibility of increasing roughness, the propagating nature of ...

Eran Sharon; Gil Cohen; Jay Fineberg

2001-03-01T23:59:59.000Z

15

Stability of cosmological detonation fronts  

E-Print Network (OSTI)

The steady state propagation of a phase transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very cl...

Megevand, Ariel

2014-01-01T23:59:59.000Z

16

Stability of cosmological detonation fronts  

E-Print Network (OSTI)

The steady state propagation of a phase transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

Ariel Megevand; Federico Agustin Membiela

2014-02-24T23:59:59.000Z

17

FRONT BURNER - ISSUE 19 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FRONT BURNER - ISSUE 19 FRONT BURNER - ISSUE 19 The Cybersecurity Front Burner Issue No. 19 is the campaign newsletter for the 2014 DOE NCSAM event. The newsletter addresses the...

18

Front Burner - Issue 18 | Department of Energy  

Energy Savers (EERE)

Front Burner - Issue 18 Front Burner - Issue 18 The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and...

19

Non-Adiabatic Effects on Combustion Front Propagation in Porous Media: Multiplicity of Steady States  

SciTech Connect

The sustained propagation of combustion fronts in porous media is a necessary condition for the success of an in situ combustion project for oil recovery. Compared to other recovery methods, in situ combustion involves the added complexity of exothermic reactions and temperature-dependent chemical kinetics. In the presence of heat losses, the possibility of ignition and extinction (quenching) exists. In this report, we address the properties of combustion fronts propagating at a constant velocity in the presence of heat losses.

Akkutlu, I. Yucel; Yortsos, Yanis C.

2002-03-11T23:59:59.000Z

20

Front Burner - Issue 13 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Front Burner - Issue 13 The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity informing readers...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Front Burner - Issue 14 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Front Burner - Issue 14 The Cybersecurity Front Burner Issue No. 14 addresses the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams. Cybersecurity...

22

Front surface thermal property measurements of air plasma spray coatings  

SciTech Connect

A front-surface measurement for determining the thermal properties of thermal barrier coatings has been applied to air plasma spray coatings. The measurement is used to determine all independent thermal properties of the coating simultaneously. Furthermore, with minimal requirements placed on the sample and zero sample preparation, measurements can be made under previously impossible conditions, such as on serviceable engine parts. Previous application of this technique was limited to relatively thin coatings, where a one-dimensional heat transfer model is applied. In this paper, the influence of heat spreading on the measurement of thicker coatings is investigated with the development of a two-dimensional heat transfer model.

Bennett, Ted; Kakuda, Tyler [University of California, Santa Barbara, California 93106-5070 (United States); Kulkarni, Anand [Siemens Energy, Orlando, Florida 32826-2399 (United States)

2009-04-15T23:59:59.000Z

23

Front Burner - Issue 16 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Front Burner - Issue 16 The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign....

24

Magnesium Front End Design and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by: Alan A. Luo and R. C. McCune Presented by: James Quinn, General Motors Unibody Architecture 3-piece Mg front end (bodyframe) USAMP AMD 603 - Magnesium Front End Design and...

25

Operations & Maintenance Best Practices Guide: Front Matter  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the front matter of the Operations and Maintenance Best Practices: a Guide to Achieving Operational Efficiency.

26

Heat Stroke  

NLE Websites -- All DOE Office Websites (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

27

COLD FRONTS AND GAS SLOSHING IN GALAXY CLUSTERS WITH ANISOTROPIC THERMAL CONDUCTION  

SciTech Connect

Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are 'draped' parallel to the front surfaces, suppressing conduction perpendicular to the sloshing fronts. We present a series of MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature distribution of the core and the appearance of the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, preventing conduction directly across them, the temperature jumps across the fronts are nevertheless reduced. The geometry of the field is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front that are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may nevertheless be preserved. By modifying the gas density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps seen in Chandra observations of cold front clusters do not form. Therefore, the presence of cold fronts in hot clusters is in contradiction with our simulations with full Spitzer conduction. This suggests that the presence of cold fronts in hot clusters could be used to place upper limits on conduction in the bulk of the intracluster medium. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (r {approx} 5 kpc) regions of the cool core (where something else is required, such as active galactic nucleus feedback), it reduces significantly the mass of gas that experiences a cooling catastrophe outside those small radii.

ZuHone, J. A.; Markevitch, M. [Astrophysics Science Division, Laboratory for High Energy Astrophysics, Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [Astrophysics Science Division, Laboratory for High Energy Astrophysics, Code 662, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ruszkowski, M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)] [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lee, D. [The Flash Center for Computational Science, The University of Chicago, 5747 S. Ellis, Chicago, IL 60637 (United States)] [The Flash Center for Computational Science, The University of Chicago, 5747 S. Ellis, Chicago, IL 60637 (United States)

2013-01-10T23:59:59.000Z

28

Poiseuille Advection of Chemical Reaction Fronts  

Science Journals Connector (OSTI)

Poiseuille flow between parallel plates alters the shapes and velocities of chemical reaction fronts. In the narrow-gap limit, the cubic reaction-diffusion-advection equation predicts a front-velocity correction equal to the gap-averaged fluid velocity ?. In the singular wide-gap limit, the correction equals the midgap fluid velocity 3?/2 when the flow is in the direction of propagation of the reaction front, and equals zero for adverse flow of any amplitude for which the front has a midgap cusp. Stationary fronts are possible only for adverse flow and finite gaps. Experiments are suggested.

Boyd F. Edwards

2002-08-16T23:59:59.000Z

29

front  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Carbon Sequestration Sequestration State of the Science roadmapping future carbon sequestration R&D February 1999 A working paper for U.S. Department of Energy Office of Science Office of Fossil Energy i Carbon Sequestration DRAFT (February 1999) Dave Reichle, ORNL John Houghton, DOE Sally Benson, LBNL John Clarke, PNNL Roger Dahlman, DOE George Hendrey, BNL Howard Herzog, MIT Jennie Hunter-Cevera, LBNL Gary Jacobs, ORNL Rod Judkins, ORNL WORKING PAPER ON CARBON SEQUESTRATION SCIENCE AND TECHNOLOGY Office of Science Office of Fossil Energy U.S. Department of Energy Bob Kane, DOE Jim Ekmann, FETC Joan Ogden, Princeton Anna Palmisano, DOE Robert Socolow, Princeton John Stringer, EPRI Terry Surles, LLNL Alan Wolsky, ANL Nicholas Woodward, DOE Michael York, DOE ii DRAFT (February 1999) Carbon Sequestration

30

Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof  

DOE Patents (OSTI)

Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

Battiste, Richard L. (Oak Ridge, TN)

2007-12-25T23:59:59.000Z

31

Ion Heating in the Dense Plasma Focus  

Science Journals Connector (OSTI)

The collapse phase of a dense plasma focus gun operating in deuterium was studied using streak photography and time resolved x?ray and neutron measuring techniques. The streak photographs showing the radial motion of the luminous front at various axial positions indicate a collapsing luminous front at the time of the current collapse followed by an expanding front and a recompression. The luminosity then disappears for a period of several hundred nanoseconds during which time the neutrons are emitted. Estimates of shock heating and magnetic compressional heating were made from the streak pictures and a calculation of plasma heating due to viscous forces arising from axial motion of the plasma was carried out. The effects of shock heating magnetic compressional heating and viscous heating are shown to be sufficient to produce an ion temperature of several kilovolts.

A. J. Toepfer; D. R. Smith; E. H. Beckner

1971-01-01T23:59:59.000Z

32

The dynamics of combustion fronts in porous media  

SciTech Connect

In this report, a method for solving this problem by treating the reaction region as a place of discontinuities in the appropriate variables, which include, for example, fluxes of heat and mass was proposed. Using a rigorous perturbation approach, similar to that used in the propagation of flames and smoldering combustion, appropriate jump conditions that relate the change in these variables across the front was derived. These conditions account for the kinetics of the reaction between the oxidant and the fuel, the changes in the morphology of the pore space and the heat and mass transfer in the reaction zone. The modeling of the problem reduces to the modeling of the dynamics of a combustion front, on the regions of either side of which transport of momentum (fluids), heat and mass, but not chemical reactions, must be considered. Properties of the two regions are coupled using the derived jump conditions. This methodology allows one to explicitly incorporate permeability heterogeneity effects in the process description, without the undue complexity of the coupled chemical reactions.

Akkutlu, I. Yucel; Yortsos, Yannis C.

2000-06-15T23:59:59.000Z

33

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

SciTech Connect

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

34

Light front Casimir effect at finite temperature  

E-Print Network (OSTI)

The correct description of the standard Casimir effect for periodic boundary conditions via light front formalism implies in these conditions imposed at fixed Minkowski times [Almeida {\\it et al.} Phys. Rev. {\\bf D 87}, 065028 (2013); Chabysheva and Hiller, Phys. Rev. {\\bf D 88}, 085006 (2013)] instead of fixed light front times. The unphysical nature of this latter condition is manifested in the vacuum part by no regularization yielding a finite Casimir energy density [Lenz and Steinbacher, Phys. Rev. {\\bf D 67}, 045010 (2003)]. In the present paper, we extend this discussion and analyze the problem of the light front quantization with simultaneous presence of a thermal bath and boundary conditions. Considering both the oblique light front as well as Dirac light front coordinates, we show that the imposition of periodic boundary conditions at fixed Minkowski times recovers the expected behaviors for the energy density and Casimir entropy. We also investigate how the unphysical nature of the periodic boundary...

Rodrigues, P L M; Alves, Danilo T; Alves, Van Srgio; Silva, Charles R

2015-01-01T23:59:59.000Z

35

Existence and stability of curved multidimensional detonation fronts  

E-Print Network (OSTI)

Existence and stability of curved multidimensional detonation fronts N. Costanzino , H. K. Jenssen of curved detonation fronts 32 7.1 ZND fronts of strong detonations in the two most commonly studied inviscid models of combustion, the ZND (finite

36

Magnesium Front End Development (AMD 603/604/904) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Magnesium Front End Development (AMD 603604904) Magnesium Front End Development (AMD 603604904) 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program...

37

Spectral Effects on Fast Wave Core Heating and Current Drive  

SciTech Connect

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

2009-05-11T23:59:59.000Z

38

Bay Front Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Front Biomass Facility Front Biomass Facility Jump to: navigation, search Name Bay Front Biomass Facility Facility Bay Front Sector Biomass Location Ashland County, Wisconsin Coordinates 46.9794969°, -90.4824892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9794969,"lon":-90.4824892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Coniferous Forests of the Colorado Front Range  

Science Journals Connector (OSTI)

Forests along the Front Range of Colorado are exposed to elevated concentrations of ozone and other pollutants (see Chapter 3) due to emissions from the urbanized corridor stretching from Colorado Springs to D...

D. A. Graybill; D. L. Peterson

1992-01-01T23:59:59.000Z

40

Strings in plane-fronted gravitational waves  

E-Print Network (OSTI)

Brinkmann's plane-fronted gravitational waves with parallel rays --~shortly pp-waves~-- are shown to provide, under suitable conditions, exact string vacua at all orders of the sigma-model perturbation expansion.

C. Duval; Z. Horvath; P. A. Horvathy

2006-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reflectivity in shock wave fronts of xenon  

Science Journals Connector (OSTI)

New results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.620 GPa and temperatures around 30?000 K are interpreted. Reflectivities typical of metallic systems are found at high densities. A consistent description of the measured reflectivities is achieved if a finite width of the shock wave front is considered. Several mechanisms to give a microscopic explanation for a finite extension of the shock front are discussed.

T Raitza; H Reinholz; G Rpke; V Mintsev; A Wierling

2006-01-01T23:59:59.000Z

42

Propagation and structure of planar streamer fronts  

Science Journals Connector (OSTI)

Streamers are a mode of dielectric breakdown of a gas in a strong electric field: A sharp nonlinear ionization wave propagates into a nonionized gas, leaving a nonequilibrium plasma behind. The ionization avalanche in the tip of the wave is due to free electrons being accelerated in the strong field and ionizing the gas by impact. This chain reaction deeper in the wave is suppressed by the generated free charges screening the field. Simulations of streamers show two widely separated spatial scales: the width of the charged layer where the electron density gradients and the ionization rate are very large [O(?m)], and the width of the electrically screened, finger-shaped, and ionized region [O(mm)]. We thus recently have suggested analyzing first the properties of the charge-ionization layer on the inner scale on which it is almost planar, and then understanding the streamer shape on the outer scale as the motion of an effective interface, as is done in other examples of nonequilibrium pattern formation. The first step thus is the analysis of the inner dynamics of planar streamer fronts. For these, we resolve the long-standing question about what determines the front speed, by applying the modern insights of pattern formation to the streamer equations used in the recent simulations. These include field-driven impact ionization, electron drift and diffusion, and the Poisson equation for the electric field. First, in appropriately chosen dimensionless units only one parameter remains to characterize the gas, the dimensionless electron diffusion constant D; for typical gases under normal conditions D?0.10.3. Then we determine essentially all relevant properties of planar streamer fronts. Technically, we identify the propagation of streamer fronts as an example of front propagation into unstable states. In terms of the marginal stability scenario we then find that the front approached asymptotically starting from any sufficiently localized initial condition (the ``selected front'') is the steepest uniformly translating front solution, which is physical and stable. Negatively charged fronts are selected by linear marginal stability, which allows us to derive their velocity analytically. Positively charged fronts can only propagate due to electron diffusion against the electric field; as a result their behavior is singular in the limit of D?0. For D?1, these fronts are selected by nonlinear marginal stability and we have to apply numerical methods for predicting the selected front velocity. For larger D, linear marginal stability applies and the velocity can be determined analytically. Numerical integrations of the temporal evolution of planar fronts out of localized initial conditions confirm all our analytical and numerical predictions for the selection. Finally, our general predictions for the selected front velocity and for the degree of ionization of the plasma are in semiquantitative agreement with recent numerical solutions of three-dimensional streamer propagation. This gives credence to our suggestion that the front analysis on the inner (?m) scale yields the moving boundary conditions for a moving ``streamer interface,'' whose pattern formation is governed by the evolution of the fields on the outer (mm) scale.

Ute Ebert, Wim van Saarloos, and Christiane Caroli

1997-02-01T23:59:59.000Z

43

Clark Public Utilities - Residential Heat Pump Loan Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Loan Program Heat Pump Loan Program Clark Public Utilities - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Air-Source Heat Pumps: $20,000 Geothermal Heat Pumps: $30,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Air-Source Heat Pump: up to $20,000 Geothermal Heat Pumps: up to $30,000 Provider Clark Public Utilities Clark Public Utilities offers loans of up to $20,000 for air-source heat pumps and $30,000 for geothermal heat pumps. Loans will help customers cover the up-front cost of installing a highly efficient heat pump in a residence. All electrically heated homes, including manufactured homes, are eligible for the heat pump financing program, as long as the home has been

44

Light-Front Holography and the Light-Front Schrodinger Equation  

SciTech Connect

One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

Brodsky, Stanley J.; de Teramond, Guy

2012-08-15T23:59:59.000Z

45

QCD and Light-Front Dynamics  

SciTech Connect

AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.

2011-01-10T23:59:59.000Z

46

Asymmetry of Tidal Plume Fronts in an Eastern Boundary Current Regime  

E-Print Network (OSTI)

water mass. This vorticity controls the transition of the tidal plume 2 #12;front to a subcritical state bulge, which in turn is embedded in far-field plume and coastal waters. Because of the mixing caused on its upwind or northern side) and marks a transition from supercritical to subcritical flow for 6

Jay, David

47

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives#  

E-Print Network (OSTI)

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives. Aslam and D. S. Stewart TAM Department# University of Illinois Urbana# IL 61801 USA Abstract# Detonation Shock Dynamics #DSD# can be used to model the e#ects that shock curvature # has on detonation speed D n

Aslam, Tariq

48

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives  

E-Print Network (OSTI)

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives. Aslam and D. S. Stewart TAM Department, University of Illinois Urbana, IL 61801 USA Abstract: Detonation Shock Dynamics (DSD) can be used to model the eects that shock curvature has on detonation speed Dn

Aslam, Tariq

49

Friction forces on phase transition fronts  

SciTech Connect

In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

Mgevand, Ariel, E-mail: megevand@mdp.edu.ar [IFIMAR (CONICETUNMdP), Departamento de Fsica, Facultad de Ciencias Exactas y Naturales, UNMdP, Den Funes 3350, (7600) Mar del Plata (Argentina)

2013-07-01T23:59:59.000Z

50

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network (OSTI)

; Herrmann, 1981) and secondary oil recovery in western Colorado at the Rangely oil field (Gibbs et al. 1973COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah

Sheehan, Anne F.

51

Quadratic and Cubic ReactionDiffusion Fronts*  

E-Print Network (OSTI)

's student, Herr cand. Meinecke, moved a wire loop along the test tube to mark the position in the cytoplasm of frog oocytes [9], where calcium-induced calcium release provides a mechanism akin to auto- catalysis in chemical systems. Front-like calcium waves have also been found to occur on the surface

Showalter, Kenneth

52

QCD and Light-Front Holography  

SciTech Connect

The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; ,

2010-10-27T23:59:59.000Z

53

Quadratic cost functional for wave-front reconstruction  

Science Journals Connector (OSTI)

A quadratic cost functional for reconstruction of a high-resolution wave front from a coarse wave front is presented. The functional uses as data the position and the direction of the...

Legarda-Senz, Ricardo; Rivera, Mariano; Rodrguez-Vera, Ramn

2002-01-01T23:59:59.000Z

54

Gust Front Characteristics as Detected by Doppler Radar  

Science Journals Connector (OSTI)

Gust fronts produce low altitude wind shear that can be hazardous to aircraft operations, especially during takeoff and landing. Radar meteorologists have long been able to identify gust front signatures in Doppler radar data, but in order to use ...

