National Library of Energy BETA

Sample records for fresh feed fuel

  1. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  2. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  3. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  4. U.S. Downstream Processing of Fresh Feed Input

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Generaldiesel fuel priceArea:May-15

  5. U.S. Downstream Processing of Fresh Feed Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: April 15,Gas ReserveOF6 AnnualWinners1Charge2009

  6. Catalytic Reforming Downstream Processing of Fresh Feed Input

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RUBUFFALO PENNELProcess:

  7. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

  8. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  9. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  10. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  11. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect (OSTI)

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  12. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D. [Benham Companies LLC (USA)

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  13. Russian Navy Fresh Fuel MPC and A Training

    SciTech Connect (OSTI)

    Forehand, Harry M.; O'Shell, Parker; Opanassiouk, Yuri R.; Rexroth, Paul E.; Shmelev, Vladimir; Sukhoruchkin, Vladimir K.

    1999-07-06

    The goal of the Russian Navy Fuels Program is to incorporate nuclear fuel that is in the custody of the Russian Navy into a materials protection, control and accounting program. In addition to applying MPC and A upgrades to existing facilities, a program is underway to train site personnel in MPC and A activities. The goal is to assure that the upgraded facilities are managed, operated and maintained in an effective, sustainable manner. Training includes both the conceptual and necessary operational aspects of the systems and equipment. The project began with a Needs Assessment to identify priorities and objectives of required training. This led to the creation of a series of classes developed by Kurchatov Institute. One course was developed to allow attendees to get a general understanding of goals and objectives of nuclear MPC and A systems in the context of the Russian Navy. A follow-on course provided the detailed skills necessary for the performance of specialized duties. Parallel sessions with hands-on exercises provided the specific training needed for different personnel requirements. The courses were presented at KI facilities in Moscow. This paper reviews the work to date and future plans for this program.

  14. Russian Navy fresh fuel MPC and A training and regulations

    SciTech Connect (OSTI)

    Forehand, H.M. [Los Alamos National Lab., NM (United States); Rexroth, P. [Sandia National Labs., Albuquerque, NM (United States); Dove, A. [Dept. of Energy, Washington, DC (United States); Shmelev, V.; Sukhoruchkin, V.; Roumiantsev, A. [Kurchatov Inst. Russian Research Center (Russian Federation)

    1998-07-01

    The Regulations and Training Projects are part of the US-Russian Federation Materials Protection, Control, and Accounting (MPC&A) cooperative program to protect Russian Navy Fuels. This paper describes the general status of the projects, progress achieved to date, and long-term plans for further work in producing regulatory documents and training to support this ewffort. The regulatory development will result in a document set that will include general requirements and rules for the Russian Navy MPC&A as well as specific instructions for operation and maintenance of each facility. The goals of the training program are to instill in managers a culture of sustainable commitment to MPC&A through the understanding of its principles and philosophies. In addition, the training program will help ensure that upgrades are effectively utilized and maintained by training operators and maintenance personnel in MPC&A principles as well in as the detailed operations of the systems.

  15. ,"U.S. Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales to

  16. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0.Volume (MMcf)" ,"Click worksheet nameVolumeCatalytic

  17. ,"U.S. Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015"Imports" ,"Click worksheet name or tab at bottom

  18. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    SciTech Connect (OSTI)

    Ludwig, S.B.; Michelhaugh, R.D.; Pope, R.B.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies.

  19. Feeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientificEnergy EfficiencyFeed-PumpSharing

  20. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1984-01-01

    A new and improved stove or furnace for efficient combustion of wood fuel including a vertical feed combustion chamber for receiving and supporting wood fuel in a vertical attitude or stack, a major upper portion of the combustion chamber column comprising a water jacket for coupling to a source of water or heat transfer fluid and for convection circulation of the fluid for confining the locus of wood fuel combustion to the bottom of the vertical gravity feed combustion chamber. A flue gas propagation delay channel extending from the laterally directed draft outlet affords delayed travel time in a high temperature environment to assure substantially complete combustion of the gaseous products of wood burning with forced air as an actively induced draft draws the fuel gas and air mixture laterally through the combustion and high temperature zone. Active sources of forced air and induced draft are included, multiple use and circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  1. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  2. Vertical feed stick wood fuel burning furnace system

    DOE Patents [OSTI]

    Hill, Richard C. (Orono, ME)

    1982-01-01

    A stove or furnace for efficient combustion of wood fuel includes a vertical feed combustion chamber (15) for receiving and supporting wood fuel in a vertical attitude or stack. A major upper portion of the combustion chamber column comprises a water jacket (14) for coupling to a source of water or heat transfer fluid for convection circulation of the fluid. The locus (31) of wood fuel combustion is thereby confined to the refractory base of the combustion chamber. A flue gas propagation delay channel (34) extending laterally from the base of the chamber affords delayed travel time in a high temperature refractory environment sufficient to assure substantially complete combustion of the gaseous products of wood burning with forced air prior to extraction of heat in heat exchanger (16). Induced draft draws the fuel gas and air mixture laterally through the combustion chamber and refractory high temperature zone to the heat exchanger and flue. Also included are active sources of forced air and induced draft, multiple circuit couplings for the recovered heat, and construction features in the refractory material substructure and metal component superstructure.

  3. Development of high-power electrodes for a liquid-feed direct methanol fuel cell

    E-Print Network [OSTI]

    Development of high-power electrodes for a liquid-feed direct methanol fuel cell C. Lim, C.Y. Wang for a liquid-feed direct methanol fuel cell (DMFC) were fabricated by using a novel method of modi®ed Na.V. All rights reserved. Keywords: Direct methanol fuel cells; Membrane-electrode assembly (MEA); Polymer

  4. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  5. Large-Scale Production of Marine Microalgae for Fuel and Feeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Large-Scale Production of Marine Microalgae for Fuel and Feeds March 24, 2015 Algae Platform Review Mark Huntley Cornell Marine Algal Biofuels Consortium This...

  6. Air feed tube support system for a solid oxide fuel cell generator

    DOE Patents [OSTI]

    Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  7. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    SciTech Connect (OSTI)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.

  8. Analysis of fresh fuel critical experiments appropriate for burnup credit validation

    SciTech Connect (OSTI)

    DeHart, M.D.; Bowman, S.M.

    1995-10-01

    The ANS/ANS-8.1 standard requires that calculational methods used in determining criticality safety limits for applications outside reactors be validated by comparison with appropriate critical experiments. This report provides a detailed description of 34 fresh fuel critical experiments and their analyses using the SCALE-4.2 code system and the 27-group ENDF/B-IV cross-section library. The 34 critical experiments were selected based on geometry, material, and neutron interaction characteristics that are applicable to a transportation cask loaded with pressurized-water-reactor spent fuel. These 34 experiments are a representative subset of a much larger data base of low-enriched uranium and mixed-oxide critical experiments. A statistical approach is described and used to obtain an estimate of the bias and uncertainty in the calculational methods and to predict a confidence limit for a calculated neutron multiplication factor. The SCALE-4.2 results for a superset of approximately 100 criticals are included in uncertainty analyses, but descriptions of the individual criticals are not included.

  9. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    SciTech Connect (OSTI)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  10. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  11. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  12. Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems 

    E-Print Network [OSTI]

    Nuboer, Benito Frans

    1991-01-01

    influence the total cost of the conversion system. Based on the experience gained in the design and operation of five feeding systems for gasifiers, Miles concluded that three individual operations are required: a) introduction of the feed stock into a...ANALYSIS AND OPTIMIZED DESIGN OF AIRLOCKS FOR FLUIDIZED BED GASIFIER FUEL FEED SYSTEMS A Thesis by BENITO FRANS NUBOER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  13. An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors

    SciTech Connect (OSTI)

    Menlove, Howard O; Lee, Sang - Yoon

    2009-01-01

    This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

  14. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  15. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt; Joseph K. Schultz

    2003-02-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project was conducted by the Energy & Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy (DOE). The goal of the project was to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined-cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuel(s) at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consisted of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing information on high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. A preliminary assessment of feedstock availability within Indiana and Illinois was conducted. Feedstocks evaluated included those with potential tipping fees to offset processing cost: sewage sludge, municipal solid waste, used railroad ties, urban wood waste (UWW), and used tires/tire-derived fuel. Agricultural residues and dedicated energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge was selected as the primary feedstock for consideration at the Wabash River Plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary into the second stage of the gasifier. A high-pressure feed pump and fuel dispersion nozzles were tested for their ability to cross the pressure boundary and adequately disperse the sludge into the second stage of the gasifier. These results suggest that it is technically feasible to get the sludge dispersed to an appropriate size into the second stage of the gasifier although the recycle syngas pressure needed to disperse the sludge would be higher than originally desired. A preliminary design was prepared for a sludge-receiving, storage, and high-pressure feeding system at the Wabash River Plant. The installed capital costs were estimated at approximately $9.7 million, within an accuracy of {+-}10%. An economic analysis using DOE's IGCC Model, Version 3 spreadsheet indicates that in order to justify the additional capital cost of the system, Global Energy would have to receive a tipping fee of $12.40 per wet ton of municipal sludge delivered. This is based on operation with petroleum coke as the primary fuel. Similarly, with coal as the primary fuel, a minimum tipping of $16.70 would be required. The availability of delivered sludge from Indianapolis, Indiana, in this tipping-fee range is unlikely; however, given the higher treatment costs associated with sludge treatment in Chicago, Illinois, delivery of sludge from Chicago, given adequate rail access, might be economically viable.

