Powered by Deep Web Technologies
Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The FRL Manual  

E-Print Network (OSTI)

The Frame Representation Language (FRL) is described. FRL is an adjunct to LISP which implements several representation techniques suggested by Minsky's [75] concept of a frame: defaults, constraints, inheritance, procedural ...

Roberts, R. Bruce

1977-09-01T23:59:59.000Z

2

Northeast Site Area A NAPL Remediation Final Report.doc  

Office of Legacy Management (LM)

82-TAC 82-TAC U.S. Department of Energy Work Performed Under DOE Contract No. for the U.S. Department of Energy DE-AC13-02GJ79491 Approved for public release; distribution is unlimited. Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report September 2003 N0065200 GJO- 2003- 482- TAC GJO- PIN 13.12.10 Pinellas Environmental Restoration Project Northeast Site Area A NAPL Remediation Final Report Young - Rainey STAR Center September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC13- 02GJ79491 Document Number N0065200 Contents DOE/Grand Junction Office Northeast Site Area A NAPL Remediation Final Report September 2003 Page iii

3

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of Final Radiological Conditions at Areas of the Niagara Falls Storage Site Remediated under the Formerly Utilized Sites Remedial Action Program (March 2012)

4

Final Report Northeast Site Area B NAPL Remediation Project  

Office of Legacy Management (LM)

Northeast Site Area B Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Office of Legacy Management DOE M/1457 2007 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1457-2007 Final Report Northeast Site Area B NAPL Remediation Project at the Young - Rainey STAR Center Largo, Pinellas County, Florida April 2007 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

5

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

6

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect

This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

L. O. Nelson

2003-09-01T23:59:59.000Z

7

Remedial action selection report Maybell, Colorado, site. Final report  

SciTech Connect

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

NONE

1996-12-01T23:59:59.000Z

8

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect

This report provides the final hazard categorization for the remediation of six 300-FF-2 Operable Unit Burial Grounds, the 618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 sites.

J. D. Ludowise; K. L. Vialetti

2008-05-12T23:59:59.000Z

9

Final audit report of remedial action construction at the UMTRA Project Ambrosia Lake, New Mexico, site  

SciTech Connect

The final audit report for remedial action at the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and a QA final closeout inspection performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC). One radiological surveillance and three radiological audits were performed at the Ambrosia Lake site. The surveillance was performed on 12--16 April 1993 (DOE, 1993d). The audits were performed on 26--29 July 1993 (DOE, 1993b); 21--23 March 1994 (DOE, 1994d); and 1--2 August 1994 (DOE, 1994d). The surveillance and audits resulted in 47 observations. Twelve of the observations raised DOE concerns that were resolved on site or through subsequent corrective action. All outstanding issues were satisfactorily closed out on 28 December 1994. The radiological surveillance and audits are discussed in this report. A total of seven QA in-process surveillances were performed at the Ambrosia Lake UMTRA site are discussed. The DOE/TAC Ambrosia Lake final remedial action close-out inspection was conducted on 26 July 1995 (DOE, 1995a). To summarize, a total of 155 observations were noted during DOE/TAC audit and surveillance activities. Follow-up to responses required from the RAC for the DOE/TAC surveillance and audit observations indicated that all issues related to the Ambrosia Lake site were resolved and closed to the satisfaction of the DOE.

NONE

1995-09-01T23:59:59.000Z

10

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

Science Conference Proceedings (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

11

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report  

Science Conference Proceedings (OSTI)

This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

NONE

1988-07-01T23:59:59.000Z

12

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report  

Science Conference Proceedings (OSTI)

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

13

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final  

Science Conference Proceedings (OSTI)

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

Not Available

1994-06-01T23:59:59.000Z

14

Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds  

SciTech Connect

This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

J. D. Ludowise

2006-12-12T23:59:59.000Z

15

Installation Restoration Program. Remedial investigation report. Site 1. Fire Training Area. Volk Field Air National Guard Base, Camp Douglas, Wi. Volume 1. Final remedial investigation report  

SciTech Connect

Volume 1 of this report covers the Remedial Investigation conducted on Site 1, Fire Training Area at Volk Field Air National Guard Base. The remedial work is described and the testing conducted after remediation to insure all contamination has been removed. The study as conducted under the Air National Guard's Installation Restoration Program. Partial contents include: Meteorology; Hydrology; Soils; Water wells; Groundwater; Borings; Samplings; Chemical contamination; Migration; Decontamination.

Not Available

1990-07-01T23:59:59.000Z

16

Final Environmental Impact Statement for the Tank Waste Remediation System, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Tank Waste Remediation System, Hanford Site, Richland, Washington for the Tank Waste Remediation System, Hanford Site, Richland, Washington file:///I|/Data%20Migration%20Task/EIS-0189-FEIS-Summary-1996.HTM[6/27/2011 11:21:59 AM] The National Environmental Policy Act (NEPA) requires Federal agencies to analyze the potential environmental impacts of their proposed actions to assist them in making informed decisions. A similar Washington State law, the State Environmental Policy Act (SEPA), requires State agencies, including the Washington State Department of Ecology (Ecology), to analyze environmental impacts before making decisions that could impact the environment. A major emphasis of both laws is to promote public awareness of these actions and provide opportunities for public involvement. Because NEPA and SEPA requirements are similar, the U.S. Department of Energy (DOE) and Ecology

17

Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report  

SciTech Connect

This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

NONE

1992-02-01T23:59:59.000Z

18

Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho. Final  

SciTech Connect

This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site.

Not Available

1991-01-01T23:59:59.000Z

19

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

Science Conference Proceedings (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

20

Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report  

SciTech Connect

Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. The DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.

Morris, R.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final  

SciTech Connect

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

Not Available

1993-08-01T23:59:59.000Z

22

Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume II. Appendices  

SciTech Connect

This report provides a summary of the conceptual design and other information necessary to understand the proposed remedial action at the expanded Canonsburg, Pennsylvania site. This design constitutes the current approach to stabilizing the radioactively contaminated materials in place in a manner that would fully protect the public health and environment. This summary is intended to provide sufficient detail for the reader to understand the proposed remedial action and the anticipated environmental impacts. The site conceptual design has been developed using available data. In some cases, elements of the design have not been developed fully and will be made final during the detailed design process.

1983-07-01T23:59:59.000Z

23

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final  

SciTech Connect

This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

Not Available

1994-03-01T23:59:59.000Z

24

US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Widdop, M.R.

1996-08-01T23:59:59.000Z

25

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report  

SciTech Connect

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

26

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volumes IV Volumes IV Chapters 4 -5 Comment Responses U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Volume IV 4.0 Responses............................................................................................................................4-1 4.1 Response Index Tables ..............................................................................................4-1 4.2 Responses to Comments ..........................................................................................4-70 5.0 References...........................................................................................................................5-1

27

US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility  

SciTech Connect

The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

Krabacher, J.E.

1996-08-01T23:59:59.000Z

28

Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report  

SciTech Connect

This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

1991-03-01T23:59:59.000Z

29

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II II Appendices A-H U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Page Volume II Appendix A, Biological Assessment/Screening Level Risk Assessment/Biological Opinion Appendix A1, Biological Assessment A1-1.0 Introduction ..............................................................................................................A1-1 A1-2.0 Species Evaluated.....................................................................................................A1-3 A1-2.1 Critical Habitat..................................................................................................A1-3 A1-3.0 Consultation to Date.................................................................................................A1-4

30

DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation  

SciTech Connect

The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying the low interfacial tension of the SRS DNAPL helps to formulate a new conceptual picture of the subsurface DNAPL migration and provides an explanation of the limited effectiveness of remediation efforts. Alternative designs for remediation that are more effective for sites with DNAPL in fine grained media are required.

Susan E. Powers; Stefan J. Grimberg; Miles Denham

2007-02-07T23:59:59.000Z

31

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

32

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1-11 U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy

33

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy 2597 B Âľ Road

34

Superfund Record of Decision (EPA Region 2): American Thermostat site, South Cairo, Green County, New York (second remedial action). Final report, June 29, 1990  

SciTech Connect

The 8-acre American Thermostat (AT) site is a former thermostat assembly facility in South Cairo, Greene County, New York. From 1954 to 1985, thermostats for small appliances were assembled using machine oils, lubricants, and solvents in the process. Waste chemical sludges were disposed of directly into drains and dumped onsite for dust control. In 1983, an interim consent order was signed requiring AT to clean up the site; however, this was never implemented before plant operations ceased in 1985. A 1988 Record of Decision (ROD) provided for a permanent alternate water supply for approximately 43 affected residents. The final ROD addresses remediation of all remaining contaminated media at the site. The primary contaminants of concern affecting the soil, sediment, sludge, debris, ground water, and surface water are VOCs including PCE and TCE; other organics; and metals including arsenic, chromium, and lead.

Not Available

1990-06-29T23:59:59.000Z

35

Superfund Record of Decision (EPA Region 3): Brown's Battery Breaking, Tilden Township, Berks County, PA. (Second remedial action), July 1992. Final report  

SciTech Connect

The 14-acre Brown's Battery Breaking site is an inactive lead acid battery processing facility in Tilden Township, Berks County, Pennsylvania. From 1961 to 1971, the facility recovered lead-bearing materials from automobile and truck batteries by breaking the battery casings, draining the acid, and recovering the lead alloy, grids, plates, and plugs. During this time, battery acid and rinse water from recovery activities were dumped onto the soil, and crushed casings were disposed of onsite or used as a substitute for road gravel. The ROD addresses the remediation of onsite soil, battery casings, and ground water as a final action at the site. The primary contaminants of concern affecting the soil, debris, and ground water are metals, including lead and nickel; and other inorganics, including sulfate.

Not Available

1992-07-02T23:59:59.000Z

36

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

Science Conference Proceedings (OSTI)

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2007-04-12T23:59:59.000Z

37

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

Science Conference Proceedings (OSTI)

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

K. L. Vialetti

2008-05-20T23:59:59.000Z

38

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect

This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-12-06T23:59:59.000Z

39

Remedial actions at the former Vitro Rare Metals plant site, Canonsburg, Washington County, Pennsylvania. Final Environmental Impact Statement. Volume I  

SciTech Connect

The environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington County, Pennsylvania are evaluated. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property. During the period 1942 through 1957 the Vitro Manufacturing Company and its successor, the Vitro Corporation of America, processed onsite residues and ores, and government-owned ores, concentrates, and scraps to extract uranium and other rare metals. The Canonsburg site is now the Canon Industrial Park. In addition to storing the residual radioactive materials of this process at the Canonsburg site, about 12,000 tons of radioactively contaminated materials were transferred to a railroad landfill in Burrell Township, Indiana County, Pennsylvania. This Canonsburg FEIS evaluates five alternatives for removing the potential public health hazard associated with the radioactively contaminated materials. In addition to no action, these alternatives involve various combinations of stabilization of the radioactively contaminated materials in place or decontamination of the Canonsburg and Burrell sites by removing the radioactively contaminated materials to another location. In addition to the two sites mentioned, a third site located in Hanover Township, Washington County, Pennsylvania has been considered as a disposal site to which the radioactively contaminated materials presently located at either of the other two sites might be moved.

Not Available

1983-07-01T23:59:59.000Z

40

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3, Calculations: Preliminary final  

SciTech Connect

This report consists primarily of calculations for ground water flow and hydraulic conductivity as part of the Remedial Action Plan and Site Design for Stabilization program.

Not Available

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final  

SciTech Connect

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

Not Available

1994-03-01T23:59:59.000Z

42

Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report  

Science Conference Proceedings (OSTI)

This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

NONE

1993-02-01T23:59:59.000Z

43

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report: Attachment 2, Geology report; Attachment 3, Groundwater hydrology report; Attachment 4, Water resources protection strategy: Final report  

Science Conference Proceedings (OSTI)

The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

Chernoff, A.R. [USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Lacker, D.K. [Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control

1992-09-01T23:59:59.000Z

44

Final Hazard Categorization and Auditable Safety Analysis for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect

This report presents the initial hazard categorization, final hazard categorization and auditable safety analysis for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

T. J. Rodovsky

2006-03-01T23:59:59.000Z

45

Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds  

SciTech Connect

This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site. A material at risk calculation was performed that determined the radiological inventory for each burial ground to be Hazard Category 3.

J.D. Ludowise

2009-06-17T23:59:59.000Z

46

Radiological audit of remedial action activities at the processing sites Mexican Hat, Utah and Monument Valley, Arizona. Audit date: May 3--7, 1993, Final report  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing sites in Mexican Hat, Utah, and Monument Valley, Arizona. This audit was conducted May 3--7, 1993, by Bill James and Gerry Simiele of the TAC. Three site-specific findings and four observations were identified during the audit and are presented in this report. The overall conclusion from the audit is that the majority of the radiological aspects of the Mexican Hat, Utah, and Monument Valley, Arizona, remedial action programs are performed adequately. However, the findings identify that there is some inconsistency in following procedures and meeting requirements for contamination control, and a lack of communication between the RAC and the DOE on variances from the published remedial action plan (RAP).

NONE

1993-05-01T23:59:59.000Z

47

Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado  

Science Conference Proceedings (OSTI)

This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC).

NONE

1995-09-01T23:59:59.000Z

48

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 3, Appendix F, Final design, specifications, and drawings  

SciTech Connect

This volume contains Appendix F, bid schedule and specifications for remedial action on three sites: Old Rifle processing site; New Rifle processing site and Estes Gulch disposal site.

Not Available

1992-02-01T23:59:59.000Z

49

Source control strategy accelerates remediation  

SciTech Connect

Shallow land burial of ion-level radioactive wastes at ORNL has resulted in the release of contaminants into surrounding soil, groundwater, and surface water. Multiple contaminated areas occurring in close proximity make it difficult to relate contaminant releases to a specific site. To address this issue, similar and contiguous contaminated sites within the same drainage area have been combined into Waste Area Groupings. These Waste Area Groupings were prioritized and became the focus of the Comprehensive Environmental Response, Compensation, and Liability Act remediation process. Since the majority of the groupings are in the White Oak Creek drainage basin, the remediation strategy is to control contaminant releases from these source areas first, followed by remediation of White Oak Creek. In planning the remediation program, it became clear that until the issues of ultimate land use and institutional control, waste treatment technologies, and waste disposal facilities are resolved, final remediation objectives cannot be defined and remedial alternatives cannot be evaluated. Consequently, instead of postponing remedial actions until these issues are resolved, a strategy to control the sources of contaminant release with a serie s of interim actions was developed. In the near term, this strategy reduces off-site risk by eliminating contaminant releases and controls on-site risk through institutional control. Source control will allow time to achieve consensus on long-term institutional control and land use issues to develop appropriate treatment technologies, and to construct the necessary disposal facilities without further environmental degradation.

Garland, S.B. II [Oak Ridge National Lab., TN (United States); Hammond, R. [Environmental Protection Agency, Atlanta, GA (United States). Region IV

1993-06-01T23:59:59.000Z

50

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

51

Radiological audit of remedial action activities at the processing site, transfer site, and Cheney disposal site Grand Junction, Colorado: Audit date, August 9--11, 1993. Final report  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailing Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological audit of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site, transfer site, and Cheney disposal site in Grand Junction, Colorado. Jim Hylko and Bill James of the TAC conducted this audit August 9 through 11, 1993. Bob Cornish and Frank Bosiljevec represented the US Department of Energy (DOE). This report presents one programmatic finding, eleven site-specific observations, one good practice, and four programmatic observations.

Not Available

1993-08-01T23:59:59.000Z

52

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report  

SciTech Connect

This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

NONE

1988-07-01T23:59:59.000Z

53

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

54

Investigation of Novel Electrode Materials for Electrochemically-Based Remediation of High- and Low-Level Mixed Wastes in the DOE Complex - Final Report  

DOE Green Energy (OSTI)

New materials are investigated, based on degenerately-doped titanias, for use in the electrochemical degradation of organics and nitrogen-containing compounds in sites of concern to the DOE remediation effort. The data collected in this project appear to provide a rational approach for design of more efficient nanoporous electrodes. Also, osmium complexes appear to be promising candidates for further optimization in operating photo electrochemical cells for solar energy conversion applications.

Lewis, N.S.; Anderson, M.

2000-12-01T23:59:59.000Z

55

Radiological surveillance of Remedial Action activities at the processing site, Ambrosia Lake, New Mexico, April 12--16, 1993. Final report  

SciTech Connect

The Uranium Mill Tailings Remedial Action (UMTRA) Project`s Technical Assistance Contractor (TAC) performed a radiological surveillance of the Remedial Action Contractor (RAC), MK-Ferguson and CWM Federal Environmental Services, Inc., at the processing site in Ambrosia Lake, New Mexico. The requirements and attributes examined during the audit were developed from reviewing working-level procedures developed by the RAC. Objective evidence, comments, and observations were verified based on investigating procedures, documentation, records located at the site, personal interviews, and tours of the site. No findings were identified during this audit. Ten site-specific observations, three good practice observations, and five programmatic observations are presented in this report. The overall conclusion from the surveillance is that the radiological aspects of the Ambrosia Lake, New Mexico, remedial action program are performed adequately. The results of the good practice observations indicate that the site health physics (HP) staff is taking the initiative to address and resolve potential issues, and implement suggestions useful to the UMTRA Project. However, potential exists for improving designated storage areas for general items, and the RAC Project Office should consider resolving site-specific and procedural inconsistencies.

NONE

1993-04-01T23:59:59.000Z

56

Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final  

Science Conference Proceedings (OSTI)

The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

NONE

1995-09-01T23:59:59.000Z

57

Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico. Volume 3, Appendix F, Final plans and specifications: Final report  

SciTech Connect

This volume deals with the main construction subcontract for the uranium mill tailings remedial action of Ambrosia Lake, New Mexico. Contents of subcontract documents AMB-4 include: bidding requirements; terms and conditions; specifications which cover general requirements and sitework; and subcontract drawings.

Not Available

1991-11-01T23:59:59.000Z

58

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 5, Supplemental radiological data: Final report  

Science Conference Proceedings (OSTI)

Diffusion coefficients for radon gas in earthen materials are required to design suitable radon-barrier covers for uranium tailings impoundments and other materials that emit radon gas. Many early measurements of radon diffusion coefficients relied on the differences in steady-state radon fluxes measured from radon source before and after installation of a cover layer of the material being tested. More recent measurements have utilized the small-sample transient (SST) technique for greater control on moistures and densities of the test soils, greater measurement precision, and reduced testing time and costs. Several of the project sites for the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Program contain radiologically contaminated subsurface material composed predominantly of cobbles, gravels andsands. Since remedial action designs require radon diffusion coefficients for the source materials as well as the cover materials, these cobbly and gravelly materials also must be tested. This report contains the following information: a description of the test materials used and the methods developed to conduct the SST radon diffusion measurements on cobbly soils; the protocol for conducting radon diffusion tests oncobbly soils; the results of measurements on the test samples; and modifications to the FITS computer code for analyzing the time-dependent radon diffusion data.

Not Available

1992-10-01T23:59:59.000Z

59

Pinellas Remediation Agreement Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinellas Pinellas Agreement Name Remediation Agreement for the Four and One-Half Acre Site in Largo, Pinellas County, Florida State Florida Agreement Type Remediation Agreement Legal Driver(s) CERCLA/ Atomic Energy Act of 1954, as amended/ Florida Air and Water Pollution Control Act Scope Summary Remediation of property adjacent to the former Pinellas Plant Parties DOE; Florida Department of Environmental Protection Date 3/12/2001 SCOPE * Remediate the groundwater under a parcel of property adjacent to DOE's former Pinellas Plant to levels consistent with industrial use. * Complete remedial actions at the site in accordance with a Remedial Action Plan prepared by DOE and approved by FDEP. * Submit quarterly reports of interim remedial actions at the Site.

60

Innovative Vitrification for Soil Remediation  

DOE Green Energy (OSTI)

Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

Hnat, James G.; Patten, John S.; Jetta, Norman W.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FINAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 FINAL ENVIRONMENTAL ASSESSMENT FOR EXIDE TECHNOLOGIES ELECTRIC DRIVE VEHICLE BATTERY AND COMPONENT MANUFACTURING INITIATIVE APPLICATION, BRISTOL, TN, AND COLUMBUS, GA U.S. Department of Energy National Energy Technology Laboratory March 2010 DOE/EA-1712 FINAL ENVIRONMENTAL ASSESSMENT FOR EXIDE TECHNOLOGIES ELECTRIC DRIVE VEHICLE BATTERY AND COMPONENT MANUFACTURING INITIATIVE APPLICATION, BRISTOL, TN, AND COLUMBUS, GA U.S. Department of Energy National Energy Technology Laboratory March 2010 DOE/EA-1712 iii COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Environmental Assessment for Exide Technologies Electric Drive Vehicle Battery and Component Manufacturing Initiative Application, Bristol, TN, and Columbus, GA

62

Savannah River Remediation Procurement  

NLE Websites -- All DOE Office Websites (Extended Search)

and procedures, rules and regulations, terms and conditions and the orders and directives under which Savannah River Remediation LLC (SRR) develops, issues, administers and...