Diana L. Klingle; David R. Smith; Marilyn M. Wolfson

1987-05-01T23:59:59.000Z

55

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

56

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

57

Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics  

SciTech Connect

The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)

Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

2006-04-15T23:59:59.000Z

58

Steady response to heating: Gaussian heat source  

E-Print Network (OSTI)

+ prescribed latent heating => "Matsuno-Gill model" Moisture equation for precipitation term ¡ Can make. of Equatorial Waves Filter out "background spectrum": ¡ Can see all different wave types! Especially Kelvin #12;Equatorial Waves Alternative theory for wave speed: ¡ Higher vertical mode structure causes phase

Frierson, Dargan

59

Front Range Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Logo: Front Range Energy LLC Name Front Range Energy LLC Address 31375 Great Western Dr Place Windsor, Colorado Zip 80550 Sector Biofuels Product Ethanol producer Website http://www.frontrangeenergy.co Coordinates 40.4605154°, -104.8565272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4605154,"lon":-104.8565272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

60

Front contact solar cell with formed emitter  

SciTech Connect

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Front contact solar cell with formed emitter  

DOE Patents (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

62

SHOCKS AND THERMAL CONDUCTION FRONTS IN RETRACTING RECONNECTED FLUX TUBES  

SciTech Connect

We present a model for plasma heating produced by time-dependent, spatially localized reconnection within a flare current sheet separating skewed magnetic fields. The reconnection creates flux tubes of new connectivity which subsequently retract at Alfvenic speeds from the reconnection site. Heating occurs in gas-dynamic shocks (GDSs) which develop inside these tubes. Here we present generalized thin flux tube equations for the dynamics of reconnected flux tubes, including pressure-driven parallel dynamics as well as temperature-dependent, anisotropic viscosity and thermal conductivity. The evolution of tubes embedded in a uniform, skewed magnetic field, following reconnection in a patch, is studied through numerical solutions of these equations, for solar coronal conditions. Even though viscosity and thermal conductivity are negligible in the quiet solar corona, the strong GDSs generated by compressing plasma inside reconnected flux tubes generate large velocity and temperature gradients along the tube, rendering the diffusive processes dominant. They determine the thickness of the shock that evolves up to a steady state value, although this condition may not be reached in the short times involved in a flare. For realistic solar coronal parameters, this steady state shock thickness might be as long as the entire flux tube. For strong shocks at low Prandtl numbers, typical of the solar corona, the GDS consists of an isothermal sub-shock where all the compression and cooling occur, preceded by a thermal front where the temperature increases and most of the heating occurs. We estimate the length of each of these sub-regions and the speed of their propagation.

Guidoni, S. E.; Longcope, D. W., E-mail: guidoni@physics.montana.ed [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

2010-08-01T23:59:59.000Z

63

Geothermal Heat Pumps- Heating Mode  

Energy.gov (U.S. Department of Energy (DOE))

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

64

A magnetotelluric survey on Manitoulin Island and Bruce Peninsula along GLIMPCE seismic line J: black shales mask the Grenville Front  

Science Journals Connector (OSTI)

......Geological Survey, 1985. Oil shale assessment project drillholes...GLIMPCE seismic line J: black shales mask the Grenville Front M...highly conductive layer of black shales of limited extent, precludes...y believed to be caused by anisotropic effects associated with thick......

M. Mareschal; R. D. Kurtz; M. Chouteau; R. Chakridi

1991-04-01T23:59:59.000Z

65

The Front Lines of Patient Safety  

E-Print Network (OSTI)

patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

Soloveichik, David

66

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network (OSTI)

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

67

Acceleration Factors for Damp-Heat and HAST with High Voltage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a sheet of aluminum foil pressed against the front glass was used for the grounding. DAMP-HEAT (DH), HAST Efficiency degradation: For quality control purposes, multiple groups of...

68

Progress on nanopatterned front electrodes for organic solar cells  

Science Journals Connector (OSTI)

We present our recent progress in the development of nanophotonic front electrodes for improved light management in organic solar cell. Experimental results and 3D electromagnetic...

Paetzold, Ulrich W; Smeets, Michael; Hadipour, Afshin; Cheyns, David

69

Subdiffusive fluctuations of pulled fronts with multiplicative noise  

Science Journals Connector (OSTI)

We study the propagation of a pulled front with multiplicative noise that is created by a local perturbation of an unstable state. Unlike a front propagating into a metastable state, where a separation of time scales for sufficiently large t creates a diffusive wandering of the front position about its mean, we predict that for so-called pulled fronts, the fluctuations are subdiffusive with root mean square wandering ?(t)?t1/4, not t1/2. The subdiffusive behavior is confirmed by numerical simulations: For t<~600, these yield an effective exponent slightly larger than 1/4.

Andrea Rocco, Ute Ebert, and Wim van Saarloos

2000-07-01T23:59:59.000Z

70

Magnesium Front End Design and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design and Development Magnesium Front End Design and Development 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May...

71

Magnesium Front End Development (AMD 603/604/904) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development (AMD 603604904) Magnesium Front End Development (AMD 603604904) 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

72

Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena  

SciTech Connect

Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

2012-02-16T23:59:59.000Z

73

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

74

Front contact solar cell with formed electrically conducting layers on the front side and backside  

DOE Patents (OSTI)

A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

Cousins, Peter John

2012-06-26T23:59:59.000Z

75

Investigation of the Brazil Current front variability from altimeter data  

E-Print Network (OSTI)

Investigation of the Brazil Current front variability from altimeter data Gustavo J. Goni Atlantic, Brazil Abstract. The southwestern Atlantic Ocean is characterized by the confluence of the Brazil in conjunction with a two-layer dynamical ocean scheme to monitor the Brazil Current front and to investigate its

76

Heuristically Driven Front Propagation for Fast Geodesic Extraction  

E-Print Network (OSTI)

Heuristically Driven Front Propagation for Fast Geodesic Extraction Gabriel Peyr´e Laurent D. Cohen to quickly extract geodesic paths on images and 3D meshes. We use a heuristic to drive the front propagation that is similar to the A algorithm used in artificial intelli- gence. In order to find very quickly geodesic paths

Paris-Sud XI, Université de

77

Existence and stability of curved multidimensional detonation fronts  

E-Print Network (OSTI)

Existence and stability of curved multidimensional detonation fronts N. Costanzino , H. K. Jenssen for ZND detonations was begun by J.J. Erpenbeck in [E1]. He used a normal mode analysis to define, multidimensional detonation fronts for ideal polytropic gases in both the ZND and Chapman-Jouguet models

Williams, Mark

78

Description and Simulation of Gust Front Wind Field Lijuan Wanga  

E-Print Network (OSTI)

-stationarity of the wind field associated with these extreme events poses serious challenges in their modelingDescription and Simulation of Gust Front Wind Field Lijuan Wanga , Ahsan Kareemb a Nat front wind field is proposed based on the time-frequency description of the wind field. Traditionally

Kareem, Ahsan

79

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MaCarthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

80

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

Noel, Bruce W. (Espanola, NM); Borella, Henry M. (Santa Barbara, CA); Cates, Michael R. (Oak Ridge, TN); Turley, W. Dale (Santa Barbara, CA); MacArthur, Charles D. (Clayton, OH); Cala, Gregory C. (Dayton, OH)

1991-01-01T23:59:59.000Z

82

Enhanced Joule Heating in Umbral Dots  

E-Print Network (OSTI)

We present a study of magnetic profiles of umbral dots (UDs) and its consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule heating using vertical component of magnetic field. In this paper UDs magnetic profile has been investigated including the new azimuthal component of magnetic field which might explain the relatively larger enhancement of Joule heating causing more brightness near circumference of UD.

Chandan Joshi; Lokesh Bharti; S. N. A. Jaaffrey

2007-05-08T23:59:59.000Z

83

Heat Content Changes in the Pacific Ocean  

E-Print Network (OSTI)

Heat Content Changes in the Pacific Ocean The Acoustic Thermometry of Ocean Cli- mate (ATOC assimilating ocean observations and changes expected from surface heat fluxes as measured by the daily National are a result of advection of heat by ocean currents. We calculate that the most likely cause of the discrepancy

Frandsen, Jannette B.

84

Flame front geometry in premixed turbulent flames  

SciTech Connect

Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

Shepherd, I.G. (Lawrence Berkeley Lab., CA (United States)); Ashurst, W.T. (Sandia National Labs., Livermore, CA (United States))

1991-12-01T23:59:59.000Z

85

SciTech Connect: On the Front Lines of the Cold War Los Alamos...  

Office of Scientific and Technical Information (OSTI)

On the Front Lines of the Cold War Los Alamos 1970-1992 Citation Details In-Document Search Title: On the Front Lines of the Cold War Los Alamos 1970-1992 On the Front Lines of the...

86

Distributed and Steady Modeling of the Pv Evaporator in a Pv/T Solar Assisted Heat Pump  

Science Journals Connector (OSTI)

A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface is adopted in a photovoltaic/thermal solar assisted heat pump (PV/T SAHP) to obtain both the...

Jie Ji; Hanfeng He; Wei He; Gang Pei

2009-01-01T23:59:59.000Z

87

Universal Algebraic Relaxation of Fronts Propagating into an Unstable State and Implications for Moving Boundary Approximations  

Science Journals Connector (OSTI)

We analyze the relaxation of fronts propagating into unstable states. While pushed fronts relax exponentially like fronts propagating into a metastable state, pulled or linear marginal stability fronts relax algebraically. As a result, for thin fronts of this type, the standard moving boundary approximation fails. The leading relaxation terms for velocity and shape are of order 1/t and 1/t3/2. These universal terms are calculated exactly with a new systematic analysis that unifies various heuristic approaches to front propagation.

Ute Ebert and Wim van Saarloos

1998-02-23T23:59:59.000Z

88

Electron g-2 in Light-Front Quantization  

E-Print Network (OSTI)

Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained in perturbation theory to an accuracy of 0.06%.

Xingbo Zhao; Heli Honkanen; Pieter Maris; James P. Vary; Stanley J. Brodsky

2014-08-24T23:59:59.000Z

89

Muon capture for the front end of a muon collider  

SciTech Connect

We discuss the design of the muon capture front end for a {mu}{sup +}-{mu}{sup -} Collider. In the front end, a proton bunch on a target creates secondary pions that drift into a capture transport channel, decaying into muons. A sequence of rf cavities forms the resulting muon beams into strings of bunches of differing energies, aligns the bunches to (nearly) equal central energies, and initiates ionization cooling. The muons are then cooled and accelerated to high energy into a storage ring for high-energy high luminosity collisions. Our initial design is based on the somewhat similar front end of the International Design Study (IDS) neutrino factory.

Neuffer, D.; /Fermilab; Yoshikawa, C.; /MUONS Inc., Batavia

2011-03-01T23:59:59.000Z

90

Causes of ocean currents  

Science Journals Connector (OSTI)

In the foregoing analysis of the ocean and the atmosphere as two interacting subsystems, we have identified two major energy inputs into the ocean. These are the wind stress over the sea surface and heat fluxe...

David Tolmazin

1985-01-01T23:59:59.000Z

91

Front End Loading (FEL) and Process Engineering Workflow  

E-Print Network (OSTI)

Project development for the oil refining industry is typically performed through a process called Front End Loading (FEL). In recent years, the Process and Industrial Division of Burns and McDonnell has performed several ...

Spangler, Ryan

2005-05-20T23:59:59.000Z

92

Quantitative Analysis of Reaction Front Geometry in Detonations  

E-Print Network (OSTI)

Quantitative Analysis of Reaction Front Geometry in Detonations F. Pintgen, and J.E. Shepherd Previous observations (Pintgen et al., 2003b, Pintgen, 2000) on the reaction zone struc- ture

Shepherd, Joe

93

Impacts of the Oyashio Temperature Front on the Regional Climate  

Science Journals Connector (OSTI)

Impacts of a sea surface temperature front (SSTF) in the northwestern Pacific Ocean on the large-scale summer atmospheric state in the region are examined with a regional atmospheric circulation model developed at the International Pacific ...

Mototaka Nakamura; Toru Miyama

2014-10-01T23:59:59.000Z

94

Global optimization of silicon photovoltaic cell front coatings  

E-Print Network (OSTI)

The front-coating (FC) of a solar cell controls its efficiency, determining admission of light into the absorbing material and potentially trapping light to enhance thin absorbers. Single-layer FC designs are well known, ...

Ghebrebrhan, Michael

95

Front Structure of Detonation and the Stability of Detonation  

Science Journals Connector (OSTI)

The physics of propagation of detonation waves is still a challenging topic in ... been found in experiments and 3D simulations of detonation physics, there are three types of detonation front structures. These a...

H. -S. Dou; Z. M. Hu; B. C. Khoo; C. Wang

2012-01-01T23:59:59.000Z

96

A portable MATLAB front-end for tiled microprocessors  

E-Print Network (OSTI)

Figure 1.3. The Role of MATLAB Front-end in Compilers forM. I. o. T. , 1996: Matlab teaching code. http://D. , 1999: Introduction to MATLAB. Prentice Hall PTR, Upper

Sung, Hyojin

2009-01-01T23:59:59.000Z

97

Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts  

E-Print Network (OSTI)

A series of experiments of shallow and strong smouldering fronts in boreal peat have been conducted under laboratory conditions to study the CO and CO2 emissions. Peat samples of 100 mm by 100 mm in cross section and 50 ...

Rein, Guillermo; Cohen, Simon; Simeoni, Albert

2009-01-01T23:59:59.000Z

98

Magnesium-Intensive Front End Sub-Structure Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project ID "LM077" USAMP AMP800 1 2013 DOE Merit Review Presentation Alan A. Luo General Motors Global Research and Development May 16, 2013 Magnesium-Intensive Front End...

99

Advanced integrated safeguards using front-end-triggering devices  

SciTech Connect

This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

Howell, J.A.; Whitty, W.J.

1995-12-01T23:59:59.000Z

100

Magnesium Front End Research And Development (AMD604) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research And Development (AMD604) Magnesium Front End Research And Development (AMD604) Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Casimir effect in light-front quantization  

E-Print Network (OSTI)

We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.

Hiller, J R

2014-01-01T23:59:59.000Z

102

Town of Front Royal, Virginia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Front Royal, Virginia (Utility Company) Town of Front Royal, Virginia (Utility Company) Jump to: navigation, search Name Town of Front Royal Place Virginia Utility Id 6803 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Dusk to Dawn Light poles Commercial Residential Residential Average Rates Residential: $0.0928/kWh Commercial: $0.0796/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Front_Royal,_Virginia_(Utility_Company)&oldid=411737"

103

The Casimir effect in light-front quantization  

E-Print Network (OSTI)

We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.

J. R. Hiller

2014-10-02T23:59:59.000Z

104

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

105

Heat collector  

DOE Patents (OSTI)

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

106

Enhanced heat transfer using wire-coil inserts for high-heat-load applications.  

SciTech Connect

Enhanced heat-transfer techniques, used to significantly reduce temperatures and thermally induced stresses on beam-strike surfaces, are routinely used at the APS in all critical high-heat-load components. A new heat-transfer enhancement technique being evaluated at the APS involving the use of wire-coil inserts proves to be superior to previously employed techniques. Wire coils, similar in appearance to a common spring, are fabricated from solid wire to precise tolerances to mechanically fit inside standard 0.375-in-diameter cooling channels. In this study, a matrix of wire coils, fabricated with a series of different pitches from several different wire diameters, has been tested for heat-transfer performance and resulting pressure loss. This paper reviews the experimental data and the analytical calculations, compares the data with existing correlations, and interprets the results for APS front-end high-heat-load components.

Collins, J. T.; Conley, C. M.; Attig, J. N.; Baehl, M. M.

2002-09-20T23:59:59.000Z

107

Observation of ionization fronts in low density foam targets  

SciTech Connect

Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved {ital K}-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained. {copyright} {ital 1999 American Institute of Physics.}

Hoarty, D. [Imperial College of Science, Technology and Medicine, London (United Kingdom)] [Imperial College of Science, Technology and Medicine, London (United Kingdom); [Radiation Physics Department, AWE Aldermaston, Reading, Berkshire (United Kingdom); Willi, O.; Barringer, L.; Vickers, C. [Imperial College of Science, Technology and Medicine, London (United Kingdom)] [Imperial College of Science, Technology and Medicine, London (United Kingdom); Watt, R. [P24, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [P24, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Nazarov, W. [Chemistry Department, University of Dundee (United Kingdom)] [Chemistry Department, University of Dundee (United Kingdom)

1999-05-01T23:59:59.000Z

108

Heating System Specification Specification of Heating System  

E-Print Network (OSTI)

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

109

Control of Beam Losses in the Front End for the Neutrino Factory  

SciTech Connect

In the Neutrino Factory and Muon Collider, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are then accelerated. This method of pion production results in significant background from protons and electrons, which may result in heat deposition on superconducting materials and activation of the machine preventing manual handling. In this paper we discuss the design of a secondary particle handling system. The system comprises a solenoidal chicane that filters high momentum particles, followed by a proton absorber that reduces the energy of all particles, resulting in the rejection of low energy protons that pass through the solenoid chicane. We detail the design and optimization of the system and its integration with the rest of the muon front end.

Neuffer, D.V.; /Fermilab; Snopok, P.; /IIT, Chicago; Rogers, C.T.; /Rutherford

2012-05-01T23:59:59.000Z

110

Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks  

E-Print Network (OSTI)

Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks so produced drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the "flow reversal point" or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a 1-D hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and tra...

Brannon, Sean

2014-01-01T23:59:59.000Z

111

Design and Fabrication of Safety Shutter for Indus-2 Synchrotron Front-ends  

SciTech Connect

This paper describes the design and fabrication of safety shutter for the Indus-2 synchrotron source on bending magnet front-ends. The purpose of the safety shutter is to absorb Bremsstrahlung radiation generated due to scattering of electron beam from residual gas ions and components of the storage ring. The safety shutter consists of a radiation absorber actuated inside a rectangular ultra high vacuum chamber by pneumatic actuator. A water-cooled copper block is mounted before the absorber block to protect it from the incident heat load due to synchrotron radiation. The top flanges of the chamber are made with rectangular knife edge sealing which is found to be better than wire seal at higher temperature. The physics aspect of safety shutter is designed using simulation code Electron Gamma Shower EGS-4 code.

Raghuvanshi, V. K.; Dhamgaye, V.; Kumar, A.; Deb, S. K. [Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India)

2010-06-23T23:59:59.000Z

112

NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts NETL's Supercomputer Addresses Energy Issues on Two Fronts September 26, 2013 - 10:42am Addthis The visualization center for the SBEUC (Simulation Based Engineering User Center). Located at the Department’s National Energy Technology Laboratory in Morgantown, W. Va., the SBEUC will be powered by a high performance computer that will allow researchers to simulate phenomena that are difficult or impossible to probe experimentally. The results from simulations will become accessible through user centers that provide advanced visualization capabilities and foster collaboration among researchers. The SBEUC will be used for developing and deploying simulation tools required for overcoming energy technology barriers quickly and reliably.

113

Light-Front Holography and Non-Perturbative QCD  

SciTech Connect

The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

2009-12-09T23:59:59.000Z

114

Diamond Patterns in the Cellular Front of an Overdriven Detonation  

Science Journals Connector (OSTI)

A nonlinear integral-differential equation describing the cellular front of an overdriven detonation is obtained by an analysis carried out in the neighborhood of the instability threshold. The analysis reveals both an unusual mean streaming motion, resulting from the rotational part of the oscillatory flow, and pressure bursts generated by the crossover of cusps representative of Mach stems propagating on the detonation front. A numerical study of the nonlinear equation exhibits the diamond patterns observed in experiments. An overall physical understanding is provided.