  16. Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Z. H. Wang* and C. Y. Wang*,z

    E-Print Network [OSTI]

    Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells Z. H. Wang* and C. Y. Wang for liquid-feed direct methanol fuel cells DMFC . In addition to the anode and cathode electrochemical-osmosis. This comprehensive model is solved numerically using computational fluid dynamics. The transport phenomena

  17. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  18. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

    2001-11-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

  19. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  20. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  1. Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock

    DOE Patents [OSTI]

    Duncan, Dennis A. (Downers Grove, IL)

    1980-01-01

    A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.

  2. MBM fuel feeding system design and evaluation for FBG pilot plant

    SciTech Connect (OSTI)

    Campbell, William A.; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.

  3. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    SciTech Connect (OSTI)

    Watts, Joe A; Smith, Paul H; Psaras, John D; Jarvinen, Gordon D; Costa, David A; Joyce, Jr., Edward L

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  4. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    SciTech Connect (OSTI)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  5. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    SciTech Connect (OSTI)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  6. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    SciTech Connect (OSTI)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  7. AREVA NP next generation fresh UO{sub 2} fuel assembly shipping cask: SCALE - CRISTAL comparisons lead to safety criticality confidence

    SciTech Connect (OSTI)

    Doucet, M.; Landrieu, M.; Montgomery, R.; O' Donnell, B.

    2007-07-01

    AREVA NP as a worldwide PWR fuel provider has to have a fleet of fresh UO{sub 2} shipping casks being agreed within a lot of countries including USA, France, Germany, Belgium, Sweden, China, and South Africa - and to accommodate foreseen EPR Nuclear Power Plants fuel buildings. To reach this target the AREVA NP Fuel Sector decided to develop an up-to-date shipping cask (so called MAP project) gathering experience feedback of the today fleet and an improved safety allowing the design to comply with international regulations (NRC and IAEA) and local Safety Authorities. Based on pre design features a safety case was set up to highlight safety margins. Criticality hypothetical accidental assumptions were defined: - Preferential flooding; - Fuel rod lattice pitch expansion for full length of fuel assemblies; - Neutron absorber penalty; -... Well known computer codes, American SCALE package and French CRISTAL package, were used to check configurations reactivity and to ensure that both codes lead to coherent results. Basic spectral calculations are based on similar algorithms with specific microscopic cross sections ENDF/BV for SCALE and JEF2.2 for CRISTAL. The main differences between the two packages is on one hand SCALE's three dimensional fuel assembly geometry is described by a pin by pin model while an homogenized fuel assembly description is used by CRISTAL and on the other hand SCALE is working with either 44 or 238 neutron energy groups while CRISTAL is with a 172 neutron energy groups. Those two computer packages rely on a wide validation process helping defining uncertainties as required by regulations in force. The shipping cask with two fuel assemblies is designed to maximize fuel isolation inside a cask and with neighboring ones even for large array configuration cases. Proven industrial products are used: - Boral{sup TM} as neutron absorber; - High density polyethylene (HDPE) or Nylon as neutron moderator; - Foam as thermal and mechanical protection. The cask is designed to handle the complete AREVA NP fuel assembly types from the 14x14 to the 18x18 design with a {sup 235}U enrichment up to 5.0% enriched natural uranium (ENU) and enriched reprocessed uranium (ERU). After a brief presentation of the computer codes and the description of the shipping cask, calculation results and comparisons between SCALE and CRISTAL will be discussed. (authors)

  8. ALDUO(TM) Algae Cultivation Technology for Delivering Sustainable Omega-3s, Feed, and Fuel

    SciTech Connect (OSTI)

    Bai, Xuemei

    2012-09-24

    * ALDUO(TM) Algae Production Technology Cellana?s Proprietary, Photosynthetic, & Proven * ALDUO(TM) Enables Economic Algae Production Unencumbered by Contamination by Balancing Higher-Cost PBRs with Lower-Cost Open Ponds * ALDUO(TM) Advantages * ALDUO(TM) Today o Large collection of strains for high value co-products o Powerful Mid-scale Screening & Optimization System o Solution to a Conflicting Interest o Split Pond Yield Enhancement o Heterotrophy & mixotrophy as a "finishing step" o CO2 Mitigation-flue Gas Operation o Worldwide Feed Trials with Livestock & Aquatic Species * ALDUO(TM) Technology Summarized

  9. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Weisbrod, Kirk (Los Alamos, NM)

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  10. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, Philip (Plum Borough, PA); Dollard, Walter J. (Churchill Borough, PA)

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  11. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch

    SciTech Connect (OSTI)

    Lopez, A.R.; Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1996-09-01

    The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap.

  12. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect (OSTI)

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  13. RSS Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton Delivery andInnovationsRSS Feed Los Alamos National

  14. Contaminating Fresh Waters (Florida)

    Broader source: Energy.gov [DOE]

    It is illegal to discharge any dyestuff, coal tar, oil, sawdust, poison, or deleterious substances into any fresh running waters in Florida in quantities sufficient to injure, stupefy, or kill fish...

  15. Safe Handling of Fresh Strawberries 

    E-Print Network [OSTI]

    Scott, Amanda

    2008-09-05

    This publication explains how to prevent food-borne illness by choosing, transporting, storing and preparing fresh strawberries safely....

  16. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B; Koo, Sinsze; Whitaker, J Michael

    2009-12-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

  17. Feeding Experiment 

    E-Print Network [OSTI]

    Gulley, F. A. (Frank Arthur)

    1889-01-01

    considerable portion of the State cotton seed is one of our cheapest feed stuffs. We have also made use of silage largely, notwithstanding the fact that it is practically unknown in the State. That silage is one of the most economical and desirable feeding... materials, where corn and sorghum thrive, has been conclusively demonstrated in every state east of the Mississippi river and several west. While there is much to learn in regard to the kind of crops to grow for silage, how to handle and how to feed them...

  18. RSS Feeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job&EnergyProjectFeeds RSS Feeds The

  19. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  20. NETL: Feed Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert4 FLCNETL-ORD4 NETL ORD -CloselyFeed

  1. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  2. Safe Handling of Fresh Tomatoes 

    E-Print Network [OSTI]

    Scott, Amanda

    2008-09-05

    before you eat or prepare them. Before handling fresh tomatoes, wash your hands with hot, soapy water for 20 seconds. Dry them with a paper towel. Wash and sanitize all food preparation areas and utensils with a solution of 1 teaspoon of chlo- rine..., soaps or bleach to wash fresh tomatoes. These chemicals may change the flavor and could be poisonous. When cutting or chopping tomatoes, use separate cutting boards and utensils for raw meats and fresh tomatoes, or wash and sanitize them between...

  3. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  4. Optimising the Fresh Air Economiser 

    E-Print Network [OSTI]

    Biship, R.

    2013-01-01

    and operation of the Fresh Air Economizer is well described in the literature (Zhou 2008, Wang 2007). A typical Fresh Air Economizer varies the OA damper position to target the lowest possible mixed-air, on-coil temperature, when ambient temperatures... in a steady-state rise of 590 ppm above ambient, or 1040 ppm at 450 ppm ambient. However, at higher densities, say 20 people/100 m2 (20 people/1,000 ft2), the required ventilation totals only 0.80 L/s.m2 (160 cfm/1000 ft2), or effectively 4 L...

  5. Steer Feeding

    E-Print Network [OSTI]

    Connel, J. H.; Carson, J. W.

    1896-01-01

    STATIONS. BULLETIN No. 41. DECEMBER, 1896. STEER FEEDING. POSTOFFICE: COLLEGE STATION, BRAZOS CO., TEXAS. All .Reports from this Station are sent free to farmers of the State on application to J. H. CONNELL, T E X A S G R X I P. O. College Station... to the solution of those problems that affect the welfare of the cattle interests, because it is agreed that this is now the primary livestock investment of the State. Economy in method of beef production lends value and shows a profit finally to the breeder...

  6. Steer Feeding

    E-Print Network [OSTI]

    Burns, John C,

    1913-01-01

    they were fed, it is nevertheless,, a point of much importance from the fact that it very likely had much to do with the somewhat greater gains they made as well as the much- greater shrinkage they sustained in shipment to market. Weather conditions were... :30 a. m., March 6th. In order to ascertain the shrinkage that had occurred since the final weights at College Station, each lot was weighed before receiving water or feed, the weighing being done at 11 a. m. The shrinkage is shown in the following...

  7. Experts Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy8)highlightsNew Phase ofJason Croy

  8. Downloads Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector FullDOE Office10 Jan 2005 to

  9. FreshTracks Capital LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado: Energy Resources JumpFreshTracks

  10. Fresh Air That's as Good as Gold | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicySenateFlyer, TitleGrant FinancingFresh Air

  11. ENDA Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek Europe GmbHED FETVEELOEMeterENDA Feed

  12. Multi-echelon inventory optimization for fresh produce

    E-Print Network [OSTI]

    Limvorasak, Saran

    2013-01-01

    For fresh produce, the product freshness is a key value to end consumers. Retailers try to maximize product freshness at retail stores while maintaining high product availability. Fresh produce that is close to the end of ...

  13. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  14. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  15. Experiments in Steer Feeding

    E-Print Network [OSTI]

    Craig, John A. (John Alexander); Marshall, F. R. (Frederick Rupert)

    1904-01-01

    as to the relative value of these two very characteristic rations for steer feeding. Cotton? seed meal and hulls is the ration that is most generally used throughout the cotton belt, while corn and alfalfa will likely be conceded to be the ration which is most... STATIONS. BULLETIN NO. 76. Animal Husbandry Section. T E X A S G R S I C 1904. EXPERIMENTS IN STEER FEEDING I. RICE BY-PRODUCTS FOR STEER FEEDING. II. FODDERS FOR FEEDING STEERS WITH COTTONSEED MEAL. III. MOLASSES FOR STEER FEEDING. IV. COMPARISON...