63

Savannah River Remediation SRR Savannah River Remediation SRR  

NLE Websites -- All DOE Office Websites (Extended Search)

- Hanford Paducah Remediation Services Bechtel Jacobs - ETTP DOE-EM Average without Construction WRPS - TOC Hanford Mission Support Alliance - RL Bechtel National Remediation...

64

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

65

Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, , Final for Vegetation Control at VHF Stations, Microwave Stations, Electrical Substations, and Pole Yards . Environmental Assessment Prepared for Southwestern Power Administration U.S. Department of Energy - _ . . . " Prepared by Black & Veatch October 13,1995 ' Table of Contents 1 . 0 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 Description of the Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Alternative 1 . No Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Alternative 2 . Mechanical and Manual Control . . . . . . . . . . . . . . . . . . . 2.3 Alternative 3 . Proposed Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Foliar Spray Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Soil-Spot Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

66

ICDF Complex Remedial Action Work Plan  

SciTech Connect

This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

W. M. Heileson

2006-12-01T23:59:59.000Z

67

Superfund record of decision (EPA Region 4): New Hanover County Airport Burn Pit Site, New Hanover County, Wilmington, NC. (First remedial action), September 1992. Final report  

SciTech Connect

The New Hanover site was located on Gardner Road approximately 500 feet west of the New Hanover County Airport terminal, New Hanover, North Carolina. From 1968 to 1979, the site was used for fire-fighter training purposes. During training exercises, jet fuel, gasoline, petroleum storage bottoms, fuel oil, kerosene, and sorbent materials from oil spill cleanup were burned in a pit. During its active years, water from the pit was allowed to flow onto land surfaces. Inspections conducted after the pit was abandoned showed that most of the standing liquid in the pit was water. In addition to the burn pit area, fire-fighting activities resulted in contamination at several other site areas, including an auto burn area; a railroad tank burn area; an aircraft mock-up area; a fuel tank and pipelines area; and two stained soil areas north of the burn pit. The ROD addressed restoration of the aquifer to drinking water quality as a final action for the site. The primary contaminants of concern that affect the soil and ground water were VOCs, including benzene; and metals, including chromium and lead.

Not Available

1992-09-29T23:59:59.000Z

68

DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION  

Science Conference Proceedings (OSTI)

The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon tetrachloride, technetium-99, iodine-129, nitrate [as NO{sub 3}], trichloroethene [TCE], total chromium, tritium), plus uranium; (3) Assumptions underlying the predictive simulations, including the phased implementation of the final full remedy; (4) Approximate number, locations, and rates of extraction and injection wells; and (5) Predicted amounts of contaminant mass extracted and influent concentrations at individual extraction wells for each COC and for uranium. This document is a companion report to pre-conceptual design document (DOE/RL-2008-56). Together these documents describe the sequential, progressive development of the modeling analyses and design basis for the 200-ZP-1 OU remedy.

VONGARGEN BH

2009-11-03T23:59:59.000Z

69

Source Remediation vs. Plume  

E-Print Network (OSTI)

This summary paper reviews just some of the extensive scientific literature from the past 20 years on the various aspects of contaminant source remediation and plume management. Some of the major findings of the numerous research projects are presented.

Management Critical Factors; G. Teutsch; H. Rgner; D. Zamfirescu; M. Finkel; M. Bittens

2001-01-01T23:59:59.000Z

70

Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE’s groundwater contamination problems that consider not only...

71

EA-1331: Remediation of Subsurface and Groundwater Contamination at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

331: Remediation of Subsurface and Groundwater Contamination at 331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater County, Wyoming. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 31, 2000 EA-1331: Finding of No Significant Impact Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site July 31, 2000 EA-1331: Final Environmental Assessment

72

EIS-0355: EPA Notice of Availability of the Final Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Availability of the Final Environmental Impact Statement EIS-0355: EPA Notice of Availability of the Final Environmental Impact Statement Remediation of the Moab Uranium...

73

Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings site at Ambrosia Lake, New Mexico. Volume 1, Text, Appendices A, B, and C: Final report  

SciTech Connect

This Remedial Action Plan (RAP) has been developed to serve a dual purpose. It presents the series of activities that is proposed by the US Department of Energy (DOE) to stabilize and control radioactive materials at the inactive Phillips/United Nuclear uranium processing site designated as the Ambrosia Lake site in McKinley County, New Mexico. It also serves to document the concurrence of both State of New Mexico and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state and concurrence by NRC, becomes Appendix B of the Cooperative Agreement.

Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Mitzelfelt, R. [New Mexico Health and Environment Dept., Santa Fe, NM (United States). Environmental Improvement Div.

1991-11-01T23:59:59.000Z

74

Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report  

Science Conference Proceedings (OSTI)

The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

NONE

1992-09-01T23:59:59.000Z

75

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final  

SciTech Connect

Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

Not Available

1994-03-01T23:59:59.000Z

76

Remedial Action Performed  

Office of Legacy Management (LM)

General Motors Site in General Motors Site in Adrian, Michigan Department of Energy OiZce of Assistant Manager for Environmental Management Oak Ridge Operations January 2001 69 Printed on recycledhcydable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE GENERAL MOTORS SITE ADRIAN, MICHIGAN JANUARY 200 1 Prepared for United States Army Corps of Engineers Under Contract No. DACW45-98-D-0028 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS FIGURES .............................................................................................................................................. TABLES ...............................................................................................................................................

77

CENTRAL PLATEAU REMEDIATION  

Science Conference Proceedings (OSTI)

A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

ROMINE, L.D.

2006-02-01T23:59:59.000Z

78

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

79

OIL WELL REMEDIATION IN CLAY AND WAYNE COUNTIES, IL  

SciTech Connect

This is the second progress and final technical report of the remediation of abandoned wells in Clay and Wayne Counties in Illinois. The wells will be identified as the Routt No.3 and No.4 and the Bates Hosselton 1 and 2. Both sites have met all legal, financial and environmental requirements to drill and/or pump oil on both leases. We have also obtained all available information about both leases. All steps were taken to improve access roads, dig the necessary pits, and build the necessary firewalls. This progress and final technical report will address the remediation efforts as well as our results and conclusions.

Peter L. Dakuras; Larry Stieber; Dick Young

2003-07-09T23:59:59.000Z

80

CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY  

SciTech Connect

THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

BERGMAN TB; STEFANSKI LD; SEELEY PN; ZINSLI LC; CUSACK LJ

2012-09-19T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Remedial Action Performed  

Office of Legacy Management (LM)

Aliquippa Forge Site Aliquippa Forge Site in Aliquippa, Pennsylvania Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKE.~ FOR THE REMEDIAL ACTION PERFORMED AT THE ALIQUIPPA FORGE SITE IN ALIQUIPPA, PENNSYLVANIA NOVEMBER 1996 Prepared for . UNITED STATES DEPARTMENT OF ENERGY Oak Ridge Operations Office Under Contract No. DE-AC05-9 1 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TABLES vii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii UNITSOFMEASURE ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCTION xi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

82

Remedial Action Performed  

Office of Legacy Management (LM)

Baker and Williams Baker and Williams Warehouses Site in New York, New York, 7997 - 7993 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 7 995 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE BAKER AND WILLIAMS WAREHOUSES SITE IN NEW YORK, NEW YORK, 1991-1993 NOVEMBER 1995 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC05-910R21949 BY Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 __ CONTENTS .- ~_- _- ..- ^_ FIGURES . ...,.,.....,,........,,.,_.....,.,.,.__,....,,,,, v TABLES ,.,__...,,....,..._._..,,,,_._...,.,.,,.,,,..._,,,, vi ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..v~

83

Remedial Action Performed  

Office of Legacy Management (LM)

' ' at the C. H. Schnoor Site, Springdale, Pennsylvania, in 1 994 Department of Energy Former Sites Restoration Division Oak Ridge Operations Office November 1996 CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE C. H. SCHNOOR SITE SPRINGDALE, PENNSYLVANIA, IN 1994 NOVEMBER 1996 prep&ed for United States Department of ~nergy Oak Ridge Operations Off= r Under Contract No. DE-AC05-910R21949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. '14501 CONTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi UNITS OF MEASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

84

Remedial Action Performed  

Office of Legacy Management (LM)

Alba Craft Laboratory and Alba Craft Laboratory and Vicinity Properties Site in Oxford, Ohio C Department of Energy Former Sites Restoration Division Oak Ridge Operations Office January 1997 $$@T Op% 3 @!B . i~d!l Ab Printed on recycled/recyclable paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE FORMER ALBA CRAFT LABORATORY AND VICINITY PROPERTIES SITE IN OXFORD, OHIO JANUARY 1997 Prepared for United States Department of Energy Oak Ridge Operations Office Under Contract No. DE-AC0591 OR2 1949 Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 CONTENTS Page FIGURES .............................................................................................................................................. v TABLES.. .............................................................................................................................................. vi

85

REMEDIAL ACTION PLAN  

E-Print Network (OSTI)

designated site consists of the 111-acre tailings pile, the mill yard, and piles of demolition rubble awaiting burial. The site contains 2.659 million cubic yards of tailings including 277,000 cubic yards of contaminated material in the mill yard, ore storage area, and Ann Lee Mine area; 151,000 cubic yards in the protore storage and leach pad areas; and 664,000 cubic yards of windblown contaminated soil, including excess soil that would result from excavation. Remedial action The remedial action will start with the excavation of windblown contaminated material and placement around the west, south, and east sides of the pile to buttress the slopes for increased stability. Most of the demolition rubble will be placed in the southern part of the pile and be covered with tailings. The northern part of the tailings pile (one million cubic yards) will then be excavated and placed on the south part of the pile to reduce the size of the disposal cell footprint. Demolition rubble that

Inactive Uranium; Mill Tailings Site; Uranium Mill Tremedial

1990-01-01T23:59:59.000Z

86

Remediation and Recycling of Linde FUSRAP Materials  

SciTech Connect

During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community.

Coutts, P. W.; Franz, J. P.; Rehmann, M. R.

2002-02-27T23:59:59.000Z

87

EA-1219: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment EA-1219: Final Environmental Assessment Hoe Creek Underground Coal Gasification Test Site Remediation This EA evaluates the environmental impacts for the proposed...

88

ICDF Complex Remedial Action Report  

SciTech Connect

This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

W. M. Heileson

2007-09-26T23:59:59.000Z

89

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report. Volume 4, Addenda D1--D5 to Appendix D  

SciTech Connect

This radiologic characterization of tho two inactive uranium millsites at Rifle, Colorado, was conducted by Bendix Field Engineering Corporation (Bendix) for the US Department of Energy (DOE), Grand Junction Projects Office, in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor, Jacobs Engineering Group, Inc. (Jacobs). The purpose of this project is to define the extent of radioactive contamination at the Rifle sites that exceeds US Environmental Protection Agency, (EPA) standards for UMTRA sites. The data presented in this report are required for characterization of the areas adjacent to the tailings piles and for the subsequent design of cleanup activities. An orientation visit to the study area was conducted on 31 July--1 August 1984, in conjunction with Jacobs, to determine the approximate extent of contaminated area surrounding tho piles. During that visit, survey control points were located and baselines were defined from which survey grids would later be established; drilling requirements were assessed; and radiologic and geochemical data were collected for use in planning the radiologic fieldwork. The information gained from this visit was used by Jacobs, with cooperation by Bendix, to determine the scope of work required for the radiologic characterization of the Rifle sites. Fieldwork at Rifle was conducted from 1 October through 16 November 1984.

Not Available

1990-02-01T23:59:59.000Z

90

Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Attachment 3, Groundwater hydrology report, Attachment 4, Water resources protection strategy: Preliminary final  

SciTech Connect

The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the US Department of Energy (DOE) for assessing the inactive uranium milling sites. The DOE has determined that each assessment shall include information on site characterization, a description of the proposed action, and a summary of the water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards. To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards, the US Department of Energy (DOE) proposes that supplemental standards be applied at the Dry Flats disposal site because of Class III (limited use) groundwater in the uppermost aquifer (the basal sandstone of the Cretaceous Burro Canyon Formation) based on low yield. The proposed remedial action will ensure protection of human health and the environment.

Not Available

1993-08-01T23:59:59.000Z

91

Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado  

SciTech Connect

This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

Not Available

1992-02-01T23:59:59.000Z

92

X-701B Groundwater Remedy Portsmouth Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remedy Portsmouth Ohio X-701B Groundwater Remedy Portsmouth Ohio Full Document and Summary Versions are available for download X-701B Groundwater Remedy...

93

Remedial Action Contacts Directory - 1997  

SciTech Connect

This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

1997-05-01T23:59:59.000Z

94

Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action  

SciTech Connect

This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE`s preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public`s role in helping DOE and the EPA to make the final decision on a remedy.

Not Available

1993-12-01T23:59:59.000Z

95

Remediation of Chicken Processing Wastewater using ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Materials Processing Fundamentals. Presentation Title, Remediation of ...

96

Summary Protocol: Identification, Characterization, Designation, Remedial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Protocol: Identification, Characterization, Designation, Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) Summary Protocol: Identification, Characterization, Designation, Remedial Action, Certification (January 1986) More Documents & Publications Supplement No. 1 to the FUSRAP Summary Protocol - Designation/Elimination Protocol Pre-MARSSIM Surveys in a MARSSIM World: Demonstrating How Pre-MARSSIM Radiological Data Demonstrate Protectiveness at Formerly Utilized Sites Remedial Action Program Sites U.S. Department of Energy Guidelines for Residual Radioactive Material at

97

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Durango, Colorado: Attachment 6, Supplemental standard for Durango processing site. Revised final report  

SciTech Connect

Excavation control to the 15 pCi/g radium-226 (Ra-226) standard at certain areas along the Animas River on the Durango Site would require extensive engineering and construction support. Elevated Ra-226 concentrations have been encountered immediately adjacent to the river at depths in excess of 7 feet below the present river stage. Decontamination to such depths to ensure compliance with the EPA standards will, in our opinion, become unreasonable. This work does not appear to be in keeping with the intent of the standards. Because the principal reason for radium removal is reduction of radon daughter concentrations (RDC) in homes to be built onsite, and because radon produced at depth will be attenuated in clean fill cover before entering such homes, it is appropriate to calculate the depth of excavation needed under a home to reduce RDC to acceptable levels. Potential impact was assessed through radon emanation estimation, using the RAECOM computer model. Elevated Ra-226 concentrations were encountered during final radium excavation of the flood plain below the large tailings pile, adjacent to the slag area. Data from 7 test pits excavated across the area were analyzed to provide an estimate of the Ra-226 concentration profile. Results are given in this report.

Not Available

1991-12-01T23:59:59.000Z

98

Soil & Groundwater Remediation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

99

Status report: Fernald site remediation  

Science Conference Proceedings (OSTI)

The Fernald site is rapidly transitioning from a Remedial Investigation/ Feasibility Study (RI/FS) site to one where design and construction of the remedies dominates. Fernald is one of the first sites in the Department of Energy (DOE) complex to accomplish this task and real physical progress is being made in moving the five operable units through the CERCLA process. Two of the required Records of Decision (ROD) are in hand and all five operable units will have received their RODs (IROD for OU3) by the end of 1995. Pre-design investigations, design work or construction are now in progress on the operable units. The lessons learned from the work done to date include implementing innovations in the RI and FS process as well as effective use of Removal Actions to begin the actual site remediation. Also, forging close working relationships with the Federal and State Regulators, citizens action groups and the Fernald Citizens Task Force has helped move the program forward. The Fernald successes have been achieved by close coordination and cooperation among all groups working on the projects and by application of innovative technologies within the decision making process.

Craig, J.R. Jr. [USDOE Fernald Field Office, OH (United States); Saric, J.A. [Environmental Protection Agency, Washington, DC (United States); Schneider, T. [Ohio State Environmental Protection Agency, Columbus, OH (United States); Yates, M.K. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)

1995-01-30T23:59:59.000Z

100

Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation  

Science Conference Proceedings (OSTI)

The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

NONE

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-02-01T23:59:59.000Z

102

Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 2  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

Not Available

1994-01-01T23:59:59.000Z

103

EPA Notice of Availability of the Final Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTION AGENCY ER-FRL-6658-6 Environmental Impact Statements; Notice of Availability Responsible Agency: Office of Federal Activities, General Information (202)...

104

NE-24 Unlverslty of Chicayo Remedial Action Plan  

Office of Legacy Management (LM)

(YJ 4 tlsj .?I2 (YJ 4 tlsj .?I2 416 17 1983 NE-24 Unlverslty of Chicayo Remedial Action Plan 22&d 7 IA +-- E. I.. Keller, Director Technical Services Division Oak Ridge Operations Ufflce In response to your memorandum dated July 29, 1983, the Field Task Proposal/Agreement (FTP/A) received frw Aryonne National Laboratory (ANL) appears to be satisfactory, and this office concurs in the use of ANL to provide the decontamination effort as noted in the FTP/A. The final decontaminatton report should Include the data needed for certiff- cation of the cleanup and any contamination left In place, e.g., sewer lines should be so documented in the permanent records of the University as well as the certification documents and reports. The remedial action to be conducted appears to be clearly InsIgnifIcant from an environmental

105

Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1  

Office of Legacy Management (LM)

Monticello Mill Tailings Site Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1 Focused Feasibility Study January 2004 Prepared by U.S. Department of Energy Grand Junction, Colorado Work performed under DOE Contract No. DE-AC1342GJ79491 DOE Task Order No. ST03-205 Document N u m b e r Q0029500 S i g t ~ a t u r e Page Signature Page Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendud Focused Feasibility Study January 2004 Submitted By: Arthur W. Kleinrath, Project Manager U.S. Department of Energy, Grand Junction, Colorado U.S. Department of Energyat Gmnd Junction MMTS OU 111 Remedial Investigation AddendutdFocuscd Feasibilily Study January 2004 Final iii This page intentionally left blank Document Number Q0029500 Contents U.S. Department of Energy at Grand Junction MMTS OU III Remedial Investigation Addendum/Focused Feasibility Study

106

X-701B Groundwater Remedy Portsmouth Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

107

Arsenic Remediation Technologies for Groundwater and Soil  

Science Conference Proceedings (OSTI)

In October 2003, the Electric Power Research Institute (EPRI) released report 1008881, Arsenic Remediation Technologies for Soils and Groundwater. The report provides a review of available technologies for the remediation of arsenic in soils, groundwater, and surface water, primarily at substation sites. In most cases, the technologies reviewed are applicable to a much wider range of projects. In the six years since the publication of that report, the technologies for the remediation of arsenic have cont...

2009-09-22T23:59:59.000Z

108

DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site June 19, 2008 - 1:29pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that CH2M Hill Plateau Remediation Company has been selected as the plateau remediation contractor for DOE's Hanford Site in southeastern Washington State. The contract is a cost-plus award-fee contract valued at approximately $4.5 billion over ten years (a five-year base period with the option to extend it for another five years). CH2M Hill Plateau Remediation Company is a limited liability company formed by CH2M Hill Constructors, Inc. The team also includes AREVA Federal

109

Electrochemical Arsenic Remediation for Rural Bangladesh  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Arsenic Remediation for Rural Bangladesh NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

110

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

1990-09-01T23:59:59.000Z

111

Use of American Lotus in Pond Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

American Lotus in Pond Remediation Adam S. Riazi, Mathematics Department, Lincoln County High School, WV and Michael G. Ryon, Environmental Sciences Division, Oak Ridge National...

112

Introduction to Green & Sustainable Remediation: Three Approaches  

NLE Websites -- All DOE Office Websites (Extended Search)

TO GREEN & SUSTAINABLE REMEDIATION: THREE APPROACHES Dr. Jerry DiCerbo, Office of Sustainability Support (HS-21) June 2013 What is GSR? * Definitions differ among organizations...

113

Surfactant biocatalyst for remediation of recalcitrant ...  

Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals United States Patent. Patent Number: 7,906,315: Issued: March 15, ...

114

Draft Final Remedial Investigation/Feasibility Study and Proposed Plan  

E-Print Network (OSTI)

-11 Table 4-8 Stockpile Laboratory TCLP Results Computational Center SSL soil screening level SWPE soil/water partition equation TCLP Toxicity Characteristic

115

EIS-0355: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Impact Statement Final Environmental Impact Statement EIS-0355: Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198, October 1996). The

116

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

117

Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

Not Available

1994-05-01T23:59:59.000Z

118

Remediation of Mercury and Industrial Contaminants Applied Field...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research...

119

SBA Increases Size Standards for Waste Remediation Services ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increases Size Standards for Waste Remediation Services & InformationAdmin Support SBA Increases Size Standards for Waste Remediation Services & InformationAdmin Support December...

120

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EA-1331: Remediation of Subsurface and Groundwater Contamination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and...

122

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

123

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash Title Arsenic Remediation of Bangladesh Drinking Water using Iron-oxide Coated Coal Ash...

124

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management...

125

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

126

Applied Field Research Initiative Attenuation Based Remedies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PA00133 - March 2011 PA00133 - March 2011 Applied Field Research Initiative Attenuation Based Remedies in the Subsurface Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to develop the tools, approaches and technologies that will be required to address the technical challenges associated characteriza- tion, remediation and long-term monitoring of recalcitrant compounds in the subsurface at Department of Energy (DOE) Environmental Management (EM) sites. The ABRS AFRI site provides a unique setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making.