P. Clavin and B. Denet

2002-01-10T23:59:59.000Z

115

Stability of negative ionization fronts: Regularization by electric screening?  

Science Journals Connector (OSTI)

We recently have proposed that a reduced interfacial model for streamer propagation is able to explain spontaneous branching. Such models require regularization. In the present paper we investigate how transversal Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the derivation of analytical asymptotes for arbitrary fields: for small wave-vector k, the growth rate s(k) grows linearly with k, for large k, it saturates at some positive plateau value. We give a physical interpretation of these results.

Manuel Arrays and Ute Ebert

2004-03-31T23:59:59.000Z

116

Mechanical front wheel drive tractors: a field performance study  

E-Print Network (OSTI)

are recognized for their f1nancial assistance. The John Deere product Eng1neering Center 1n Waterloo furnished technical assistance and the Dallas Branch of John Deere Company provided the mechanical front wheel dr1ve tractor. DICKEY-john Corporat1on supplied...-Cart was used to provide the same programmed load for each tractor. The 2WD tractor was ballasted with 25 percent of the total static tractor weight on the front wheels. Deere I Company recommend NFWO tractors be ballasted with 40 percent of the total static...

Babacz, William Adam

2012-06-07T23:59:59.000Z

117

Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures  

Science Journals Connector (OSTI)

Abstract In order to investigate oxyfuel combustion characteristics of typical composition of coal gasification syngas connected to CCS systems. Instantaneous flame front structure of turbulent premixed flames of CO/H2/O2/CO2 mixtures which represent syngas oxyfuel combustion was quantitatively studied comparing with CH4/air and syngas/air flames by using a nozzle-type Bunsen burner. Hot-wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Image processing and statistical analyzing were performed using the Matlab Software. Flame surface density, mean progress variable, local curvature radius, mean flame volume, and flame thickness, were obtained. Results show that turbulent premixed flames of syngas possess wrinkled flame front structure which is a general feature of turbulent premixed flames. Flame surface density for the CO/H2/O2/CO2 flame is much larger than that of CO/H2/O2/air and CH4/air flames. This is mainly caused by the smaller flame intrinsic instability scale, which would lead to smaller scales and less flame passivity response to turbulence presented by Markstain length, which reduce the local flame stretch against turbulence vortex. Peak value of Possibility Density Function (PDF) distribution of local curvature radius, R, for CO/H2/O2/CO2 flames is larger than those of CO/H2/O2/air and CH4/air flames at both positive and negative side and the corresponding R of absolute peak PDF is the smallest. This demonstrates that the most frequent scale is the smallest for CO/H2/O2/CO2 flames. Mean flame volume of CO/H2/O2/CO2 flame is smaller than that of CH4/air flame even smaller than that of CO/H2/O2/air flame. This would be due to the lower flame height and smaller flame wrinkles.

Meng Zhang; Jinhua Wang; Jin Wu; Zhilong Wei; Zuohua Huang; Hideaki Kobayashi

2014-01-01T23:59:59.000Z

118

E-Print Network 3.0 - air treatment heating Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

DISORDER CAUSE SIGNS & SYMPTOMS TREATMENT Heat Cramps Heavy sweating Loss of salt -Painful spasms of arms... outdoors or in ......

119

Ultra-Thin Antifouling Surface Treatments for Industrial Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or otherwise restricted information. Project Objective Problem Statement *Fouling of heat exchangers is a serious problem in various energy intensive industries causing...

120

Geothermal district heating systems  

SciTech Connect

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geodesic Remeshing Using Front Propagation Gabriel Peyre Laurent Cohen  

E-Print Network (OSTI)

Geodesic Remeshing Using Front Propagation Gabriel Peyr´e Laurent Cohen CMAP CEREMADE, UMR CNRS, we present a method for remeshing trian- gulated manifolds by using geodesic path calculations is automatically found. A geodesic Delaunay triangulation of the set of points is then created, using a Voronoi

Paris-Sud XI, Université de

122

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION  

E-Print Network (OSTI)

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION FOR PBX 9502 OVER 87545 Detonation velocities and wave shapes were measured for PBX 9502 (95 wt.% TATB, 5 wt.% Kel­F 800 and diameter effect data. For each T 0 , the simplest detonation shock dynamics model assumes that the local

Aslam, Tariq

123

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION  

E-Print Network (OSTI)

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION FOR PBX 9502 OVER 87545 Detonation velocities and wave shapes were measured for PBX 9502 95 wt. TATB, 5 wt. Kel-F 800 rate and diameter e ect data. For each T0, the simplest detonation shock dynamics model assumes that the local

Aslam, Tariq

124

Neutrino factory front-end: muon capture and cooling optimization  

E-Print Network (OSTI)

The neutrino factory is one of the designs proposed for a future intense neutrino beam facility. The layout discussed here focuses on the front-end of the current baseline. The challenges inherent to the cooling of muons are shown together with possible baseline optimization.

Prior, G

2010-01-01T23:59:59.000Z

125

On the propagation of a coupled saturation and pressure front  

SciTech Connect

Using an asymptotic technique, valid for a medium with smoothly varying heterogeneity, I derive an expression for the velocity of a propagating, coupled saturation and pressure front. Due to the nonlinearity of the governing equations, the velocity of the propagating front depends upon the magnitude of the saturation and pressure changes across the front in addition to the properties of the medium. Thus, the expression must be evaluated in conjunction with numerical reservoir simulation. The propagation of the two-phase front is governed by the background saturation distribution, the saturation-dependent component of the fluid mobility, the porosity, the permeability, the capillary pressure function, the medium compressibility, and the ratio of the slopes of the relative permeability curves. Numerical simulation of water injection into a porous layer saturated with a nonaqueous phase liquid indicates that two modes of propagation are important. The fastest mode of propagation is a pressure-dominated disturbance that travels through the saturated layer. This is followed, much later, by a coupled mode with a large saturation change. These two modes are also observed in a simulation using a heterogeneous porous layer. A comparison between the propagation times estimated from the results of the numerical simulation and predictions from the asymptotic expression indicates overall agreement.

Vasco, D. W.

2010-12-01T23:59:59.000Z

126

Multimaterial Front Tracking Fang Da, Christopher Batty, and Eitan Grinspun  

E-Print Network (OSTI)

.8 [Simulation and Modeling]: Types of Simulation--Animation Additional Key Words and Phrases: front tracking. Numerous additional physical and mathemat- ical applications have this same form: soap bubbles and dry the space of possible entangled mesh configurations that can arise, and topological transformations

127

Muon Front End for a Neutrino Factory and Muon Collider  

E-Print Network (OSTI)

Muon Front End for a Neutrino Factory and Muon Collider Chris Rogers, ASTeC, Rutherford Appleton Laboratory 15th January 2013 #12;High Energy Muon Facilities Growing interest in large, high energy muon facilities Neutrino Factory -> neutrino oscillations and Muon Collider -> energy frontier or Higgs factory

McDonald, Kirk

128

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES  

E-Print Network (OSTI)

A FRONT TRACKING METHOD FOR TRANSITIONAL SHOCK WAVES HYUN­CHEOL HWANG Abstract. Non of transitional shock waves, which are dependent on the parabolic regularization of the conservation laws transitional shock waves correctly. The algorithm includes the computation of saddle­to­saddle connec­ tions

New York at Stoney Brook, State University of

129

Utility theory front to back inferring utility from agents' choices  

E-Print Network (OSTI)

Utility theory front to back ­ inferring utility from agents' choices A. M. G. Cox Dept to utility theory and consumption & investment problems. Instead of specifying an agent's utility function) and ask if it is possible to derive a utility function for which the observed behaviour is optimal. We

130

Front End Target Options K.T. McDonald  

E-Print Network (OSTI)

Front End ­ Target Options K.T. McDonald Princeton University (January 7, 2014) #12;Target System://puhep1.princeton.edu/~mcdonald/examples/accel/neuffer_ieeetns_28_2034_81.pdf Fernow et al. reviewed options in 1995: Li lenses, plasma lenses, toroidal horns, and solenoidal capture., http://puhep1

McDonald, Kirk

131

Water and Space Heating Heat Pumps  

E-Print Network (OSTI)

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

132

Nervous breakdown causes  

NLE Websites -- All DOE Office Websites (Extended Search)

Nervous breakdown causes Nervous breakdown causes Name: Renee Nuckols Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Physiologically, what causes a mental/nervous breakdown besides normal everyday stress? Is it a process that kills neurons? Also please include some internal and external symptoms that occur prior to, during, and after a nervous breakdown. Replies: "Nervous breakdown" may be a misnomer, though. What "breaks down" is not so much the nerves and neurons, but the adrenal glands. A more accurate term would be the "exhaustion phase of the general adaption syndrome," but obviously that is quite a mouthful. Excessive STRESS is what can cause "nervous breakdowns." Stress includes the obvious things like exam pressures, trouble with parents or teachers, peer pressure, but also includes things like a significant personal achievement, making a major purchase, changes in routines of life (sleeping, eating habits), moving to a different part of town - even the change in seasons and temperatures. It can come from almost anything which causes a disturbance in normal living. Stress triggers a number of physiological changes collectively termed "GENERAL ADAPTATION SYNDROME." There are three phases: 1) alarm, 2) resistance, and 3) exhaustion. These phases are controlled and regulated by the adrenal glands. Your adrenal glands lie just above your kidneys and are composed of inner and outer parts. The inner part is called the adrenal medulla, and it secretes the hormones adrenaline and noradrenaline. These hormones help your body deal with stressful situations. If you were alone and met a gang in some back alley, your adrenal glands would flood your body with the hormones, your blood pressure, heart rate, sweat production would shoot way high! Your body is in a "FIGHT or FLIGHT" mode. (Just thinking about getting in such a situation may have caused some stress!) Well, whenever your body deals with smaller stresses, the same hormones are released. The outer part of the adrenal glands is the adrenal cortex. They also produce hormones, but slightly different ones: glucocorticoids and mineralcorticoids. Glucocorticoids can increase blood sugar levels profoundly, while mineralcorticoids affect mineral excretion. These hormones are largely responsible for helping the body deal with prolonged stress. They help provide extra energy and blood supply. For instance, if you had a whole week of finals, your adrenal cortex would work overtime as you burn the midnight oil studying. These instances are the "resistance" phase of the general adaptation syndrome.

133

Heat transfer and heat exchangers reference handbook  

SciTech Connect

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

134

Heating systems for heating subsurface formations  

DOE Patents (OSTI)

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

135

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

136

Heat exchanger  

DOE Patents (OSTI)

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

137

Segmented heat exchanger  

DOE Patents (OSTI)

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

138

Fisher Waves and Front Roughening in a Two-Species Invasion Model with Preemptive Competition  

E-Print Network (OSTI)

Fisher Waves and Front Roughening in a Two-Species Invasion Model with Preemptive Competition L. O study roughening of the front, using the framework of non-equilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one

Caraco, Thomas

139

Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee  

E-Print Network (OSTI)

Licensing Uncertain Patents: Per-Unit Royalty vs. Up-Front Fee David Encaouay and Yassine Lefouiliz schemes are investigated: the per-unit royalty rate and the up-front fee. We provide conditions under-unit royalty scheme, the opportunity to do so does not exist under the up-front fee scheme. We also establish

Boyer, Edmond

140

Detecting research fronts in OLED field using bibliographic coupling with sliding window  

Science Journals Connector (OSTI)

Research fronts represent cutting edge studies in specific fields. One can better understand current and future development trends in the relevant field when updated with trends in research fronts. This study uses bibliographic coupling and sliding window ... Keywords: Bibliographic coupling, Citation windows, OLED, Research fronts, Sliding window

Mu-Hsuan Huang; Chia-Pin Chang

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves  

E-Print Network (OSTI)

Introduction Idealized Moist Jet/Front Waves Ray Tracing Momentum Flux/Forcing Conclusion Gravity Waves in Moist Baroclinic Jet-Front Systems Junhong Wei, Fuqing Zhang Department of Meteorology The Pennsylvania State University Tuesday 19th August, 2014 #12;Introduction Idealized Moist Jet/Front Waves Ray

Thompson, Anne

142

Adaptive Path Planning for Tracking Ocean Fronts with an Autonomous Underwater Vehicle  

E-Print Network (OSTI)

Adaptive Path Planning for Tracking Ocean Fronts with an Autonomous Underwater Vehicle Ryan N an ocean front for ecological purposes. At the high level, we envision the scenario shown in Fig. 1 front with an Autonomous Under- water Vehicle (AUV) based on predictions and/or pri- ors provided

Smith, Ryan N.

143

Front-end utility rate updates | OpenEI Community  

Open Energy Info (EERE)

Front-end utility rate updates Front-end utility rate updates Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 13 February, 2013 - 14:28 Utility Rates A few utility rate updates worth noting. We used to have a limit of 100 for results returned on the utility gateway. That has been increased, along with a few UI updates. There is now a 15em height window (sorry if that's too technical) to browse results, so all the hundreds of results don't extend the page. For the naming page however, perhaps the long list is preferred? I'm willing to tweak these heights, as well as have separate heights if it is requested for the public view and the editor view. Improvement to have results show within the block instead of outside of. Minor increase in results width on editor page.

144

Epidemic fronts in complex networks with metapopulation structure  

E-Print Network (OSTI)

Infection dynamics have been studied extensively on complex networks, yielding insight into the effects of heterogeneity in contact patterns on disease spread. Somewhat separately, metapopulations have provided a paradigm for modeling systems with spatially extended and "patchy" organization. In this paper we expand on the use of multitype networks for combining these paradigms, such that simple contagion models can include complexity in the agent interactions and multiscale structure. We first present a generalization of the Volz-Miller mean-field approximation for Susceptible-Infected-Recovered (SIR) dynamics on multitype networks. We then use this technique to study the special case of epidemic fronts propagating on a one-dimensional lattice of interconnected networks - representing a simple chain of coupled population centers - as a necessary first step in understanding how macro-scale disease spread depends on micro-scale topology. Using the formalism of front propagation into unstable states, we derive ...

Hindes, Jason; Myers, Christopher R; Schneider, David J

2013-01-01T23:59:59.000Z

145

Towards the Light Front Variables for High Energy Production Processes  

E-Print Network (OSTI)

Scale invariant presentation of inclusive spectra in terms of light front variables is proposed. The variables introduced go over to the well-known scaling variables x_F = 2p_z/sqrt(s) and x_T=2p_T/sqrt{s} in the high p_z and high p_T limits respectively. So Some surface is found in the phase space of produced pi-mesons in the inclusive reaction anti p p -> pi+- X at 22.4 GeV/c, which separates two groups of particles with significantly different characteristics. In one of these regions a naive statistical model seems to be in a good agreement with data, whereas it fails in the second region. Key words: Light front, inclusive, hadron-hadron, electron-positron, relativistic heavy ions, deep inelastic.

N. S. Amaglobeli; S. M. Esakia; V. R. Garsevanishvili; G. O. Kuratashvili; N. K. Kutsidi; R. A. Kvatadze; Yu V. Tevzadze; T. P. Topuria

1997-03-21T23:59:59.000Z

146

Towards the Light Front Variables for High Energy Production Processes  

E-Print Network (OSTI)

Scale invariant presentation of inclusive spectra in terms of light front variables is proposed. The variables introduced go over to the well-known scaling variables x_F = 2p_z/sqrt(s) and x_T=2p_T/sqrt{s} in the high p_z and high p_T limits respectively. So Some surface is found in the phase space of produced pi-mesons in the inclusive reaction anti p p -> pi+- X at 22.4 GeV/c, which separates two groups of particles with significantly different characteristics. In one of these regions a naive statistical model seems to be in a good agreement with data, whereas it fails in the second region. Key words: Light front, inclusive, hadron-hadron, electron-positron, relativistic heavy ions, deep inelastic.

Amaglobeli, N S; Garsevanishvili, V R; Kuratashvili, G O; Kutsidi, N K; Kvatadze, R A; Tevzadze, Yu V; Topuria, T P; Tevzadze, Yu V.

1998-01-01T23:59:59.000Z

147

Industrial heat pumps - types and costs  

SciTech Connect

Confusion about energy savings and economics is preventing many potentially beneficial applications for industrial heat pumps. The variety of heat pumps available and the lack of a standard rating system cause some of this confusion. The authors illustrate how a simple categorization based on coefficient of performance (COP) can compare the cost of recovering waste energy with heat pumps. After evaluating examples in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs, they compare heat pumps from the various categories on the basis of economics. 6 references, 6 figures, 1 table.

Chappell, R.N.; Bliem, C.J. Jr.; Mills, J.I.; Demuth, O.J.; Plaster, D.S.

1985-08-01T23:59:59.000Z

148

Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution; Federal Energy Management Program (FEMP) Achieving Results with Renewable Energy in the Federal Government (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water with Solar Energy Costs Less Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front

149

The Main Injector Beam Position Monitor Front-End Software  

SciTech Connect

The front-end software developed for the Main Injector (MI) BPM upgrade is described. The software is responsible for controlling a VME crate, equipped with a Motorola PowerPC board running the VxWorks operating system, a custom made timing board and up to 10 commercial digitizer boards. The complete MI BPM system is composed of 7 independent units, each collecting data from 19 to 38 BPM pickups. The MI BPM system uses several components already employed on the successful upgrade of another Fermilab machine, the Tevatron. The front-end software framework developed for the Tevatron BPM upgrade is the base for building the MI front-end software. The framework is implemented in C++ as a generic component library (GBPM) that provides an event-driven data acquisition environment. Functionality of GBPM is extended to meet MI BPM requirements, such as the ability to handle and manage data from multiple cycles; perform readout of the digitizer boards without disrupting or missing subsequent cycles; transition between closed orbit and turn-by-turn modes within a cycle, using different filter and timing configurations; and allow the definition of new cycles during normal operation.

Piccoli, Luciano; Foulkes, Stephen; Votava, Margaret; Briegel, Charles; /Fermilab

2006-05-01T23:59:59.000Z

150

Moving boundary approximation for curved streamer ionization fronts: Solvability analysis  

Science Journals Connector (OSTI)

The minimal density model for negative streamer ionization fronts is investigated. An earlier moving boundary approximation for this model consisted of a kinetic undercooling type boundary condition in a Laplacian growth problem of Hele-Shaw type. Here we derive a curvature correction to the moving boundary approximation that resembles surface tension. The calculation is based on solvability analysis with unconventional features, namely, there are three relevant zero modes of the adjoint operator, one of them diverging; furthermore, the inner-outer matching ahead of the front must be performed on a line rather than on an extended region; and the whole calculation can be performed analytically. The analysis reveals a relation between the fields ahead and behind a slowly evolving curved front, the curvature and the generated conductivity. This relation forces us to give up the ideal conductivity approximation, and we suggest to replace it by a charge neutrality approximation. This implies that the electric potential in the streamer interior is no longer constant but solves a Laplace equation; this leads to a Muskat-type problem.