  16. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial

    E-Print Network [OSTI]

    microbial fuel cell renewable energy sustainable energy Exoelectrogenic bacteria oxidize organic matter it possible to convert waste organic matter into useful energy. In microbial fuel cells (MFCs), exoelectrogensHydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse

  17. Safe Storage of Fresh Fruits and Vegetables 

    E-Print Network [OSTI]

    Scott, Amanda

    2008-09-05

    Proper storage of fresh fruits and vegetables can help consumers avoid foodborne illness. This publication explains how to safely store apples, bananas, berries, beets, broccoli, carrots, corn, grapes, herbs, lettuce and greens, melons, nectarines...

  18. Mixed feed evaporator

    DOE Patents [OSTI]

    Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  19. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems,...

  20. Commercial Feedings Stuffs 1913: Feed Law. 

    E-Print Network [OSTI]

    Youngblood, B.

    1914-01-01

    EXPERIMENT STATION B u l l e t in Bul eti A p r i l , 1914 FEED CONTROL SERVICE Commercial Feeding Stuffs 1913 FEED LAW nAprA,,E.Hs .uLLJaJ pRTRSuWm KyTouP .uCWRhm rJgTPl 3AB KA0.0OMBBIFABHp .Alm ndEBrHdpm MfprEBm rH1Mp AGRICULTURAL AND MECHANICAL... COLLEGE OF TEXAS . 9 T y L J P n C y h J T y m President Pro Tern. rH1Mp M4dE.fxrfdMx H1nHdEOHBr prMrEAB BOARD OF DIRECTORS Hl Kl . CP9SWam Presidentm GuCPRuWllll lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll r...

  1. Feeding Values of Certain Feeding Stuffs. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1919-01-01

    , average (16) ...................... Peanut hulls, some meat, average (4). ..................... Table 2.-Composition and feeding value-Continued. Lab. No. .......................... Peanut ha), no nuts, D. E. 87 ......................... Peanut hay... no nuts average g) ................... Peanut mezh 5 per 'cknt fiber, . E. 96. ................................. Prairie hay D. E 85-86. .......................... Prairie hal: exa as average (10). ................................... R!ce bran, D...

  2. United Nations Foundation Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed Jump to: navigation, search

  3. Joint Implementation Network Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California)Joint Implementation Network Feed Jump

  4. Burco Farm and Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformationAssessment ToolkitBullBurco Farm and Feed

  5. Feds feed Families | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9, 2013Federal TaxMAY 3-4,Into HighFeds feed

  6. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving (Fairview Park, OH)

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  7. Emergent environmental issues, ever-shrinking global petroleum reserves, and unstable fossil fuel costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability

    E-Print Network [OSTI]

    costs continue to spur interest in the development of sustainable biofuels from renewable feed-stocks. The development and viability of all biofuel fermentations, however, remains limited by numerous factors adsorbents for the recovery of alcohol biofuels from model aqueous solutions as the first step towards

  8. Feed-in-Tariff

    Broader source: Energy.gov [DOE]

    Note: In August of 2013 the Hawaii Public Utility Commission (PUC) initiated an investigation into the Feed-In-Tariff Program in Docket No. 2013-0194. On December 5th, 2014 the Hawaii PUC issued...

  9. Subscribe to RSS Feeds

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building Technologies Office RSS (real simple syndication) feed tracks news from the Department of Energy (DOE) and other sources, making it convenient and easy to stay up-to-date with the...

  10. fed feed families | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feed families | National

  11. FEEDING ECOWGY AND GROWTH ENERGETICS OF LARVAL NORTHERN ANCHOVY, ENGRAULIS MORDAX

    E-Print Network [OSTI]

    and copepod diets are given for calculating growth in length and weight. size-specific stomach contents on other larval fishes. MATERIALS AND METHODS The rationale for my experimental design was to avoid known in the tank and estimating feeding by differ- ence in prey numbers over time. To obtain more precise fresh dry

  12. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R. [Chevron Research and Technology Co., Richmond, CA (United States)

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  13. Commercial Feedings Stuffs. 

    E-Print Network [OSTI]

    Boyett, W. L.; Fraps; G. S.

    1912-01-01

    . . . . . . . . 16.21 2.10 26.54 38.40 7.22 9.29 1 Sarley Chops _______ ._ . . _ . 11.25 2.01 5.92 64.93 13.24 2.65 245 OOrn Chops - - - - - - - - 9.23 3.S5 2.32 70.97 12.82 1.37 13 Corn Bran - - _____ _ _______ 9.35 6.09 8.44 63.85 12.46 1.97 4 Corn Feed... D airy Feed?Guarantee---------------- M anu facturer ? s Sample ------- -------- 16.50 18.56 3.50 5.07 12.00 11.76 46.00 44.65 123 W . Inspection Sample ------- ---------------- 16.09 4.10 11.27 49.9: Am co Chick Feed...

  14. ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE

    SciTech Connect (OSTI)

    Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

    2003-09-01

    This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

  15. Hog Feeding Experiments. 

    E-Print Network [OSTI]

    Burns, John C.

    1910-01-01

    ................................................................................. ~eriment,s Nos. 111 and IV 17 I ...................................................................................... ,,,,proved Hogs vs. Scrubs 19 I Corn vs. Rice Bran vs. Spanish Peanuts ........................................................... 22... 1 ! .................................................................................................................. Summary. 33 I I [Blank Page in Original Bulletin] HOG FEEDING EXPERIMENTS. BY JOHN C. BURNS, DEPARTMENT OF ANIMAL...

  16. Web Feeds and Repositories

    E-Print Network [OSTI]

    Downing, Jim

    2008-12-09

    ="http://example.org/2003/12/13/atom03"/> urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a 2003-12-13T18:30:02Z Some text. Subscription Feed

  17. Feeding & Risering Guidelines for

    E-Print Network [OSTI]

    Beckermann, Christoph

    radiographically sound to ASTM shrinkage x-ray level 5. Casting conditions (alloy composition, mold materialFeeding & Risering Guidelines for Steel Castings Steel Founders' Society of America 2001 #12;Index..................................................................................................................................10 4 Casting soundness in terms of riser and end zones

  18. Feeding mechanisms & foraging ecology

    E-Print Network [OSTI]

    Dever, Jennifer A.

    . Terrestrial ­ air less dense, must support food items l Akinetic skull l Kinetic skull II. Prey Capture in an aquatic environment v. a terrestrial one... A. Aquatic ­ lack of need for supporting food items due Snapping turtle - Chelydra serpentina combination of chewing and sucking B. Terrestrial Feeding Biting

  19. Computer controlled feed delivery system for feed trucks 

    E-Print Network [OSTI]

    Holt, Gregory Alan

    1989-01-01

    COMPUTER CONTROLLED FEED DELIVERY SYSTEM FOR FEED TRUCKS A Thesis by GREGORY ALAN HOLT Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1989 Major Subject: Agricultural Engineering COMPIJIER CONTROLLED FEED DELIVERY SYSTEM FOR FEED TRUCKS A Thesis by GREGORY ALAN HOLT Approved as to style and content by: Calvin B. Parnell (Chair of Committee) ayne LePori (Member) Charlie G...

  20. NREL: News - RSS Feeds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Buildings Concentrating Solar Power Defense Geothermal Technologies Hydrogen and Fuel Cells Photovoltaics Vehicles and Fuels Wind News Awards and Honors Continuum Magazine...

  1. Safe Handling of Fresh Fruits and Vegetables 

    E-Print Network [OSTI]

    Scott, Amanda

    2008-09-05

    paper towel. Also wash all utensils, countertops and cutting boards with hot, soapy water. Then sanitize them with a mixture of 1 teaspoon chlorine bleach in 1 quart of water. Do this before and after preparing food. It is especially important... to wash and sanitize cutting boards and utensils that have been in contact with raw meat before using them with fresh produce. Wash all whole fruits and vegetables before preparing them?even if the skin or rind will not be eaten. This prevents...

  2. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  3. Handleiding Import & Export RSS Feeds

    E-Print Network [OSTI]

    Galis, Frietson

    Handleiding Import & Export RSS Feeds Version: 1.0 RSS Feeds Date: 17-04-2013 #12;2 Exporteren RSS bestand. 1) Selecteer "Import and export.." 2) Selecteer "Export to a file" en vervolgens "Next" #12;3 3) Selecteer "Feeds" en vervolgens "Next" 4) Selecteer "Export" Wanneer u geen locatie opgeeft, zal Internet

  4. Nanoencapsulation Strategies for Antimicrobial Controlled Release to Enhance Fresh and Fresh-Cut Produce Safety 

    E-Print Network [OSTI]

    Hill, Laura Ellen

    2014-05-03

    shelf-life study to determine if there were any effects of the particles on fresh-cut romaine lettuce quality over the course of storage. The antimicrobial nanoparticles did not significantly affect (P>0.05) overall product quality, making encapsulated...

  5. Commercial Feeding Stuffs 

    E-Print Network [OSTI]

    Carson, J.W.; Fraps, G. S. (George Stronach)

    1911-01-01

    , protein is, on the average, about as cheap as f at-producing power. TABLE IV. Relative Cost of Nutrients. Selling Price Per Ton. Cotton Seed Meal ............................................... Wheat Shorts... on the tag. ,This bula letin contains a discussion of these matters. Other informatian wili be cheerfully furnished when requested. The consumer of feeding stuffs should learn to utilize them to the greatest advantage and in the most economical manner...