127

List of Contractors to Support Anthrax Remediation  

SciTech Connect

This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

Judd, Kathleen S.; Lesperance, Ann M.

2010-05-14T23:59:59.000Z

128

Remediation of Mercury and Industrial Contaminants  

Energy.gov (U.S. Department of Energy (DOE))

The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

129

Guidance for Conducting Remedial Investigations and Feasibility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection Agency Office of Emergency and Remedial Response Washington, DC 20460 PE89-184626 EPA540G-89004 OSWER Directive 9355.3-01 October 1988 Superfund EPA Guidance for...

130

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

1989-09-01T23:59:59.000Z

131

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the U.S. Department of Energy Formerly Utilized Sites Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Paper presented at the Waste Management 2012 Conference. February 26 through March 1, 2012, Phoenix, Arizona. Christopher Clayton, Vijendra Kothari, and Ken Starr, U.S. Department of Energy Office of Legacy Management Joey Gillespie and Michael Widdop, S.M. Stoller Corporation, Contractor for the U.S. Department of Energy Office of Legacy Management 12189a.pdf More Documents & Publications Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program Recent Developments in DOE FUSRAP Evaluation of Final Radiological Conditions at Areas of the Niagara Falls

132

Environmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1  

SciTech Connect

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [ 1 0 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial action would result in the loss of approximately 164 ac (66 ha) of soils, but 132 ac (53 ha) of these soils are contaminated and cannot be used for other purposes. Another 154 ac (62 ha) of soils would be temporarily disturbed. Approximately 57 ac (23 ha) of open range land would be permanently removed from livestock grazing and wildlife use. The removal of the contaminated materials would affect the 1 00-year floodplain of the San Miguel River and would result in the loss of riparian habitat along the river. The southwestern willow flycatcher, a Federal candidate species, may be affected by the remedial action, and the use of water from the San Miguel River ``may affect`` the Colorado squawfish, humpback chub, bonytail chub, and razorback sucker. Traffic levels on State Highways 90 and 141 would be increased during the remedial action, as would the noise levels along these transportation routes. Measures for mitigating the adverse environmental impacts of the proposed remedial action are discussed in Section 6.0 of this environmental assessment (EA).

Not Available

1993-08-01T23:59:59.000Z

133

SUSTAINABLE REMEDIATION SOFTWARE TOOL EXERCISE AND EVALUATION  

SciTech Connect

The goal of this study was to examine two different software tools designed to account for the environmental impacts of remediation projects. Three case studies from the Savannah River Site (SRS) near Aiken, SC were used to exercise SiteWise (SW) and Sustainable Remediation Tool (SRT) by including both traditional and novel remediation techniques, contaminants, and contaminated media. This study combined retrospective analysis of implemented projects with prospective analysis of options that were not implemented. Input data were derived from engineering plans, project reports, and planning documents with a few factors supplied from calculations based on Life Cycle Assessment (LCA). Conclusions drawn from software output were generally consistent within a tool; both tools identified the same remediation options as the 'best' for a given site. Magnitudes of impacts varied between the two tools, and it was not always possible to identify the source of the disagreement. The tools differed in their quantitative approaches: SRT based impacts on specific contaminants, media, and site geometry and modeled contaminant removal. SW based impacts on processes and equipment instead of chemical modeling. While SW was able to handle greater variety in remediation scenarios, it did not include a measure of the effectiveness of the scenario.

Kohn, J.; Nichols, R.; Looney, B.

2011-05-12T23:59:59.000Z

134

Remediation of Soil at Nuclear Sites  

Science Conference Proceedings (OSTI)

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

2000-03-01T23:59:59.000Z

135

Remediation of soil at nuclear sites  

SciTech Connect

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

R. Holmes; C. Boardman; R. Robbins (BNFL); R. Fox; B. J. Mincher (INEEL)

2000-02-28T23:59:59.000Z

136

Technology development activities supporting tank waste remediation  

Science Conference Proceedings (OSTI)

This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

Bonner, W.F.; Beeman, G.H.

1994-06-01T23:59:59.000Z

137

Remedial action planning for Trench 1  

SciTech Connect

The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Greengard, T. [Kaiser Hill/SAIC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

138

OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

OE/EV-0005/2 OE/EV-0005/2 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washington, D.C. 20545 DOE/EV-0005/2 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Hooker Chemical Company Niagara Falls, New York January 1977 Final Report Prepared for U.S. Department of Energy Division of Environmental Control Technology Washing-ton, D.C. 20545 Under Contract No. W-7405-ENE-26 Oak Ridge National Laboratory Oak Ridge, Tennessee 3783C NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United

139

DOE/EV-0005/11 Formerly Utilized M.ED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

1 1 Formerly Utilized M.ED/AEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology : E 1 bOE/EV-0005/11 UC-70 Formerly Utilized MEDIAEC Sites Remedial Action Program Radidogical Survey of the Seneca Army Depot Romulus, New York February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS) U.S. Department of Comrqerce

140

DOE/EV-0005/15 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

5 5 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/15 UC-71 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Bayo Canyon, Los Alamos, New Mexico June 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Los Alamos Scientific Laboratory Los Alamos, New Mexico 87545 Under Contract No. W-7405-ENG-36 Available from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22161

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE/EV-0005/10 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

0 0 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohio February 1979 - Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology DOE/EV-0005/10 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Former Horizons Inc., Metal Handling Facility, Cleveland, Ohii February 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 Under Contract No. W-7405-ENG-26 By the Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Available from: National Technical Information Service (NTIS)

142

DOE/EV-0005/19 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

9 9 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 . Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology ~--.. _..-- DOE/EV-0005/19 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiologidal Survey of the Building Site 421, United States Watertown Arsenel, Watertown, MA February 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Argonne National Laboratory Argonne, Illinois 60439 Under Contract No. W-31-1 09-ENG-38 -- _.. .-___

143

Z-LJQ- Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

lOE/EV-0005/9 lOE/EV-0005/9 Z-LJQ- Formerly Utilized MED/AEC Sites Remedial Action Program Radiologicd Survey of the Former GSA 39th Street Warehouse 1716 Pershing Road, Chicago, Illinois January 1979 . Final Report Prepared for: U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology ' !. & .~~"I__ _ -..- ~-. _...-. DO E/EV-0005/g UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiologicd Survey of the Former GSA 39th Street Warehouse 1716 Pershing Road, Chicago, Illinois January 1979 Final Report Prepared for: U.S. Department of Energy Assistant Secretary for Environmen\ Division of Environmental Control Technology Washington, D.C. 20545 Under Contract W-31 -109-ENG-38 By the Argonne National Laboratory

144

DOE/EV-0005/16 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

6 6 Formerly Utilized MED/AEC Sites Remedial Action Program Radic&@cal Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology .__ -. __ ..- -- DOE/EV-0005/16 UC-70 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the St. Louis Airport Storage Site, St. Louis, Missouri September 1979 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Division of Environmental Control Technology Washington, D.C. 20545 by Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 Under Contract No. W-7405-ENG-26 .--__ _ .- _--- _ ~- Available from:

145

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center

146

Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonaqueous-Phase Liquid Characterization and Post-Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling More Documents & Publications Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center

147

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and...

148

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah...

149

Microsoft Word - N01359_4.5AcreLDA Final Report.doc  

Office of Legacy Management (LM)

Environmental Restoration Project Environmental Restoration Project Interim Remedial Action for Source Removal at the 4.5 Acre Site Final Report September 2009 LMS/PIN/N01359 This page intentionally left blank LMS/PIN/N01359 Pinellas Environmental Restoration Project Interim Remedial Action for Source Removal at the 4.5 Acre Site Final Report September 2009 This page intentionally left blank U.S. Department of Energy Interim Remedial Action for Source Removal at the 4.5 Acre Site-Final Report September 2009 Doc. No. N01359 Page i Contents Abbreviations................................................................................................................................. iii Executive Summary.........................................................................................................................v

150

DOE Selects CH2M Hill Plateau Remediation Company for Plateau...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its Hanford Site DOE Selects CH2M Hill Plateau Remediation Company for Plateau Remediation Contract at its...

151

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network (OSTI)

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problem al. 1992 , Jonoski et al. 1997 ; and Willis and Yeh 1987 . However, the fact that the optimization

Neumaier, Arnold

152

EA-0317: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-0317: Final Environmental Assessment EA-0317: Final Environmental Assessment EA-0317: Final Environmental Assessment Remedial Action at the Tuba City Uranium Mill Tailings Site, Tuba City, Arizona This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. Environmental Assessment Remedial Action at the Tuba City Uranium Mill Tailings Site, Tuba City, Arizona, November 1986, DOE/EA-0317 More Documents & Publications CX-010533: Categorical Exclusion Determination LM 12-13 EA-1268: Final Environmental Assessment

153

EIS-0096: Final Environmental Impact Statement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

096: Final Environmental Impact Statement 096: Final Environmental Impact Statement EIS-0096: Final Environmental Impact Statement Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania This Canonsburg FEIS evaluates the environmental impacts associated with remedial actions in connection with residual radioactive materials remaining at the inactive uranium processing site located in Canonsburg, Washington county, Pennsylvania. The Canonsburg site is an 18.5-acre property that was formerly owned by the Vitro Rare Metals Company. The expanded Canonsburg site would be an approximately 30-acre property that would include the Canonsburg site (the former Vitro Rare Metals plant), seven adjacent private houses, and the former Georges Pottery property,

154

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

155

Integrating removal actions and remedial actions: Soil and debris management at the Fernald Environmental Management Project  

SciTech Connect

Since 1991, excess soil and debris generated at the Fernald Environmental management Project (FEMP) have been managed in accordance with the principles contained in a programmatic Removal Action (RvA) Work Plan (WP). This plan provides a sitewide management concept and implementation strategy for improved storage and management of excess soil and debris over the period required to design and construct improved storage facilities. These management principles, however, are no longer consistent with the directions in approved and draft Records of Decision (RODs) and anticipated in draft RODs other decision documents. A new approach has been taken to foster improved management techniques for soil and debris that can be readily incorporated into remedial design/remedial action plans. Response, Compensation and Liability Act (CERCLA) process. This paper describes the methods that were applied to address the issues associated with keeping the components of the new work plan field implementable and flexible; this is especially important as remedial design is either in its initial stages or has not been started and final remediation options could not be precluded.

Goidell, L.C.; Hagen, T.D.; Strimbu, M.J.; Dupuis-Nouille, E.M.; Taylor, A.C.; Weese, T.E. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Yerace, P.J. [USDOE Fernald Area Office, Cincinnati, OH (United States)

1996-02-01T23:59:59.000Z

156

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

157

Preliminary Notice of Violation, Rocky Mountain Remediation Services -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Mountain Remediation Rocky Mountain Remediation Services - EA-97-04 Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 June 6, 1997 Preliminary Notice of Violation issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site, (EA-97-04) This letter refers to the Department of Energy's (DOE) evaluation of noncompliances associated with the dispersal of radioactive material during the remediation of trenches. Preliminary Notice of Violation, Rocky Mountain Remediation Services - EA-97-04 More Documents & Publications Preliminary Notice of Violation, Kaiser-Hill Company - EA-97-03 Consent Order, Kaiser-Hill Company, LLC - EA 98-03 Preliminary Notice of Violation , Rocky Flats Environmental Technology Site

158

Armored Enzyme Nanoparticles for Remediation of Subsurface  

Science Conference Proceedings (OSTI)

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.

Grate, Jay W.

2005-09-01T23:59:59.000Z

159

2010sr31_box-remediation.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Thursday, November 18, 2010 Thursday, November 18, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 292-2484 paivi.nettamo@srs.gov SRS Recovery Act TRU Waste Project Ahead of Schedule with Box Remediation Program Aiken, SC - The U.S. Department of Energy's Savannah River Site (SRS) started off the last 12 months of the American Recovery and Reinvestment Act with an enormous success in its legacy transuranic (TRU) waste program. The H-Canyon

160

Tank waste remediation system mission analysis report  

SciTech Connect

This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

Acree, C.D.

1998-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proceedings: Hazardous Waste Material Remediation Technology Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on hazardous waste materials remediation. The workshop was the fourth in a series initiated by EPRI to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of hazardous waste management as they relate to nuclear plant decommissioning. The information will help utilities understand hazardous waste issues, select technologies for their individual projects, and reduce decom...

1999-11-23T23:59:59.000Z

162

Laboratory/industry partnerships for environmental remediation  

SciTech Connect

There are two measures of ``successful`` technology transfer in DOE`s environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized.

Beskid, N.J.; Zussman, S.K.

1994-09-01T23:59:59.000Z

163

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

164

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

Science Conference Proceedings (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

165

Risk Assessment Guidance for Superfund: Volume I-Human Health Evaluation Manual (Part C, Risk Evaluation of Remedial Alternatives)  

NLE Websites -- All DOE Office Websites (Extended Search)

C, Risk C, Risk Evaluation of Remedial Alternatives) Interim United States Office of Research and EPA/540/R-92/003 Environmental Protection Development December 1991 Agency Washington, DC 20460 EPA/540/R-92/004 Publication 9285.7-01 C December 1991 Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part C, Risk Evaluation of Remedial Alternatives) Interim Office of Emergency and Remedial Response U.S. Environmental Protection Agency Washington, DC 20460 Printed on Recycled Paper NOTICE The policies set out in [his document are intended solely as guidance; they are not final U.S. Environmental Protection Agency (EPA) actions. These policies are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the United States. EPA officials may

166

Salmon Site Remedial Investigation Report, Exhibit 5  

Science Conference Proceedings (OSTI)

This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.

USDOE /NV

1999-09-01T23:59:59.000Z

167

Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6E/EIS-0096-F . Ji^ ' 6E/EIS-0096-F . Ji^ ' w V' - > DOE/EIS--00 96-F-Vol.1 //C^ DE84 0 0 1 4 4 6 Final Environmental Impact Statement Remedial Actions at the Former Vitro Rare Metals Plant Site, Canonsburg, Washington County, Pennsylvania United States Department of Energy July 1983 Volume I r NOTICE } IPORTIONS OF THIS REPORT ARE ILLEGIBLE.' / It has been reproduced from the besi ' available copy to permit the broadest possible availability. This document is PUBLICLY RELEASABLl Authorizmg OfFtciai Date: Z P l ^ o " ? isTWBUTim ef T H I S m\jM] IS mm\m DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

168

BP-5 Remedial Investigation Slug-Test Characterization Results for Well 699-52-55A  

SciTech Connect

Pacific Northwest National Laboratory conducted slug-test characterization at the final, completed BP-5 Remedial Investigation well 699-52-55A near the 200-East Area at the Hanford Site on April 22, 2008. The slug-test characterization was in support of the BP-5 Remedial Investigation. The portion of the unconfined aquifer tested is composed of sediments of the lower Ringold Formation and the underlying Elephant Mountain basalt flowtop. The basalt flowtop unit was included as part of the effective test-interval length for the slug-test analysis because the flowtop unit is hydraulically communicative with the unconfined aquifer. Estimates of hydraulic conductivity for the effective test-interval length represent composite values for the lower Ringold Formation and the underlying Elephant Mountain basalt flow top.

Newcomer, Darrell R.

2008-07-21T23:59:59.000Z

169

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

170

Independent Activity Report, CH2M Hill Plateau Remediation Company -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, CH2M Hill Plateau Remediation Company Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 January 2011 Review of the CH2M Hill Plateau Remediation Company Unreviewed Safety Question Procedure [ARPT-RL-2011-003] The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security, during a site visit from January 10-14, 2011, presented the results of a technical review of the CH2M Hill Plateau Remediation Company (PRC) Unreviewed Safety Question (USQ) Procedure. Independent Activity Report, CH2M Hill Plateau Remediation Company - January 2011 More Documents & Publications CX-009415: Categorical Exclusion Determination Independent Activity Report, Richland Operations Office - January 2011

171

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Intern Sees Nuclear Industry as Job Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Maddie M. Blair Public Affairs Intern, Savannah River Remediation Why does she keep coming back? "There are so many fascinating processes, people, and work

172

Remediation of Mercury and Industrial Contaminants Applied Field Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative (RoMIC-AFRI) Located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee, the RoMIC-AFRI was established to protect water resources by addressing the challenge of preventing contamination. The initiative at Oak Ridge is a collaborative effort that leverages DOE investments in basic science and applied research and the work of site contractors to address the complex challenges in the remediation of legacy waste at the Oak Ridge Reservation. The mission of the Remediation of Mercury and Industrial Contaminants

173

Uranium Mill Tailings Remedial Action Project 1993 Environmental Report  

SciTech Connect

This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

Not Available

1994-10-01T23:59:59.000Z

174

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

175

Historical hydronuclear testing: Characterization and remediation technologies  

SciTech Connect

This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

Shaulis, L.; Wilson, G.; Jacobson, R.

1997-09-01T23:59:59.000Z

176

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

177

Conative Factors in the Context of Adolescent Reading Remediation.  

E-Print Network (OSTI)

??The present study investigated variability in the remedial outcomes of 105 adolescents with reading disabilities who participated in PHAST PACES, a research-based reading intervention with… (more)

Luckett-Gatopoulos, Sarah Elizabeth Anastasia

2011-01-01T23:59:59.000Z

178

Mitigation and Remediation of Mercury Contamination at the Y...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and surface water Hg remediation strategy for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve cost and technical improvements andor to...

179

DOE Selects Savannah River Remediation, LLC for Liquid Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2009. Savannah River Remediation, LLC is a limited liability company consisting of URS Washington Division; Babcock & Wilcox Technical Services Group, Inc.; Bechtel National,...

180

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky...

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 January 2005 HYDROGEN EMBRITTLEMENT OF PIPELINE STEELS: CAUSES AND REMEDIATION P. Sofronis, I. Robertson, D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline...

182

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

or the general public under current conditions of site usage. . 1 U.S. Department of Energy Guidelines for Residual Radioactivity at Formerly Utilized Sites Remedial Action...

183

Microsoft Word - Remedial Action Program Update.rtf  

Office of Legacy Management (LM)

contamination that the owner must address. The Corps and the site owner are exploring alternative ways of remediating the site to achieve the most cost effective and efficient...

184

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

for Residual Radioactivity at Formerly Utilized Sites Remedial Action Program and Remote Surplus Facilities Management Program Sites (Rev. 1, July 1985). .. . -.-----...

185

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied...

186

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

no remedial action is necessary at this site and has eliminated the Westinghouse Atomic Power Development Plant from further consideration under the Formerly Utilized Sites...

187

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BUILDING 7 BLOOMFIELD, NEW JERSEY SW 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site...

188

Savannah River Remediation Donates $10,000 to South Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS Waste Tank Closures Since 1997 A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where...

189

Savannah River Remediation Donates $10,000 to South Carolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commemorate Historic Cleanup Milestone A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility, where...

190

Innovative Sediment Remediation Using a Risk-based Mixed Remedy at the Laconia Manufactured Gas Plant Site: Data and Lessons  

Science Conference Proceedings (OSTI)

This report presents a case study of the sediment remediation project at the Messer Street manufactured gas plant in Laconia, New Hampshire. The report describes a strategy developed to achieve the goal of a remedial action satisfactory to stakeholder goals and interests and which met the utility's business objectives of cost control, schedule, and positive community relations. Key elements in the strategy included a focused site characterization resulting in a remedial action plan prescribed to definite...

2001-11-26T23:59:59.000Z

191

Expedited approach to a carbon tetrachloride spill interim remedial action  

Science Conference Proceedings (OSTI)

Monitored natural attenuation was selected as an interim measure for a carbon tetrachloride spill site where source removal or in situ treatment cannot currently be implemented due to the surrounding infrastructure. Rather than delay action until the site is more accessible to an interim action, this more expedited approach would support a final action. Individual Hazard Substance Site (IHSS) 118.1 is a former underground storage tank at Rocky Flats Environmental Technology Site (RFETS) that stored carbon tetrachloride for process use. Inadvertent releases associated with filling and failure of the tank system resulted in an accumulation of carbon tetrachloride in a bedrock depression around a group of former process waste tanks. Access to the source of contamination is obstructed by numerous utilities, the process waste tanks, and other components of the site infrastructure that limit the ability to conduct an effective remedial action. A preremedial field investigation was conducted in September 1997 to identify and delineate the extent of the dense nonaqueous phase liquid (DNAPL) in the subsurface. Data collected from the investigation revealed that natural processes might be limiting the migration of contaminants from the source area.

Cowdery, C.; Primrose, A. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Uhland, J. [Kaiser-Hill, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

192

INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION  

SciTech Connect

This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

J. Hnat; L.M. Bartone; M. Pineda

2001-07-13T23:59:59.000Z

193

RCRA Information Brief, June 1996: Conditional remedies under RCRA correction action  

Science Conference Proceedings (OSTI)

This document describes conditional remedies under RCRA corrective action. The definition of conditional remedies, criteria that must be met, applications to DOE facilities, applicable clean-up standards, and implementation of conditional remedies are discussed in the document.