Fabian Brau, Benny Davidovitch, and Ute Ebert

2008-11-21T23:59:59.000Z

151

Operating and Maintaining Your Heat Pump | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump June 24, 2012 - 3:22pm Addthis Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Learn to operate and maintain your heat pump system properly to maximize energy and money savings. You can do many operational and maintenance tasks yourself. Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the backup heating to come on -- backup heating systems are usually more expensive to operate. Continuous indoor

152

Floatable solar heat modules  

SciTech Connect

A floating solar heat module for swimming pools comprises a solid surface for conducting heat from the sun's rays to the water and further includes a solid heat storage member for continual heating even during the night. A float is included to maintain the solar heat module on the surface of the pool. The solid heat storage medium is a rolled metal disk which is sandwiched between top and bottom heat conducting plates, the top plate receiving the heat of the sun's rays through a transparent top panel and the bottom plate transferring the heat conducted through the top plate and rolled disk to the water.

Ricks, J.W.

1981-09-29T23:59:59.000Z

153

Heat Pump for High School Heat Recovery  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future Vol.VIII-12-1 Heat Pump for High School Bathroom Heat Recovery Kunrong Huang Hanqing Wang Xiangjiang Zhou Associate professor Professor Professor School...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

154

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

155

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

156

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

157

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

158

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

159

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

160

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

162

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

163

Convective currents in nucleate pool boiling and their effects on the heat flux from varying diameter flat plate heating elements  

E-Print Network (OSTI)

investigation was conducred to amine the effects of convection currents in nucleate oool boil ing and to determine the changes in critical heat flux caused by varying the diameter of horizontal flat olate heating surfaces. Freon 113 (Trichlorotrifluoroethane... by high energy costs and thc need to economize in industrial heat transfer applications . I'nucleate boiling is a very efficient neans of heat transfer because of the large sur ace areas involved in vaporization of the bulk fluid. as bubbles form...

Morford, Peter Stephen

1980-01-01T23:59:59.000Z

164

Woven heat exchanger  

DOE Patents (OSTI)

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

165

Exciton front propagation in photoexcited GaAs quantum wells  

Science Journals Connector (OSTI)

We report on the study of spatiotemporal self-organization of carriers in photoexcited GaAs quantum wells. Propagating interfaces between electron-rich and hole-rich regions are seen as expanding and collapsing exciton rings in exciton emission patterns. The interfaces preserve their integrity during expansion, remaining as sharp as in the steady state, which indicates that the dynamics is controlled by carrier transport. The front propagation velocity is measured and compared to theoretical model. The measurements of expanding and collapsing exciton rings afford a contactless method for probing the electron and hole transport.

Sen Yang, L. V. Butov, L. S. Levitov, B. D. Simons, and A. C. Gossard

2010-03-16T23:59:59.000Z

166

Pinpointing Chiral Structures with Front-Back Polarized Neutron Reflectometry  

Science Journals Connector (OSTI)

A new development in spin-polarized neutron reflectometry enables us to more fully characterize the nucleation and growth of buried domain walls in layered magnetic materials. We applied this technique to a thin-film exchange-spring magnet. After first measuring the reflectivity with the neutrons striking the front, we measure with the neutrons striking the back. Simultaneous fits are sensitive to the presence of spiral spin structures. The technique reveals previously unresolved features of field-dependent domain walls in exchange-spring systems and has sufficient generality to apply to a variety of magnetic systems.

K. V. O'Donovan; J. A. Borchers; C. F. Majkrzak; O. Hellwig; E. E. Fullerton

2002-01-25T23:59:59.000Z

167

New RPC front-end electronics for hades  

E-Print Network (OSTI)

Time-of-flight (TOF) detectors are mainly used for both particle identification and triggering. Resistive Plate Chamber (RPC) detectors are becoming widely used because of their excellent TOF capabilities and reduced cost. The new ESTRELA* RPC wall, which is being installed in the HADES detector at Darmstadt GSI, will contain 1024 RPC modules, covering an active area of around 7 m2. It has excellent TOF and good charge resolutions. Its Front-End electronics is based on a 8-layer Mother-Board providing impedance matched paths for the output signals of each of the eight 4-channel Daughter-Boards to the TDC.

Gil, Alejandro; Cabanelas, P; Daz, J; Garzn, J A; Gonzlez-Daz, D; Knig, W; Lange, J S; Marn, J; Montes, N; Skott, P; Traxler, M

2007-01-01T23:59:59.000Z

168

Towards Intelligent District Heating.  

E-Print Network (OSTI)

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

169

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

170

ARM - Heat Index Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

171

Geothermal direct heat applications program summary  

SciTech Connect

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

172

Preliminary model for heat transport within a tongue-and-reservoir liquid diode for passive solar heating  

SciTech Connect

A preliminary model is presented for heat transport within a tongue-and-reservoir liquid diode for passive solar heating. The diode consists of a rectangular vertical slot (tongue) extending from the bottom of a rectangular-shaped reservoir at the reservoir's front face. Water is used as the working fluid in the tongue and reservoir. Solar radiation is incident on the front face of the tongue, which also loses heat to the outside, while radiation and convection transport heat from the back of the reservoir to the building. Convection transports heat when the tongue is irradiated; however, when convection ceases and the temperature of the tongue cools below that of the reservoir (from exposure to the outside temperature), the reservoir stratifies, and the primary heat loss mechanism is conduction through the tongue and its fluid. The result is a passive solar component that may outperform most others. Flow in the tongue is treated as boundary layer flow; the integral forms of the governing equations are combined to form a single equation governing the local boundary layer thickness. The results are shown to depend upon the Grashof, Prandtl, and heat-loss Biot numbers. Results from this model agree well with those from our flow visualization experiments. A model is also proposed for diode heat transport processes during cool-down. In this model, and empirical coefficient accounts for the weak convective mixing that occurs in the reservoir during this phase. Preliminary results indicate the coefficient to be spatially dependent but independent of time and reservoir temperature. More experiments are planned to further validate both of the models described above.

Jones, G.F.

1984-01-01T23:59:59.000Z

173

Moving-boundary approximation for curved streamer ionization fronts: Numerical tests  

Science Journals Connector (OSTI)

Recently a moving boundary approximation for the minimal model for negative streamer ionization fronts was extended with effects due to front curvature; this was done through a systematic solvability analysis. A central prediction of this analysis is the existence of a nonvanishing electric field in the streamer interior, whose value is proportional to the front curvature. In this paper we compare this result and other predictions of the solvability analysis with numerical simulations of the minimal model.

Fabian Brau, Alejandro Luque, Benny Davidovitch, and Ute Ebert

2009-06-26T23:59:59.000Z

174

Rotary magnetic heat pump  

DOE Patents (OSTI)

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

175

Fluctuating local thermoelectric heat in dirty metals  

SciTech Connect

Using a recently developed multilead theory of dephasing in mesoscopic conductors, the mean-squared magnitude of the local Peltier heat in a uniform disordered metal is calculated diagrammatically. A heuristic estimate based on conductance fluctuation theory is also developed, and gives the same results. The generation and absorption of local thermoelectric heats require both phase-coherent elastic scattering to produce local conductance fluctuations and phase-breaking inelastic scattering to transport heat to and from the reservoirs. This phenomenon can cause substantial spatial variations in the electron temperature of low-carrier-density, clean, quasi-two-dimensional metals.

DiVincenzo, D.P. (IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States))

1993-07-15T23:59:59.000Z

176

E-Print Network 3.0 - automobile front panel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile front panel Page: << < 1 2 3 4 5 > >> 1 FUTURES OF AUTOMOBILE INDUSTRY AND...

177

Infinite Nuclear Matter on the Light Front: A Modern Approach to Brueckner Theory  

E-Print Network (OSTI)

Understanding an important class of experiments requires that light-front dynamics and related light cone variables k^+ and k_perp be used. If one uses k^+ as a momentum variable, the corresponding canonical spatial variable is x^-=x^0-x^3 and the time variable is x^0+x^3. This is the light front (LF) approach of Dirac. A relativistic light front formulation of nuclear dynamics is developed and applied to treating infinite nuclear matter in a method which includes the corelations of pairs of nculeons. This is light front Brueckner theory.

G. A. Miller

1999-10-19T23:59:59.000Z

178

Failure Analysis of Cap Screws in a Diesel Engine Front Gear Train  

Science Journals Connector (OSTI)

Two failures of the front gear train cap screws of a diesel engine in a marine vessel are investigated. Fractured cap screws were...

E. W. Jones; R. S. Florea; D. K. Francis

2013-08-01T23:59:59.000Z

179

Evaluating the effects of wildfire on stream processes in a Colorado front range watershed, USA  

Science Journals Connector (OSTI)

The impacts of a September 2010 wildfire on hydrologic and biogeochemical processes are being evaluated in a Colorado Front Range stream.

Sheila F. Murphy; Jeffrey H. Writer

2011-01-01T23:59:59.000Z

180

Pion light-front wave function, parton distribution and the electromagnetic form factor  

E-Print Network (OSTI)

We derive a light-front wave function of the pion, which reproduces its valence parton distribution and a electromagnetic form factor consistent with data.

Thomas Gutsche; Valery E. Lyubovitskij; Ivan Schmidt; Alfredo Vega

2014-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The speed of propagation of fronts for the reactiondiffusion ...  

E-Print Network (OSTI)

About a decade ago, in collaboration with M. Cristina Depassier we proved a variational characterization of the speed of propagation of fronts for rather general...

2007-05-18T23:59:59.000Z

182

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

183

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

184

Heat Treating Apparatus  

DOE Patents (OSTI)

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

185

Thermoelectric heat exchange element  

DOE Patents (OSTI)

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

186

HEATING AND COOLING PROTOSTELLAR DISKS  

SciTech Connect

We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2011-05-10T23:59:59.000Z

187

Heat Integrate Heat Engines in Process Plants  

E-Print Network (OSTI)

and refrigeration systems. In many instances these real heat engines may appear as a complex process consisting of flash vessels, heat exchangers, compressors, furnaces, etc. See Figure 18a, which shows a simplified diagram of a "steam Rankine cycle." How... and rejection profiles of the real machine. For example, the heat acceptance and re jection profiles for the steam Rankine cycle shown in Figure 18a have been drawn on T,H coordinates in Figure 18b. Thus providing we know the heat acceptance and rejection...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

188

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

189

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

190

Wound tube heat exchanger  

DOE Patents (OSTI)

What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

191

Heat Exchangers for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems May 30, 2012 - 3:40pm Addthis Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper, because it is a good thermal conductor and has greater resistance to corrosion. Types of Heat Exchangers Solar water heating systems use three types of heat exchangers: Liquid-to-liquid A liquid-to-liquid heat exchanger uses a heat-transfer fluid that

192

Conditional Simulation of a Gust-Front Wind Field Lijuan Wanga  

E-Print Network (OSTI)

Conditional Simulation of a Gust-Front Wind Field Lijuan Wanga , Ahsan Kareema a NatHaz Modeling the conditional simulation of gust-front wind velocities are presented to generate time series at locations effects on structures, the simulation of wind velocity conditional upon the availability of measured

Kareem, Ahsan

193

Silicon Solar Cells with Front Hetero-contact and Aluminum Alloy Back Junction (Poster)  

SciTech Connect

The objectives of this report are: (1) to apply industrial back Al process in efficient n-wafer cells with a-Si:H front surface passivation; and (2) to evaluate the surface recombination velocity (SRV) of the a-Si:H passivated front surface with different surface preparation procedures.

Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

2008-05-01T23:59:59.000Z

194

Asymmetry of Columbia River tidal plume fronts David A. Jay a,  

E-Print Network (OSTI)

or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water plume water mass. This vorticitycontrols the transition of the tidal plume front to a subcritical state plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would

Hickey, Barbara

195

CISC 327 -Fall 2014 ! Course Project Assignment #1 -Front End Requirements!  

E-Print Network (OSTI)

represent those requirements as a set of requirements tests. The basic idea is to analyze the requirements, and create a test case for each piece. We will study this more in class.! !Create and organize a complete set of requirements tests for the Front End of Quinterac, to test for every required behaviour (of the Front End only

Cordy, James R.

196

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode  

E-Print Network (OSTI)

Nitrogen Front Evolution in Purged Polymer Electrolyte Membrane Fuel Cell with Dead-Ended Anode and experimentally verify the evolution of liquid water and nitrogen fronts along the length of the anode channel in a proton exchange membrane fuel cell operating with a dead-ended anode that is fed by dry hydrogen

Stefanopoulou, Anna

197

Air-sea interaction at an oceanic front: Implications for frontogenesis and primary production  

E-Print Network (OSTI)

Air-sea interaction at an oceanic front: Implications for frontogenesis and primary production Dake a significant air-sea interaction at the shelf- break front in the East China Sea. An idealized ocean was identified in the model and its consequences were evaluated. We found that air-sea interaction, when combined

Chen, .Dake

198

A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ  

E-Print Network (OSTI)

A Review of Cold Fronts with Prefrontal Troughs and Wind Shifts DAVID M. SCHULTZ Cooperative with a pressure trough and a distinct wind shift at the surface. Many cold fronts, however, do not conform to this model--time series at a single surface station may possess a pressure trough and wind shift in the warm

Schultz, David

199

Traveling Fronts of Copper Deposition Stephanie Thouvenel-Romans, Konstantin Agladze, and Oliver Steinbock*  

E-Print Network (OSTI)

Traveling Fronts of Copper Deposition Stephanie Thouvenel-Romans, Konstantin Agladze, and Oliver for propagating fronts that mediate the electroless deposition of copper on passivated steel. Under ap- propriate is essentially independent from the copper(II) concentration in the electrolyte, which indicates

Steinbock, Oliver

200

The Interruption of Alpine Foehn by a Cold Front. Part I: Observations  

E-Print Network (OSTI)

propagation speed wf 1 m/s Inclination of the frontal surface is wf /uf 1/7.5 8° Freitag (1990 in valleys Interaction with local winds (e.g., foehn) foehn cold front Cold front in complex terrain ? ? #12 in Inn and Wipp Valley Temperature slope profile Doppler wind lidar in Wipp Valley #12;6 of 13 Case study

Gohm, Alexander

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Life Cycle of an Undular Bore and Its Interaction with a Shallow, Intense Cold Front  

E-Print Network (OSTI)

of the horizontal wind and a local minimum in surface pressure. Despite the conceptual appeal of the classical model of an undular bore and its associated wind shift, spawned by the passage of a shallow surface cold front over the wind shift and thermodynamic properties of the front was induced by the formation of a bore over south

Williams, Justin

202

PHYSICS RESULTS OF THE NSLS-II LINAC FRONT END TEST STAND  

SciTech Connect

The Linac Front End Test Stand (LFETS) was installed at the Source Development Laboratory (SDL) in the fall of 2011 in order to test the Linac Front End. The goal of these tests was to test the electron source against the specifications of the linac. In this report, we discuss the results of these measurements and the effect on linac performance.

Fliller R. P.; Gao, F.; Yang, X.; Rose, J.; Shaftan, T.; Piel, C

2012-05-20T23:59:59.000Z

203

Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China  

E-Print Network (OSTI)

, People's Republic of China c Northwest Institute of Uranium Geology, China National Nuclear CorporationMineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization

Fayek, Mostafa

204

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network (OSTI)

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

205

Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows  

E-Print Network (OSTI)

Strong downstream magnetic fields of order of $\\sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high resolution 2D relativistic magneto-hydrodynamical (RMHD) simulations are provided. Jet opening angles of $\\theta = 0^{\\circ} - 20^{\\circ}$, and ambient to jet density ratios of $10^{-4} - 10^2$ were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as t...

da Silva, G Rocha; Kowal, G; Pino, E M de Gouveia Dal

2014-01-01T23:59:59.000Z

206

Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection  

SciTech Connect

The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m{sup 3}, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about S?10{sup ?3}W/m{sup 2}.

Lapenta, Giovanni [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium)] [Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium); Goldman, Martin; Newman, David [University of Colorado, Colorado 80309 (United States)] [University of Colorado, Colorado 80309 (United States); Markidis, Stefano [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Divin, Andrey [Swedish Institute of Space Physics, Uppsala (Sweden)] [Swedish Institute of Space Physics, Uppsala (Sweden)

2014-05-15T23:59:59.000Z

207

Electromagnetic Energy Conversion in Downstream Fronts from 3D Kinetic Reconnection  

E-Print Network (OSTI)

The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by \\citet{vapirev2013formation}. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front (DF) is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several $pW/m^3$, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away fro...

Lapenta, Giovanni; Newman, David; Markidis, Stefano; Divin, Andrey

2014-01-01T23:59:59.000Z

208

E-Print Network 3.0 - active heat moisture Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

mass: an adequate supply of soil moisture, sufficiently cold air temperatures to cause heat loss... . Freezing times given in Table 1 increased significantly with soil moisture...

209

INVESTIGATION OF BUBBLE DYNAMICS AND HEATING DURING FOCUSED ULTRASOUND INSONATION IN TISSUE-MIMICKING MATERIALS.  

E-Print Network (OSTI)

??The deposition of ultrasonic energy in tissue can cause tissue damage due to local heating. For pressures above a critical threshold, cavitation will occur in (more)

Yang, Xinmai

2010-01-01T23:59:59.000Z

210

IMPROVED STEAM APPARATUS FOR HEATING AND VENTILATING  

Science Journals Connector (OSTI)

...iilprovenments in these heaters, The hleatei is...all parts of the heater. The pipes in the...foot of pipe. In operation for heating andl...at or towards the cold outer v but it must...changes in the weather always have a serious...passing through the heater causes such a rapid...