  6. Blog Feed: Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergy Bioproducts

  7. Comparison of REMIX vs. MOX fuel characteristics in multiple recycling in VVER reactor

    SciTech Connect (OSTI)

    Dekusar, V.M.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Puzakov, A.Y. [State Scientific Centre of Russian Federation, Institute for Physics and Power Engineering, Obninsk (Russian Federation)

    2013-07-01

    Multiple recycling of regenerated uranium-plutonium fuel in thermal reactors of VVER-1000 type with high enriched uranium feeding (REMIX-fuel) gives a possibility to terminate the accumulation of spent nuclear fuels (SNF) and Pu and decrease the accumulation of irradiated uranium by an order of magnitude. Results of comparison of VVER-1000 nuclear fuel cycle characteristics vs different fuel types such as UOX, MOX and REMIX-fuel have been presented. REMIX fuel (Regenerated Mixture of U-, Pu oxides) is the mixture of plutonium and uranium extracted from SNF and refined from other actinides and fission products with the addition of enriched uranium to provide the power potential necessary. The savings in terms of uranium quantities and separation works in the nuclear energy system (NES) with reactors using REMIX-fuel compared to the NES with uranium-fuelled reactors are shown to be of about 30% and 8%, respectively. For the NES with thermal reactors partially loaded with MOX-fuel, the uranium and separation works saving of about 14% would be obtained. Production of neptunium and americium in reactors with REMIX-fuel in steady state increases by a factor 3, and production of curium - by 10 compared to the reactors with UOX-fuel. This increase of minor actinide buildup is owed to the multiple recycling of plutonium. It should be noted that in this case all fuel assemblies contain high-background plutonium, and their manufacturing involves an expensive technology. Besides, management of REMIX-fuel will require special protection measures even during the fresh fuel manufacturing phase. The above-said gives ground to state that the use of REMIX fuel would be questionable in economic aspect.

  8. Compiling array computations for the Fresh Breeze Parallel Processor

    E-Print Network [OSTI]

    Ginzburg, Igor Arkadiy

    2007-01-01

    Fresh Breeze is a highly parallel architecture currently under development, which strives to provide high performance scientific computing with simple programmability. The architecture provides for multithreaded determinate ...

  9. Three-Dimensional Simulations of Liquid Feed Direct Methanol Wenpeng Liu*,a

    E-Print Network [OSTI]

    Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells Wenpeng Liu*,a and Chao that performance and design of a liquid feed direct methanol fuel cell DMFC is controlled not only by electrochemical kinetics and methanol crossover but also by water transport and by their complex interactions

  10. Farm Feed Processing. 

    E-Print Network [OSTI]

    Allen, W. S.; Sorenson, J. W.; McCune, W. E.

    1961-01-01

    PLANNING- A DESI-N , s ~IiABY mUMENTS DNISfOH A & M COUEGE Of TOW CWfGE STATN)N, ; l- \\.~i - MECHANIZATION OF FEED processing and handling oper- ations should be approached with caution. Mechanization is justified for one or more of the following..../hr. 'peed from HP per 10 Trn horizontal, o ft. length Wheat Oats Cornlneal Angle Approximate Maximum capacit!., Speed from HPper10 bu. / hr. 1 rpm horizontal, O ft. length Wheat Oats Cornmeal I Capacities are interpolated from several sources...

  11. Feeding Baby Beeves. 

    E-Print Network [OSTI]

    Burns, John C.

    1916-01-01

    of calves for the market, or, in other words, the procluction of %aby beef." 2. To compare cotton seed meal, cold-pressed cotton seed, and peanut meal for supplementing a ration composed of ground milo, corn or- . I sorghum silage, and Sudan hap... seed, ground milo, corn silage, and Sudan hajr. There was no trouble whatever in getting then1 on feed. ifter the first few days they were fed a11 the roughage (silage and hay) hev wo~~lil eat, hut the amount of concentrates (cake and milo) wac ~ept...

  12. Feeding experiment no. 2 

    E-Print Network [OSTI]

    Gulley, F. A. (Frank Arthur); Carson, J. W.

    1890-01-01

    raw and cooked, cotton seed hulls, cotton geed meal, and silage. The results showed that range steers may be dehorned and fed loose under a shed, crowded together like sheep, successfully, and that cost of certain food consumed is much less than... increased value of steers from gains made in weight at selling prices of food and steers. In regard to comparative results from different feed-stuffs, silage and cot- ton seed hulls for ro'ughness, and cooked cotton seed and cotton meal, with or without...

  13. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table(SC)CRADABurningB I

  14. News Releases Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThree FoundryProbing EnergySeeing inUMTRCA Site

  15. ORISE: RSS Feeds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser WorkEP Powerresources Media RadiationRSS

  16. Site Feeds - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific ImpactTechnologies |

  17. ARM - About RSS Feeds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'Organization

  18. fed feed families

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2A en2/%2A4/%2A

  19. In The News Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218 58ImprovingIn MemoriamInIn

  20. In The News Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,Impact AssessmentsImprovingIn Case ofIn Situ X-RayInOp ed:

  1. OSTIblog RSS Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientific and Technicalentries/rss Most recent posts

  2. Data Freshness and Overload Handling in Embedded Systems Thomas Gustafssona

    E-Print Network [OSTI]

    Data Freshness and Overload Handling in Embedded Systems Thomas Gustafssona and J¨orgen Hanssonb@sei.cmu.edu Abstract In this paper we consider data freshness and overload handling in embedded systems. The requirements on data management and overload handling are derived from an engine control software. Data items

  3. Nutrient Composition of Feeds

    E-Print Network [OSTI]

    Gill, Ronald J.; Herd, Dennis B.

    1986-01-01

    .88-0.96 Figure 2. Variation In energy content of various forages relative to the requirements of various classes of caHie (values given on a dry maHer basis). D.E. Mcal./lba DDM%b 1.61 80 1.50 75 1.40 70 1.29 65 Weaned Heiler... Ingredient Ana~sls Tables (Adapted from NR , 1984). Forages (Dry MaHer Basis) Vit.A ME TDN CP Ca p Equiv./lb Feed Name Description* (Mcal/lb) (%) (%) (%) (%) 1000 IU Alfalfa SC- EB .98 60 18.0 1.41 .22 25.5 SC- MB .95 58 17.0 1.41 .24 6.0 SC- LB .85 52...

  4. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  5. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  6. Fuel cell stack arrangements

    DOE Patents [OSTI]

    Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

    1982-01-01

    Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

  7. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOE Patents [OSTI]

    Gall, Robert L. (Morgantown, WV)

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  8. OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.

    SciTech Connect (OSTI)

    NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

    2002-08-01

    THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

  9. Global Feed-in Tariffs Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliamOhio:Change | OpenInformationFeed-in

  10. Global Village Energy Partnership (GVEP) Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEniaElectric JumpAtlas forCommunity Tunnel BoringFeed

  11. Institute of Development Studies Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMaking EnergyIndosolarInnovasol JumpProductivityFeed Jump

  12. United Nations Environment Programme Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed Jump to: navigation, search Home |

  13. United Nations Industrial Development Organization Feed | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed Jump to:

  14. Widget:TwitterFeed-CSC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What IsLogoCloudTATGallery Jump to:TwitterFeed-CSC Jump

  15. Bangladesh-Feed the Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy Informationclock timeFeed the

  16. Lawrence Berkeley National Laboratory (LBNL) Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo Ridge WindHill JumpLava(LBNL) Feed

  17. Commercial Feeding Stuffs, 1916-17: Texas feed law. 

    E-Print Network [OSTI]

    Youngblood, B. (Bonney)

    1917-01-01

    ; (b) to refuse registration of I ny feeding stuff under a name which would be misleading as to the I aaterials of which it is made up, or which does not conform to the I tandards, names and definitions aforesaid, and (c) after ten days' lotice... on the tap: (1) Yumber of net pounds of feeding stuff the packacc; contains. (2 X;~me of feecling tuff, exactly as shown in regi~trat;~l~. (3) Namcc: of material of which such feed is composecl, where the contents are of a ri~jxecl nature. (4...

  18. Instantaneous In-Situ Determination of Water-Cement Ratio of Fresh Concrete

    E-Print Network [OSTI]

    Mancio, Mauricio; Moore, Jeffrey R.; Brooks, Zenzile; Monteiro, Paulo J. M.; Glaser, Steve D.

    2010-01-01

    of fresh concrete (0% fly ash) Table 4 – Relationshipof fresh concrete (0% fly ash) electrical resistivity (?-m)resistivity and w/cm ratio of fresh concrete (25% fly ash)

  19. The management, use, and stewardship of fresh water

    E-Print Network [OSTI]

    The management, use, and stewardship of fresh water resources is an increasingly important in the physical mechanisms of water movement from an integrated perspective and studies the links between disturbances on water quality, forest hydrology, and technology transfer. http

  20. Designing and compiling functional Java for the Fresh Breeze architecture

    E-Print Network [OSTI]

    Jacobs, William J., M. Eng. Massachusetts Institute of Technology

    2009-01-01

    The Fresh Breeze architecture is a novel approach to computing that aims to support a high degree of parallelism. Rather than striving for heroic complexity in order to support exceptional single-thread performance, as in ...