NONE

1996-06-01T23:59:59.000Z

194

Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance  

SciTech Connect

This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

Not Available

1993-12-01T23:59:59.000Z

195

Remediation of Abandoned Mines Using Coal Combustion By-Products  

E-Print Network (OSTI)

Remediation of Abandoned Mines Using Coal Combustion By-Products Sowmya Bulusu1 ; Ahmet H. Aydilek that occurs when pyrite that is present in abandoned coal mines comes in contact with oxygen and water, which subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ash

Aydilek, Ahmet

196

Groundwater and Soil Remediation Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Groundwater and Soil Remediation Guidelines provides the nuclear power industry with technical guidance for evaluating the need for and timing of remediation of soil and/or groundwater contamination from onsite leaks, spills, or inadvertent releases to a) prevent migration of licensed material off-site and b) minimize decommissioning impacts.

2010-12-21T23:59:59.000Z

197

Uranium Mill Tailings Remedial Action Project 1994 environmental report  

Science Conference Proceedings (OSTI)

This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

NONE

1995-08-01T23:59:59.000Z

198

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network (OSTI)

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

199

In Situ Environmental Remediation of an Energized Substation  

Science Conference Proceedings (OSTI)

The remediation of contaminated soil and groundwater at energized substations presents special technical, safety, and cost challenges to affected utilities. This study, conducted at an energized substation contaminated with arsenic, evaluated remedial technologies for groundwater and soil treatment and analyzed their cost effectiveness.

2001-12-04T23:59:59.000Z

200

EIS-0355: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55: EPA Notice of Availability of the Final Environmental 55: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0355: EPA Notice of Availability of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIS-0355: EPA Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Final Environmental EPA Notice of Availability of the Final Environmental Impact Statement EIS-0355: EPA Notice of Availability of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings

202

EIS-0355: DOE Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Final Environmental Impact Statement EIS-0355: DOE Notice of Availability of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings

203

EIS-0355: DOE Notice of Availability of the Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Notice of Availability of the Final Environmental DOE Notice of Availability of the Final Environmental Impact Statement EIS-0355: DOE Notice of Availability of the Final Environmental Impact Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings

204

Independent Technical Review of the X-740 Groundwater Remedy, Portsmouth, Ohio: Technical Evaluation and Recommendations  

Science Conference Proceedings (OSTI)

Two major remedial campaigns have been applied to a plume of trichloroethene (TCE) contaminated groundwater near the former X-740 facility at the Portsmouth Gaseous Diffusion Plant in Piketon Ohio. The two selected technologies, phytoremediation using a stand of hybrid poplar trees from 1999-2007 and in situ chemical oxidation using modified Fenton's Reagent from 2008-2009, have proven ineffective in achieving remedial action objectives (RAOs). The 'poor' performance of these technologies is a direct result of site specific conditions and the local contaminant hydrogeology. Key among these challenges is the highly heterogeneous subsurface geology with a thin contaminated aquifer zone (the Gallia) - the behavior of the contamination in the Gallia is currently dominated by slow release of TCE from the clay of the overlying Minford formation, from the sandstone of the underlying Berea formation, and from clayey layers within the Gallia itself. In response to the remediation challenges for the X-740 plume, the Portsmouth team (including the US Department of Energy (DOE), the site contractor (CDM), and the Ohio Environmental Protection Agency (OEPA)) is evaluating the feasibility of remediation at this site and identifying specific alternatives that are well matched to site conditions and that would maximize the potential for achieving RAOs. To support this evaluation, the DOE Office of Groundwater and Soil Remediation (EM-32) assembled a team of experts to serve as a resource and provide input and recommendations to Portsmouth. Despite the challenging site conditions and the failure of the previous two remediation campaigns to adequately move the site toward RAOs, the review team was unanimous in the conclusion that an effective combination of cost effective technologies can be identified. Further, the team expressed optimism that RAOs can be achieved if realistic timeframes are accepted by all parties. The initial efforts of the review team focused on reviewing the site history and data and organizing the information into a conceptual model and findings to assist in evaluating the potential of alternative remediation technologies. Examples of the key conceptual findings of the EM-32 review team were: (1) The Gallia represents the most practical target for deployment of in situ remediation treatment reagents - injection/extraction focused in this zone would provide maximum lateral impacts with minimal potential risk of failure or adverse collateral impacts. (2) The slow release of TCE from clay and sandstone into the Gallia represent a long term source of TCE that can re-contaminate the Gallia in the future - technologies that effectively treat the permeable portions of the Gallia, but do not leave residual treatment capacity in the system are unlikely to achieve long term remedial action objectives. CDM, the site contractor, provided important and useful information documenting the status and preliminary results of the on-site technology alternative evaluation. In the CDM evaluation, potential technologies were either retained (or screened out) in two preliminary evaluation phases and a detailed evaluation was performed on the five alternatives that were retained into the final 'detailed analysis' phase. The five alternatives that were included in the detailed analysis were: (1) hydraulic fracturing with EHC (a solid bioremediation amendment), (2) enhanced anaerobic bioremediation, (3) in situ chemical oxidation, (4) electrical resistance heating, and (5) reactive barriers. In several cases, two or three variants were separately evaluated. The review team found the CDM effort to be generally credible and reasonable. Thus, the review team focused on providing additional considerations and inputs to Portsmouth and on amending and refining the alternatives in ways that might improve performance and/or reduce costs. The Department of Energy Portsmouth Paducah Project Office requested assistance from Department of Energy Office of Environmental Management (EM-32) to provide an independent technical panel to review previous and o

Looney, B.; Rhia, B.; Jackson, D.; Eddy-Dilek, C.

2010-04-30T23:59:59.000Z

205

Independent Activity Report, Savannah River Remediation - July 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation - July 2010 Remediation - July 2010 Independent Activity Report, Savannah River Remediation - July 2010 July 2010 Savannah River Operations Office Integrated Safety Management System Phase II Verification Review of Savannah River Remediation The U.S. Department of Energy (DOE), Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), participated in the DOE Savannah River Operations Office (DOE-SR), Office of Safety and Quality Assurance (OSQA), Technical Support Division (TSD) Integrated Safety Management System (ISMS), Phase II Verification of Savannah River Remediation (SRR). The purpose of the DOE-SR Phase II ISMS Verification was to verify that the SRR ISMS Description that was submitted to and approved by the DOE-SR Manager is being effectively implemented at the Savannah

206

DOE Awards Contract for Environmental Remediation Services at California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

207

EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

198: Uranium Mill Tailings Remedial Action Groundwater Project 198: Uranium Mill Tailings Remedial Action Groundwater Project EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project SUMMARY This EIS assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 28, 1997 EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project

208

Implementation of the Formerly Utilized Sites Remedial Action Program:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of the Formerly Utilized Sites Remedial Action Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers (Waste Management Conference 2010) More Documents & Publications Recent Developments in DOE FUSRAP

209

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

210

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

211

Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)  

Science Conference Proceedings (OSTI)

Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

Livesay, Jake [ORNL; Guzzardo, Tyler [ORNL; Lousteau, Angela L [ORNL

2012-02-01T23:59:59.000Z

212

Inefficient remediation of ground-water pollution  

SciTech Connect

The problem of trying to remove ground-water pollution by pumping and treating are pointed out. Various Superfund sites are discussed briefly. It is pointed out that many chemicals have been discarded in an undocumented manner, and their place in the groundwater is not known. Results of a remedial program to remove perchloroethylene at a concentration of 6132 parts per billion from groundwater in a site in New Jersey showed that with an average extraction rate of 300 gallons per minute from 1978 to 1984 contamination level was lowered below 100 parts per billion. However, after shutdown of pumping the level rose to 12,588 parts per billion in 1988. These results lead the author to propose that the practical solutions for water supplies may be treatment at the time it enters the system for use.

Abelson, P.H.

1990-11-09T23:59:59.000Z

213

Tank waste remediation system engineering plan  

SciTech Connect

This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ``as is`` condition of engineering practice, systems, and facilities to the desired ``to be`` configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively.

Rifaey, S.H.

1998-01-09T23:59:59.000Z

214

Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action  

SciTech Connect

The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

1994-09-01T23:59:59.000Z

215

Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results  

Science Conference Proceedings (OSTI)

This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

2000-03-14T23:59:59.000Z

216

Remedial design and remedial action guidance for the Idaho National Engineering Laboratory  

SciTech Connect

The US Department of Energy, Idaho Operations Office (DOE-ID), the US Environmental Protection Agency, Region X (EPA), and the Idaho Department of Health and Welfare (IDHW) have developed this guidance on the remedial design and remedial action (RD/RA) process. This guidance is applicable to activities conducted under the Idaho National Engineering Laboratory (INEL) Federal Facility Agreement and Consent Order (FFA/CO) and Action Plan. The INEL FFA/CO and Action Plan provides the framework for performing environmental restoration according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The guidance is intended for use by the DOE-ID, the EPA, and the IDHW Waste Area Group (WAG) managers and others involved in the planning and implementation of CERCLA environmental restoration activities. The scope of the guidance includes the RD/RA strategy for INEL environmental restoration projects and the approach to development and review of RD/RA documentation. Chapter 2 discusses the general process, roles and responsibilities, and other elements that define the RD/RA strategy. Chapters 3 through 7 describe the RD/RA documents identified in the FFA/CO and Action Plan. Chapter 8 provides examples of how this guidance can be applied to restoration projects. Appendices are included that provide excerpts from the FFA/CO pertinent to RD/RA (Appendix A), a applicable US Department of Energy (DOE) orders (Appendix B), and an EPA Engineering ``Data Gaps in Remedial Design`` (Appendix C).

1993-10-01T23:59:59.000Z

217

EA-1527: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

527: Final Environmental Assessment 527: Final Environmental Assessment EA-1527: Final Environmental Assessment Corrective Measures Study Report for Remediating Contamination at Lawrence Berkeley National Laboratory Regulated under the Resource Conservation and Recovery Act The Corrective Measures Study (CMS) Plan established the requirements and procedures to be used for completing the CMS.This report describes the results of the CMS, which was conducted in accordance with that approved plan. Environmental Assessment and Corrective Measures Study Report for Remediating Contamination at Lawrence Berkeley National Laboratory Regulated under the Resource Conservation and Recovery Act, DOE/EA-1527 (September 2005) More Documents & Publications EA-1579: Final Environmental Assessment Groundwater Contamination and Treatment at Department of Energy Sites

218

Effects of remediation amendments on vadose zone microorganisms  

SciTech Connect

Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

Miller, Hannah M.; Tilton, Fred A.

2012-08-10T23:59:59.000Z

219

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

I I c. ,..I -. i FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC.) KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decomnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 . 2 ii .-_. _.--_- "~ ELIMINATION REPORT FORMER BRIDGEPORT BRASS COMPANY HAVENS LABORATORY (REACTIVE METALS, INC. 1 KOSSUTH AND PULASKI STREETS BRIDGEPORT, CONNECTICUT INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and kaste Technology, Division of Facility and Site

220

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT  

Office of Legacy Management (LM)

(' (' . . FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT ELIMINATION REPORT FORMER VITRO LABORATORIES FORMER VITRO LABORATORIES VITRO CORPORATION VITRO CORPORATION WEST ORANGE, NEW JERSEY WEST ORANGE, NEW JERSEY SEP 30 1985 SEP 30 1985 Department of Energy Office of Nuclear Waste Office of Remedial Action and Waste Technology Division of Facility and Site Deconxnissioning Projects . CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii Page 7 3 4 - _- mI _---. ELSMINATION REPORT FORMER VITRO LABORATORIES, VITRO CORPORATION, WEST ORAN6E, NEW JERSEY INTRODUCTION . The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) _ WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK SEP 301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ----- ----_l_.._- .._. _- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii .- --- .- Page . 1 4 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERYLIET, NEW YORK, AND DUNKIRK, NEW YORK 1 INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

222

Sulfate Reduction in Groundwater: Characterization and Applications for Remediation  

Science Conference Proceedings (OSTI)

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

2012-06-01T23:59:59.000Z

223

Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Land Recycling and Environmental Remediation Standards Act Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) Iowa Land Recycling and Environmental Remediation Standards Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources

224

Final - Gasbuggy S  

Office of Legacy Management (LM)

DOENSO does not plan to remediate subsurface contamination due to the lack of feasible technologies; therefore, the current state is the end state for the subsurface at the...

225

WATER AS A REAGENT FOR SOIL REMEDIATION  

SciTech Connect

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

2001-03-29T23:59:59.000Z

226

DOEIEV-0005/20 Formerly Utilized MED/AEC Sites Remedial Action Program  

Office of Legacy Management (LM)

20 20 Formerly Utilized MED/AEC Sites Remedial Action Program Radiological Survey of the Middlesex Municipal Landfill, Middlesex, New Jersey April 1980 , Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmental Control Technology DOE/EV-O005/20 UC-70 Formerly Utilized MED/AEC Sites Remedbl Action Program Radiological Survey uf the Middlesex Municipal Landfill, Middlesex, New Jersey April 1980 Final Report Prepared for U.S. Department of Energy Assistant Secretary for Environment Office of Environmental Compliance and Overview Division of Environmec!al Coctrol Technology Washington, D.C. 20545 by Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

227

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

remediation and biofuel production will be discussed. Newpollutant degradation, biofuel production and production of

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

228

Independent Oversight Review, Hanford Site CH2M Hill Plateau Remediation Company- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site CH2M Hill Plateau Remediation Company Implementation Verification Review Processes

229

Tank waste remediation system multi-year work plan  

SciTech Connect

The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

Not Available

1994-09-01T23:59:59.000Z

230

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION ( FORMER HOOKER ELECTROCHEMICAL COMPANY ) NIAGARA FALLS, NEW YORK SEP 30 1985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ELIMINATION REPORT FOR OCCIDENTAL CHEMICAL CORPORATION (FORMER HOOKER ELECTROCHEMICAL COMPANY) L NIAGARA FALLS, NEW YORK- INTRODUCTION The Department ' of Energy (DDE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or the predecessor agencies, offices, and divisions), has reviewed the past activities of the Manhattan Engineer District (MED) and the Atomic Energy Commission (MED/AEC) at

231

CH2M HILL Plateau Remediation Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company CH2M HILL Plateau Remediation Company The Office of Hea1th, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances of a series of radiological work deficiencies at the Plutonium Finishing Plant (PFP) and the 105 K-East Reactor Facility (105KE Reactor) by CH2M HILL Plateau Remediation Company (CHPRC). The radiological work deficiencies at PFP are documented in the April 29, 2011, Department of Energy Richland Operations Office (DOE-RL) Surveillance Report S-11-SED-CHP~C-PFP-002, Planning and Execution of Radiological Work. S-11-SED-CHPRC-PFP-002 documented four examples where inadequate hazard analysis resulted in airborne radioactivity that exceeded the limits of the controlling radiological work permit.

232

Environmental Restoration Remedial Action Program records management plan  

SciTech Connect

The US Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Field Office Management Plan ((FOMP) DOE-RL 1989) describes the plans, organization, and control systems to be used for management of the Hanford Site environmental restoration remedial action program. The FOMP, in conjunction with the Environmental Restoration Remedial Action Quality Assurance Requirements document ((QARD) DOE-RL 1991), provides all the environmental restoration remedial action program requirements governing environmental restoration work on the Hanford Site. The FOMP requires a records management plan be written. The Westinghouse Hanford Company (Westinghouse Hanford) Environmental Restoration Remedial Action (ERRA) Program Office has developed this ERRA Records Management Plan to fulfill the requirements of the FOMP. This records management plan will enable the program office to identify, control, and maintain the quality assurance, decisional, or regulatory prescribed records generated and used in support of the ERRA Program. 8 refs., 1 fig.

Michael, L.E.

1991-07-01T23:59:59.000Z

233

Environmental Remediation Strategic Planning of Fukushima Nuclear Accident  

Science Conference Proceedings (OSTI)

Environmntal Remediation Assessment and other respons decision making on Environmental monitoring, experiments and assessment. Preliminary assessment to grasp the overall picture and determine critical locations, phenomena, people, etc. Using simple methods and models.

Onishi, Yasuo

2011-12-01T23:59:59.000Z

234

SBA Increases Size Standards for Waste Remediation Services &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SBA Increases Size Standards for Waste Remediation Services & SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in Administrative and Support & Waste Management and Remediation Services categories, saying these revisions "reflect changes in marketplace conditions." The new standards are published in the Federal Register. Increases to size standards will enable some growing small businesses in these sectors to retain their small business status; will give federal

235

Salmon Site Remedial Investigation Report - Volume I  

Office of Legacy Management (LM)

494-VOL I/REV 1 494-VOL I/REV 1 U.S. Department of Energy Nevada Operations Office E nv i r onm ent al R es t or at i on D i v i s i on N ev ada E nv i r onm ent al R es t or at i on Pr oj ect S al m on S i t e R em edi al Inv es t i gat i on R epor t Vol u m e I R ev i s i on N o. : 1 S ept em ber 1999 Approved for public release; further dissemination unlimited. This page intentionally left blank DOE/NV--494-VOL I/REV 1 SALMON SITE REMEDIAL INVESTIGATION REPORT DOE Nevada Operations Office Las Vegas, Nevada Revision No.: 1 September 1999 Approved for public release; further dissemination unlimited. Available to the public from - U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 Available electronically at http://www.doe.gov/bridge. Available to U.S. Department of Energy and its contractors in paper from -

236

Site remediation in a virtual environment  

Science Conference Proceedings (OSTI)

We describe the process used in combining an existing computer simulation with both Virtual Reality (VR) input and output devices, and conventional visualization tools, so as to make the simulation easier to use and the results easier to understand. VR input technology facilitates direct user manipulation of three dimensional simulation parameters. Commercially available visualization tools provide a flexible environment for representing abstract scientific data. VR output technology provides a more flexible and convincing way to view the visualization results than is afforded in contemporary visualization software. The desired goal of this process is a prototype system that minimizes man-machine interface barriers, as well as enhanced control over the simulation itself, so as to maximize the use of scientific judgement and intuition. In environmental remediation, the goal is to clean up contaminants either by removing them or rendering them non-toxic. A computer model simulates water or chemical flooding to mobilize and extract hydrocarbon contaminants from a volume of saturated soil/rock. Several wells are drilled in the vicinity of the contaminant, water and/or chemicals are injected into some of the wells, and fluid containing the mobilized hydrocarbons is pumped out of the remaining wells. The user is tasked with finding well locations and pumping rates that maximize recovery of the contaminants while minimizing drilling and pumping costs to clean up the site of interest.

Bethel, W.; Jacobsen, J.; Holland, P.

1994-01-01T23:59:59.000Z

237

Volatile organic compound remedial action project  

SciTech Connect

This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

NONE

1991-12-01T23:59:59.000Z

238

Least-Cost Groundwater Remediation Design Using Uncertain Hydrogeological Information  

Science Conference Proceedings (OSTI)

The research conducted by at the Research Center for Groundwater Remediation Design at the University of Vermont funded by the Department of Energy continues to focus on the implementation of a new method of including uncertainty into the optimal design of groundwater remediation systems. The uncertain parameter is the hydraulic conductivity of an aquifer. The optimization method utilized for this project is called robust optimization. The uncertainty of the hydraulic conductivity is described by a probability density function, PDF.

Pinder, George F.

1999-06-01T23:59:59.000Z

239

Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals)  

NLE Websites -- All DOE Office Websites (Extended Search)

B, B, Development of Risk-based Preliminary Remediation Goals) Interim United States Office of Research and EPA/540/R-92/003 Environmental Protection Development December 1991 Agency Washington, DC 20460 EPA/540/R-92/003 Publication 9285.7-01 B December 1991 Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) Interim Office of Emergency and Remedial Response U.S. Environmental Protection Agency Washington, DC 20460 Printed on Recycled Paper N O T I C E The policies set out in this document are intended solely as guidance; they are not final U.S. Environmental Protection Agency (EPA) actions. These policies are not intended, nor can they be relied upon, to create any rights enforceable by any party in litigation with the United States. EPA officials may

240

Final Reminder:  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Reminder: Final Reminder: Final Reminder: Please save your $SCRATCH and $SCRATCH2 imporant files by 4/30/12 April 27, 2012 by Helen He (0 Comments) Franklin batch system is drained, and all batch queues are stopped as of 4/26 23:59pm. This is the final reminder that please make sure to save important files on your Franklin $SCRATCH and $SCRATCH2. ALL FILES THERE WILL BE DELETED, and there will be no mechanisms to recover any of the files after May 1. Mon Apr 30: Last day to retrieve files from Franklin scratch file systems Mon Apr 30, 23:59: User logins are disabled If you need help or have any concerns, please contact "consult at nersc dot gov". Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet.