1889-05-03T23:59:59.000Z

211

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

212

HEAT TRANSFER FLUIDS  

E-Print Network (OSTI)

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

213

Residential heating oil price  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

214

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

215

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

216

Residential heating oil price  

NLE Websites -- All DOE Office Websites (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

217

GLLH EM Invisible Cloak With Novel Front Branching And Without Exceed Light Speed Violation  

E-Print Network (OSTI)

In this paper, we propose new Global and Local (GL) electromagnetic (EM) cloaks with distinctive class material a_{\\alpha \\beta}\\log ^\\alpha (b_{\\alpha \\beta}/h) h^\\beta (GLLH Cloak) without exceed light speed violation. The refractive index of the GLLH cloak material, $n(r)$, is large than one or equal to one. Our GLLH cloak is created by GL EM modeling and GL EM cloak inversion with searching class \\it a_{\\alpha \\beta}\\log ^\\alpha (b_{\\alpha \\beta}/h) h^\\beta. The GLLH cloaks in this paper have finite speed and have no exceed light speed? physical violations and have more advantages. The GLLH EM cloaks can be practicable by using normal materials and are available for all broad frequency band. The GL EM cloak inversion and electromagnetic integral equation for cloak are presented in this paper. The novel EM wave propagation and front branching in the GLLH cloak by GL EM modeling are presented in this paper. The EM wave front propagation in GLLH cloak is behind of the front in free space. At time steps $118 dt$, in the GLLH cloak, the wave front is curved as a crescent like and propagates slower than the light in free space. At the time step $119dt$, the EM wave inside of the GLLH cloak propagates slower than light speed, moreover, its two crescent front peaks intersect at a front branching point. At the front branching point, the front is split to two fronts. The novel front branching and crescent like wave propagation are displayed in the following figure 1, figure 2 and figures 5 -20 in this paper. All copyright and patent of the GLLH EM cloaks and GL modeling and inversion methods are reserved by authors in GL Geophysical Laboratory.

Ganquan Xie; Jianhua Li; Lee Xie; Feng Xie

2010-05-21T23:59:59.000Z

218

Modeling particle deposition on HVAC heat exchangers  

SciTech Connect

Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

Siegel, J.A.; Nazaroff, W.W.

2002-01-01T23:59:59.000Z

219

MA HEAT Loan Overview  

Energy.gov (U.S. Department of Energy (DOE))

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

220

Ductless Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Heat Pump Water Heaters  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Heaters Showerheads Residential Weatherization Performance Tested Comfort Systems Ductless Heat Pumps New Construction Residential Marketing Toolkit Retail Sales...

222

Solar heat receiver  

DOE Patents (OSTI)

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

223

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

224

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

225

Heat Transfer Guest Editorial  

E-Print Network (OSTI)

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

226

Acoustic Heating Peter Ulmschneider  

E-Print Network (OSTI)

Acoustic Heating Peter Ulmschneider lnstitut fiir Theoretische Astrophysik der Universitat waves are a viable and prevalent heating mechanism both in early- and in late-type stars. Acoustic heating appears to be a dominant mechanism for situations where magnetic fields are weak or absent

Ulmschneider, Peter

227

Ammoniated salt heat pump  

SciTech Connect

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

228

Pioneering Heat Pump Project  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

229

Home Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats...

230

Water Heating | Department of Energy  

Energy Savers (EERE)

Energy Saver Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs....

231

SiGe receiver front ends and flip-chip integrated wideband antennas for millimeter-wave passive imaging  

E-Print Network (OSTI)

SiGe wideband 77-GHz and 94-GHz front end receivers with integrated antennas for passive imaging have been designed and characterized. These front end systems exhibit wideband performance with the highest gain and lowest ...

Powell, Johnna, 1980-

2009-01-01T23:59:59.000Z

232

Transient critical heat flux and blowdown heat-transfer studies  

SciTech Connect

Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

Leung, J.C.

1980-05-01T23:59:59.000Z

233

Development of plastic front side panels for green cars  

Science Journals Connector (OSTI)

Lightweight design with thermoplastics is a robust approach in order to reduce the CO2 emission and fuel consumption. This paper reviews the role of plastics in the green concept of automobile and develops the design process for replacing steel front side panels, so called steel car fender, with plastic ones. Conceptual design, material selection, and design strategy in terms of strength, moldability, and assembility were proposed. Injection molding optimization was carried out in order to ensure the quality of the plastic fender under a certain manufacturing conditions such as the applied molding machine and auxiliary equipment. Prototype manufacturing was also implemented to verify the manufacturability and the feasibility of the development process of a plastic car fender. The weight of the plastic car fender is 1.15kg, reducing 41% compared to the steel fender. Although the production cost of the plastic fender is just slightly cheaper than that of steel one due to the high cost of the special plastic, the benefits such as lightweight, recyclability, manufacturability and design flexibility are the potential and practical application of the thermoplastic to the green automotive industry for making exterior parts.

H.S. Park; X.P. Dang; A. Roderburg; B. Nau

2013-01-01T23:59:59.000Z

234

Front-end electronics and trigger systems - status and challenges  

SciTech Connect

The past quarter century has brought about a revolution in front-end electronics for large-scale detector systems. Custom integrated circuits specifically tailored to the requirements of large detector systems have provided unprecedented performance and enabled systems that once were deemed impossible. The evolution of integrated circuit readouts in strip detectors is summarized, the present status described, and challenges posed by the sLHC and ILC are discussed. Performance requirements increase, but key considerations remain as in the past: power dissipation, material, and services. Smaller CMOS feature sizes will not provide the required electronic noise at lower power, but will improve digital power efficiency. Significant improvements appear to be practical in more efficient power distribution. Enhanced digital electronics have provided powerful trigger processors that greatly improve the trigger efficiency. In data readout systems they also improve data throughput, while reducing power requirements. Concurrently with new developments in high energy physics, detector systems for cosmology and astrophysics have made great strides. As an example, a large-scale readout for superconducting bolometer arrays is described.

Spieler, Helmuth G; Spieler, Helmuth G

2007-08-21T23:59:59.000Z

235

Inhibition of slug front corrosion in multiphase flow conditions  

SciTech Connect

Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.

Chen, H.J. [Chevron Petroleum Technology Co., La Habra, CA (United States); Jepson, W.P. [Ohio Univ., Athens, OH (United States)

1998-12-31T23:59:59.000Z

236

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board  

E-Print Network (OSTI)

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board

Chase, B E; Lanni, F; Makowiecki, D S; Radeka, V; Rescia, S; Takai, H; Bn, J; Parsons, J; Sippach, W

1999-01-01T23:59:59.000Z

237

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

238

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

239

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

240

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger. (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

242

Light-Front Holography, AdS/QCD, and Hadronic Phenomena  

SciTech Connect

AdS/QCD, the correspondence between theories in a modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate z with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation with a confining potential which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. The distinction between static structure functions, such as the probability distributions computed from the square of the light-front wavefunctions, versus dynamical structure functions which include the effects of rescattering, is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.

2009-12-09T23:59:59.000Z

243

Dynamic Transition in the Structure of an Energetic Crystal during Chemical Reactions at Shock Front Prior to Detonation  

E-Print Network (OSTI)

Front Prior to Detonation Ken-ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind

Southern California, University of

244

Fisher waves and front roughening in a two-species invasion model with preemptive competition L. O'Malley,1,  

E-Print Network (OSTI)

Fisher waves and front roughening in a two-species invasion model with preemptive competition L. O. We also study roughening of the front, using the framework of nonequilibrium interface growth. Our analysis indicates that initially flat, linear invad- ing fronts exhibit Kardar-Parisi-Zhang KPZ roughening

Rácz, Zoltán

245

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network (OSTI)

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

246

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

247

Policies supporting Heat Pump Technologies  

E-Print Network (OSTI)

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

248

Microscopic Examination of a Corrosion Front in Spent Nuclear Fuel  

SciTech Connect

Spent uranium oxide nuclear fuel hosts a variety of trace chemical constituents, many of which must be sequestered from the biosphere during fuel storage and disposal. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within spent uranium oxide nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the plutonium and neptunium in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO{sub 2} matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl U(VI)O{sub 2}{sup 2+} mineral assemblage that is depleted in plutonium and neptunium relative to the parent fuel. At the corrosion front interface between intact fuel and the uranyl-mineral corrosion layer, we find evidence of a thin ({approx}20 micrometer) layer that is enriched in plutonium and neptunium within a predominantly U{sup 4+} environment. Available data for the standard reduction potentials for NpO{sup 2+}/Np{sup 4+} and UO{sub 2}{sup 2+}/U{sup 4+} couples indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potentials of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. Neptunium is an important radionuclide in dose contribution according to performance assessment models of the proposed U. S. repository at Yucca Mountain, Nevada. A scientific understanding of how the UO{sub 2} matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of neptunium is needed to predict its behavior at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel [1]. In the immediate vicinity of the spent fuel's surface the redox and nucleation behavior is likely to promote/enhance nucleation of NpO{sub 2} and Np{sub 2}O{sub 5}. Alternatively, Np may be incorporated into uranyl (UO{sub 2}{sup 2+}) alteration phases [2]. In some cases, less-soluble elements such as plutonium will be enriched near the surface of the corroding fuel [3]. We have used focused synchrotron x-rays from the MRCAT beam line at the Advanced Photon Source (APS) at Argonne National Lab to examine a specimen of spent nuclear fuel that had been subject to 10 years of corrosion testing in an environment of humid air and dripping groundwater at 90 C [4]. We find evidence of a region, approximately 20 microns in thickness, enriched in plutonium and neptunium at the corrosion front that exists between the uranyl silicate alteration mineral rind and the unaltered uranium oxide fuel (Figures 1 and 2). The uranyl silicate is itself found to be depleted in these transuranic elements relative to their abundance relative to uranium in the parent fuel. This suggests a low mobility of these components owing to a resistance to oxidize further in the presence of a UO{sub 2}{sup 2+}/U{sup 4+} couple [5].

J.A> Fortner; A.J. Kropf; R.J. Finch; J.C. Cunnane

2006-06-20T23:59:59.000Z

249

Front Vehicle Setup Information Downloadable Dynamometer Database (D  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt- 20F Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer Input Document date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4000 28.66 Target B [lb/mph] Target C [lb/mph^2] -0.0132 0.0202 Revision Number 3 Notes: Test Fuel Information Fuel type EPA Tier II EEE Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18490 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y c l e D i s t a n c e [ m i ] C y c l e F u

250

Fluidized bed heat treating system  

DOE Patents (OSTI)

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

251

Flameless heat generator  

SciTech Connect

A heating device generates heat by working a liquid in a closed container with a rotating stack of finely perforate square plates and recovering the heat from the thus heated liquid. In one embodiment a stack of a multiplicity of flat square plates radially offset one from another is rotated in an oil bath in a container under an inner perforate non-rotating cover over which is a similar non-rotating cover that is imperforate. The thermal energy developed through the mechanical working of the liquid is transferred to the main liquid bath and is then removed, as for example, by circulating air or a liquid around the outside of the container with the thus heated air or liquid being used to heat a house or the like.

Leary, C. L.; Leary, G. C.

1983-12-13T23:59:59.000Z

252

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

253

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

254

Sorption heat engines  

E-Print Network (OSTI)

For a simple free energy generating device - driven by thermal cycling and based on alternating adsorption and desorption - that has not been explicitly recognized as heat engine the name sorption heat engine is proposed. The mechanism is generally applicable to the fields of physics, chemistry, geology, and possibly, if relevant to the origin of life, biology. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in composition of the adsorbent or adsorbate during the thermal cycle.

Muller, A W J; Muller, Anthonie W. J.; Schulze-Makuch, Dirk

2005-01-01T23:59:59.000Z

255

DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Offers Conditional Loan Guarantee for Front End Nuclear DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in Idaho DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in Idaho May 20, 2010 - 12:00am Addthis Washington, DC - As part of a broad effort to expand the use of nuclear power in the United States and reduce carbon pollution, U.S. Secretary of Energy Steven Chu announced today the Department's first conditional commitment for a front-end nuclear facility. The $2 billion loan guarantee will support AREVA's Eagle Rock Enrichment Facility near Idaho Falls, Idaho, which will supply uranium enrichment services for the U.S. nuclear power industry. "Increasing uranium enrichment in the United States is critical to the nation's energy and national security," said Secretary Chu. "Existing

256

On the Variability of Antarctic Circumpolar Current Fronts Inferred from 19922011 Altimetry  

Science Journals Connector (OSTI)

Antarctic Circumpolar Current (ACC) fronts, defined as water mass boundaries, have been known to respond to large-scale atmospheric variabilities, especially the Southern Hemisphere annular mode (SAM) and El NioSouthern Oscillation (ENSO). ...

Yong Sun Kim; Alejandro H. Orsi

2014-12-01T23:59:59.000Z

257

26-percent efficient point-junction concentrator solar cells with a front metal grid  

SciTech Connect

This paper reports on silicon concentrator cells with point diffusions and metal contacts on both the front and back sides. The design minimizes reflection losses by forming an inverted pyramid topography on the front surface and by shaping the metal grid lines in the form of a triangular ridge. A short-circuit current density of 39.6 mA/cm{sup 2} has been achieved even though the front grid covers 16 percent of the cell's active area of 1.56 cm{sup 2}. This, together with an open-circuit voltage of 700 mV, has led to an efficiency of 22 percent at one sun, AM1.5 global spectrum. Under direct-spectrum, 8.8-W/cm{sup 2}, concentrated light, the efficiency is 26 percent. This is the highest ever reported for a silicon cell having a front metal grid.

Cuevas, A.; Sinton, R.A.; Midkiff, N.E.; Swanson, R.M. (Stanford Univ., CA (USA). Dept. of Electrical Engineering)

1990-01-01T23:59:59.000Z

258

Dynamics of Curved Detonation Front and Critical Conditions for Detonation Initiations  

Science Journals Connector (OSTI)

The curved detonation front appears in a number of unsteady phenomena such as the diffraction of detonations, the initiation of detonation by a point energy source, by a ... propagating velocity D and the curvatu...

L. He

1997-01-01T23:59:59.000Z

259

Mechanisms of accelerated degradation in the front cells of PEMFC stacks and some mitigation strategies  

Science Journals Connector (OSTI)

The accelerated degradation in the front cells of a polymer electrolyte membrane fuel cell(PEMFC) stack seriously reduces the reliability and ... to find out the mechanisms of the accelerated degradation in the f...

Pengcheng Li; Pucheng Pei; Yongling He

2013-11-01T23:59:59.000Z

260

E-Print Network 3.0 - aps beamline front Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 11 Policy& Procedure : 3.1.37 Summary: The beamline front end provides the UHV transition from the APS storage ring through the ratchet wall... to the portions of the...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - alice tpc front Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(ALICE) A.V.Khanzadeev, V.N.Nikulin, V.V.Poliakov, V.M.Samsonov Summary: in the Forward Muon Spectrometer. As mentioned above, the ALICE muon spectrometer consists of the front......

262

Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication  

E-Print Network (OSTI)

In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-...

Sch"onhof, M; Kesting, A; Helbing, D; Sch\\"onhof, Martin; Treiber, Martin; Kesting, Arne; Helbing, Dirk

2006-01-01T23:59:59.000Z

263

E-Print Network 3.0 - augmented hadronic light-front Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jagiellonski Collection: Physics 5 Vol. 32 (2001) ACTA PHYSICA POLONICA B No 12 QCD PHENOMENOLOGY AND LIGHT-FRONT Summary: of a hadrons in terms of a set of frame-independent...

264

DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Offers Conditional Loan Guarantee for Front End Nuclear DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in Idaho DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in Idaho May 20, 2010 - 12:00am Addthis Washington, DC - As part of a broad effort to expand the use of nuclear power in the United States and reduce carbon pollution, U.S. Secretary of Energy Steven Chu announced today the Department's first conditional commitment for a front-end nuclear facility. The $2 billion loan guarantee will support AREVA's Eagle Rock Enrichment Facility near Idaho Falls, Idaho, which will supply uranium enrichment services for the U.S. nuclear power industry. "Increasing uranium enrichment in the United States is critical to the nation's energy and national security," said Secretary Chu. "Existing

265

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

266

Do Cell Phones Cause Cancer?  

E-Print Network (OSTI)

Do cell phones, household electrical power wiring or appliance, or high voltage power lines cause cancer? Fuggedaboudit! No way! When pigs fly! When I'm the Pope! Don't text while you're driving, however, or eat your cell phone. All organisms absorb microwave radiation directly as thermal energy. In living organisms, the organisms' thermal control systems, including the blood flow, and various cooling mechanisms, such as sweating in humans, that work to maintain a stable body temperature rapidly transfer the absorbed energy to the environment. Any temperature rise is small or even unobserved. Any proposed mechanism by which cell phone radiation might cause cancer must begin with this fact. But the amount of radiation absorbed from a cell phone is less than that produced by normal metabolic processes, and much less than that produced by, for example, exercise. None of these normal metabolic processes cause cancer. Therefore, the much smaller amounts of energy from cell phones doesn't cause cancer either. All f...

Leikind, Bernard

2010-01-01T23:59:59.000Z

267

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

268

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

269

Solar Heating in Uppsala.  

E-Print Network (OSTI)

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

270

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

271

Solar heating in Colombia.  

E-Print Network (OSTI)

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

272

Photovoltaic roof heat flux  

E-Print Network (OSTI)

Effect of building integrated photovoltaics on microclimateof a building's integrated-photovoltaics on heating a n dgaps for building- integrated photovoltaics, Solar Energy

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

273

Passive solar space heating  

SciTech Connect

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

274

Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

275

Heat rejection system  

DOE Patents (OSTI)

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

276

Heat transfer dynamics  

SciTech Connect

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

277

ARM - Atmospheric Heat Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

278

Self Energy Correction in Light Front QED And Coherent State Basis  

E-Print Network (OSTI)

We discuss the calculation of fermion self energy correction in Light Front QED using a coherent state basis. We show that if one uses coherent state basis instead of fock basis to calculate the transition matrix elements, the true infrared divergences in electron mass renormalization $\\delta m^2$ get canceled up to $O(e^4)$ in Light Front gauge. We have also verified this cancellation in Feynman gauge up to $O(e^2)$.

Jai D. More; Anuradha Misra

2013-09-10T23:59:59.000Z

279

Fast-wave power flow along SOL field lines in NSTX and the associated power deposition profile across the SOL in front of the antenna  

Science Journals Connector (OSTI)

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape-off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

R.J. Perkins; J.-W. Ahn; R.E. Bell; A. Diallo; S. Gerhardt; T.K. Gray; D.L. Green; E.F. Jaeger; J.C. Hosea; M.A. Jaworski; B.P. LeBlanc; G.J. Kramer; A. McLean; R. Maingi; C.K. Phillips; M. Podest; L. Roquemore; P.M. Ryan; S. Sabbagh; F. Scotti; G. Taylor; J.R. Wilson

2013-01-01T23:59:59.000Z

280

Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna  

SciTech Connect

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

Perkins, Roy

2013-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure  

E-Print Network (OSTI)

On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure E. A. Ellinger* and C. To enhance heat transfer, the porous layers are located in regions where the melting rates for a pure the porous layer and the pure fluid layer cause strong variations in heat transfer, melt convection

Beckermann, Christoph

282

Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics  

Science Journals Connector (OSTI)

...cause a strong activation of the heat shock response, leading to...induction of the anti-apoptotic heat shock response seen with drugs...Plasma membrane drug efflux pumps elevate the cellular resistances...inhibitors of Plasmodium falciparum heat shock protein 90. J. Med...