  1. Introduction Florida ranks second among the states in fresh market

    E-Print Network [OSTI]

    Ma, Lena

    corn, tomatoes and watermelons. Florida ranks second in fresh market value of strawberry, sweet pepper.5 % of the state's total value. Other major crops with a lesser proportion of the 2009 crop value were strawberry

  2. Monitoring Feed Efficiency in Dairy Herds 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    1999-04-26

    is preferred). Otherwise, the particle size of what the cows are actually con- suming will be reduced. Feed inventory: Even though feed is the single largest operating expense on dairies, few produc- ers track feed inventory closely to determine shrinkage... feeding management. Thus, although the ration may be fine ?on paper,? the ration the cows actually consume may be in- adequate. Tracking inventory can also aid in feed pricing. Feeds with high shrinkage should be discounted when determining their value...

  3. Modeling and Control of High-Velocity Oxygen-Fuel (HVOF) Thermal Spray: A Tutorial Review

    E-Print Network [OSTI]

    Li, Mingheng; Christofides, Panagiotis D.

    2009-01-01

    Fluid Dynamics Analysis of a Wire- Feed, High-Velocity Oxygen Fuel (Fluid Dynamic Modeling of Gas Flow Charac- teristics in a High-Velocity Oxy-Fuel

  4. NIPSCO- Feed-In Tariff

    Broader source: Energy.gov [DOE]

     NIPSCO is offering a feed-in tariff program for customers who generate electricity from solar, wind, biomass, or new hydroelectric facilities. All NIPSCO electric customers in good standing are...

  5. Feed-Pump Hydraulic Performance and Design Improvement, Phase I:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtransScientificEnergy EfficiencyFeed-Pump Hydraulic

  6. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  7. Nitrite in feed: From Animal health to human health

    SciTech Connect (OSTI)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also carried out taking into account all direct and indirect sources of nitrite from the human diet, including carry-over of nitrite in animal-based products such as milk, eggs and meat products. Human exposure was then compared with the acceptable daily intake (ADI) for nitrite of 0-0.07 mg/kg b.w. per day. Overall, the low levels of nitrite in fresh animal products represented only 2.9% of the total daily dietary exposure and thus were not considered to raise concerns for human health. It is concluded that the potential health risk to animals from the consumption of feed or to man from eating fresh animal products containing nitrite, is very low.

  8. Fuel cell CO sensor

    DOE Patents [OSTI]

    Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  9. Commercial Feeding Stuffs, 1915-16: Texas Feed Law. 

    E-Print Network [OSTI]

    Youngblood, B. (Bonney)

    1916-01-01

    !ation): College Station, Brazos A. H. LEIDIGH, B. S., Agronomist County Lours M7~~~~~~~~~~~~~, B. S.. Agrorio- T. M. REDDELL, Superinfendent mist G. F. JORDAN, I3. S., Scientific Assistant DIVISION OF PLANT PATHOLO(= y AND SUBSTATION NO- 11 : Nacogdoches... source of fat in case of a deficierlcy in carbohydrates and fat accom- paniecl bp excess of protein. It is,. however, a costly source of heat and fat. T7aPue of Protein: Protein is the most expensive portion of a feeding stuff, and feeding stuffs rich...

  10. Predicting organosulfur chemistry in fuel sources

    E-Print Network [OSTI]

    Class, Caleb Andrew

    2015-01-01

    Desulfurization of fossil fuels with supercritical water (SCW) has been the topic of many studies over the past few decades. This process does not require the use of any catalyst, eliminates the need for a hydrogen feed, ...

  11. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  12. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  13. TECHNICAL NOTE Geotechnical properties of fresh cement groutpressure ltration

    E-Print Network [OSTI]

    Bolton, Malcolm

    TECHNICAL NOTE Geotechnical properties of fresh cement groutÐpressure ®ltration and consolidation relations; grouting; laboratory tests; permeability. INTRODUCTION Cement is a basic construction material, and in geotechnics the hydraulic cements known as Port- land cements are particularly important. Hydraulic cements

  14. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  15. Modelling the South African fresh fruit export supply chain

    E-Print Network [OSTI]

    van Vuuren, Jan H.

    Modelling the South African fresh fruit export supply chain Frank Gerald Ortmann Thesis presented university for a degree. Signature: Date: #12;#12;Abstract The process of modelling the fruit export, numerous aspects of the export process are considered in this thesis so as to be able to perform

  16. Modelling the South African fresh fruit export supply chain

    E-Print Network [OSTI]

    van Vuuren, Jan H.

    Modelling the South African fresh fruit export supply chain Frank Gerald Ortmann Thesis presented export infrastructure capacity of South Africa formed part of a larger project called the ``Fruit industry into perspective, numerous aspects of the export process are considered in this thesis so

  17. Competitive Food Supply Chain Networks Application to Fresh Produce

    E-Print Network [OSTI]

    Nagurney, Anna

    Competitive Food Supply Chain Networks with Application to Fresh Produce Min Yu1 Anna Nagurney 2 1 Annual Meeting, Minneapolis, MN October 6-9, 2013 Yu and Nagurney Food Supply Chain Networks 1 / 41 #12 Program. Yu and Nagurney Food Supply Chain Networks 2 / 41 #12;This talk is based on the paper: Yu, M

  18. Competitive Food Supply Chain Networks Application to Fresh Produce

    E-Print Network [OSTI]

    Nagurney, Anna

    Competitive Food Supply Chain Networks with Application to Fresh Produce Min Yu Department Research 224(2) (2013) pp 273-282. Abstract: In this paper, we develop a network-based food supply chain- corporates food deterioration through the introduction of arc multipliers, with the inclusion

  19. Competitive Food Supply Chain Networks Application to Fresh Produce

    E-Print Network [OSTI]

    Nagurney, Anna

    Competitive Food Supply Chain Networks with Application to Fresh Produce Min Yu1 Anna Nagurney 2 1 Annual Conference, Atlanta, GA May 9-12, 2014 Yu and Nagurney Food Supply Chain Networks 1 / 43 #12 Program. Yu and Nagurney Food Supply Chain Networks 2 / 43 #12;This talk is based on the paper: Yu, M

  20. Ozone Treatments of Fresh Atlantic Cod, Gadus morhua

    E-Print Network [OSTI]

    Ozone Treatments of Fresh Atlantic Cod, Gadus morhua ELINOR M. RAVESI, JOSEPH J. L1CCIARDELLO and LINDA D. RACICOT Introduction The strong oxidizing nature of ozone, known since its discovery in 1840 (1977) cited in a review article numerous reports of the successful use of ozone to I) control microbial

  1. 24th April 2008 A breath of fresh air

    E-Print Network [OSTI]

    24th April 2008 A breath of fresh air Rural Research and Strategy Partnership "Leveraging the SE and energy · the health, well-being and long term sustainability of rural communities; and · developing Economic Strategy Targets 1 Attracting inward investment. 2 Collaboration for Innovation. 3 Increasing

  2. ORIGINAL PAPER Fractionation and speciation of arsenic in fresh

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    ORIGINAL PAPER Fractionation and speciation of arsenic in fresh and combusted coal wastes from in the condensates indicates that combustion or spontaneous combustion is one of the major ways for arsenic release Coal waste Á Arsenic Á Species Á HPLC-ICP-MS Á Environmental pollution Introduction Arsenic (As

  3. Life After Fresh Kills: Moving Beyond New York City's

    E-Print Network [OSTI]

    Columbia University

    Life After Fresh Kills: Moving Beyond New York City's Current Waste Management Plan Policy and environmental experts from the New York region. A research project of Columbia University's Earth Institute of Columbia's School of International and Public Affairs, the report examines New York City's current waste

  4. Feed mechanism and method for feeding minute items

    DOE Patents [OSTI]

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2012-11-06

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  5. Feed mechanism and method for feeding minute items

    DOE Patents [OSTI]

    Stringer, Timothy Kent (Bucyrus, KS); Yerganian, Simon Scott (Lee's Summit, MO)

    2009-10-20

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  6. Quantitative Microbial Risk Assessment of Listeria monocytogenes on Fresh-cut Lettuce and Fresh-cut Cantaloupe 

    E-Print Network [OSTI]

    Guzel, Mustafa

    2015-01-21

    .......................................................................................... 10 2.5 Survival and Growth of Listeria monocytogenes ................................................... 12 2.6 Decontamination Methods for Fresh Produce ........................................................ 14 2.6.1 Washing and Sanitizing....2.3.4 Washing and Sanitizing Treatments ......................................................... 69 4.2.3.5 Cross-Contamination ................................................................................ 73 4.2.3.6 Alternative Intervention Steps...

  7. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  8. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology...

    Office of Scientific and Technical Information (OSTI)

    Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a...

  9. Mycotoxins in Feed and Food Crops. 

    E-Print Network [OSTI]

    Armstrong, James M.; Herb, Dennis B.; Bremer, John E.; Horne, C. Wendell; Thomas, William B.; Thornberry, Fred D.; Tripp, Leland D.; White, Thomas H.; Withers, Richard E.

    1981-01-01

    . The ancient Greeks, for example, cooked with mushrooms. This resulted in some people getting sick and others dying from the poisonous species of the mushrooms or fleshy fungi. The development of the science of . mycology (study of fungi) has permitted... and clean up program to keep bins, delivery trucks and other equipment free of adhering or caked feed ingredients. -Minimize dust accumulation in milling areas. -Cool pelleted feed before storage or delivery. -Keep all feed equipment free of caked feed...

  10. TINS -July 1978 l Neurophysiology of feeding

    E-Print Network [OSTI]

    Rolls, Edmund T.

    as to the separate roles of these differen" neurones. Lesions of the lateral hypothalamus reduce or abolish feeding, and of the ventro- medial hypothalamus lead to hyperpt gia and obesity. Conversely, electrical stimula- tion of the lateral hypothalamus can induce feeding, and of the ventromedial hypothalamus can stop feeding

  11. Feeding Waste Milk to Dairy Calves 

    E-Print Network [OSTI]

    Stokes, Sandra R.; Looper, Mike; Waldner, Dan; Jordan, Ellen R.