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties  

Science Conference Proceedings (OSTI)

This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

Not Available

1985-03-01T23:59:59.000Z

242

Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1  

SciTech Connect

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

Not Available

1994-12-01T23:59:59.000Z

243

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

Science Conference Proceedings (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

244

The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey  

Science Conference Proceedings (OSTI)

This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperatorâ??s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperatorâ??s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800â??s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Townshipâ??s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

Gartenberg, Gary; Poff, Gregory

2010-06-30T23:59:59.000Z

245

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

246

Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Final Final Report to Improved Reservoir Access Through Refracture Treatments in Tight Gas Sands and Gas Shales 07122-41.FINAL June 2013 PI Mukul M. Sharma The University of Texas at Austin 200 E. Dean Keeton St. Stop C0300 Austin, Texas 78712 (512) 471---3257 msharma@mail.utexas.edu LEGAL NOTICE This report was prepared by The University of Texas at Austin as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA members of RPSEA, the National Energy Technology Laboratory, the U.S. Department of Energy, nor any person acting on behalf of any of the entities: a. MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED WITH RESPECT TO ACCURACY, COMPLETENESS, OR USEFULNESS OF THE INFORMATION CONTAINED IN THIS DOCUMENT, OR THAT THE

247

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

248

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

249

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

250

Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)  

SciTech Connect

This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

1992-04-30T23:59:59.000Z

251

Electrochemical arsenic remediation for rural Bangladesh  

Science Conference Proceedings (OSTI)

Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

Addy, Susan Amrose

2009-01-01T23:59:59.000Z

252

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration  

E-Print Network (OSTI)

Remediation, and Carbon Sequestration References Anderson,Remediation, and Carbon Sequestration rhizosphere byRemediation, and Carbon Sequestration Figure 1. Examples of

Bernard, S.

2009-01-01T23:59:59.000Z

253

Tank Waste Remediation System retrieval and disposal mission technical baseline summary description  

SciTech Connect

This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

McLaughlin, T.J.

1998-01-06T23:59:59.000Z

254

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

-p,l-I -p,l-I . . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS D Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2 3 3 4 ii --. ELIMINATION REPORT MOBIL MINING AND MINERALS COMPANY (THE FORMER MATHIESON CHEMICAL COMPANY) PASADENA, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions),

255

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

itI.2 -2 itI.2 -2 FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __I__,_-. - ---.. ____- .- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Pa e -5 2 2 2 4 4 4 ii ELIMINATION REPORT THE FORMER BRUSH BERYLLIUM COMPANY CLEVELAND, OHIO INTRODUCTION The Oepartment of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decorrnnissioning Projects (and/or predecessor agencies, offices and divisionsa has reviewed the past activities of the Manhattan Engineer

256

Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoengineering: Plan B Remedy for Global Warming Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter- measures may be required to counter the current global energy imbalance due to global warming. Of the many proposed remedies, deploying aerosols within the stratosphere offers realistic prospects. Sulfur injections in the lower stratosphere would have the cooling effect of naturally occurring volcanic aerosols. Soot at

257

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

fi.q 2, fi.q 2, I: * FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 4 iii ELIMINATION REPORT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decormnissioning Projects (and/or predecessor agencies, offices and

258

The mission of the Remediation of Mercury and Industrial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediation of Mercury and Industrial Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of protecting surface water, groundwater, and ecological receptors. For more information, contact: Eric Pierce Oak Ridge National Laboratory 1 Bethel Valley Road, MS 6038 Oak Ridge, TN 37831 pierceem@ornl.gov (865) 574-9968 Kurt Gerdes DOE-EM Office of Groundwater and Soil Remediation kurt.gerdes@em.doe.gov (301) 903-7289 Sediment Biota Groundwater Flow Fluctuating Water Table Hg in building structures and rubble Waterborne mercury (mercury being transported via water being released from the facilities to the creeks) Hg currently present in the creek and sediments along the base of the creek

259

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

BETHLEHEM STEEL CORPORATION BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects P bl@ C.' , 1 & cr INTRODUCTION BACKGROUND CONTENTS Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 5 iii ELIMINATION REPORT BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions), has reviewed the past activities of the Atomic Energy Commission (AEC) at the Bethlehem Steel Corporation, Lackawanna, New

260

Designation of Sites for Remedial Action - Metal Hydrides, Beverly,  

Office of Legacy Management (LM)

T: T: Designation of Sites for Remedial Action - Metal Hydrides, Beverly, MA; Bridgeport Brass, Adrian, MI and Seymour, Chicago, IL CT; National Guard Armory, 0: Joe LaGrone, Manager Oak Ridge Operations Office Based on the attached radiological survey data (Attachments 1 through 3) and an appropriate authority review, the following properties are being authorized for remedial action. It should be noted that the attached survey data are for designation purposes only and that Bechtel National, Inc. (BNI) should conduct appropriate comprehensive characterization studies to determine the extent'and magnitude of contamination on properties. Site Location Priority Former Bridgeport Brass Co. (General Motors) Adrian, MI Low Former Bridgeport Brass Co.

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

UNIVERSITY OF ARIZONA UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects -- --- .- _- --__ CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii - ,. -- Page 1 4 4 ..I___ - ~-___- ELIMINATION REPORT UNIVERSITY OF ARIZONA (U.S. BUREAU OF MINES) TUCSON, ARIZONA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC)

262

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

NATIONAL BUREAU OF STANDARDS BUILDINGS NATIONAL BUREAU OF STANDARDS BUILDINGS VAN NESS STREET WASHINGTON, D.C. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - __-~---- -._.. .._ .-. .- INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status CONTENTS ELIMINATION ANALYSIS REFERENCES ii Paqe 1 4 INiRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities conducted for the Atomic Energy Commission and the Manhattan Engineer District (MED) (DOE predecessors) at

263

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

,: /A (,) i_ - z ,: /A (,) i_ - z FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR FORMERLY UTILIZED PORTIONS OF THE WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decotwnissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Radiological History and Status ELIMINATION ANALYSIS Findings and Recommendation 6 REFERENCES iii Page 1 1 1 3 4 7 "..*.w..,, -. ._ ..- ". --. AUTHORITY REVIEW WATERTOWN ARSENAL WATERTOWN, MASSACHUSETTS INTRODUCTION The purpose of this review is to present information pertaining to work performed under the sponsorship of the Atomic Energy Commission (AEC) Manhattan Engineer District (MED) and the facts and circum-

264

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SENECA ARMY DEPOT SENECA ARMY DEPOT ROMULUS, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and kaste Technology. Division of Facility and Site Decommissioning Projects INTRODUCTION t3ACKGROUND CONTENTS . -Page Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 4 ii .___ -_-_..--. ._.".. ELIMINATION REPORT SENECA ARMY DEPOT ROMULUS, NEW YORK . INTRODUCTION The Department pf Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer District (MED) at Seneca Army Depot, Romulus, hew York. Based on the

265

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

\ \ ,.-c , 2 2 a. . FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM . ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS SEP301985 Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects __--... -_ -._.-_- _"_-. .___.. -... .._ ..-. .-. ..--- . , ' , CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES iii 4 __-.I ._-----.- --- ELIMINATION REPORT FOR THE FORMER GENERAL SERVICES ADMINISTRATION 39TH STREET WAREHOUSE 1716 PERSHING ROAD CHICAGO, ILLINOIS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office

266

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CF INDUSTRIES, INC. CF INDUSTRIES, INC. ( THE FORMER INTERNATIONAL MI NERALS AND CHEMICAL CORPORATION) BARTON, FLORIDA Department of Energy Office of Nuclear Energy. Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects - - .._. ..--.. . . I."__ . - INTRODUCTION CONTENTS Page BACKGROUND Site Function Site Description Radiological. History and Status ELIMINATION ANALYSIS REFERENCES Summary of Findings ii 7 8 --..I--- - ..-___-_--.___-"-- -- ' . ELIMINATION REPORT CF INDUSTRIES, INC. (THE FORMER INTERNATIONAL MINERALS AND CHEMICAL CORPORATION) BARTOW, FLORIDA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

267

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

ROHM & HAAS COMPANY ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLYANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS Page INTRODUCTIOk BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 2 2 2 2 3 3 iii ELIMINATION REPORT ROHM & HAAS COMPANY PHILADELPHIA, PENNSYLVANXA INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities of the Atomic Energy Commission (AEC) at the Rohm & Haas Company, Philadelphia, Pennsylvania. Based on a

268

Decommissioning of the remediation systems at Waverly, Nebraska, in 2011-2012.  

SciTech Connect

The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility in Waverly, Nebraska, from 1952 to 1974. During this time, the grain fumigant '80/20' (carbon tetrachloride/carbon disulfide) was used to preserve stored grain. In 1982, sampling by the U.S. Environmental Protection Agency (EPA) found carbon tetrachloride contamination in the town's groundwater. After an investigation of the contaminant distribution, the site was placed on the National Priority List (NPL) in 1986, and the CCC/USDA accepted responsibility for the contamination. An Interagency Compliance Agreement between the EPA and the CCC/USDA was finalized in May 1988 (EPA 1990). The EPA (Woodward-Clyde Consultants, contractor) started immediate cleanup efforts in 1987 with the installation of an air stripper, a soil vapor extraction system, a groundwater extraction well, and groundwater and soil gas monitoring wells (Woodward-Clyde 1986, 1988a,b). After the EPA issued its Record of Decision (ROD; EPA 1990), the CCC/USDA (Argonne National Laboratory, contractor) took over operation of the treatment systems. The CCC/USDA conducted a site investigation (Argonne 1991, 1992a,b), during which a carbon tetrachloride plume in groundwater was discovered northeast of the former facility. This plume was not being captured by the existing groundwater extraction system. The remediation system was modified in 1994 (Argonne 1993) with the installation of a second groundwater extraction well to contain the contamination further. Subsequently, a detailed evaluation of the system resulted in a recommendation to pump only the second well to conserve water in the aquifer (Argonne 1995). Sampling and analysis after implementation of this recommendation showed continued decreases in the extent and concentrations of the contamination with only one well pumping (Argonne 1999). The CCC/USDA issued quarterly monitoring reports from 1988 to 2009. Complete documentation of the CCC/USDA characterization and remediation efforts, including the quarterly monitoring reports, is on the compact disc inside the back cover of this report. The EPA reported on the progress of the remediation systems in a series of five-year reviews (EPA 1993, 1999, 2004, 2009). These reports and other EPA documentation are also on the compact disc inside the back cover of this report, along with the Woodward-Clyde (1986, 1988a,b) documentation cited. Starting in 2006, the analytical results for groundwater (the only medium still being monitored) showed no carbon tetrachloride concentrations above the maximum contaminant level (MCL) of 5.0 g/L. Because the cleanup goals specified in the ROD (EPA 1990) had been met, the EPA removed the site from the NPL in November 2006 (Appendix A). In 2008 the National Pollutant Discharge Elimination System (NPDES) permit for the remediation system was deactivated, and a year later the EPA released its fourth and final five-year report (EPA 2009), indicating that no further action was required for the site and that the site was ready for unlimited use. In 2011-2012, the CCC/USDA decommissioned the remediation systems at Waverly. This report documents the decommission process and closure of the site.

LaFreniere, L. M. (Environmental Science Division)

2012-06-29T23:59:59.000Z

269

Successful Field-Scale In Situ Thermal NAPL Remediation at the...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center...

270

Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites  

Energy.gov (U.S. Department of Energy (DOE))

This document summarizes radiological conditions at sites remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP) and transferred to the U.S. Department of Energy (DOE) for...

271

DOE/OR/20722-83 Formerly Utilized Sites Remedial Action Program...  

Office of Legacy Management (LM)

3 Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 POST-REMEDIAL ACTION REPORT FOR THE RESIDENTIAL PROPERTIES ON GROVE AVENUE AND PARKWAY...

272

Ignition Method Development and First Field Demonstration of In Situ Smouldering Remediation.  

E-Print Network (OSTI)

??Self-sustaining Treatment for Active Remediation (STAR), a smouldering combustion-based technology for remediating sites contaminated by industrial liquids, has been extensively studied in the laboratory. The… (more)

Scholes, Grant C

2013-01-01T23:59:59.000Z

273

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Gorm Heron, Steven Carroll, Hank Sowers, Bruce McGee, Randall Juhlin, Joe Daniel, David S. Ingle Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young - Rainey STAR Center More Documents & Publications Successful Field-Scale In Situ Thermal NAPL Remediation at the Young - Rainey STAR Center Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification

274

Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision  

Science Conference Proceedings (OSTI)

This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

Not Available

1994-01-01T23:59:59.000Z

275

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

276

Microsoft Word - Final Tech Report0303-jmm.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Report Technical Report Project Final Report Remediation of Leon Water Flood, Butler County, Kansas Prepared for the Kansas Corporation Commission Wichita, Kansas March, 2003 Prepared by Arthur Langhus Layne - LLC 1305 E. 15 th Street, Suite 205 Tulsa, Oklahoma 74120 (918) 740-9930 www.ALL-LLC.com 2 TITLE PAGE Project Report: Applied Phyto-Remediation Techniques Using Halophytes for Oil and Brine Spill Scars Final Report Reporting Period: August 2000 to March 2003 Principal Authors: * M. L. Korphage, Director, Kansas Corporation Commission, Oil and Gas Division * Bruce G. Langhus, ALL Consulting * Scott Campbell, Kansas Biological Survey March, 2003 Cooperative Agreement No. DE-FC26-00BC15328 M.L. Korphage Kansas Corporation

277

DOE Issues Final Environmental Impact Statement for Moab, Utah Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for Moab, Utah Site Environmental Impact Statement for Moab, Utah Site DOE Issues Final Environmental Impact Statement for Moab, Utah Site July 25, 2005 - 2:27pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its final environmental impact statement (EIS) for the Moab Uranium Mill Tailings Remedial Action Project Site, located on the bank of the Colorado River. The EIS details the preferred option of removal of the tailings pile and contaminated materials, along with ground water remediation. The tailings will be moved, predominately by rail, to the proposed Crescent Junction, Utah, site, more than 30 miles from the Colorado River. "Taking all facts into account, we believe the recommendations issued today provide the best solution to cleaning up Moab and protecting the River,"

278

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

Strategies to address the mixed-waste situation require thea valuable solution for mixed-waste remediation by reducing

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

279

C-1. Ground Water Remedial Technologies and Process Options C-1.1. Ground Water Extraction  

E-Print Network (OSTI)

This appendix presents detailed descriptions of the remedial technologies and process options presented in Chapter 3. Sources for these descriptions are referenced at the end of appropriate sections. Several of the remedial technologies described in this appendix have already been tested and used at Lawrence Livermore National Laboratory (LLNL) Site 300. The remedial technologies already being used in ongoing removal actions or prototype remedial actions at Site 300 are identified in the following discussion.

C. Ground; Water Extraction Wells

1999-01-01T23:59:59.000Z

280

Recommendation 170: Remedial Investigation/Feasibility Study for East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

The ORSSAB Recommendation to DOE on a Remedial Investigation/Feasibility Study for East Tennessee Technology Park.

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program  

Energy.gov (U.S. Department of Energy (DOE))

Overview of the U.S. Department of Energy Formerly Utilized Sites Remedial Action Program (March 2012)

282

In-situ remediation system for groundwater and soils  

DOE Patents (OSTI)

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

283

Biogeochemical Considerations Related To The Remediation Of I-129 Plumes  

Science Conference Proceedings (OSTI)

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D. I. [Savannah River Site (SRS), Aiken, SC (United States); Yeager, C. [Los Alamos National Laboratory , Los Alamos, NM (United States); Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States); Zhang, S. [Texas A& M University, Galveston, TX (United States); Xu, C. [Texas A& M University, Galveston, TX (United States); Schwehr, K. A. [Texas A& M University, Galveston, TX (United States); Li, H. P. [Texas A& M University, Galveston, TX (United States); Brinkmeyer, R. [Texas A& M University, Galveston, TX (United States); Santschi, P. H. [Texas A& M University, Galveston, TX (United States)

2012-09-24T23:59:59.000Z

284

National conference on environmental remediation science and technology: Abstracts  

Science Conference Proceedings (OSTI)

This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

NONE

1998-12-31T23:59:59.000Z

285

Problems Encountered During the Radiological Remediation of Old Buildings  

SciTech Connect

With several military base closures resulting in property transfer to public use and the decommissioning of many legacy waste facilities, the opportunity for remediation of older buildings is increasing. Along with these projects, come several problems that could give the potential remediator some surprises. During the preconstruction and planning phases of the original construction activities, several generations of drawings were most likely produced for approval and permit submittal. Over the years, buildings may undergo several renovations with or without the full characterization or remediation that should be done when radioactive materials are used on a site. New walls or floors may be built over the original construction materials. Contamination in and around the building may have resulted from processes that were accepted at the time or from inadvertent activities that may have been covered up, including accidental spills. Many buildings contain hidden rooms or accesses that over time became useless and have been closed up or over, these areas may not be very obvious. When characterizing a building the effluents of the building are usually forgotten, sewer lines are important areas to investigate. All these items could cause a remediator to overlook a potentially highly contaminated area. With more of these facilities being turned over for public use, correctly characterizing these buildings will become a more common problem.

Krieger, K. V.; Schillings, D. C.

2003-02-25T23:59:59.000Z

286

Remedial Methods for Intergranular Attack of Alloy 600 Tubing, Volume 1: Plant Corrosion Morphologies and Remedial Methods, Volume 2: Additives and Test Plans for Remedial Methods, Volume 3: Boric Acid and Acetic Acid Remedial Methods  

Science Conference Proceedings (OSTI)

Intergranular attack and stress corrosion cracking of alloy 600 tubing have caused costly PWR shutdowns and even necessitated steam generator replacement. This research identified chemicals that might mitigate such degradation but showed that on-line treatment of boric acid is the best existing remedy.

1986-06-30T23:59:59.000Z

287

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

288

BIOGEOCHEMICAL CONSIDERATIONS RELATED TO THE REMEDIATION OF I-129 PLUMES  

SciTech Connect

The objectives of this report were to: provide a current state of the science of radioiodine biogeochemistry relevant to its fate and transport at the Hanford Site; conduct a review of Hanford Site data dealing with groundwater {sup 129}I; and identify critical knowledge gaps necessary for successful selection, implementation, and technical defensibility in support of remediation decisions.

Kaplan, D.; Yeager, C.; Denham, M.; Zhang, S.; Xu, C.; Schwehr, K.; Li, H.; Brinkmeyer, R.; Santschi, P.

2012-09-24T23:59:59.000Z

289

FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

FINAL REPORT AEC-ERDA Research Contract AT (11-1) 2174 Columbia University's Nevis Laboratories "Research in Neutron Velocity Spectroscopy" James RainwatGr DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

290

Groundwater Remediation of Inorganic Constituents at Coal Combustion Product Management Sites  

Science Conference Proceedings (OSTI)

This report reviews constituents that potentially may trigger groundwater remediation at coal combustion product (CCP) management sites and briefly summarizes various in situ and ex situ remediation technologies and their applicability to treat these constituents. The report provides a more detailed discussion for one potentially promising in situ remediation technology, permeable reactive barriers (PRBs).

2006-10-29T23:59:59.000Z

291

A multilayer groundwater sampler for characterizing contaminant plumes. Final report  

SciTech Connect

This final report describes activities related to the design and initial demonstration of a passive multilayer groundwater sampling system. The apparatus consists of remotely controlled cylinders filled with deionized water which are connected in tandem. Vertical fine structure of contaminants are easily defined. Using the apparatus in several wells may lead to three dimensional depictions of groundwater contamination, thereby providing the information necessary for site characterization and remediation.

Kaplan, E.; Heiser, J.

1992-12-18T23:59:59.000Z

292

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

Science Conference Proceedings (OSTI)

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

293

Apparatus and method for extraction of chemicals from aquifer remediation effluent water  

DOE Patents (OSTI)

An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Moses, John M. (Dedham, MA); Barker, Donna L. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

294

Method and system for extraction of chemicals from aquifer remediation effluent water  

DOE Patents (OSTI)

A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.

McMurtrey, Ryan D. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID); Moor, Kenneth S. (Idaho Falls, ID); Shook, G. Michael (Idaho Falls, ID); Barker, Donna L. (Idaho Falls, ID)

2003-01-01T23:59:59.000Z

295

Documents: Final PEIS  

NLE Websites -- All DOE Office Websites (Extended Search)

Final PEIS Search Documents: Search PDF Documents View a list of all documents Final Programmatic EIS DOEEIS-0269 Final Programmatic Environmental Impact Statement for...