2012-01-01T23:59:59.000Z

283

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

284

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

285

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

286

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

287

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

288

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

289

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network (OSTI)

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

290

Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.  

SciTech Connect

Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

Blanchat, Thomas K.; Hanks, Charles R.

2013-04-01T23:59:59.000Z

291

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

292

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

293

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

294

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

295

Microchannel heat sink assembly  

DOE Patents (OSTI)

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

296

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

297

Solar heating system  

DOE Patents (OSTI)

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

298

EXPLOSIONS CAUSED BY COMMONLY OCCURRING SUBSTANCES  

Science Journals Connector (OSTI)

...S. BILLINGS, Hygiene; J. MCKEEN CATTELL, Psychology; DANIEL G. BRINTON, J. W. POWELL, Anthropology. FRIDIY, MARCH...ofsodium nitrate and hypophosphite detonate on heat-ing, while Violette proposed to use a mix-ture of sodium nitrate and acetate...

Charles E. Munroe

1899-03-10T23:59:59.000Z

299

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

300

Radiant Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Radiant Heating Radiant Heating June 24, 2012 - 5:52pm Addthis In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. In-wall radiant heating in a house under construction near Denver. | Photo courtesy of Warren Gretz, NREL. Radiant heating systems supply heat directly to the floor or to panels in the wall or ceiling of a house. The systems depend largely on radiant heat transfer -- the delivery of heat directly from the hot surface to the people and objects in the room via infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating.

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

New York Home Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 of 15 5 of 15 Notes: The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a little slower and spread out over time compared to spot prices. Wholesale prices increased over 50 cents from January 17 to January 24, while retail increased 44 cents in New York. Diesel prices are showing a similar pattern to residential home heating oil prices, and are indicating that home heating oil prices may not have peaked yet, although spot prices are dropping. Diesel prices in New England and the Mid-Atlantic increased 30-40 cents January 24 over the prior week, and another 13-15 cents January 31. Spot prices plummeted January 31, closing at 82 cents per gallon, indicating the worst part of the crisis may be over, but it is still a

302

Fuzzy predictive control of district heating network  

Science Journals Connector (OSTI)

This paper presents a concept for controlling the supply temperature in district heating networks (DHNs) using model predictive control. Due to the inherent non-linearity in the response characteristics caused by varying flow rates the use of fuzzy dynamic matrix control (DMC) is proposed. The fuzzy partitions of the local finite impulse response (FIR) models are constructed by an axis-orthogonal, incremental partitioning scheme. Furthermore, a novel approach for determining future fuzzy trajectory based on heat load forecasts is implemented. It is demonstrated that the fuzzy DMC performs well for the case study considered. In addition, different set point strategies are applied and the results are evaluated with respect to operational costs. In this context it is shown that the trade-off between pumping and heat loss cost plays an important role in minimising overall costs.

S. Grosswindhager; M. Kozek; Andreas Voigt; Lukas Haffner

2013-01-01T23:59:59.000Z

303

AdS/QCD and Applications of Light-Front Holography  

SciTech Connect

Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.

Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

2012-02-16T23:59:59.000Z

304

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network (OSTI)

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

305

Chemical heat pump cools as well as heats  

Science Journals Connector (OSTI)

Chemical heat pump cools as well as heats ... Innovative heat pump uses methanol refrigerant, calcium chloride absorber to use and store solar energy for heating, air conditioning, hot water ... Though the EIC heat pump is similar in concept to other chemical heat pumps now being used or developed, it does offer a number of innovations, not the least of which are its novel refrigerant (methanol) and absorption medium (calcium chloride). ...

RON DAGANI

1980-10-20T23:59:59.000Z

306

Integrating preconcentrator heat controller  

DOE Patents (OSTI)

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

307

Potential for Heat Pumps in the U.S. Process Industries  

E-Print Network (OSTI)

POTENTIAL FOR HEAT PUMPS IN THE U. S. PROCESS INDUSTRIES A.P. ROSSITER, R.V. SEETHARAM AND S.M. RANADE TENSA Services Houston, ABSTRACT Two major criteria for successful heat pump installations in process plants are the "appropriate... placement" and "appropriate sizing" of the heat pump, consistent with the thermodynamics of the process. Failure to fulfil these conditions will result in the heat pump not achieving the anticipated savings and may even cause a net increase in process...

Rossiter, A. P.; Seetharam, R. V.; Ranade, S. M.

308

Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating  

Science Journals Connector (OSTI)

The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realizedfor the first timewith ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

K. Steinmetz et al.

1987-01-12T23:59:59.000Z

309

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

310

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Office of Environmental Management (EM)

Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

311

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

312

Heat treatment furnace  

DOE Patents (OSTI)

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

313

Molecular heat pump  

E-Print Network (OSTI)

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

314

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

315

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

316

Domestic Heating and Thermal Insulation  

Science Journals Connector (OSTI)

... DIGEST 133 of the Building Research Station, entitled "Domestic Heating and Thermal Insulation" (Pp. 7. London : H.M. Stationery Office, 1960. 4insulation, the standard of heating, the ventilation-rate and the length of the heating season ...

1960-09-17T23:59:59.000Z

317

2659 heat insulation [n] (2)  

Science Journals Connector (OSTI)

constr....(Protection against heat provided by heat-shielding materials in the outer walls of a building to prevent heat build-up in hot regions or in temperate climates during the summer. In tempera...

2010-01-01T23:59:59.000Z

318

Heat Transfer and Convection Currents  

Science Journals Connector (OSTI)

...October 1965 research-article Heat Transfer and Convection Currents D. C...convection in a medium with internal heat generation is discussed semi-quantitatively...States English United Kingdom 1966 Heat transfer and convection currents Tozer D...

1965-01-01T23:59:59.000Z

319

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

320

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications  

SciTech Connect

The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion.

Li, Yuheng; Shu, Deming; Kuzay, T.M.

1994-06-15T23:59:59.000Z

322

Advances in induction heating  

SciTech Connect

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

323

Solar Heating Contractor Licensing  

Energy.gov (U.S. Department of Energy (DOE))

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

324

Heating and cooling system  

SciTech Connect

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

325

Solar heated swimming pool  

SciTech Connect

A swimming pool construction incorporating solar heating means to heat the pool water to a desired level. The pool includes a surrounding safety fence supported by a plurality of fence supports which are hollow and which include internal passageways. The pool water is passed through the pool support passageways whereupon it absorbs heat from the sidewalls of the fence supports, the surfaces of which have been heated by solar radiation. The fence supports can be made of plastic or other materials, but preferably are dark for improved absorptivity. The pool water can be passed serially through each of the fence supports and suitable thermostat control means can be provided to limit the water temperature increase.

Pettit, F.M.

1984-10-02T23:59:59.000Z

326

Electron Heat Transport Measured  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, J. K. Anderson, G. Fiksel, B. Hudson, S. C. Prager, J. S. Sarff, and J. C. Wright...

327

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

328

Absorption Heat Pump Developments  

Science Journals Connector (OSTI)

The implementation of both new thermodynamic cycles and new suitable fluids makes it possible to considerably widen the capacity to recover and upgrade low level heat contained particularly in industrial therm...

G. Cohen; A. Rojey

1983-01-01T23:59:59.000Z

329

Curling in the heat  

Science Journals Connector (OSTI)

... heat sensor, shown here, has been developed by Jim Gimzewski and colleagues at IBM Riis-chlikon specifically for studies of surface reactions . A spin-off of the scanning probe ...

David A. King

1994-04-21T23:59:59.000Z

330

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

331

Heat flux limiting sleeves  

DOE Patents (OSTI)

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

332

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

333

Convective heat flow probe  

DOE Patents (OSTI)

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

334

Intrinsically irreversible heat engine  

DOE Patents (OSTI)

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

335

Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle  

SciTech Connect

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

Brett Carlsen; Emily Tavrides; Erich Schneider

2010-08-01T23:59:59.000Z

336

Light-front heavy-quark effective theory and heavy-meson bound states  

Science Journals Connector (OSTI)

The heavy-quark effective theory is developed on the light front. Based on this effective theory, a light-front heavy-meson bound state with definite spin and parity is constructed. Within the effective theory, the Isgur-Wise function is derived in terms of the asymptotic light-front bound state amplitudes in the limit mQ??; the result is a general expression for arbitrary recoil velocities. With the asymptotic form of the BSW amplitudes, the Isgur-Wise function is given by ?(v?v?)=1/v?v?. The slope at the zero-recoil point is ?2=-??(1)=1, in excellent agreement with the recent CLEO result of ?2=1.010.150.09.

Chi-Yee Cheung; Wei-Min Zhang; Guey-Lin Lin

1995-09-01T23:59:59.000Z

337

Detonative Propagation and Accelerative Expansion of the Crab Nebula Shock Front  

Science Journals Connector (OSTI)

The accelerative expansion of the Crab Nebulas outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected.

Yang Gao and Chung K. Law

2011-10-18T23:59:59.000Z

338

FEMP--Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

339

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

340

PreHeat: Controlling Home Heating Using Occupancy Prediction  

E-Print Network (OSTI)

@comp.lancs.ac.uk ABSTRACT Home heating is a major factor in worldwide energy use. Our system, PreHeat, aims to more, and measuring actual gas consumption and occupancy. In UK homes PreHeat both saved gas and reduced MissTime (the Home heating uses more energy than any other residential energy expenditure including air conditioning

Krumm, John

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

AdS/QCD and Light Front Holography: A New Approximation to QCD  

SciTech Connect

The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.

Brodsky, Stanley J.; de Teramond, Guy

2010-02-15T23:59:59.000Z

342

The Non-Maxwellian Distribution in a Shock Front and the Anomaly of the Chromospheric Temperature  

Science Journals Connector (OSTI)

An estimate is made of the departure from the Maxwellian distribution of the particle velocities in a shock front, as a function of the shock strength. Expressions are derived for the absorption and emission coefficients (for electronic free-free transitions in a completely ionized gas) in a shock front of given strength. The results obtained are applied to resolve the apparent conflict between the two electronic temperatures of the chromosphere, as indicated by optical (30 000K from emission line widths) and radio (10 000K from centimetric radiation intensity) observations of the sun.

Hari K. Sen

1953-11-15T23:59:59.000Z

343

Transient nature of salt movement with wetting front in an unsaturated soil  

E-Print Network (OSTI)

TRANSIENT NATURE OF SALT MOVEMENT WITH WETTING FRONT IN AN UNSATURATED SOIL A Thesis bY VISHWAS VINAYAK SOMAN Submitted to the Office of Graduate Studies of Texas A&M UniversitY in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1992 Major Subject: Agricultural Engineering TRANSIENT NATURE OF SALT MOVEMENT WITH WETTING FRONT IN AN UNSATURATED SOIL A Thesis VISHWAS VINAYAK SOMAN Approved as to style and content by: Marshall J. McFarland (Chair...

Soman, Vishwas Vinayak

1992-01-01T23:59:59.000Z

344

Modeling Multiple Causes of Carcinogenesis  

SciTech Connect

An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of multiple causes of carcinogenesis and shifts the risk-assessment logic to considerations of ?what dose does?? in contrast to the current process of the substance-specific question of ?what dose is?? Whether reactive oxygen is the proximate or contributing cause of disease or simply a better estimate of biologically effective dose, it has enormous advantages for improved risk- and policy-based decisions. Various estimates of immune system modulation will be given based on radiobiology.

Jones, T.D.

1999-01-24T23:59:59.000Z

345

Heat exchanger-accumulator  

DOE Patents (OSTI)

What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

Ecker, Amir L. (Dallas, TX)

1980-01-01T23:59:59.000Z

346

Definition: Heat | Open Energy Information  

Open Energy Info (EERE)

Heat Heat Jump to: navigation, search Dictionary.png Heat Heat is the form of energy that is transferred between systems or objects with different temperatures (flowing from the high-temperature system to the low-temperature system). Also referred to as heat energy or thermal energy. Heat is typically measured in Btu, calories or joules. Heat flow, or the rate at which heat is transferred between systems, has the same units as power: energy per unit time (J/s).[1][2][3][4] View on Wikipedia Wikipedia Definition In physics and chemistry, heat is energy in transfer between a system and its surroundings other than by work or transfer of matter. The transfer can occur in two simple ways, conduction, and radiation, and in a more complicated way called convective circulation. Heat is not a property

347

Heat and Power Systems Design  

E-Print Network (OSTI)

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

348

Acoustical heat pumping engine  

DOE Patents (OSTI)

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

349

Air heating system  

DOE Patents (OSTI)

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

350

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

351

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In  

Open Energy Info (EERE)

Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Details Activities (4) Areas (2) Regions (0) Abstract: High heat flow in the Zuni Mountains, New Mexico, U.S.A., has been explained by the possible presence of a buried felsic pluton. Alternately, high K, U, Th abundances have been proposed to account for part of the high heat flow. The mean radiogenic heat contribution for 60 samples of Precambrian core rocks is 7.23 μcal/gm-yr, which is slightly

352

Some comments on the possible causes of climate change  

E-Print Network (OSTI)

Climate change is an important current issue and there is much debate about the causes and effects. This article examines the changes in our climate, comparing the recent changes with those in the past. There have been changes in temperature, resulting in an average global rise over the last 300 years, as well as widespread melting of snow and ice, and rising global average sea level. There are many theories for the causes of the recent change in the climate, including some natural and some human influenced. The most widely believed cause of the climate change is increasing levels of Greenhouse gases in the atmosphere and as the atmosphere plays an important role in making our planet inhabitable, it is important to understand it in order to protect it. However, there are other theories for the cause of climate change, the Sun and cosmic rays, for example, are felt by some to have a significant role to play. There is also well-established evidence that the three Milankovitch cycles change the amount and alter the distribution of sunlight over the Earth, heating and cooling it. There are many influences on our planet and they all have differing levels of impact. The purpose of this article is to review the present overall position and urge open, reasoned discussion of the problem.

L. Padget; J. Dunning-Davies

2008-06-20T23:59:59.000Z

353

Silicon Solar Cells with Front Hetero-Contact and Aluminum Alloy Back Junction: Preprint  

SciTech Connect

We prototype an alternative n-type monocrystalline silicon (c-Si) solar cell structure that utilizes an n/i-type hydrogenated amorphous silicon (a-Si:H) front hetero-contact and a back p-n junction formed by alloying aluminum (Al) with the n-type Si wafer.

Yuan, H.-C.; Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal, L.; Wang, Q.; Branz, H. M.; Meier, D. L.

2008-05-01T23:59:59.000Z

354

Average crack front velocity during subcritical fracture propagation in a heterogeneous medium  

E-Print Network (OSTI)

Average crack front velocity during subcritical fracture propagation in a heterogeneous medium relaxation tests, exploring subcritical to critical regimes. Transparency of the material (PMMA) allows kinetic crack propagation is usually referred to as sub-critical crack growth or sub- critical regime

Paris-Sud XI, Université de

355

FORT HALL INDIAN RESERVATION PHONE (208) 239-4550 (Front Desk)  

E-Print Network (OSTI)

FORT HALL INDIAN RESERVATION PHONE (208) 239-4550 (Front Desk) or (208) 239-4551 FAX (208) 478 documents from the Shoshone Bannock Tribes point by point response (1 through 9)to ISRP review comments projects. Specific Points Technical Justification, Program Significance and consistency, and Project

356

report 2013 Front cover image: Greenough River Solar Farm, Western Australia.  

E-Print Network (OSTI)

. From jobs and investment in regional areas to solar panels, solar hot water and high efficiencyClean energy australia report 2013 #12;Front cover image: Greenough River Solar Farm, Western Australia. Courtesy of First Solar. #12;table of Contents 01 introduCtion 05 exeCutive summary 07 snapshot

Green, Donna

357

Integrated vehicle dynamics control via coordination of active front steering and rear braking  

E-Print Network (OSTI)

front steering and rear braking in a driver- assist system for vehicle yaw control. The proposed control system aims at stabilizing the vehicle while achieving a desired yaw rate. During normal driving braking could be used for yaw rate control. An active suspension system, by controlling the wheel load

Paris-Sud XI, Université de

358

Geodesic Remeshing Using Front Propagation Gabriel Peyre (peyre@cmapx.polytechnique.fr)  

E-Print Network (OSTI)

Geodesic Remeshing Using Front Propagation Gabriel Peyr´e (peyre@cmapx.polytechnique.fr) CMAP modeling and processing that uses only fast geodesic computations. The basic building block, an intrinsic algo- rithm for computing geodesic centroidal tessellations, and a fast and robust method

Paris-Sud XI, Université de

359

Hierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults  

E-Print Network (OSTI)

shown [2] that 41% of failures in automotive electronics could not be identified by functional diagnosisHierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults h.g.kerkhoff@utwente.nl Abstract: The semiconductor industry for automotive applications is growing

Wieringa, Roel

360

Post-fire Erosion in the Colorado Front Range Lee H. MacDonald  

E-Print Network (OSTI)

Post-fire Erosion in the Colorado Front Range Lee H. MacDonald Department of Forest, Rangland and Watershed Stewardship Colorado State University, Fort Collins, CO 80523 Over the past few years there has been a large increase in the number of acres burned by wildfires in the western U.S. In addition

MacDonald, Lee

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Linking drainage front morphology with gaseous diffusion in unsaturated porous media: A lattice Boltzmann study  

E-Print Network (OSTI)

porous media is analyzed using the lattice Boltzmann method LBM . Flow regimes for immiscible in a physical experiment such as a micromodel. In this study, we use the lattice Boltzmann method LBMLinking drainage front morphology with gaseous diffusion in unsaturated porous media: A lattice

Shor, Leslie McCabe

362

Lattice Boltzmann BGK simulation of non-linear sound waves: The development of a shock front  

E-Print Network (OSTI)

Lattice Boltzmann BGK simulation of non-linear sound waves: The development of a shock front J. M Boltzmann model to simulating non-linear propagative acoustic waves is considered. The lattice Boltzmann propagation at highReynolds numberis considered. These results suggest that the lattice Boltzmann model

Boyer, Edmond

363

A discontinuous Galerkin front tracking method for two-phase flows with surface tension  

E-Print Network (OSTI)

A discontinuous Galerkin front tracking method for two-phase flows with surface tension Vinh with surface tension. ? 2009 Elsevier Ltd. All rights reserved. 1. Introduction Interfaces separating regions tension. In this case, the interface separates two different fluids and the effect of surface tension re

Peraire, Jaime

364

A front-tracking algorithm for accurate representation of surface tension  

E-Print Network (OSTI)

A front-tracking algorithm for accurate representation of surface tension Stephane Popinet particularly, we focus our attention on obtaining an accurate description of the surface-tension terms and the associated pressure jump. We consider the stationary Laplace solution for a bub- ble with surface tension

Frey, Pascal

365

Toto the Robot Figure 1. Toto, front view. Figure 2. Toto, rear view.  