    2002-02-14

    to Dairy Calves Sandra A. Stokes, Michael L. Looper, Dan N. Waldner and Ellen R. Jordan* Dairy producers feed a variety of liquid feeds to young calves after the initial colostrum. These feeds include whole milk, surplus colostrum, transition milk, waste...

  12. fuel | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feed families| National

  13. Farm Feed Processing & Handling Systems. 

    E-Print Network [OSTI]

    Allen, W. S.; Sorenson, J. W.; McCune, W. E.

    1970-01-01

    mixers. Either will do a satisfactory mixing job for farm use, providing care is used in proportioning. Mixing time should exceed 5 minutes. Vertical mixers. These use an upright inverted cone tank with a vertical auger in the center to mix the feed... horizontal U-shaped tank. A horizontal shaft equipped with paddles or spiral ribbons provides the mixing action. Some horizontal mixers use three large augers mounted hori- zontally parallel. Because they require less head room, the larger mixers...

  14. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  15. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    considered one of the 17x17 PWR assemblies from the NGSIplutonium signal because in a PWR spent fuel its content isspectra for a single PWR fuel pin with fresh and spent UO 2

  16. Biomimicry using Nano-Engineered Enhanced Condensing Surfaces for Sustainable Fresh Water Technology

    E-Print Network [OSTI]

    Al-Beaini, Sara

    2012-01-01

    innovation will enhance a sustainable solution for fresh water produc- tion at a lower costinnovation could o?er a sustainable solution for fresh water production at a lower cost

  17. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  18. Ecofys Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetekof EconomicEcodasa AG

  19. NERSC User Announcements RSS Feed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncriefB O N NStaff

  20. Digestibility and Production Coefficients of Hog Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1932-01-01

    , 1932. **In cooveration with U. S. Department of Agriculture, The value of a pig feed depends chiefly upon its content of digestible protein and productive energy. The average compos- ition, productive energy and digestible pro- tein are given.... They can be used to calculate the productive energy of pig feeds. CONTENTS Page Introduction 3 Digestion experiments with pigs 5 Method of work 5 Feeds used in the Texas digestion experiments _-------.~.__.____-----------------------.. 6 Digestion...

  1. Metabolizable Energy of Some Chicken Feeds

    E-Print Network [OSTI]

    Fudge, J. F. (Joseph Franklin); Carlyle, E. C. (Elmer Cardinal); Fraps, G. S. (George Stronach)

    1940-01-01

    PUS TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER. DIRECTOR COLLEGE STATION. BRAZOS COUNTY, TEXAS BULLETIN NO. 589 AUGUST 1940 * DIVISION OF CHEMISTRY Metabolizable Energy of Some Chicken Feeds -- AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T... is one of a series dealing with the utilization of the T of animal feeds and of human foods. The metabolizable energy is ergy in the feed eaten less that excreted and is the maximum amount :rgy that can be utilized by the animals. No allowances...

  2. Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.

    SciTech Connect (OSTI)

    Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

    2012-04-04

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

  3. Metabotropic Glutamate Receptors Effects on Feeding

    E-Print Network [OSTI]

    Charles Cano, Jonathan Rene

    2015-01-01

    acid in the rodent hypothalamus: a reverse microdialysisreceptors in the rat hypothalamus and pituitary. Endocrinol.in key neurons of the hypothalamus that regulate feeding

  4. Novel Feed System for Pressurised Gasification

    E-Print Network [OSTI]

    Department of Chemical and Biological Engineering The University of Sheffield, Sheffield, UK *james. Current feeding systems can be split into six key categories: Rotary valves Lock hoppers Plug

  5. Laser-Based Characterization of Nuclear Fuel Plates

    SciTech Connect (OSTI)

    James A. Smith; David L. Cottle; Barry H. Rabin

    2013-07-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  6. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Commercial Feeding Stuffs, September 1, 1938, to August 31, 1939. 

    E-Print Network [OSTI]

    Fuller, F. D. (Frederick Driggs); Sullivan, James

    1939-01-01

    standards for various by-product feeds and special- purpose mixed feeds are shown, and definitions of and standards for commercial unmixed feeds are given, together with additional information on the requirements of the Texas Feed Law and the composition... of lime and salt in mixed feeds 13 Suggestions to purchasers of feed ................................. 15 .................................. Definitions and standards adopted 15 ................................... Special-purpose mixed feeds 16...

  9. Prepayments of feed in cattle feeding operations: An emphasis on tax aspects. 

    E-Print Network [OSTI]

    Wheat, Gary Don

    1972-01-01

    PREPAYMENTS OF FEED IN CATTLE FEEDING OPERATIONS: AN EMPHASIS ON TAX ASPECTS A Thesis by Gary Don Wheat Submitted to the Graduate College of Texas A&K University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1972 Major Subject: Accounting PREPAYMENTS OF FEED IN CATTLE FEEDING OPERATIONS: AN EMPHASIS ON TAX ASPECTS A Thesis by Gary Don Wheat Approved as to style and content by: (Cha rman of o ttee) (Head of Department) (Member) Ql (Member...

  10. Stability of Thermohaline circulation with respect to fresh water release

    E-Print Network [OSTI]

    Ajay Patwardhan; Vivek Tewary

    2008-05-16

    The relatively warm climate found in the North- Western Europe is due to the gulf stream that circulates warm saline water from southern latitudes to Europe. In North Atlantic ocean the stream gives out a large amount of heat, cools down and sinks to the bottom to complete the Thermohaline circulation. There is considerable debate on the stability of the stream to inputs of fresh water from the melting ice in Greenland and Arctic. The circulation, being switched off, will have massive impact on the climate of Europe. Intergovernmental panel on climate change (IPCC) has warned of this danger in its recent report. Our aim is to model the Thermohaline circulation at the point where it sinks in the North-Atlantic. We create a two dimensional discrete map modeling the salinity gradient and vertical velocity of the stream. We look for how a perturbation in the form of fresh water release can destabilise the circulation by pushing the velocity below a certain threshold.

  11. The relationship between residual feed intake and feeding behavior in growing heifers 

    E-Print Network [OSTI]

    Bingham, Glenda Marie

    2009-05-15

    analyzed for the focal animals. All occurrences of feeding were timed and counted per day, and the eight 24-h periods averaged to derive the overall feeding event (FE) and meal duration and frequency for each focal heifer. Total feeding event duration...

  12. Proceedings of the 3rd Nordic Feed

    E-Print Network [OSTI]

    Proceedings of the 3rd Nordic Feed Science Conference, Uppsala, Sweden Institutionen för husdjurens of Animal Nutrition and Management ISSN 0347-9838 ISRN SLU-HUV-R-280-SE #12;#12;Proceedings of the 3rd committee of the 3rd Nordic Feed Science Conference Department of Animal Nutrition and Management Swedish

  13. Feeding Young Horses For Sound Development 

    E-Print Network [OSTI]

    Gibbs, Pete G.; Potter, Gary D.

    2005-05-25

    Feeding Young Horses for Sound Development B-5043 05-05 Feeding Young Horses for Sound Development Pete G. Gibbs Professor and Extension Horse Specialist Department Of Animal Science Equine Sciences Program The Texas A&M University System Gary D...

  14. Commercial Feeding Stuffs, September 1, 1937 to August 31, 1938. 

    E-Print Network [OSTI]

    Fuller, F. D. (Frederick Driggs); Sullivan, James

    1938-01-01

    and does not include whole grains. Chemical standards for various by-product feeds and special- purpose mixed feeds are shown, and definitions of and standards for commercial unmixed feeds are given, together with additional information... cake 12 ................................................. Cottonseed hulls 13 .......................... Carbonate of lime and salt in mixed feeds 14 Suggestions to purchasers of feed .................................. 15 Definitions and standards...

  15. Feed rate measuring method and system

    DOE Patents [OSTI]

    Novak, J.L.; Wiczer, J.J.

    1995-12-05

    A system and method are provided for establishing the feed rate of a workpiece along a feed path with respect to a machine device. First and second sensors each having first and second sensing electrodes which are electrically isolated from the workpiece are positioned above, and in proximity to the desired surfaces of the workpiece along a feed path. An electric field is developed between the first and second sensing electrodes of each sensor and capacitance signals are developed which are indicative of the contour of the workpiece. First and second image signals representative of the contour of the workpiece along the feed path are developed by an image processor. The time delay between corresponding portions of the first and second image signals are then used to determine the feed rate based upon the separation of the first and second sensors and the amount of time between corresponding portions of the first and second image signals. 18 figs.

  16. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY)

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  17. Pattern recognition monitoring of PEM fuel cell

    DOE Patents [OSTI]

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  18. Hot Fuel Examination Facility/South

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  19. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 to PADDFuelFuelFuel

  20. Gas only nozzle fuel tip

    DOE Patents [OSTI]

    Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

    2002-01-01

    A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

  1. Waste feed delivery planning at Hanford

    SciTech Connect (OSTI)

    Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

    2013-01-10

    The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades.

  2. Desulfurization of hot fuel with Z-Sorb III sorbent

    SciTech Connect (OSTI)

    Campbell, W.M.; O`Donnell, J.J.; Katta, S.; Grindley, T.; Delzer, G.; Khare, G.