296

Savannah River Remediation Donates $10,000 to South Carolina State Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Remediation Donates $10,000 to South Carolina State Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates $10,000 to South Carolina State Nuclear Engineering Program September 28, 2012 - 9:27am Addthis Savannah River Remediation presents a $10,000 to South Carolina State University to support its Nuclear Engineering Program. In the photo, from left: Kayla Miller, Savannah River Remediation Procurement Department and South Carolina State University 2010 graduate; Dr. John Corbitt, Acting Chairman of the South Carolina State University Board of Trustees; Dr. Cynthia Warrick, Interim South Carolina State University President; and Dave Olson, Savannah River Remediation President and Project Manager. Savannah River Remediation presents a $10,000 to South Carolina State

297

The U.S. Department of Energy Formerly Utilized Sites Remedial Action  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The U.S. Department of Energy Formerly Utilized Sites Remedial The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge (Waste Management Conference 2010) The U.S. Department of Energy Formerly Utilized Sites Remedial Action Program: Ensuring Protectiveness and Preserving Knowledge More Documents & Publications Implementation of the Formerly Utilized Sites Remedial Action Program: Coordination Between the U.S. Department of Energy and the U.S. Army Corps of Engineers Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP

298

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Embrittlement Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop Augusta, GA, August 30, 2005 Funding and Duration * Timeline - Project start date: 7/20/05 - Project end date: 7/19/09 - Percent complete: 0.1% * Budget: Total project funding: 300k/yr * DOE share: 75% * Contractor share: 25% * Barriers - Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) - Assessment of hydrogen compatibility of the existing natural gas pipeline system for transporting hydrogen - Suitable steels, and/or coatings, or other materials to provide safe and reliable hydrogen transport and reduced capital cost 2 Team and Collaborators 3 * Industrial Partners: SECAT

299

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK VW. Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects ..- .-- ---- CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Page 1 L 2 2 3 3 5 5 - --__( -_..... _ .._ ELIMINATION REPORT THE FORMER SYLVANIA-CORNING NUCLEAR CORPORATION BAYSIDE, NEW YORK L -rc c INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Atomic Energy

300

Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action  

Office of Legacy Management (LM)

Site Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC99-03 This page intentionally blank Document Number Q0017700 Acronyms Contents Page ACRONYMS .............................................................................................................................. V

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oak Ridge Operations Formerly Utilized Sites Remedial Action Program  

Office of Legacy Management (LM)

IC77GLg /'-Oi. SEP 20 1982 IC77GLg /'-Oi. SEP 20 1982 10-05-04B-001 Deportment of Energy Oak Ridge Operations Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 PRELIMINARY ENGINEERING EVALUATION OF REMEDIAL ACTION ALTERNATIVES BAYO CANYON SITE, LOS ALAMOS, NEW MEXICO SEPTEMBER 1982 Bechtel Job 14501 Bechtel National, Inc. Nuclear Fuel Operations LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use

302

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT,  

Office of Legacy Management (LM)

REPORT, REPORT, FOR AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET, NEW YORK, AND DUNKIRK, NEW YORK Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste.Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES * 1 2 2 2 3 4 4 . . . 111 ELIMINATION REPORT AL-TECH SPECIALTY STEEL CORPORATION (THE FORMER ALLEGHENY-LUDLUM STEEL CORPORATION) WATERVLIET. NEW YORK, AND DUNKIRK, NEW YORK INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and

303

Remedial Alternative Selection for the F Area Tank Farm,  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability: Notice of Availability: Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record Of Decision Remedial Alternative Selection for the F Area Tank Farm, Waste Tanks 17 and 20 at the Savannah River Site The Explanation of Significant Difference for Incorporating Tanks 18 and 19 into Revision 1 Interim Record of Decision Remedial Alternative Selection for the F Area Tank Farm, (hereafter referred to as the Tank 18 and 19 ESD) is being issued by the U.S. Department of Energy (DOE), the lead agency for the Savannah River Site (SRS), with concurrence by the U.S. Environmental Protection Agency - Region 4 (EPA), and South Carolina Department of Health and Environmental Control (SCDHEC). The Tank 18 and 19 ESD modifies

304

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents (OSTI)

An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

1998-01-01T23:59:59.000Z

305

ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 206 7 206 REV. 0 ENVIRONMENTAL ASSESSMENT OF No REMEDIAL ACTION AT THE INACTIVE URANIFEROUS LIGNITE ASHING SITES AT BELFIELD AND BOWMAN. NORTH DAKOTA United States Department of Energy Uranium Mill Tailings Remedial Action Project June 1997 INTENDED FOR PUBLIC RELEASE This report has been reproduced from the best available copy. Available in paper copy and microfiche Number of pages in this report: 5 8 DOE and DOE contractors can obtain copies of this report from: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (61 5) 576-8401 This report is publicly available from: National Technical Information Service Department of Commerce 5285 Port Royai Road Springfield, VA 22161 (703) 487-4650 DOE/EA-1206 REV. 0 ENVIRONMENTAL ASSESSMENT

306

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIkNATION REPORT  

Office of Legacy Management (LM)

ELIkNATION REPORT ELIkNATION REPORT .FOR WESTINGHOUSE .ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Deconrmissioning Projects l CONTENTS INTRODUCTICIN BACKGROUND. Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 2 2 2' 4 4 iii ELIMINATION~REPORT WESTINGHOUSE ATOMIC POWER,DEVELOPMENT,PLANT: EAST PITTSBURGH PLANT: 'FOREST HILLS ,PITTS.BURGH, PENNSYLVANIA INTRODUCTION The Department of,Energy (DOE), Office of Nuclear Energy, Office of 'Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and

307

In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Biological Uranium Remediation In Situ Biological Uranium Remediation within a Highly Contaminated Aquifer Matthew Ginder-Vogel1, Wei-Min Wu1, Jack Carley2, Phillip Jardine2, Scott Fendorf1 and Craig Criddle1 1Stanford University, Stanford, CA 2Oak Ridge National Laboratory, Oak Ridge, TN Microbial Respiration Figure 1. Uranium(VI) reduction is driven by microbial respiration resulting in the precipitation of uraninite. Uranium contamination of ground and surface waters has been detected at numerous sites throughout the world, including agricultural evaporation ponds (1), U.S. Department of Energy nuclear weapons manufacturing areas, and mine tailings sites (2). In oxygen-containing groundwater, uranium is generally found in the hexavalent oxidation state (3,4), which is a relatively soluble chemical form. As U(VI) is transported through

308

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM - ELIMINATION REPORT FOR  

Office of Legacy Management (LM)

- - ELIMINATION REPORT FOR . UNIVERSITY OF NEVADA MACKAY SCHOOL OF MINES RENO, NEVADA s,d k I",, ici ;3J(, i Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES 1 , Page . 1 2 2 2' 3 3 iii The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions) has reviewed the past activities conducted under contract to the Atomic Energy Conrmission (AEC) at the University of Nevada, Mackay

309

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY FORMER ALLIED CHEMICAL CORPORATION, CHEMICALS COMPANY (NOW GENERAL CHEMICAL CORPORATION) NORTH CLAYMONT, DELAWARE Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioni.ng Projects " .___ . ..-. --.- ------ ". CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES Page 1 1 1 2 2 2 4 ii INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices, and divisions) has reviewed the past activities of the Manhattan Engineer -- District (MED) and the Atomic Energy Commission (AEC) at the Allied Chemical

310

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

AMOCO CHEMICAL COMPANY AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS Summary of Findings REFERENCES ii --.. ---_ .l.- _-__II__-_. -. Page 1 7 7 ' c . ELIMINATION REPORT AMOCO CHEMICAL COMPANY (THE FORMER TEXAS CITY CHEMICALS, INC.) TEXAS CITY, TEXAS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor offices and divisions), has reviewed the past activities conducted on behalf of the Atomic

311

Supporting soil remediation at Fernald by electron beam methods  

SciTech Connect

Electron beam techniques have been used to characterize uranium-contaminated soils at the Fernald Site, Ohio. The major uranium phases have been identified by analytical electron microscopy (AEM) as uranyl phosphate (autunite), uranium oxide (uraninite), and uranium phosphite [U(PO{sub 3}){sub 4}]. Luminescence and X-ray absorption spectroscopy incorrectly identified uranium oxide hydrate (schoepite) as the major phase in Fernald soils. The solubilities of schoepite and autunite are very different, so a solubility-dependent remediation method selected for schoepite will not be effective for removing autunite. AEM is the only technique capable of precisely identifying unknown submicron phases. The uranium phosphite has been found predominantly at the incinerator site at Fernald. This phase has not been removed successfully by any of the chemical remediation technologies. We suggest that an alternative physical extraction procedure be applied to remove this phase.

Buck, E.C.; Brown, N.R.; Dietz, N.L.; Cunnane, J.C.

1994-02-01T23:59:59.000Z

312

Using GIS to Identify Remediation Areas in Landfills  

Science Conference Proceedings (OSTI)

This paper reports the use of GIS mapping software—ArcMap and ArcInfo Workstation—by the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

Linda A.Tedrow

2004-08-01T23:59:59.000Z

313

Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex  

SciTech Connect

With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

1995-08-01T23:59:59.000Z

314

Least-Cost Groundwater Remediation Using Uncertain Hydrogeological Information  

SciTech Connect

The design of groundwater remediation pump-and-treat well networks under aquifer parameter measurement uncertainty can be addressed using an optimal-design strategy based upon the concept of robust optimization. The robust-optimization approach allows for the admission of design alternatives that do not satisfy all design constraints. However in the selection process the algorithm penalizes such selections based upon the number of constraints violated. The result is a design which balances the importance of reliability with overall project cost. The robust-optimization method has been applied to the problem of groundwater plume containment and risk-based groundwater remediation design. Designs dedicated to groundwater-plume containment assure that the contaminant plume will not extend beyond a prespecified perimeter. Inwardly directed groundwater velocity must be achieved along this perimeter. The outer-approximation optimization technique in combination with a groundwater flow model ( PTC) is used to solve this optimal-design problem.

George F. Pinder; Karen Ricciardi; George P. Karatzas

2001-11-28T23:59:59.000Z

315

FORMERLY REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL UTILIZED SITES ACTION PROGRAM ELIMINATION REPORT FOR FORMER CARPENTER STEEL COMPANY; 101 WEST BERN STREET; READING, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Former Carpenter Steel Company CONTENTS INTRODUCTION ........................... 1 BACKGROUND ............................ 1 Site Function ......................... Site Description. ....................... : Radiological History and Status ................ 2 ELIMINATION ANALYSIS ....................... 3 REFERENCES ............................ 4 Elimination Report Former Carpenter Steel Company INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MEO) and

316

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

< < .. ,:. FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT FOR JESSOP STEEL COMPANY; 500 GREEN STREET: WASHINGTON, PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration Elimination Report Jessop Steel Company CONTENTS INTRODUCTION ...................... .'. .... 1 BACKGROUND ............................. 1 Site Function Site Description : : : : : : : .................................... : Radiological History and Status ................. 2 ELIMINATION ANALYSIS ........................ 3 REFERENCES .............................. 4 Elimination Report Jessop Steel Company 1 INTRODUCTION The Department of Energy (DOE)., Office of Environmental Restoration, has reviewed the past activities of the Manhattan Engineer District (MED) and

317

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

REMEDIAL ACTION PROGRAM ELIMINATION REPORT SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE WEST CHESTER,~PENNSYLVANIA December 1991 U.S. Department of Energy Office of Environmental Restoration and Waste Management Office of Environmental Restoration Office of Eastern Area Programs . . . CONTENTS INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS . . . . . . . . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . m . . 1 . . 1 . . 2 . . 2 I . . ELIMINATIO N REPO R T SONABOND ULTRASONICS FORMERLY AEROPROJECTS, INC. 200-T E. ROSEDALE AVENUE W EST CHESTER, PENNSYLVANIA

318

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Science Conference Proceedings (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE /NV

2001-04-05T23:59:59.000Z

319

Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments  

Science Conference Proceedings (OSTI)

Contaminated sediment management is a rapidly developing and maturing field of environmental engineering, with an expansive set of publicly available documents in the scientific and engineering literature. This Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments provides a compendium of the state-of-the-practice from the literature, and augments it with practical case-study experience from the field. It is intended to provide MGP site-managers with a single source document for eva...

2007-02-26T23:59:59.000Z

320

Remediation of Embedded Piping: Trojan Nuclear Plant Decommissioning Experience  

Science Conference Proceedings (OSTI)

Characterization, decontamination, survey, and/or removal of contaminated embedded piping can have a substantial financial impact on decommissioning projects, depending on the project approach. This report presents a discussion of the Trojan Embedded Pipe Remediation Project (EPRP) activities, including categorization and characterization of affected piping, modeling for the proposed contamination acceptance criteria, and evaluations of various decontamination and survey techniques. The report also descr...

2000-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

322

Solvent Extraction for Remediation of Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

EPRI has assessed the feasibility of using a solvent extraction process to remove coal tar from the subsurface or to treat contaminated soil excavated from manufactured gas plant (MGP) sites. The assessment indicates that in situ solvent extraction may recover a significant amount of tar from the subsurface within a reasonable timeframe, provided subsurface conditions are conducive to process implementation. This work will help utilities searching for cost-effective technologies to remediate MGP sites.

1993-02-18T23:59:59.000Z

323

Glassy slags as novel waste forms for remediating mixed wastes with high metal contents  

SciTech Connect

Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

1994-03-01T23:59:59.000Z

324

Acoustically enhanced remediation of contaminated soil and ground water  

SciTech Connect

This program systematically evaluates the use of acoustic excitation fields (AEFs) to increase fluid and contaminant extraction rates from a wide range of unconsolidated soils. Successful completion of this program will result in a commercially-viable, advanced in-situ remediation technology that will significantly reduce clean-up times and costs. This technology should have wide applicability since it is envisioned to augment existing remediation technologies, such as traditional pump and treat and soil vapor extraction, not replace them. The overall program has three phases: Phase 1--laboratory scale parametric investigation; Phase 2--technology scaling study; Phase 3--field demonstration. Phase 1 of the program, corresponding to this period of performance, has as its primary objectives to provide a laboratory-scale proof of concept, and to fully characterize the effects of AEFs on fluid and contaminant extraction rates in a wide variety of soil types. The laboratory measurements of the soil transport properties and process parameters will be used in a computer model of the enhanced remediation process. A Technology Merit and Trade Study will complete Phase 1.

Iovenitti, J.L.; Rynne, T.M.; Spencer, J.W. Jr.

1994-12-31T23:59:59.000Z

325

FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND  

Office of Legacy Management (LM)

bE8IQM CRITERIA FOR bE8IQM CRITERIA FOR r FORMERLY UTILIZED elTEB REMEDIAL ACTION PROORAM [FUSRAP] AND r 8URPLUS FACIL~TIES MANAOEMENT PROQRAM [SFMPI FEBRUARY 1886 i r s o i - o o - ~ c - o l - 1 ~ R e v . 1 DESIGN CRITERIA FOR FORMERLY UTILIZED Sf TES REMEDIAL' ACTION PROGAM ( PUSRAPL AND . . -- SURPLUS F A C I L I T I E S UANAGEMENT PROGRAM ( SFMP ( I S S U E D FOR CLIENT APPROVAL) SF proved by: 2-24-86 D a t e T e c h n i c a l Services D i v i s i o n A p p r o v e d by: 2-24-86 D a t e C o n s t r u c t i o n a n d E n g i n e e r i n g Oak R i d g e O p e r a t i o n s O f f ice 14SOl-00-PC-01 Rev. 1 PREFACE T O DESIGN CRITERIA These design criteria have been written in a generic form that sunmarizes criteria applicabl'e for remedial action and long-tern ranasenent activities associated with t h e radioactive wastes at the FOSRAP *and SFflP sites. Site-specific information i

326

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

WINCHESTER ENGINEERING AND ANALYTICAL CENTER WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSE'ITS Department of Energy Office of Nuclear Energy Office of Remedial Action and Waste Technology Division of Facility and Site Decommissioning Projects . . I . I C O N T E N T S IN T R O D U C T IO N B A C K G R O U N D S i te F u n c ti o n S i te D e s c ri p ti o n R a d i o l o g i c a l H i s to ry a n d S ta tu s E L IM IN A T IO N A N A L Y S IS R E F E R E N C E S - P a g e 1 2 2 2 3 5 5 i i i -..- - ELIMINATION REPORT WINCHESTER ENGINEERING AND ANALYTICAL CENTER (NORTHEASTERN RADIOLOGICAL HEALTH LABORATORY) WINCHESTER, MASSACHUSETTS INTRODUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Terminal Waste Disposal and Remedial Action, Division of Remedial Action Projects (and/or predecessor agencies, offices and divisions,)

327

Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project  

SciTech Connect

The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

Not Available

1989-09-01T23:59:59.000Z

328

EVALUATION OF REMEDIATION TECHNOLOGIES FOR PLUTONIUM CONTAMINATED SOIL  

SciTech Connect

Soils contaminated with radionuclides are an environmental concern at most Department of Energy (DOE) sites. Clean up efforts at many of these sites are ongoing using conventional remediation techniques. These remediation techniques are often expensive and may not achieve desired soil volume reduction. Several studies using alternative remediation techniques have been performed on plutonium-contaminated soils from the Nevada Test Site. Results to date exhibit less than encouraging results, but these processes were often not fully optimized, and other approaches are possible. Clemson University and teaming partner Waste Policy Institute, through a cooperative agreement with the National Environmental Technologies Laboratory, are assisting the Nevada Test Site (NTS) in re-evaluating technologies that have the potential of reducing the volume of plutonium contaminated soil. This efforts includes (1) a through literature review and summary of (a) NTS soil characterization and (b) volume reduction treatment technologies applied to plutonium-contaminated NTS soils, (2) an interactive workshop for vendors, representatives from DOE sites and end-users, and (3) bench scale demonstration of applicable vendor technologies at the Clemson Environmental Technologies Laboratory.

Hoeffner, S. L.; Navratil, J. D.; Torrao, G.; Smalley, R.

2002-02-25T23:59:59.000Z

329

Hanford site tank waste remediation system programmatic environmental review report  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

Haass, C.C.

1998-09-03T23:59:59.000Z

330

Remedial evaluation of a UST site impacted with chlorinated hydrocarbons  

Science Conference Proceedings (OSTI)

During assessment and remedial planning of an underground storage tank (UST) site, it was discovered that chlorinated hydrocarbons were present. A network of selected wells were sampled for analysis of halogenated volatile organics and volatile organic compounds to determine the extent of constituents not traditionally associated with refined petroleum motor fuel products. The constituents detected included vinyl chloride, tetrachloroethylene (PCE), bromodichloromethane, and 2-chloroethylvinyl ether. These analytical data were evaluated as to what effect the nonpetroleum hydrocarbon constituents may have on the remedial approach utilized the site hydrogeologic properties to its advantage and took into consideration the residential nature of the impacted area. The geometry of the dissolved plume is very flat and broad, emanating from the site and extending downgradient under a residential area situated in a transmissive sand unit. Ground-water pumping was proposed from two areas of the dissolved plume including five wells pumping at a combined rate of 55 gallons per minute (gpm) at a downgradient position, and two wells on-site to remove free product and highly impacted ground water. Also, to assist in remediation of the dissolved plume and to control vapors, a bioventing system was proposed throughout the plume area.

Ilgner, B.; Rainey, E. (Geraghty and Miller, Inc., Oak Ridge, TN (United States)); Ball, M.; Schutt, M.

1993-10-01T23:59:59.000Z

331

In Situ Remediation Integrated Program: FY 1994 program summary  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

NONE

1995-04-01T23:59:59.000Z

332

Long term performance of different radon remedial methods in Sweden  

E-Print Network (OSTI)

The object of this project was to investigate the long time effectiveness of different radon remedial methods. The ten years project started 1991. From start the investigation comprised of 105 dwellings (91 single-family houses and 14 flats in multi-family buildings). In all of the dwellings remedial measures were carried out in the eighties. Before and immediately after the reduction the local measured the radon concentrations. New measurements of the radon concentrations have been made every third year; in 1991, 1994, 1997 and in 2000. Twelve different radon remedial methods and method combinations were used. The radon sources were building materials as well as sub-soils. In all of the dwellings the radon concentrations were measured by nuclear track films during 3 months (January-March) measurements and in half of them the air change rates by passive tracer gas methods. The results of the 2000 and the 1991 (within brackets) studies showed that the radon concentration was up to 200 Bq/m sup 3 in 54 (54) sin...

Clavensjoe, B

2002-01-01T23:59:59.000Z

333

FINAL DOE/OR/21950-1016 RESPONSIVENESS SUMMARY= PRAXAIR INTERIM ACTIONS ENGINEERING  

Office of Legacy Management (LM)

p//l/ * :P/ p//l/ * :P/ 142366 _ FINAL DOE/OR/21950-1016 RESPONSIVENESS SUMMARY= PRAXAIR INTERIM ACTIONS ENGINEERING EVALUATION/COST ANALYSIS (EEKA) TONAWANDA, NEW YORK MAY 1996 prepared by U.S. Department of Energy, Oak Ridge Operations Off ice, Formerly Utilized Sites Remedial Action Program with technical assistance from Science Applications International Corporation ESC-FUSRAP under Contract No. DE-AC05-91OR21950 TABLE OF CONTENTS LISTOFTABLES ........................................... iii ACRONYMS AND ABBREVIATIONS ............................... v 1. INTRODUCTION ......................................... 1 2. SCOPE AND ORGANIZATION OF THE RESPONSIVENESS SUMMARY ..... 1 3. COMMENTSANDRESPONSES ....................... .: ... . .... 1 3.1 THE PREFERRED REMEDY .............................