E-Print Network (OSTI)

Toto the Robot Figure 1. Toto, front view. Figure 2. Toto, rear view. Toto the Robot was created so in the back to allow the tape- recorder to be held inside, and the figure was spray-painted. With his metallic a robot, helps account for his lack of verbal charm. Second, some younger children may recognize in Toto

Indiana University

366

CSCI 3060U/ENGR 3980U -Winter 2013 Course Project Assignment #1 -Front End Requirements  

E-Print Network (OSTI)

and in true XP fashion represent those requirements as a set of requirements tests. Create and organize a complete set of requirements tests for the Front End of the Ticket Selling Service, to test for every required behaviour. Do not write any programs yet. Each test should be a complete test session input stream

Bradbury, Jeremy S.

367

OPTIMIZING MUON CAPTURE AND TRANSPORT FOR A NEUTRINO FACTORY/MUON COLLIDER FRONT END  

E-Print Network (OSTI)

OPTIMIZING MUON CAPTURE AND TRANSPORT FOR A NEUTRINO FACTORY/MUON COLLIDER FRONT END Hisham K In the current baseline scheme of the Neutrino Fac- tory/Muon Collider a muon beam from pion decay is pro- duced of the field along the beam, were varied to maximize the number of muons delivered to the Cooling Channel

McDonald, Kirk

368

Fronts in the Southwestern Gulf of Maine5 Nicholas W. Woods1,2  

E-Print Network (OSTI)

Autonomous Systems Laboratory,12 Physical Oceanography Department13 Woods Hole Oceanographic Institution14 15, and autonomous underwater glider observations. Density fronts are found throughout47 the southwestern GOM during inversely upon the time-integrated regional wind stress magnitude and49 the rate of river discharge

Fratantoni, David

369

ICE Professionals Limited Email: dean@theicebase.com Ph: (09) 557 1450 Front End Developer  

E-Print Network (OSTI)

ICE Professionals Limited Email: dean@theicebase.com Ph: (09) 557 1450 Front End Developer, this is the job for you. Responsibilities: Producing high quality HTML/CSS and JavaScript solutions. Providing to produce dynamic pages If you are interested in this role, send your CV and academic transcript to Dean

Sun, Jing

370

CIAO-HELLO information Centre Helpdesk, front office, person-to-person interaction  

E-Print Network (OSTI)

CIAO-HELLO information Centre Helpdesk, front office, person-to-person interaction and welcome to foreign students 5th Erasmus Staff Mobility Week 2014 Rome 23rd - 27th, June 2014 #12;CIAO-HELLO of student experience exchanges A rise in the international scenario at Sapienza Pagina 224/06/2014CIAO-HELLO

Di Pillo, Gianni

371

The Influence of Canyon Winds on Flow Fields near Colorado's Front Range  

Science Journals Connector (OSTI)

A network of sodars was operated in the late summer and fall of 1993 to monitor the occurrence of nocturnal winds from a canyon in Colorado's Front Range near the Rocky Flats Plant and to determine the influence of those winds on the flow fields ...

J. C. Doran

1996-04-01T23:59:59.000Z

372

The Energy Spectrum of Fronts: Time Evolution of Shocks in Burgers Equation  

Science Journals Connector (OSTI)

Andrews and Hoskins used semigeostrophic theory to argue that the energy spectrum of a front should decay like the ?8/3 power of the wavenumber. They note, however, that their inviscid analysis is restricted to the very moment of breaking; that ...

John P. Boyd

1992-01-01T23:59:59.000Z

373

Export of Asian pollution during two cold front episodes of the TRACE-P experiment  

E-Print Network (OSTI)

of the Asian outflow by fragmenting the pollution plume. INDEX TERMS: 0365 Atmospheric Composition and Atmospheric Dynamics: Mesoscale meteorology; KEYWORDS: warm conveyor belt, TRACE-P, pollution Citation: MariExport of Asian pollution during two cold front episodes of the TRACE-P experiment C. Mari

Palmer, Paul

374

RESEARCH ARTICLES Genetic Assessment of a White-Collared Red-Fronted  

E-Print Network (OSTI)

RESEARCH ARTICLES Genetic Assessment of a White-Collared ? Red-Fronted Lemur Hybrid Zone examined a purported lemur (Eulemur fulvus rufus ? E. albocollaris) hybrid zone at Andringitra, Madagascar. albocollaris (n = 16), E.f. rufus (n = 14), E. collaris (n = 9), and purported hybrids from Andringitra (n = 21

DeSalle, Rob

375

Anisotropy in growth-front roughening Y.-P. Zhao, G.-C. Wang, and T.-M. Lu  

E-Print Network (OSTI)

Anisotropy in growth-front roughening Y.-P. Zhao, G.-C. Wang, and T.-M. Lu Department of Physics physical processes, evaporation/condensation and surface diffusion, to describe the roughening consider the effect of growth-front roughening due to the anisotropy in surface diffusion barrier Schwoebel

Wang, Gwo-Ching

376

Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas  

Science Journals Connector (OSTI)

...indicates the centre of a 5 km distance class. Grey bar, AI negative; black bar...of avian influenza virus infection in greater white-fronted geese in their winter...we link capture-resighting data of greater white-fronted geese Anser albifrons...

2010-01-01T23:59:59.000Z

377

Geographical Coincidence of High Heat Flow, High Seismicity, and Upwelling, with Hydrocarbon Deposits, Phosphorites, Evaporites, and Uranium Ores  

Science Journals Connector (OSTI)

...sea and seismicity and geothermal heat flux. We suggest...upwelling caused by the geothermal heat (2), which brings...sedimentary rocks. High geothermal heat fluxes correlate...Lawrence River, as well as a fourth line along...Arizona, Montana, New Mexico, and Utah. Lignites...

L. M. Libby; W. F. Libby

1974-01-01T23:59:59.000Z

378

Heat driven heat pump using paired ammoniated salts  

SciTech Connect

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

379

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

380

Planetary heat flow measurements  

Science Journals Connector (OSTI)

...ESA's Rosetta mission towards comet Churyumov-Gerasimenko. It...Heat flow measurements on comets have a different motivation...penetrator is by no means limited to comets; it has also been tested in...measurement. Currently, a landing on Mercury within the framework...

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Heating and Cooling  

Science Journals Connector (OSTI)

...radiation during good weather are not very high, and...Atmospheric Administration weather ser-vice measures total...largely to experi-mental operation of 3-ton LiBr-H2O...a million solar water heaters are in use in these countries...air House heating load Cold air return 'S T~rgeo...

John A. Duffie; William A. Beckman

1976-01-16T23:59:59.000Z

382

Water-Heating Dehumidifier  

A small appliance developed at ORNL dehumidifies air and then recycles heat to warm water in a water heater. The device circulates cool, dry air in summer and warm air in winter. In addition, the invention can cut the energy required to run a conventional water heater by an estimated 50 per cent....

2010-12-08T23:59:59.000Z

383

INSULATION OF HEATING SYSTEMS  

Science Journals Connector (OSTI)

... C. PALLOT gave a Cantor Lecture to the Royal Society of Arts on Thermal Insulation at Medium Temperature on November 23 ; the lecture, which included many topics of ... many topics of current interest, has now been published1. In a bulletin on heat insulation issued by the Ministry of Fuel and Power, it was pointed out that "In ...

1943-05-22T23:59:59.000Z

384

Exotic heat PDE's  

E-Print Network (OSTI)

Exotic heat equations that allow to prove the Poincar\\'e conjecture, some related problems and suitable generalizations too are considered. The methodology used is the PDE's algebraic topology, introduced by A. Pr\\'astaro in the geometry of PDE's, in order to characterize global solutions.

Agostino Prstaro

2010-06-23T23:59:59.000Z

385

Roberts's Heat and Thermodynamics  

Science Journals Connector (OSTI)

... the last edition of the late Dr. J. K. Roberts's "Heat and Thermodynamics" appeared. The new material incorporated in this, the fourth edition, by Dr. ... ', but simply because new problems have afforded such excellent examples of the application of thermodynamics that their study must surely help the reader to a better understanding of the subject ...

G. R. NOAKES

1952-01-12T23:59:59.000Z

386

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

387

Wastewater heat recovery apparatus  

DOE Patents (OSTI)

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

388

Water Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

389

Causes and Control of Wood Decay,  

E-Print Network (OSTI)

1 Causes and Control of Wood Decay, Degradation & Stain #12;2 Contents Moisture .................................................................................3 Wood Degradation: Causes and Control..............................4 Weathering......................................................................................................4 Naturally Decay-resistant Species...........................................................5 Wood

390

Integrated solar heating unit  

SciTech Connect

This patent describes an integral solar heating unit with an integral solar collector and hot water storage system, the unit comprising: (a) a housing; (b) a flat plate solar collector panel mounted in the housing and having a generally horizontal upper edge and an uninsulated, open back surface; (c) a cylindrical hot water tank operatively connected to the solar collector panel and mounted in the housing generally parallel to and adjacent to the upper edge; (d) the housing comprising a hood around the tank a pair of side skirts extending down at the sides of the panel. The hood and side skirts terminate at lower edges which together substantially define a plane such that upon placing the heating unit on a generally planar surface, the housing substantially encapsulates the collector panel and hot water tank in a substantially enclosed air space; (e) the collector including longitudinally extended U-shaped collector tubes and a glazed window to pass radiation through to the collector tubes, and a first cold water manifold connected to the tubes for delivering fresh water thereto and a second hot water manifold connected to the tubes to remove heated water therefrom. The manifolds are adjacent and at least somewhat above and in direct thermal contact with the tank; and, (f) the skirts and hood lapping around the collector panel, exposing only the glazed window, such that everything else in the heating unit is enclosed by the housing such that heat emanating from the uninsulated, open back face of the collector and tank is captured and retained by the housing to warm the manifolds.

Larkin, W.J.

1987-01-20T23:59:59.000Z

391

Berry-Phase induced Heat Pumping and its Impact on the Fluctuation Theorem  

E-Print Network (OSTI)

Applying adiabatic, cyclic two parameter modulations we investigate quantum heat transfer across an anharmonic molecular junction contacted with two heat baths. We demonstrate that the pumped heat typically exhibits a Berry phase effect in providing an additional geometric contribution to heat flux. Remarkably, a robust fractional quantized geometric phonon response is identified as well. The presence of this geometric phase contribution in turn causes a breakdown of the fluctuation theorem of the Gallavotti-Cohen type for quantum heat transfer. This can be restored only if (i) the geometric phase contribution vanishes and if (ii) the cyclic protocol preserves the detailed balance symmetry.

Ren, Jie; Li, Baowen

2010-01-01T23:59:59.000Z

392

Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns  

SciTech Connect

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

Tang, L.H.; Zeng, M.; Wang, Q.W. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2009-07-15T23:59:59.000Z

393

The Heating of the ICM: Energy Crisis and viable solutions  

E-Print Network (OSTI)

X-ray observations indicate that non-gravitational processes play a key role in the thermodynamics of the Intra Cluster Medium (ICM). The effect of non-gravitational processes is imprinted in the ICM as an entropy minimum, whose effects are visible in the Luminosity-Temperature relation and in the Entropy-Temperature relation. However, the X-ray emission alone cannot discriminate between different mechanisms and sources of heating. There are no answers at present to the following questions: how much non-gravitational energy per baryons is present in the ICM? When was this energy injected? Which are the sources of heating? The embarrassment in front of these questions is amplified by the fact that the most viable sources of heating, SNae and stellar winds, seem to be inefficient in bringing the ICM to the observed entropy level. We may call it the energy crisis. Here we review the main aspects of this crisis, listing possible solutions, including other sources, like AGNs and Radio Galaxies, or other mechanisms, like large scale shocks and selective cooling.

Paolo Tozzi

2001-09-05T23:59:59.000Z

394

Prospects of energy savings in residential space heating  

Science Journals Connector (OSTI)

This paper presents some insight to the problem of heating of housing in Jordan. Residential space and water heating are dependent particularly upon the combustion of fossil fuels, which thereby contribute significantly to air pollution and the build-up of carbon dioxide in the atmosphere. The results of a recent survey were used to evaluate the energy demand and conservation in Jordanian residential buildings. Space heating accounts for 61% of the total residential energy consumption with kerosene being the most popular fuel used, followed by liquefied petroleum gas (LPG), for heating purposes. Unvented combustion appliances employed to provide space heating produce high levels of combustion by-products that often exceed acceptable concentrations, degraded indoor air quality and cause unnecessary exposure to toxic gases such as carbon monoxide. During 1999, the number of accidents in households due to the use of different energy forms accounted for about 40% of all accidents, except road accidents, in Jordan. In light of the fact that only 5% of dwellings in Jordan have been provided with wall insulation and none employ roof insulation, the overall heat transfer coefficients, and consequently heating loads, were estimated for a typical single house using different constructions for external walls. It is concluded that space heating load can be reduced by about 50%, when economically-viable insulating measures are applied to the building envelopes, i.e. to ceilings and walls. These lead to corresponding reductions in fossil fuels consumption and in emissions of air pollutants.

Jamal O Jaber

2002-01-01T23:59:59.000Z

395

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

397

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

398

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

399

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

400

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

402

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network (OSTI)

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

403

Cryogenic Fluid Flow Heat Transfer in a Porous Heat Exchanger  

Science Journals Connector (OSTI)

The recent utilization of porous heat exchangers in various key industries has aroused considerable interest in the heat transfer and fluid dynamics processes in channel flows involving suction...1], suction with...

L. L. Vasiliev; G. I. Bobrova; S. K. Vinokurov

1978-01-01T23:59:59.000Z

404

Convective Heat Transfer and Fluid Dynamics in Heat Exchanger Applications  

Science Journals Connector (OSTI)

This article concerns the local structure of flow and temperature fields as well as overall heat transfer coefficients and pressure drops in flow passages of relevance for heat exchangers. Results from investi...

Bengt Sundn

1999-01-01T23:59:59.000Z

405

Solar Heating with Annual Heat Storage Modelling and Practice  

Science Journals Connector (OSTI)

Central solar heating systems with seasonal heat storage are recognized as one of the most potential forms of solar energy utilization at northern latitudes. Because of ... and energy flows of a full-scale distri...

P. D. Lund; S. S. Peltola

1984-01-01T23:59:59.000Z

406

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network (OSTI)

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

407

Waste Heat Management Options: Industrial Process Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

itself * Waste heat recovery or auxiliary or adjoining systems within a plant * Waste heat to power conversion Recycle Copyrighted - E3M Inc. August 20, 2009 Arvind Thekdi, E3M...

408

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

409

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

410

Heating and cooling performance analysis of a ground source heat pump system in Southern Germany  

Science Journals Connector (OSTI)

Abstract This paper examines thermal performance of a ground source heat pump (GSHP) system. The GSHP system was installed in an office building in Nuremberg city of Germany. In order to evaluate system performance the GSHP system has been continuously monitored for 4 years. Heating and cooling performance of the GSHP system is analyzed based on the accumulated data. Major findings of this work include: (1) coefficient of performance (COP) is estimated to be 3.9 for a typical winter day and energy efficiency ratio (EER) is assessed to be 8.0 for a typical summer day. These results indicate that the GSHP system has a higher efficiency for building cooling than building heating. (2) For a long-term period, the seasonal energy efficiency ratio (SEER) of the GSHP system is observed to increase by 8.7% annually, whereas the seasonal COP is decreased by 4.0% over a 4-year period. The heating and cooling performance of the GSHP system migrates in opposite trend is caused by the unevenly distributed heating and cooling load of the building. This phenomenon deserves serious attention in the design of future GSHP systems in order to avoid the reducing of energy efficiency over long-term operation.

Jin Luo; Joachim Rohn; Manfred Bayer; Anna Priess; Lucas Wilkmann; Wei Xiang

2015-01-01T23:59:59.000Z

411

Eastgate seen from the south-east, in front of Harare's glass and concrete towers  

E-Print Network (OSTI)

;Roofscapef p · Chimneys for air extract · Solar panels for water heating · Window hoods for sun shielding Gl

Behmer, Spencer T.

412

Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX.  

Science Journals Connector (OSTI)

...activity. It therefore appeared that RB1952 car- 3 ried two mutations, one designated...MMC did trast, bot (22) were strain car Siegel an( Protein some stag occur, sin...952. A culture of strain RB1034 growing defective (22), Kill+ recombinants were iso...

R S Buxton

1976-10-01T23:59:59.000Z

413

Heat engine Device that transforms heat into work.  

E-Print Network (OSTI)

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

414

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

415

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

416

Edge Plasma Heating via Cyclotron Harmonic Interaction  

Science Journals Connector (OSTI)

Energy absorption in the edge region via cyclotron harmonic interaction during plasma heating with the ion-cyclotron range of frequencies is examined. It is shown that the electric field ripple caused by the closely spaced Faraday-shield conductors gives rise to large effective perpendicular wave numbers, resulting in strong cyclotron harmonic damping. For the parameters of the ASDEX tokamak, carbon impurity ions with Z=5 and an initial perpendicular energy of 1 eV could be accelerated to energies in excess of 1 keV in less than 10 ?s (corresponding to about 100 cyclotron orbits).

Satish Puri

1988-08-22T23:59:59.000Z

417

Faculty Positions Heat Transfer and  

E-Print Network (OSTI)

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

418

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. zil

1987-01-01T23:59:59.000Z

419

Complex Compound Chemical Heat Pumps  

E-Print Network (OSTI)

industrial heat pumps. The main emphasis was directed towards a conceptual temperature amplifier bench scale prototype design, which allows for the conversion to heat amplifier operation by the mere exchange of adsorbent working fluid component without...

Rockenfeller, U.; Langeliers, J.; Horn, G.

420

Heat Pumps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhotoYinYang. If you live in a...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

422

Residential heating oil price decreases  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ago, based on the...

423

Residential heating oil price decreases  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

424

Residential heating oil price decreases  

Gasoline and Diesel Fuel Update (EIA)

heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

425

Residential heating oil prices decline  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

426

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the...

427

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

05, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

428

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

429

Residential heating oil prices decrease  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ago, based on the...

430

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ago, based on the...

431

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

432

Residential heating oil price decreases  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

433

Residential heating oil prices decline  

Annual Energy Outlook 2012 (EIA)

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

434

Residential heating oil price decreases  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

435

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

436

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

437

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

438

Residential heating oil prices decrease  

U.S. Energy Information Administration (EIA) Indexed Site

5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

439

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

440

Residential heating oil prices available  

NLE Websites -- All DOE Office Websites (Extended Search)

ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at 3.48 per gallon,...

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heat Pipes: An Industrial Application  

E-Print Network (OSTI)

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

442

Can You Afford Heat Recovery?  