    1993-12-31

    The objective of this project is to evaluate regenerable sorbents for potential use in desulfurization of integrated gasification combined cycle (IGCC) fuel gas in a fixed bed operating at temperatures of 900--1200{degree}F (482--649{degree}C) and pressures up to 300--400 psia (2068--2758 kPa). Important evaluation criteria are adequate sulfur absorption capacity, physical and chemical durability, and complete regenerability. The experimental tests were conducted at the Morgantown Energy Technology Center in their high pressure bench-scale hot gas desulfurization unit, which contains a 2 in (5.1 cm) ID reactor system. Like zinc ferrite and zinc titanate, Z-Sorb III is also a zinc oxide-based sorbent supported on a proprietary matrix designed to provide stability and prolong the sorbent life. The test program was divided into four phases. Phase I was essentially a screening or feasibility study and consisted of a relatively short series of complete sulfidation-regeneration cycles. Phase II was a longer term multi-cycle test designed to demonstrate durability and regenerability of the sorbent. Parametric tests of sulfidation variables were done in Phase III. The major variables investigated were gas velocity (0.5--2.0 fps) (0.15--0.61 mps) and absorption temperature (900--1100{degree}F) (482--593{degree}C). Work continued on regeneration techniques during this phase with the purpose of identifying the most cost-effective method for the commercial reactor. Phase IV of the test program was included to examine the effects, if any, of small quantities of HCl in the feed gas. A total of seven cycles were completed. The test program ended with a single sulfidation at the same conditions run during Phase I. This permitted a direct comparison of a relatively fresh sorbent with one that had been subjected to a wide variety of test conditions over an extended period of time.

  3. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  4. For Continuous Feeding with Pump Using the CORFLO Anti-IV Feeding Tube and Extension SetFor Continuous Feeding with Pump Using the CORFLO Anti-IV Feeding Tube and Extension Set For Gravity Feeding Using the CORFLO Anti-IV Enteral Feeding TubeFor Gravity F

    E-Print Network [OSTI]

    Kay, Mark A.

    1. 3. 4. 5. 2. 5. 6. 7. 6. 7. 3. 4. For Continuous Feeding with Pump Using the CORFLO Anti-IV Feeding Tube and Extension SetFor Continuous Feeding with Pump Using the CORFLO Anti-IV Feeding Tube the instructions above for Continuous Feeding. Simply hang the syringe rather than putting it in a syringe pump

  5. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  6. Effects of Residual Feed Intake Classification on Temperament, Carcass Composition, and Feeding Behavior Traits in Growing Santa Gertrudis Heifers 

    E-Print Network [OSTI]

    Ramirez, Justin A

    2014-04-16

    Objectives of this study were to evaluate the associations of feed intake, feeding behavior, temperament, and carcass composition with performance and feed efficiency traits in growing heifers. Santa Gertrudis heifers (n ...

  7. Fuels Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoand DavidEnergyVirginiaEnergy|Fuels

  8. Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcanGrid IntegrationheatGE GeoSpring™

  9. Plasma arc torch with coaxial wire feed

    DOE Patents [OSTI]

    Hooper, Frederick M (Albuquerque, NM)

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  10. Proceedings of the 5th Nordic Feed

    E-Print Network [OSTI]

    Feed Science conferences are indexed and archived in CAB Abstracts since 2010 #12;Foreword This year we of silages 10 L. Kung Jr. Aerobic exposure of silages ­ effects on chemical composition and preference

  11. Feeding Biomechanics & Craniodental Morphology in Otters (Lutrinae) 

    E-Print Network [OSTI]

    Timm, Lori L

    2013-07-23

    raptorial capture of prey (mouth-oriented) and capture of prey by hand (hand-oriented), which likely correspond to craniodental morphology and bite performance. However, feeding biomechanics and performance data for otters, aquatic mustelids that consume...

  12. A Decision Support System to design1 modified atmosphere packaging for fresh2

    E-Print Network [OSTI]

    Croitoru, Madalina

    ;Abstract18 To design new packaging for fresh food stakeholders of the food19 chain express their needs (i) fresh food related characteristics and (ii) packaging intrinsic charac-22 teristics. Modified materials, process ability,30 waste management constraints, etc. For instance, the user may have31

  13. Process for mild hydrocracking of hydrocarbon feeds

    SciTech Connect (OSTI)

    Nevitt, T.D.; Hopkins, P.D.; Tait, A.M.

    1984-02-14

    A process for mild hydrocracking of hydrocarbon feeds comprising contacting the feed with hydrogen under mild hydrocracking conditions in the presence of a catalytic composition comprising an active metallic component comprising at least one metal having hydrogenation activity and at least one oxygenated phosphorus component, and a support component comprising at least one non-zeolitic, porous refractory inorganic oxide matrix component and at least one shape selective crystalline molecular sieve zeolite component.

  14. Feeding Race Prospects and Racehorses in Training 

    E-Print Network [OSTI]

    Gibbs, Pete G.; Potter, Gary D.; Scott, Brett D.

    2002-12-18

    .4 megacalories of digestible energy per pound. Feeds with higher levels of energy need even Once training or forced exercise begins, the feeding program should be evaluated even more carefully. Horses in race training Researchers have recently found... on good-quali- ty, improved pastures. The digestive tract of a yearling can process more roughage than that of a weanling. Good-quality grazing appears to sup- port acceptable growth and development at this stage. 7 However, yearlings being prepared...

  15. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  16. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect (OSTI)

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  17. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum

  18. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergyWind Energy Wind Energy Renewable

  19. fuel cells

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  20. fuel cells | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afed feed families

  1. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energy’s Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  2. Nebraska's Cattle Feeding Industry: Size, Structure and Related Industries

    E-Print Network [OSTI]

    Farritor, Shane

    growing production of distillers grains and other feed byproducts from bio-energy produc- tion plants

  3. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick (Bromley, GB)

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  4. Fuel rail

    SciTech Connect (OSTI)

    Haigh, M.; Herbert, J.D.; O'Leary, J.J.

    1988-09-20

    This patent describes a fuel rail for a V-configuration automotive type internal combustion engine having a throttle body superimposed over an intake manifold. The throttle body has an air plenum above an induction channel aligned with a throttle bore passage in the manifold for flow or air to the engine cylinders. The rail includes a spacer body mounted sealingly between the throttle body and the manifold of the engine and having air induction passages therethrough to connect the throttle body channels and the manifold, the spacer body having at least on longitudinal bore defining a fuel passage extending through the spacer body, and a fuel injector receiving cups projecting from and communicating with the fuel passage. The spacer body consists of a number of separated spacer members, and rail member means through which the fuel passage runs joining the spacer members together.

  5. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  6. Beef feedlot cattle use individual feeding strategies to gain access to feed in a competitive environment

    E-Print Network [OSTI]

    Farrell, Anthony P.

    i Beef feedlot cattle use individual feeding strategies to gain access to feed in a competitive August 2007 © Gosia Zobel, 2007 #12;ii ABSTRACT Cattle are social animals and frequently interact interest in the social behavior of cattle, no research has focused on assessing the relationship between

  7. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  8. Irradiated Nuclear Fuel Management: Resource Versus Waste

    SciTech Connect (OSTI)

    Nash, Kenneth L.; Lumetta, Gregg J.; Vienna, John D.

    2013-01-01

    Management of irradiated fuel is an important component of commercial nuclear power production. Although it is broadly agreed that the disposition of some fraction of the fuel in geological repositories will be necessary, there is a range of options that can be considered that affect exactly what fraction of material will be disposed in that manner. Furthermore, until geological repositories are available to accept commercial irradiated fuel, these materials must be safely stored. Temporary storage of irradiated fuel has traditionally been conducted in storage pools, and this is still true for freshly discharged fuel. Criticality control technologies have led to greater efficiencies in packing of irradiated fuel into storage pools. With continued delays in establishing permanent repositories, utilities have begun to move some of the irradiated fuel inventory into dry storage. Fuel cycle options being considered worldwide include the once-through fuel cycle, limited recycle in which U and Pu are recycled back to power reactors as mixed oxide fuel, and advance partitioning and transmutation schemes designed to reduce the long term hazards associated with geological disposal from millions of years to a few hundred years. Each of these options introduces specific challenges in terms of the waste forms required to safely immobilize the hazardous components of irradiated fuel.

  9. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  10. Low-level waste feed staging plan

    SciTech Connect (OSTI)

    Certa, P.J.; Grams, W.H.; McConville, C.M.; L. W. Shelton, L.W.; Slaathaug, E.J., Westinghouse Hanford

    1996-08-12

    The `Preliminary Low-Level Waste Feed Staging Plan` was updated to reflect the latest requirement in the Tank Waste Remediation Privatization Request for Proposals (RFP) and amendments. The updated plan develops the sequence and transfer schedule for retrieval of DST supernate by the management and integration contractor and delivery of the staged supernate to the private low-activity waste contractors for treatment. Two DSTs are allocated as intermediate staging tanks. A transfer system conflict analysis provides part of the basis for determining transfer system upgrade requirements to support both low-activity and high-level waste feed delivery. The intermediate staging tank architecture and retrieval system equipment are provided as a planning basis until design requirements documents are prepared. The actions needed to successfully implement the plan are identified. These include resolution of safety issues and changes to the feed envelope limits, minimum order quantities, and desired batch sizes.

  11. Effects of Residual Feed Intake Classification on Feed Efficiency, Feeding Behavior, Carcass Traits, and Net Revenue in Angus-Based Composite Steers 

    E-Print Network [OSTI]

    Walter, Joel

    2012-02-14

    and carcass measurements on between-animal variation in net revenue of feedlot steers. Performance, feed intake and feeding behavior traits were measured in 508 Angus-based composite steers, using the GrowSafe feed-intake measurement system, while fed a high...