334

EA-1454: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Final Environmental Assessment 4: Final Environmental Assessment EA-1454: Final Environmental Assessment Reactivation and Use of Three Former Borrow Sites in the 100-F,100-H, and 100-N Areas The U.S. Department of Energy (DOE) needs to restore areas after remedial action. The purpose of this action is to supply raw aggregate material (approximately 1,104,000 bank cubic meters [bcm]) to be used as backfill for restoration projects in the 100-F, 100-H, 100-N, and 100-K Areas of the Hanford Site near Richland, Washington. Environmental Assessment Reactivation and Use of Three Former Borrow Sites in the 100-F,100-H, and 100-N Areas DOE/EA-1454 (March 2003) More Documents & Publications EA-1454: Finding of No Significant Impact EA-1934: Final Environmental Assessment EA-1934: Draft Environmental Assessment

335

EA-1634: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Final Environmental Assessment 4: Final Environmental Assessment EA-1634: Final Environmental Assessment Lawrence Berkeley National Laboratory Seismic Life -Safety, Modernization and Replacement of General Purpose Buildings, Phase 2B The U.S. Department of Energy (DOE) is proposing the Seismic Phase 2B Project (Proposed Action) at the DOE Lawrence Berkeley National Laboratory (LBNL). The purpose and need of the Proposed Action and its alternatives is to remedy or remove space at LBNL which poses life safety risks and to provide seismically safe and modern research space at LBNL. Final Environmental Assessment for the Lawrence Berkeley National Laboratory Seismic Life -Safety, Modernization and Replacement of General Purpose Buildings, Phase 2B, DOE/EA-1634 (August 2010) More Documents & Publications

336

EA-1388: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1388: Final Environmental Assessment EA-1388: Final Environmental Assessment EA-1388: Final Environmental Assessment Ground Water Compliance at the Shiprock Uranium Mill Tailings Site The U.S. Department of Energy (DOE) is proposing three ground water compliance strategies for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. These proposed strategies were derived through consultation with representatives of the Navajo UMTRA Program, the Navajo Environmental Protection Agency, and other agencies. The strategies are designed to minimize risk to human health and the environment that result from mill-related constituents in ground water and surface water. Final Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site DOE/EA-1388 (September 2001)

337

Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

Not Available

1993-06-01T23:59:59.000Z

338

Final Report  

DOE Green Energy (OSTI)

This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.

Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M. (Lummus)

2007-03-12T23:59:59.000Z

339

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

340

DOE/OR/20722-88 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

88 88 . Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-810R20722 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 Wayne, New Jersey March 1989 Bechtel National, Inc. DOE/OR/20722-88 POST-REMEDIAL ACTION REPORT FOR THE WAYNE SITE - 1985 AND 1987 WAYNE, NEW JERSEY MARCH 1989 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722 BY R. M. Howard Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 TABLE OF CONTENTS Paqe 1.0 2.0 3.0 4.0 Introduction 1.1 Background 1.2 History Remedial Action Guidelines 5 Remedial Action 3.1 Cleanup/Decontamination Activities 3.2 Contamination Control During the Cleanup 8 8 11 Post-Remedial-Action Sampling 13

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

In Situ Bioremediation Interim Remedial Action Report, Test Area North, Operable Unit 1-07B  

E-Print Network (OSTI)

This Interim Remedial Action Report is for the in situ bioremediation remedial component of Operable Unit 1-07B at Test Area North at the Idaho National Laboratory. Under U.S. Environmental Protection Agency guidance, an interim report for a long-term groundwater remedial action provides a chronology of events and a description of the remedial action facilities, systems, components, and operating documents that lead to a declaration that the system is operational and functional. It is the conclusion of this report that the in situ bioremediation remedial component includes the infrastructure and programs necessary to achieve the objectives of the in situ bioremediation remedial component for contaminated groundwater in the vicinity of the TSF-05 well; therefore, it can be deemed operational and functional. iii ivCONTENTS ABSTRACT.................................................................................................................................................iii

Unit -b; Prepared For The

2009-01-01T23:59:59.000Z

342

Remediation progress at the Iron Mountain Mine Superfund site, California. Information Circular/1991  

Science Conference Proceedings (OSTI)

The report was prepared by the U.S. Bureau of Mines to present a brief history of the listing of Iron Mountain Mine as a Superfund site on the National Priorities List (NPL) and subsequent remedial actions. The mine area is located on 4,400 acres near Redding, CA, and includes underground workings, an open pit area, waste rock dumps, and tailings piles. The property involves multiple sources of acid mine drainage (AMD) that are high in copper, zinc, and cadmium. The selected remedial actions, based on the Record of Decision of 1986, would partially cap the richmond mineralized zone to reduce infiltration of clean water, divert clean surface waters away from contaminated areas, fill surface subsidence areas, and enlarge the Spring Creek debris dam to provide increased surge capacity. Site remediation efforts at Iron Mountain are well into the remedial design-remedial action phase. Details of activities and designs of remedial elements are presented, and future activities, discussed.

Biggs, F.R.

1991-01-01T23:59:59.000Z

343

Microsoft Word - S04932 History final.doc  

Office of Legacy Management (LM)

FUSRAP History of the Chupadera Mesa, NM, Site FUSRAP History of the Chupadera Mesa, NM, Site December 2008 Doc. No. S0493200 (FUSRAP NM.04-5) Page 1 of 9 FUSRAP History of the Chupadera Mesa, NM, Site The following historical summary is provided to document the inclusion of the Chupadera Mesa, NM, Site into the Formerly Utilized Sites Remedial Action Program (FUSRAP). Although no remedial action was required, the site met eligibility criterion and was included under FUSRAP, under which the final radiological surveys were performed. Chupadera Mesa is located north and east of the White Sands Missile Range and downwind of the Trinity test site (Figure1). The Trinity test was the first detonation of a nuclear device. The test occurred on July 16, 1945, at the Trinity Site located within White Sands Missile Range in

344

DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

DOE/OFVZ1949402 DOE/OFVZ1949402 Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-9%OR21949 Post-Remedial Action Report for the Former Baker Brothers Site Toledd, Ohio . February 1997 . . DOWORRl949-402 POST-REMEDIAL ACTION REPORT FOR THE REMEDIAL ACTION ATTHE FORMER BAKER BROTHERS SITE TOLEDO. OHIO FEBRUARY 1997 . United States Department of Energy I OakRidgeOpcrationsOfficc Under Contract No. DE-AC059 I OR2 1949 BY Bcchtcl National, Inc. . . : ; '.' OakRldnc.Tc~~~.- ~--~-' -------m . . Be&cl Job No. 14501 CQNTENTS FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~~................................................................................ iv TABLES . . . . . . . ..i.................................................................................................................................

345

Remedial System Performance Improvement for the 200-ZP-1_PW-1 Operable Units at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Operations Review Report: Feasibility Study Strategies and Remedial System Performance Improvement for the 200- ZP-1/PW-1 Operable Units at Hanford Prepared for Office of Groundwater and Soil Remediation Office of Environmental Management February 9, 2007 i EXECUTIVE SUMMARY At the request of the U.S. Department of Energy, Headquarters' Office of Environmental Management, the Office of Groundwater and Soil Remediation (EM-22), performed a Remediation System Evaluation (RSE) of the 200-ZP-1/PW-1 groundwater pump and treat (P&T) system, as well as the vadose zone Soil Vapor Extraction (SVE) system at the Hanford

346

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

347

Review of the Hanford Site CH2M Hill Plateau Remediation Company...  

NLE Websites -- All DOE Office Websites (Extended Search)

general goals. CHPRC is the prime contractor for the environmental cleanup of the Hanford Site, including remediation of the Central Plateau and groundwater across the...

348

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

1992. Bioremediation of Petroleum Contaminated Sites. BocaApplied Bioremediation of Petroleum Hydrocarbons. Columbus:Eve. 1998. Remediation of Petroleum Contaminated Soils. Boca

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

349

Versatile microbial surface-display for environmental remediation and biofuels production  

E-Print Network (OSTI)

engineering microbes for biofuels production. Science 315,xenobiotics remediation and biofuels production. TargetP. putida JS444 E. coli Biofuels Production Cellobiose

Hawkes, Daniel S

2008-01-01T23:59:59.000Z

350

Audit Report APPROVAL OF TITLE X REMEDIATION CLAIMS, WR-B-99...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and codified as Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites (10 CFR 765). This regulation allowed for mining companies to submit...

351

Remedial Action Report for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect

This Phase III remedial action report addresses the remediation of lead-contaminated soils found at the Security Training Facility STF-02 Gun Range at the Idaho National Laboratory Site. Phase I, consisting of developing and implementing institutional controls at Operble Unit 10-04 sites and developing and implementing Idaho National Laboratory Site-wide plans for both institutional controls and ecological monitoring, was addressed in a previous report. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase IV will remediate hazards from unexploded ordnance.

R. P. Wells

2007-08-15T23:59:59.000Z

352

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

354

Installation Restoration Program. Remedial investigation report. Site 1. Fire Training Area. Volk Field Air National Guard Base, Camp Douglas, Wi. Volume 2. Final remedial investigation report  

SciTech Connect

Volume II of this report contains data tables and field notes of information gathered from the sampling of soils and ground water. Hydrocarbons and aromatic volatile organics are among the contaminants listed.

Not Available

1990-07-01T23:59:59.000Z

355

FORMERLY USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY  

Office of Legacy Management (LM)

USED SITES USED SITES REMEDIAL ACTION PROGRAM DESIGNATION SUMMARY FOR ALBA CRAFT LABORATORY OXFORD, OHIO October 1, 1992 U.S. DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL RESTORATION Designation Summary Alba Craft Laboratory. Oxford CONTENTS INTRODUCTION .......... . . ..................... 1 BACKGROUND Site Function ......................... Site Description ..................... 1 Owner History ................. .. 2 Radiological History and Status............ 2 Authority Review .................... .. 3 DESIGNATION DETERMINATION ........ ....... 3 REFERENCES . ............ .... . 3 Designation Summary Alba Craft Laboratory, Oxford INTRODUCTION The Department of Energy (DOE), Office of Environmental Restoration, has reviewed the past activities of the Atomic Energy Commission (AEC) at the

356

Adaptive management: a paradigm for remediation of public facilities  

SciTech Connect

Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a disruptive event suggest numerous advantages over preset linearly-structured plans by incorporating the flexibility and overlap of processes inherent in effective facility restoration. We discuss three restoration case studies (e.g., the Hart Senate Office Building anthrax restoration, Rocky Flats actinide remediation, and hurricane destruction restoration), that implement aspects of adaptive management but not a formal approach. We propose that more formal adoption of adaptive management principles could be a basis for more flexible standards to improve site-specific remediation plans under conditions of high uncertainty.

Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

2009-01-01T23:59:59.000Z

357

Activities of HPS standards committee in environmental remediation  

SciTech Connect

The Health Physics Society (HPS) develops American National Standards in the area of radiation protection using methods approved by the American National Standards Institute (ANSI). Two of its sections, Environmental Health Physics and Contamination Limits, have ongoing standards development which are important to some environmental remediation efforts. This paper describes the role of the HPS standards process and indicates particular standards under development which will be of interest to the reader. In addition, the authors solicit readers to participate in the voluntary standards process by either joining active working groups (WG) or suggesting appropriate and relevant topics which should be placed into the standards process.

Stencel, J.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Chen, S.Y. [Argonne National Lab., IL (United States)

1994-12-31T23:59:59.000Z

358

Enhancement of in situ microbial remediation of aquifers  

DOE Patents (OSTI)

Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.

Fredrickson, James K. (Kennewick, WA); Brockman, Fred J. (Kennewick, WA); Streile, Gary P. (both or Richland, WA); Cary, John W. (both or Richland, WA); McBride, John F. (Carrboro, NC)

1993-01-01T23:59:59.000Z

359

Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report  

SciTech Connect

In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

NONE

1996-06-01T23:59:59.000Z

360

Uranium Mill Tailings Remedial Action Project environmental protection implementation plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

Not Available

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota  

SciTech Connect

The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

1997-06-01T23:59:59.000Z

362

Chemical and biological methods for the analysis and remediation of environmental contaminants frequently identified at Superfund sites  

E-Print Network (OSTI)

Substantial environmental contamination has occurred from coal tar creosote and pentachlorophenol (C5P) in wood preserving solutions. The present studies focused on the characterization and remediation of these contaminants. The first objective was to delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure. In Clone 9 cells, short-term exposure to 10 ?M C5P decreased pH, GJIC, and GSH, and increased ROS generation. Long-term exposure caused mitochondrial membrane depolarization (25 ?M), increased intracellular Ca2+ (50 ?M), and plasma membrane depolarization (100 ?M). Cells were affected similarly by C5P or 2,3,4,5-C4P, and similarly by 2,3,5-C3P or 3,5-C2P. Endpoints were affected by dose, time, and the number of chlorine substituents on specific congeners. Thus, this information may be used to identify and quantify unknown CPs in a mixture to be remediated. Due to the toxic effects observed due to CP exposure in vitro, the objective of the second study was to develop multi-functional sorbents to remediate CPs and other components of wood preserving waste from groundwater. Cetylpyridinium-exchanged low pH montmorillonite clay (CP-LPHM) was bonded to either sand (CP-LPHM/sand) or granular activated carbon (CP-LPHM/GAC). Laboratory studies utilizing aqueous solution derived from wood preserving waste indicated that 3:2 CP-LPHM/GAC and CP-LPHM/sand were the most effective formulations. In situ elution of oil-water separator effluent indicated that both organoclay-containing composites have a high capacity for contaminants identified in wood preserving waste, in particular high molecular weight and carcinogenic PAHs. Further, GAC did not add substantial sorptive capacity to the composite formulation. Following water remediation, the final aim of this work was to explore the safety of the parent clay minerals as potential enterosorbents for contaminants ingested in water and food. Calcium montmorillonite and sodium montmorillonite clays were added to the balanced diet of Sprague-Dawley rats throughout pregnancy. Based on evaluations of toxicity and neutron activation analysis of tissues, no significant differences were observed between animals receiving clay supplements and control animals, with the exception of slightly decreased brain Rb in animals ingesting clay. Overall, the results suggest that neither clay mineral, at relatively high dietary concentrations, influences mineral uptake or utilization in the pregnant rat.

Wiles, Melinda Christine

2004-08-01T23:59:59.000Z

363

Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations  

SciTech Connect

Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.

Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.

2008-07-29T23:59:59.000Z

364

Tank Waste Remediation System decisions and risk assessment  

SciTech Connect

The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed.

Johnson, M.E.

1994-09-01T23:59:59.000Z

365

Analysis of SPR salt cavern remedial leach program 2013.  

SciTech Connect

The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of storage capacity over time. Maintenance of oil storage capacity requires periodic controlled leaching named remedial leach. The 30 MMB sale in summer 2011 provided space available to facilitate leaching operations. The objective of this report is to present the results and analyses of remedial leach activity at the SPR following the 2011 sale until mid-January 2013. This report focuses on caverns BH101, BH104, WH105 and WH106. Three of the four hanging strings were damaged resulting in deviations from normal leach patterns; however, the deviations did not affect the immediate geomechanical stability of the caverns. Significant leaching occurred in the toes of the caverns likely decreasing the number of available drawdowns until P/D ratio criteria are met. SANSMIC shows good agreement with sonar data and reasonably predicted the location and size of the enhanced leaching region resulting from string breakage.

Weber, Paula D.; Gutierrez, Karen A.; Lord, David L.; Rudeen, David Keith [GRAM, Inc., Albuquerque, NM

2013-09-01T23:59:59.000Z

366

Contaminant plumes containment and remediation focus area. Technology summary  

Science Conference Proceedings (OSTI)

EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

NONE

1995-06-01T23:59:59.000Z

367

Technique for rapid establishment of American lotus in remediation efforts  

Science Conference Proceedings (OSTI)

A technique for increasing the establishment rate of American lotus (Nelumbo lutea) and simplifying planting was developed as part of a pond remediation project. Lotus propagation techniques typically require scarification of the seed, germination in heated water, and planting in nursery containers. Then mature (~ 1 yr) nursery-grown stock is transferred to planting site or scarified seed are broadcast applied. Mature plants should grow more quickly, but can be sensitive to handling, require more time to plant, and cost more. Scarified seeds are easier to plant and inexpensive, but have a lag time in growth, can fail to germinate, and can be difficult to site precisely. We developed an intermediate technique using small burlap bags that makes planting easier, provides greater germination success, and avoids lag time in growth. Data on survival and growth from experiments using mature stock, scarified seeds, and bag lotus demonstrate that bag lotus grow rapidly in a variety of conditions, have a high survival rate, can be processed and planted easily and quickly, and are very suitable for a variety of remediation projects

Ryon, Michael G [ORNL; Fortner, Allison M [ORNL; Goins, Kenneth N [ORNL; Jett, Robert T [ORNL; McCracken, Kitty [ORNL; Morris, Gail Wright [ORNL; Riazzi, Adam [Lincoln County HS, Hamlin WV; Roy, W Kelly [ORNL

2013-01-01T23:59:59.000Z

368

Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan  

SciTech Connect

The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

NONE

1981-05-01T23:59:59.000Z

369

Review of the Vortec soil remediation demonstration program  

Science Conference Proceedings (OSTI)

The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

Patten, J.S.

1994-12-31T23:59:59.000Z

370

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.5 Household Demographics of U.S....

371

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.8 Household Demographics of Homes...

372

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.1 Household Demographics of U.S....

373

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.7 Household Demographics of U.S....

374

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.6 Household Demographics of U.S....

375

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.3 Household Demographics of U.S....

376

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.4 Household Demographics of U.S....

377

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.11 Household Demographics of Homes...

378

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.10 Household Demographics of Homes...

379

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.9 Household Demographics of Homes...

380

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC9.2 Household Demographics of U.S....

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Guide to ground water remediation at CERCLA response action and RCRA corrective action sites  

SciTech Connect

This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM`s after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide`s scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary.

NONE

1995-10-01T23:59:59.000Z

382

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

Science Conference Proceedings (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

383

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

Science Conference Proceedings (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

384

Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation  

Science Conference Proceedings (OSTI)

The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, and decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)

Sneve, M.K. [Norwegian Radiation Protection Authority (Norway); Shandala, N.K. [Institute of Biophysics, Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

385

Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography  

Science Conference Proceedings (OSTI)

This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

Owen, P.T.; Michelson, D.C.; Knox, N.P.

1985-09-01T23:59:59.000Z

386

Collinearity and Two-Step Estimation of Sample Selection Models: Problems, Origins, and Remedies  

Science Conference Proceedings (OSTI)

This paper investigates the origins of the collinearity problems encountered in the two-step estimation method for sample selection models. The analysis reveals several critical misconceptions and deficiencies in the literature. Remedies to the ... Keywords: Heckman's two-step method, Monte Carlo experiment, collinearity problem, remedy, sample selection, wage equation

Siu Fai Leung; Shihti Yu

2000-06-01T23:59:59.000Z

387

Petroleum-contaminated groundwater remediation systems design: A data envelopment analysis based approach  

Science Conference Proceedings (OSTI)

Groundwater contamination is one of important environmental problems at petroleum-related sites, which is causing more and more attention. It can bring serious adverse effects on the environment and human health. Design of a groundwater remediation system ... Keywords: Cross-efficiency, Data envelopment analysis, Groundwater remediation systems design, Super-efficiency

Xiaodong Zhang; Guo H. Huang; Qianguo Lin; Hui Yu

2009-04-01T23:59:59.000Z

388

Groundwater and Soil Remediation Guidelines for Nuclear Power Plants: Public Edition  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Groundwater and Soil Remediation Guidelines provides the nuclear power industry with technical guidance for evaluating the need for and timing of remediation of soil and/or groundwater contamination from onsite leaks, spills, or inadvertent releases to a) prevent migration of licensed material off-site and b) minimize decommissioning impacts.

2011-07-08T23:59:59.000Z

389

Evaluation of In Situ Remedial Technologies for Sites Contaminated With Hydrocarbons  

Science Conference Proceedings (OSTI)

Utility managers are faced at times with decision making regarding remediation of sites contaminated with petroleum hydrocarbons. This report, which presents the results of a survey of the literature on established and emerging technologies for in situ remediation of petroleum hydrocarbons, is intended to support such decision making.

1998-04-20T23:59:59.000Z

390

Remediation of Gas Holders at MGP Sites: A Manual of Practice  

Science Conference Proceedings (OSTI)

This Manual of Practice has been developed jointly by EPRI and GRI (formerly the Gas Research Institute) to assist utility members in choosing strategies for remediating former manufactured gas plant (MGP) sites. Specifically, the manual addresses former gas holders, a prominent feature of MGP facilities and frequently a focus of remediation efforts at these sites.

1999-12-16T23:59:59.000Z

391

Tank waste remediation system retrieval and disposal mission initial updated baseline summary  

Science Conference Proceedings (OSTI)

This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor`s Readiness-to-Proceed in support of the Phase 1B mission.

Swita, W.R.