E-Print Network (OSTI)

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

443

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

444

Heating Oil and Propane Update  

NLE Websites -- All DOE Office Websites (Extended Search)

data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey...

445

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

446

Solar Water Heating  

NLE Websites -- All DOE Office Websites (Extended Search)

publication provides basic informa- publication provides basic informa- tion on the components and types of solar water heaters currently available and the economic and environmental benefits of owning a system. Although the publica- tion does not provide information on building and installing your own system, it should help you discuss solar water heating systems intelligently with a solar equipment dealer. Solar water heaters, sometimes called

447

[Waste water heat recovery system  

SciTech Connect

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

448

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

449

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

450

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

451

Spring 2014 Heat Transfer -1  

E-Print Network (OSTI)

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

452

5. Heat transfer Ron Zevenhoven  

E-Print Network (OSTI)

1/120 5. Heat transfer Ron Zevenhoven ?bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B?88 ?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer ?bo Akademi

Zevenhoven, Ron

453

Energy 101: Geothermal Heat Pumps  

SciTech Connect

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

454

Heat Pump Strategies and Payoffs  

E-Print Network (OSTI)

After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

Gilbert, J. S.

1982-01-01T23:59:59.000Z

455

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

456

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers (EERE)

Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

457

Water Heating Standing Technical Committee Presentation | Department...  

Energy Savers (EERE)

Water Heating Standing Technical Committee Presentation Water Heating Standing Technical Committee Presentation This presentation outlines the goals of the Water Heating Standing...

458

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forsimulation of heat and moisture transfer in a human-

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

459

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

460

Reduce Radiation Losses from Heating Equipment  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet describes how to save process heating energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Process Heating Systems | Department of Energy  

Office of Environmental Management (EM)

Efficiency in Process Heating Systems Roadmap for Process Heating Technology Reduce Natural Gas Use in Your Industrial Process Heating Systems Save Energy Now in Your Process...

462

Heat Waves, Global Warming, and Mitigation  

E-Print Network (OSTI)

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HW aves B. Heat-related

Carlson, Ann E.

2008-01-01T23:59:59.000Z

463

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

464

On relation between rest frame and light-front descriptions of quarkonium  

E-Print Network (OSTI)

In this paper we study the relation between the light-front (infinite momentum) and rest-frame descriptions of quarkonia. While the former is more convenient for high-energy production, the latter is usually used for the evaluation of charmonium properties. In particular, we discuss the dynamics of a relativistically moving system with nonrelativistic internal motion and give relations between rest frame and light-front potentials used for the description of quarkonium states. We consider two approximations, first the small coupling regime, and next the nonperturbative small binding energy approximation. In both cases we get consistent results. Our results could be relevant for the description of final state interactions in a wide class of processes, including quarkonium production on nuclei and plasma. Moreover, they can be extended to the description of final state interactions in the production of weakly bound systems, such as for example the deuteron.

Kopeliovich, B Z; Schmidt, Ivan; Siddikov, M

2015-01-01T23:59:59.000Z

465

Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media  

E-Print Network (OSTI)

Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains.

J. I. Arana; L. L. Bonilla; H. T. Grahn

2011-09-30T23:59:59.000Z

466

Engineering Spectral Control Using Front Surface Filters for Maximum TPV Energy Conversion System Performance  

SciTech Connect

Energy conversion efficiencies of better than 23% have been demonstrated for small scale tests of a few thermophotovoltaic (TPV) cells using front surface, tandem filters [1, 2]. The engineering challenge is to build this level of efficiency into arrays of cells that provide useful levels of energy. Variations in cell and filter performance will degrade TPV array performance. Repeated fabrication runs of several filters each provide an initial quantification of the fabrication variation for front surface, tandem filters for TPV spectral control. For three performance statistics, within-run variation was measured to be 0.7-1.4 percent, and run-to-run variation was measured to be 0.5-3.2 percent. Fabrication runs using a mask have been shown to reduce variation across interference filters from as high as 8-10 percent to less than 1.5 percent. Finally, several system design and assembly approaches are described to further reduce variation.

T Rahmlow, Jr; J Lazo-Wasem, E Gratrix; J Azarkevich; E Brown; D DePoy; D Eno; P Fourspring; J Parrington; R Mahorter; B Wernsman

2004-10-14T23:59:59.000Z

467

Engineering Spectral Control Using Front Surface Filters for Maximum TPV Energy Conversion System Performance  

SciTech Connect

Energy conversion efficiencies of better than 23% have been demonstrated for small scale tests of a few thermophotovoltaic (TPV) cells using front surface, tandem filters [1,2]. The engineering challenge is to build this level of efficiency into arrays of cells that provide useful levels of energy. Variations in cell and filter performance will degrade TPV array performance. Repeated fabrication runs of several filters each provide an initial quantification of the fabrication variation for front surface, tandem filters for TPV spectral control. For three performance statistics, within-run variation was measured to be 0.7-1.4 percent, and run-to-run variation was measured to be 0.5-3.2 percent. Fabrication runs using a mask have been shown to reduce variation across interference filters from as high 8-10 percent to less than 1.5 percent. Finally, several system design and assembly approaches are described to further reduce variation.

TD Rahmlaw, Jr; JE Lazo-Wasem; EJ Gratrix; JJ Azarkevich; EJ Brown; DM DePoy; DR Eno; PM Fourspring; JR Parrington; RG Mahorter; B Wernsman

2004-08-04T23:59:59.000Z

468

On relation between rest frame and light-front descriptions of quarkonium  

E-Print Network (OSTI)

In this paper we study the relation between the light-front (infinite momentum) and rest-frame descriptions of quarkonia. While the former is more convenient for high-energy production, the latter is usually used for the evaluation of charmonium properties. In particular, we discuss the dynamics of a relativistically moving system with nonrelativistic internal motion and give relations between rest frame and light-front potentials used for the description of quarkonium states. We consider two approximations, first the small coupling regime, and next the nonperturbative small binding energy approximation. In both cases we get consistent results. Our results could be relevant for the description of final state interactions in a wide class of processes, including quarkonium production on nuclei and plasma. Moreover, they can be extended to the description of final state interactions in the production of weakly bound systems, such as for example the deuteron.

B. Z. Kopeliovich; E. Levin; Ivan Schmidt; M. Siddikov

2015-01-07T23:59:59.000Z

469

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

470

Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks  

E-Print Network (OSTI)

We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" which appears in the frame of an asteroid immersed in a fully-ionized, magnetized solar wind and drives currents through its interior. However we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by: (1) correcting the conceptual error by self consistently calculating the electric field in and around the boundary layer at the asteroid-plasma i...

Menzel, Raymond L

2013-01-01T23:59:59.000Z

471

Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front  

DOE Patents (OSTI)

Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

Dawson, John M. (Pacific Palisades, CA); Mori, Warren B. (Hermosa Beach, CA); Lai, Chih-Hsiang (So. Pasadena, CA); Katsouleas, Thomas C. (Malibu, CA)

1998-01-01T23:59:59.000Z

472

Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front  

DOE Patents (OSTI)

Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

1998-07-14T23:59:59.000Z

473

Beamline Front-End for Minipole Undulator at the Photon Factory Storage Ring  

SciTech Connect

The straight-section upgrade project of the Photon Factory created four new short straight sections capable of housing in-vacuum minipole undulators. The first to third minipole undulators SGU no. 17, SGU no. 03 and SGU no. 01 were installed at the 2.5-GeV Photon Factory storage ring in 2005, 2006 and 2009, respectively. The beamline front ends for SGU0 no. 3 and SGU0 no. 1 are described in this paper.

Miyauchi, Hiroshi; Tahara, Toshihiro; Asaoka, Seiji [Photon Factory, High Energy Accelerator Research Organization, KEK Oho, Tsukuba, Ibakaki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

474

AdS/CFT and Light-Front Holography: A Theory of Strong Interactions  

SciTech Connect

Recent developments in the theory of strong interactions are discussed in the framework of the AdS/CFT duality between string theories of gravity in a higher dimension Anti-de Sitter space and conformal quantum field theories in physical space-time. This novel theoretical approach, combined with 'light-front holography', leads to new insights into the quark and gluon structure of hadrons and a viable first approximation to quantum chromodynamics, the fundamental theory of the strong and nuclear interactions.

Brodsky, Stanley J.; /SLAC; Teramond, Guy F.de; /Costa Rica U.

2009-02-23T23:59:59.000Z

475

Absorption Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

476

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

477

Tips: Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

478

Absorption Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

479

Heat induces gene amplification in cancer cells  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States) [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China)] [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States) [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)] [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States)] [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States)] [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)] [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

2012-10-26T23:59:59.000Z

480

Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal  

Open Energy Info (EERE)

Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Away from the Range Front: Intra-Basin Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project applies the known relationship between fault permeability and the mechanics of rocks under stress to reduce risks in exploration well targeting. Although the concept has been applied before, the project would innovate by dramatically increasing the detail and types of information on the mechanical state of the target area using a variety of low-cost measurements in advance of deep drilling. In addition to the mechanical data, holes into the shallow warm aquifer related to the thermal anomaly will allow analysis of chemical indicators of upflow as a more direct measure of the location of fault permeability.

Note: This page contains sample records for the topic "front caused heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Distribution of the molecular absorption in front of the quasar B0218+357  

E-Print Network (OSTI)

The line of sight to the quasar B0218+357, one of the most studied lensed systems, intercepts a z=0.68 spiral galaxy, which splits its image into two main components A and B, separated by ca. 0.3'', and gives rise to molecular absorption. Although the main absorption component has been shown to arise in front of image A, it is not established whether some absorption from other velocity components is also occuring in front of image B. To tackle this question, we have observed the HCO+(2-1) absorption line during the commissioning phase of the new very extended configuration of the Plateau de Bure Interferometer, in order to trace the position of the absorption as a function of frequency. Visibility fitting of the self-calibrated data allowed us to achieve position accuracy between ~12 and 80 mas per velocity component. Our results clearly demonstrate that all the different velocity components of the HCO+(2-1) absorption arise in front of the south-west image A of the quasar. We estimate a flux ratio fA/fB = 4.2 (-1.0;+1.8 at 106 GHz.

S. Muller; M. Guelin; F. Combes; T. Wiklind

2007-04-07T23:59:59.000Z

482

Design of a Portable Test Facility for the ATLAS Tile Calorimeter Front-End Electronics Verification  

E-Print Network (OSTI)

The stand-alone test-bench deployed in the past for the verification of the Tile Calorimeter (TileCal) front-end electronics is reaching the end of its life cycle. A new version of the test-bench has been designed and built with the aim of improving the portability and exploring new technologies for future versions of the TileCal read-out electronics. An FPGA based motherboard with an embedded hardware processor and a few dedicated daughter-boards are used to implement all the functionalities needed to interface with the front-end electronics (TTC, G-Link, CANbus) and to verify the functionalities using electronic signals and LED pulses. The new device is portable and performs well, allowing the validation in realistic conditions of the data transmission rate. We discuss the system implementation and all the tests required to gain full confidence in the operation of the front-end electronics of the TileCal in the ATLAS detector.

Kim, H Y; The ATLAS collaboration; Carrio, F; Moreno, P; Masike, T; Reed, R; Sandrock, C; Schettino, V; Shalyugin, A; Solans, C; Souza, J; Suter, R; Usai, G; Valero, A

2013-01-01T23:59:59.000Z

483

Resource intensities of the front end of the nuclear fuel cycle  

SciTech Connect

This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

Schneider, E.; Phathanapirom, U. [The University of Texas at Austin, 1 University Station C2200, Austin TX 78712 (United States); Eggert, R.; Collins, J. [Colorado School of Mines, 1500 Illinois St., Golden CO 80401 (United States)

2013-07-01T23:59:59.000Z

484

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fouriers law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

485

Environmentally Friendly Systems: Earth Heat Pump System with Vertical Pipes for Heat Extraction for Domestic Heating and Cooling  

Science Journals Connector (OSTI)

Geothermal heat pumps (GSHPs), or direct expansion (DX) ground source heat pumps, are highly efficient renewable energy technology, ... the earth, groundwater or surface water as heat sources when operating in heating

Saffa Riffat; Siddig Omer; Abdeen Omer

2014-01-01T23:59:59.000Z

486

NREL: Learning - Solar Process Heat  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Heat Process Heat Photo of part of one side of a warehouse wall, where a perforated metal exterior skin is spaced about a foot out from the main building wall to form part of the transpired solar collector system. A transpired collector is installed at a FedEx facility in Denver, Colorado. Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for residential buildings. These nonresidential buildings can also use solar energy technologies that would be impractical for a home. These technologies include ventilation air preheating, solar process heating, and solar cooling. Space Heating Many large buildings need ventilated air to maintain indoor air quality. In cold climates, heating this air can use large amounts of energy. But a

487

Heat exchanger for reactor core and the like  

DOE Patents (OSTI)

A compact bayonet tube type heat exchanger which finds particular application as an auxiliary heat exchanger for transfer of heat from a reactor gas coolant to a secondary fluid medium. The heat exchanger is supported within a vertical cavity in a reactor vessel intersected by a reactor coolant passage at its upper end and having a reactor coolant return duct spaced below the inlet passage. The heat exchanger includes a plurality of relatively short length bayonet type heat exchange tube assemblies adapted to pass a secondary fluid medium therethrough and supported by primary and secondary tube sheets which are releasibly supported in a manner to facilitate removal and inspection of the bayonet tube assemblies from an access area below the heat exchanger. Inner and outer shrouds extend circumferentially of the tube assemblies and cause the reactor coolant to flow downwardly internally of the shrouds over the tube bundle and exit through the lower end of the inner shroud for passage to the return duct in the reactor vessel.

Kaufman, Jay S. (Del Mar, CA); Kissinger, John A. (Del Mar, CA)

1986-01-01T23:59:59.000Z

488

REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS  

SciTech Connect

We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu [New York Center for Astrobiology and Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

2013-10-20T23:59:59.000Z

489

Waste-heat recovery in batch processes using heat storage  

SciTech Connect

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

490

Gelling by Heating  

E-Print Network (OSTI)

We introduce a simple model, a binary mixture of patchy particles, which has been designed to form a gel upon heating. Due to the specific nature of the particle interactions, notably the number and geometry of the patches as well as their interaction energies, the system is a fluid both at high and at low temperatures, whereas at intermediate temperatures the system forms a solid-like disordered open network structure, i.e. a gel. Using molecular dynamics we investigate the static and dynamic properties of this system.

Sandalo Roldan-Vargas; Frank Smallenburg; Walter Kob; Francesco Sciortino

2013-03-11T23:59:59.000Z

491

Locating Heat Recovery Opportunities  

E-Print Network (OSTI)

and for the years ahead is the de~ice known as the "Reat Pump," the "Reverse Ran,kine Cycle," or the "Vapor Compression System." ~'ctu? ally, all of these are the same thing. En-ergy level is restored by application of a ce~tain amount of prime energy (shaft... level Rankine cycle or bot toming cycle could have an application. Figure 11 shows the same hot process waste water heat source and the same disengaging drum that was shown in Figure 10. Instead of compressing the vapor, however, it is expanded...

Waterland, A. F.

1981-01-01T23:59:59.000Z

492

Geothermal direct heat applications program summary  

SciTech Connect

In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of geothermal direct use applications.

None

1982-08-01T23:59:59.000Z

493

Heat Flow From Four New Research Drill Holes In The Western Cascades,  

Open Energy Info (EERE)

From Four New Research Drill Holes In The Western Cascades, From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Conceptual models of the thermal structure of the Oregon Cascade Range propose either (1) a narrow zone of magmatic heat sources, flanked by shallow heat-flow anomalies caused by lateral ground-water flow; or (2) a wide zone of magmatic heat sources, with localized, generally negligible ground-water effects. The proposed narrow heat source coincides with the Quaternary volcanic arc, whereas the wider heat source would extend 10-30 km west of the arc. To test the models, four new heat-flow holes were sited

494

Front cover  

Gasoline and Diesel Fuel Update (EIA)

INVESTMENT IN COMMODITIES MARKETS: INVESTMENT IN COMMODITIES MARKETS: POTENTIAL IMPACT ON COMMODITY PRICES & VOLATILITY IIF Commodities Task Force Submission to the G20 September 2011 IIF Commodities Task Force Submission to the G20 Financial Investment in Commodity Markets: Potential Impact on Commodity Prices & Volatility 1 Preface Amidst increasing concerns about global growth prospects and financial market volatility, commodity prices con- tinue to be a focus for policymakers. The French G-20 presidency has made this topic a priority, emphasizing the potential role of financial investment in driving trends in commodity markets. With commodity prices closely linked to inflation trends, particularly in low-income countries where food security is a vital issue, the search for policy tools

495

FRONT MATTER:  

Science Journals Connector (OSTI)

......and a total of 233 poster presentations. This...papers prepared for the poster pre- sentations are...Towards a New Basic Science; Depth and Synthesis...by the Ministry of Education, Culture, Sports, Science and Technology (MEXT......

Preface

2007-04-01T23:59:59.000Z

496

FRONT MATTER:  

Science Journals Connector (OSTI)

......2b An Analysis on Protein Folding Problem...Multi-Selfoverlap-Ensemble Monte Carlo Method for Lattice Proteins and Heteropolymers...3 Transitions in Protein Folding - The Free-Energy...Photogenerated in Disordered Linear Lattice Yoshinori......

Poster Presentations

2000-04-01T23:59:59.000Z

497

Section: Front  

NLE Websites -- All DOE Office Websites (Extended Search)

funding level of almost 500M, it has always been clear that the annual rate of expenditure would not reach projected levels and that the Program's schedule would be...

498

Front Matter  

E-Print Network (OSTI)

-Editors RACHEL CRAFT University of Kansas STEPHANIE DECKER University of Kansas ILANA DEMANTAS University of Kansas #14;????#3;#16;?#6;????? University of Kansas #21;??????#3;#22;???????? University of Kansas ????#3;#22;???????? University... of Kansas Staff #4;??????#3;#4;???????? #6;??????#3;#5;?????#3; #19;????#3;#17;????? ????#3;#18;????? #6;?????#3;#26;??????#11;?????? Cover Art: Little Orphan Annie in a Pittsburgh Institution (1909), Lewis Wickes Hine Lewis Hine...

2010-01-01T23:59:59.000Z

499

FRONT MATTER:  

Science Journals Connector (OSTI)

......Nakajima's Note on Electric Resistance. Busseiron Kenkyu 89...1955), pp. 32-49. Electric Conduction at High Magnetic...Mechanics. Series of Elementary Physics, Koyamashoten...Systematic Theory of Electric Conduction. Kagaku......

List of Publications of Ryogo Kubo

1980-03-01T23:59:59.000Z

500

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.