1998-01-05T23:59:59.000Z

392

Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings  

Science Conference Proceedings (OSTI)

This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

1991-12-31T23:59:59.000Z

393

EA-1399: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

99: Final Environmental Assessment 99: Final Environmental Assessment EA-1399: Final Environmental Assessment Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. (Figures 1 and 2). This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 Code of Federal Regulations Part 192, Subpart B, in areas where ground water beneath and around the site is

394

EA-1268: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1268: Final Environmental Assessment EA-1268: Final Environmental Assessment EA-1268: Final Environmental Assessment Ground Water Compliance at the Tuba City Uranium Mill Tailings Site The U.S. Department of Energy (DOE) has selected a ground water compliance strategy for the Tuba City Uranium Mill Tailings Remedial Action (UMTRA) Project site (Tuba City site). This compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40, Part 192 of the U.S. Code of Federal Regulations (40 CFR 192) entitled "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings." Contamination in the ground water consists of residual radioactive material, which is defined in the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) (42 U.S. Code, Section 4321

395

EA-1312: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1312: Final Environmental Assessment EA-1312: Final Environmental Assessment EA-1312: Final Environmental Assessment Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) This document is the Environmental Assessment (EA) for the proposed action to address ground water contamination at the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This site is also known as the former Climax uranium millsite. The purpose of this EA is to present the proposed action and alternatives and discuss their environmental effects. The EA presents a strategy for achieving compliance with requirements established in the Uranium Mill Tailings Radiation Control Act (42 United States Code 7901 et seq.) and the U.S. Environmental Protection Agency' (EPA's) "Health and Environmental Protection Standards

396

The Office of Groundwater & Soil Remediation Fiscal Year 2011 Research & Development Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s (DOE) Office of Groundwater and Soil Remediation supports applied research and technology development (AR&TD) for remediation of environments contaminated by legacy nuclear waste. The program centers on delivering advanced scientific approaches and technologies from highly-leveraged, strategic investments that maximize impact to reduce risk and life-cycle cleanup costs. The current groundwater and soil remediation program consists of four applied programmatic areas: • Deep Vadose Zone – Applied Field Research Initiative • Attenuation Based Remedies – Applied Field Research Initiative • Remediation of Mercury and Industrial Contaminants – Applied Field Research Initiative • Advanced Simulation Capability for Environmental Management. This paper provides an overview of the applied programmatic areas, fiscal year 11 accomplishments, and their near-term technical direction.

Gerdes, Kurt D.; Chamberlain, Grover S.; Aylward, R. S.; Cercy, Mike; Seitz, Roger; Ramirez, Rosa; Skubal, Karen L.; Marble, Justin; Wellman, Dawn M.; Bunn, Amoret L.; Liang, Liyuan; Pierce, Eric M.

2011-12-02T23:59:59.000Z

397

The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites  

Energy.gov (U.S. Department of Energy (DOE))

The Use of Ecological Restoration Principles To Achieve Remedy Protection at the Fernald Preserve and Weldon Spring Sites

398

UC-70A Formerly Utilized Sites Remedial Action Program (FUSRAP)  

Office of Legacy Management (LM)

F. a% F. a% .~~~~~~":~,~~~~,~. .-+smiii"-l ," ^.-. _ _I ,a ,' ~, *p2 - QRkl~ oR,o~ DOE/OR/20722- 29 UC-70A Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-ACO5-81OR20722 CI c F c F F c CI c c F P RADIOLOGICAL SURVEY OF THE ALBANY RESEARCH CENTER Albany, O regon Bechtel National, inc. Advanced Technology Division L- ..^___ ~. _ .._.. -.~~_-- ._ ._.. .._ .^.". January 1985 Technical information Center Office of Scientific and Technical Information U.S. Department of Energy LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

399

Remedial Action Certification Docket - Sodium Reactor Experiment (SRE)  

Office of Legacy Management (LM)

c~-?i-- c~-?i-- I ,3-l Remedial Action Certification Docket - Sodium Reactor Experiment (SRE) .Complex and the Hot Cave Facility (Bldg. 003), Santa Susana ,Fie!d Laboratory, Chatsworth, California ..:'..~::Yerlette Gatl in, MA-232 I am attaching for entry into the Public Document Room, one copy of the N -23 subject documentat ion. These documents are the backup data for the certification that the facilfties are radiologically acceptable for b- unrestricted use as noted in the certification statement published in the &aney Federal Register. Inasmuch as the certification for unrestricted use is 9/2(/85 being published in the Federal Register, it is prudent that the attached documentation also be available to the public. These documents should be retained In accordance with DOE Order 1324.2--disposal schedule 25.

400

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

CONTENTS CONTENTS INTRODUCTION BACKGROUND Site Function Site Description Radiological History and Status ELIMINATION ANALYSIS REFERENCES ii Pa e -5 1 : 2 2 4 ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND, VIRGINIA INTROUUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of Remedial Action and Waste Technology, Division of Facility and Site Decommissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Commission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would be insignificant in terms of both its quantity and the hazard it would

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FORMERLY UTILIZED SITES REMEDIAL ACTION PROGRAM ELIMINATION REPORT  

Office of Legacy Management (LM)

. . CONTENTS INTROOUCTION BACKGROUND Site Function Site Description Radiological History,and Status ELIMINATION ANALYSIS REFERENCES 9 1 1 2 2 2 4 ii ELIMINATION REPORT THE FORMER VIRGINIA-CAROLINA CHEMICAL CORPORATION RICHMOND. VIRGINIA INTROLJUCTION The Department of Energy (DOE), Office of Nuclear Energy, Office of ,Remedial Action and Waste Technology, Division of Facility and Site Deconunissioning Projects (and/or predecessor agencies, offices and divisions, has reviewed the past activities of the Atomic Energy Carmission (AEC) at the former Virginia-Carolina Chemical Corporation, Richmond, Virginia. On the basis of historical information, DOE has determined that any radioactive material potentially remaining from these activities would oe insignificant in terms of both its quantity and the hazard it would

402

The Hanford site tank waste remediation system technical strategy  

SciTech Connect

The US Department of Energy`s Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m{sup 3} (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of {sup 90}S and {sup 137}Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. A Tank Waste Remediation System Program was established by the US DOE Energy in 1991 to safely manage and immobilize these wastes for permanent disposal of the high-level waste fraction in a geologic repository. The technical strategy to manage and dispose of these wastes has been revised and successfully negotiated with the regulatory agencies.

Wodrich, D.D.

1994-04-01T23:59:59.000Z

403

Microscopic characterization of radionuclide contaminated soils to assist remediation efforts  

Science Conference Proceedings (OSTI)

A combination of optical, scanning, and analytical electron microscopies have been used to describe the nature of radionuclide contamination at several sites. These investigations were conducted to provide information for remediation efforts. This technique has been used successfully with uranium-contaminated soils from Fernald, OH, and Portsmouth, OH, thorium-contaminated soil from a plant in Tennessee, plutonium-contamination sand from Johnston Island in the Pacific Ocean, and incinerator ash from Los Alamos, NM. Selecting the most suitable method for cleaning a particular site is difficult if the nature of the contamination is not understood. Microscopic characterization allows the most appropriate method to be selected for removing the contamination and can show the effect a particular method is having on the soil. A method of sample preparation has been developed that allows direct comparison of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, enabling characterization of TEM samples to be more representative of the bulk sample.

Buck, E.C.; Brown, N.R.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.

1994-11-01T23:59:59.000Z

404

Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

Vollmer, A.T.

1993-10-01T23:59:59.000Z

405

Tank waste remediation system systems engineering management plan  

Science Conference Proceedings (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

406

Tank waste remediation system functions and requirements document  

Science Conference Proceedings (OSTI)

This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

Carpenter, K.E

1996-10-03T23:59:59.000Z

407

Formerly Utilized Sites Remedial Action Program environmental compliance assessment checklists  

Science Conference Proceedings (OSTI)

The purpose of the Environmental Compliance Assessment Program is to assess the compliance of Formerly Utilized Site Remedial Action Program (FUSRAP) sites with applicable environmental regulations and Department of Energy (DOE) Orders. The mission is to identify, assess, and decontaminate sites utilized during the 1940s, 1950s, and 1960s to process and store uranium and thorium ores in support of the Manhattan Engineer District and the Atomic Energy Commission. To conduct the FUSRAP environmental compliance assessment, checklists were developed that outline audit procedures to determine the compliance status of the site. The checklists are divided in four groups to correspond to these regulatory areas: Hazardous Waste Management, PCB Management, Air Emissions, and Water Discharges.

Levine, M.B.; Sigmon, C.F.

1989-09-29T23:59:59.000Z

408

DOE/EA-1155 Uranium Mill Tailing Remedial Action Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 55 Uranium Mill Tailing Remedial Action Project Environmental Assessment of Ground- Water Compliance Activities At the Uranium Mill Tailings Site Spook, Wyoming February 1997 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office This page intentionally blank : illegible Portions of tbis DISCLAIMER document may be in electronic image products. Images are produced fiom the best available original dOClMXlf?IlL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness,

409

Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants  

Science Conference Proceedings (OSTI)

The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.

Jonathan S. Dordick; Jay Grate; Jungbae Kim

2007-02-19T23:59:59.000Z

410

MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD  

SciTech Connect

In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

KRONVALL CM

2011-01-14T23:59:59.000Z

411

Clean Slate Environmental Remediation DSA for 10 CFR 830 Compliance  

Science Conference Proceedings (OSTI)

Clean Slate Sites II and III are scheduled for environmental remediation (ER) to remove elevated levels of radionuclides in soil. These sites are contaminated with legacy remains of non-nuclear yield nuclear weapons experiments at the Nevada Test Site, that involved high explosive, fissile, and related materials. The sites may also hold unexploded ordnance (UXO) from military training activities in the area over the intervening years. Regulation 10 CFR 830 (Ref. 1) identifies DOE-STD-1120-98 (Ref. 2) and 29 CFR 1910.120 (Ref. 3) as the safe harbor methodologies for performing these remediation operations. Of these methodologies, DOE-STD-1120-98 has been superseded by DOE-STD-1120-2005 (Ref. 4). The project adopted DOE-STD-1120-2005, which includes an approach for ER projects, in combination with 29 CFR 1910.120, as the basis documents for preparing the documented safety analysis (DSA). To securely implement the safe harbor methodologies, we applied DOE-STD-1027-92 (Ref. 5) and DOE-STD-3009-94 (Ref. 6), as needed, to develop a robust hazard classification and hazards analysis that addresses non-standard hazards such as radionuclides and UXO. The hazard analyses provided the basis for identifying Technical Safety Requirements (TSR) level controls. The DOE-STD-1186-2004 (Ref. 7) methodology showed that some controls warranted elevation to Specific Administrative Control (SAC) status. In addition to the Evaluation Guideline (EG) of DOE-STD-3009-94, we also applied the DOE G 420.1 (Ref. 8) annual, radiological dose, siting criterion to define a controlled area around the operation to protect the maximally exposed offsite individual (MOI).

James L. Traynor, Stephen L. Nicolosi, Michael L. Space, Louis F. Restrepo

2006-08-01T23:59:59.000Z

412

MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD  

SciTech Connect

In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

KRONVALL CM

2011-01-14T23:59:59.000Z

413

Scientific Opportunity to Reduce Risk in Groundwater and Soil Remediation  

Science Conference Proceedings (OSTI)

In this report, we start by examining previous efforts at linking science and DOE EM research with cleanup activities. Many of these efforts were initiated by creating science and technology roadmaps. A recurring feature of successfully implementing these roadmaps into EM applied research efforts and successful cleanup is the focus on integration. Such integration takes many forms, ranging from combining information generated by various scientific disciplines, to providing technical expertise to facilitate successful application of novel technology, to bringing the resources and creativity of many to address the common goal of moving EM cleanup forward. Successful projects identify and focus research efforts on addressing the problems and challenges that are causing “failure” in actual cleanup activities. In this way, basic and applied science resources are used strategically to address the particular unknowns that are barriers to cleanup. The brief descriptions of the Office of Science basic (Environmental Remediation Science Program [ERSP]) and EM’s applied (Groundwater and Soil Remediation Program) research programs in subsurface science provide context to the five “crosscutting” themes that have been developed in this strategic planning effort. To address these challenges and opportunities, a tiered systematic approach is proposed that leverages basic science investments with new applied research investments from the DOE Office of Engineering and Technology within the framework of the identified basic science and applied research crosscutting themes. These themes are evident in the initial portfolio of initiatives in the EM groundwater and soil cleanup multi-year program plan. As stated in a companion document for tank waste processing (Bredt et al. 2008), in addition to achieving its mission, DOE EM is experiencing a fundamental shift in philosophy from driving to closure to enabling the long-term needs of DOE and the nation.

Pierce, Eric M.; Freshley, Mark D.; Hubbard, Susan S.; Looney, Brian B.; Zachara, John M.; Liang, Liyuan; Lesmes, D.; Chamberlain, G. M.; Skubal, Karen L.; Adams, V.; Denham, Miles E.; Wellman, Dawn M.

2009-08-25T23:59:59.000Z

414

EIS-0355: DOE Notice of Availability of the Final Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah,...

415

Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5  

SciTech Connect

This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

1984-09-01T23:59:59.000Z

416

An economic decision framework using modeling for improving aquifer remediation design  

Science Conference Proceedings (OSTI)

Reducing cost is a critical challenge facing environmental remediation today. One of the most effective ways of reducing costs is to improve decision-making. This can range from choosing more cost- effective remediation alternatives (for example, determining whether a groundwater contamination plume should be remediated or not) to improving data collection (for example, determining when data collection should stoop). Uncertainty in site conditions presents a major challenge for effective decision-making. We present a framework for increasing the effectiveness of remedial design decision-making at groundwater contamination sites where there is uncertainty in many parameters that affect remediation design. The objective is to provide an easy-to-use economic framework for making remediation decisions. The presented framework is used to 1) select the best remedial design from a suite of possible ones, 2) estimate if additional data collection is cost-effective, and 3) determine the most important parameters to be sampled. The framework is developed by combining elements from Latin-Hypercube simulation of contaminant transport, economic risk-cost-benefit analysis, and Regional Sensitivity Analysis (RSA).

James, B.R.; Gwo, J.P.; Toran, L.E.

1995-11-01T23:59:59.000Z

417

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program  

SciTech Connect

The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

Not Available

1991-09-01T23:59:59.000Z

418

Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9  

SciTech Connect

The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

1988-09-01T23:59:59.000Z

419

Lessons Learned from V-Tank Waste Remediation Activities at the Idaho National Laboratory  

SciTech Connect

The purpose of this paper is to discuss major activities and lessons learned from remediation of the V-tank waste at Idaho National Laboratory's (INL's) Test Area North (TAN) complex. Remediation activities involved the on-site treatment, solidification and disposal of over 61,000 L (16,000 gal) of radioactively hazardous V-tank waste. In July, 2006, over 98% of the V-tank waste was disposed of at the Idaho CERCLA Disposal Facility (ICDF). Disposal was accomplished using the three 38,000-L (10,000-gal) V-tanks that had stored most of the V-tank waste for over 30 years. Included in V-Tank remediation was the removal of approximately 7,650 m{sup 3} (10,000 yd{sup 3}) of contaminated soil. Plans are to treat the remaining V-tank waste off-site in early 2007, with the treated residual also disposed of at the ICDF. Disposal of the treated V-tank waste at ICDF marked a major step in completing remediation of the TAN V-tanks, a task begun in 1999 when the original Record of Decision (ROD) was published. Over this time, there have been a number of stops and starts associated with remediating this waste. Although many of these stops and starts were unavoidable, there are a number of lessons learned for the V-tank remediation that could help prevent unnecessary expenses and schedule delays in future remediation activities within the Department of Energy (DOE) complex. This paper identifies major and minor lessons learned from V-tank waste remediation efforts - those that resulted in unnecessary delays/expenses, as well as those areas that accelerated V-tank remediation efforts. (authors)

Farnsworth, R.K.; Jessmore, J.J.; Eaton, D.L.; McDannel, G.E.; Sloan, P.A.; Jantz, A.E.; Tyson, D.R. [CH2M-Washington Group Idaho -Idaho Cleanup Project-a, Idaho Falls, ID (United States); Burt, B.T. [E2 Consulting Engineers, Idaho Falls ID (United States)

2007-07-01T23:59:59.000Z

420

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes  

SciTech Connect

This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9  

SciTech Connect

The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

1988-09-01T23:59:59.000Z

422

Final Record of Decision for the Madison Site, Madison, Illinois, May 2000.  

Office of Legacy Management (LM)

FINAL FINAL RECORD OF DECISION FOR THE MADISON SITE MADISON, ILLINOIS MAY 2000 U.S. Army Corps of Engineers St. Louis District Office Formerly Utilized Sites Remedial Action Program Madison Site Record of Decision May 2000 iv ACRONYMS AND ABBREVIATIONS AEC Atomic Energy Commission ALARA as low as reasonably achievable ARAR applicable or relevant and appropriate requirement CERCLA Comprehensive Environmental Response, Compensation, and Liability Act cm centimeter(s) COC chemical contaminant of concern DOE United States Department of Energy ft feet ft 2 square feet FUSRAP Formerly Utilized Sites Remedial Action Program HI Hazard index HQ Hazard quotient IDNS Illinois Department of Nuclear Safety IEPA Illinois Environmental Protection Agency in inch(es) m meter(s) m 2 square meter(s) m 3 cubic meter(s)

423

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

L. Davison

2009-06-30T23:59:59.000Z

424

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

Lee Davison

2009-06-30T23:59:59.000Z

425

Operable Unit 3-13, Group 3, Other Surface Soils (Phase I) Remedial Action Report  

SciTech Connect

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 3, Other Surface Soils, Phase I sites at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The 10 sites addressed in this report were defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for these 10 sites have been accomplished and are hereafter considered No Action or No Further Action sites.

L. Davison

2007-07-31T23:59:59.000Z

426

Final Design RM  

Energy.gov (U.S. Department of Energy (DOE))

The Final Design (FD) Review Module (RM) is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the technical sufficiency of the final design prior to CD-3...

427

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.10 Space Heating in U.S. Homes in...

428

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.11 Space Heating in U.S. Homes in...

429

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.3 Space Heating in U.S. Homes, by...

430

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.4 Space Heating in U.S. Homes, by...

431

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.1 Space Heating in U.S. Homes, by...

432

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.7 Space Heating in U.S. Homes, by...

433

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.8 Space Heating in U.S. Homes in...

434

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.2 Space Heating in U.S. Homes, by...

435

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.9 Space Heating in U.S. Homes in...

436

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary Release: August 19, 2011" "Final Release: April 2013" "Table HC6.6 Space Heating in U.S. Homes, by...

437

NGP Final Report  

Science Conference Proceedings (OSTI)

... suppression in aircraft. The enclosed CD compiles the collected publications from the program. Final Report (NIST SP 1069). ...

2011-12-29T23:59:59.000Z

438

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Energy Consumption Survey." " U.S. Energy Information Administration 2009 Residential Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary...

439

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Energy Consumption Survey." " U.S. Energy Information Administration 2009 Residential Energy Consumption Survey: Final Housing Characteristics Tables" "Preliminary...

440

GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES  

SciTech Connect

Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

Denham, M.; Kaplan, D.; Yeager, C.

2009-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "frl final remediation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Decontamination Technologies, Task 3, Urban Remediation and Response Project  

SciTech Connect

In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the decontamination process(es). In the case of an entire building, the value may be obvious; it's costly to replace the structure. For a smaller item such as a vehicle or painting, the cost versus benefit of decontamination needs to be evaluated. This will be determined on a case by case basis and again is beyond the scope of this report, although some thoughts on decontamination of unique, personal and high value items are given. But, this is clearly an area that starting discussions and negotiations early on will greatly benefit both the economics and timeliness of the clean up. In addition, high value assets might benefit from pre-event protection such as protective coatings or HEPA filtered rooms to prevent contaminated outside air from entering the room (e.g., an art museum).

Heiser,J.; Sullivan, T.

2009-06-30T23:59:59.000Z

442

Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft  

SciTech Connect

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

Not Available

1994-09-01T23:59:59.000Z

443

Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania  

SciTech Connect

Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

W.C. Adams

2007-03-13T23:59:59.000Z

444

DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Savannah River Remediation, LLC for Liquid Waste DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site DOE Selects Savannah River Remediation, LLC for Liquid Waste Contract at Savannah River Site December 8, 2008 - 4:58pm Addthis Washington, D.C. -The U.S. Department of Energy (DOE) today announced the award to Savannah River Remediation, LLC as the liquid waste contractor for DOE's Savannah River Site (SRS) in Aiken, South Carolina. The contract is a cost-plus award-fee contract valued at approximately $3.3 billion over the entire contract, consisting of a base period of six years, plus an option to extend for up to two additional years. The base performance period of the contract will be from April 1, 2009 through March 31, 2015. A 90-day transition period will begin January 2, 2009.

445

Recovery Act Begins Box Remediation Operations at F Canyon | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon Recovery Act Begins Box Remediation Operations at F Canyon May 17, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The F Canyon box remediation program, an American Recovery and Reinvestment Act project at Savannah River Site (SRS), has come online to process legacy transuranic (TRU) waste for off-site shipment and permanent disposal at the Waste Isolation Pilot Plant (WIPP), a geological repository in New Mexico. The $40-million facility will process approximately 330 boxes containing TRU waste with a radiological risk higher than seen in the rest of the Site's original 5,000-cubic-meter

446

Audit of Groundwater Remediation Plans at Savannah River, ER-B-96-02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUDIT OF GROUNDWATER REMEDIATION PLANS AT THE SAVANNAH RIVER SITE The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible.

447

DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amends Decision for the Remediation of the Moab Uranium Mill Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah February 29, 2008 - 11:43am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced an amendment to its 2005 Record of Decision (ROD) for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project to allow for the use of truck or rail in transporting residual radioactive materials from the Moab site in Utah. These materials will be relocated to a new disposal site 30 miles north at Crescent Junction, Utah. "The Department is committed to ensuring the protection of human health and the environment in the Moab area and in the communities served by the Colorado River," Assistant Secretary for Environmental Management Jim

448

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act workers remediated and reseeded a densely contaminated 140- acre portion of that area after disposing of more than 370,000 tons of contaminated soil. Recovery Act workers e