  12. Cottonseed Meal as a Feed for Hogs. 

    E-Print Network [OSTI]

    Hale, Fred

    1930-01-01

    FEED FOR HOGS AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President STATION STAFF7 AD MINISTRATION : A B CONNER M S Director R: E: KARPERI M: s:: Vice-Director CLARICE MIX~N B.'A Secretary M. P. HOLLEMAN: JR., chief Clefk J. K... contains the results of the study of cottonseed meal as a feed for hogs. The period of this study was from 1924 to 1928, inclusive. Eight brood sows and two hundred and seventy-nine pigs were used during the four and one-half years' study on various...

  13. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  14. Commercial Feeding Stuffs 1917-1918. 

    E-Print Network [OSTI]

    Fuller, F. D. (Frederick Driggs)

    1918-01-01

    as mzy be necessary for the enforcement of the lam. T director shall have the power. to refuse the registration of any feedin under a name which would be misleading as to the materials of whio made up, or which does no 1 to the standards and defir... poilnds of feeding stuffs the package contains. 2. Xame of brand. exactly as shown in registration. 3. Sames of the ingredients of which such feed is cpmposed, in cases where the contents are of a mixed niiture. 4. Percentage of each ingredient of )he...

  15. Feed Intake and Feeding Behavior Associations with Performance and Feed Efficiency of Feedlot Cattle Fed a Corn-based Diet 

    E-Print Network [OSTI]

    Bailey, Jayton

    2012-02-14

    - RFI pigs. Bunk visit duration, frequency and feed intake per BV traits were all found to have moderate to high heritabilities in Landrace and Large White boars of 0.43, 0.43, and 0.51, respectively (Von Felde et al., 1996). Similarly, BV duration...

  16. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect (OSTI)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  17. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  18. Numerical Analysis of the Channel Wheel Fresh Air Ventilator Under Frosting Conditions 

    E-Print Network [OSTI]

    Gao, B.; Dong, Z.; Cheng, Z.; Luo, E.

    2006-01-01

    As new equipment, the channel wheel fresh air ventilator has become increasingly popular in recent years. However, when such equipment is operated under low ambient temperature in the freezing area in winter, the formation of frost on the outdoor...

  19. Keeping mom and pop fresh : strategies for getting produce into corner stores

    E-Print Network [OSTI]

    Hadwin, Angela J

    2012-01-01

    Availability of fresh, healthy produce for low-income people is a growing concern for advocates and public officials concerned with health disparities and diet-related disease. Healthy corner store conversions are a promising ...

  20. The design and testing of a procedure to locate fresh submarine groundwater discharge in Cyprus

    E-Print Network [OSTI]

    Olesnavage, Kathryn M

    2012-01-01

    The aim of this collaborative project between Massachusetts Institute of Technology (MIT) and Cyprus Institute was to develop an experimental procedure for identifying fresh submarine groundwater discharge (SGD) in Cyprus. ...

  1. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  2. Proceedings of FuelCell2009 Seventh International Fuel Cell Science, Engineering and Technology Conference

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    of Engineering & Natural Sciences Sabanci University Istanbul, Turkey ABSTRACT In a PEMFC, feeding dry hydrogen nearest the outlet as shown in the neutron imaging of a 53 cm2 PEMFC. This method allows in Exchange Membrane Fuel Cell (PEMFC) reduces the overall system cost, weight and volume due to reduced need

  3. Method of increasing the deterrent to proliferation of nuclear fuels

    DOE Patents [OSTI]

    Rampolla, Donald S. (Pittsburgh, PA)

    1982-01-01

    A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

  4. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived syngas; Quarterly technical progress report No. 3, 1 July--30 September 1990

    SciTech Connect (OSTI)

    1991-01-25

    Contract objectives are: development of a one-step liquid phase dimethyl ether/methanol process; and investigation of the potential of liquid phase synthesis of alternative fuels from coal-derived synthesis gas. Definition of Preferred Catalyst System was completed after several commercial methanol catalysts and dehydration catalysts were tested. BASF S3-86 and Catapal gamma alumina is the preferred catalyst system of choice. Process Variable Scans on the Preferred Catalyst System was started with Shell gas. Data were obtained at various pressures (750 to 1400 psig), temperatures (250 to 280{degrees}C), and space velocities (5000 to 9000 sl/kg-hr). Increase in system pressure seems to have a very significant benefit to both DME and methanol formation. Both Texaco and Shell gases were evaluated. A ``stoichiometric`` feed composition (50% CO, 50% H{sub 2}) that yields maximum DME productivity at equilibrium was evaluated with a fresh batch of the optimum catalyst system. Productivities with the ``stoichiometric`` gas were much higher compared to Shell or Texaco gas. Following that test, Dow gas was evaluated (41% CO, 41% H{sub 2}, 16% CO{sub 2} and 2% N{sub 2}) using the same catalyst to study the effect of CO{sub 2}. Three DME/MEOH (1--4% DME) mixtures were evaluated by SWRI for their fuel properties. Results indicate that, with small amounts of DME added, significant improvements in both flash point and RVP are possible over the properties of LaPorte MEOH. the slurry-phase dehydration of alcohols to ethers was investigated by feeding 10 mol% mixed alcohols in N{sub 2} over an alumina catalyst suspended in mineral oil. Two alcohol mixture compositions were chosen for this study. One mixture contained methanol, ethanol, and 1-propanol in proportions representative of those in IFP Substifuel, while the other mixture contained methanol, ethanol, and isobutanol in proportions representative of those in Lurgi Octamix. 21 figs., 13 tabs.

  5. Injectivity Testing for Vapour Dominated Feed Zones

    SciTech Connect (OSTI)

    Clotworthy, A.W.; Hingoyon, C.S.

    1995-01-01

    Wells with vapor dominated feed zones yield abnormal pressure data. This is caused by the condensation of vapor during water injection. A revised injectivity test procedure currently applied by PNOC at the Leyte Geothermal Power Project has improved the injectivity test results.

  6. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  7. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  8. Feeding Experiments with Steers and Hogs. 

    E-Print Network [OSTI]

    Cruse, J.T.

    1910-01-01

    . rice; 1156.5 Ibs. tankage. Hogs fed cottonseed meal and rough red rice. Average daily gain 1.: 26 pounds. Hogs fed alfalfa meal and corn chops, fermented. Average daily gain, 1.14 pounds TABLE 1V.-FEED EATEN AND GAINS MADE BY LOT IV RECEIVING...

  9. comparator Feed CCM/DCM modification

    E-Print Network [OSTI]

    controller. Comparator signal (sDCM) feeds into the DCM current sensing corrector, and into DPWM for adaptive-- This paper addresses control techniques aimed at improving light-load efficiency and reducing harmonic (CCM) and in DCM. Furthermore, adaptive switching and adaptive switching frequency techniques

  10. Rigid Top Plate Electronics Feed-through

    E-Print Network [OSTI]

    Sample SupportRod Vessel Head Rigid Top Plate Electronics Feed-through Aluminum Standard Ultrasonic measurement assembly. For seismic frequencies, strains are measured on both the sample and aluminum standard and exchange of pore fluids independent of confining pressure. #12;1. Ends flat and parallel (length should = 2

  11. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6, 2015Multi-phaseFebruary 28,

  12. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect (OSTI)

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O. [Thor Energy AS: Sommerrogaten 13-15, Oslo, NO255 (Norway)

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  13. Fuel injector nozzle for internal combustion engine

    SciTech Connect (OSTI)

    Klomp, E.D.; Peters, B.D.

    1990-06-12

    This patent describes a fuel injection nozzle for a combustion chamber of an internal combustion engine. It comprises: a nozzle body with at least one fuel flow opening therethrough for feed fuel to the chamber, a resilient diaphragm normally sealing the opening and having orifice means therein for further atomizing and directing the pulses into the chamber, fastening means for fixing the diaphragm to the body so that diaphragm can deflect by a predetermined amount under low engine load operating conditions so that a wide angle cone of atomized fuel is injected into and generally at one end of the combustion chamber for the stratified charge thereof and deflect by an amount greater than the first amount of deflection under high engine load operating conditions. A narrow spray cone of atomized fuel is injected in a deeper pattern into and throughout the combustion chamber for optimizing the charge thereof and fuel burns under the low and high load engine operating conditions.

  14. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  15. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  16. Grain Sorghum By-Product Feeds for Farm Animals. 

    E-Print Network [OSTI]

    1951-01-01

    . GRAIN SORGHUM BY-PRODUCT FEEDS FOR FARM ANIMALS 15 SORGHUJI GLUTEN FEED Sorghum gluten feed was used in three different combi- nations in experimental rations for fattening steers. In the first ration, it was fed as the only concentrate received... .................................................................................................. 18 Sorghum gluten meal .................................................................................. 18 experimental ration ............................................................................. 18...

  17. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand TheBiota

  18. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand TheBiotaNovember 19,

  19. Fossil Energy RSS Feeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicySenateFlyer, Title VIFormat

  20. Comparative feeding biomechanics and behavioral performance of feeding in the family kogiidae and tursiops truncatus (odontoceti, cetacea) 

    E-Print Network [OSTI]

    Bloodworth, Brian Edward

    2007-09-17

    Hyolingual biomechanics and kinematics in three species of two odontocete genera were investigated to compare adaptations and performance of divergent feeding strategies. Ram and suction feeding are two ends of a continuous spectrum that is poorly...

  1. Determining biological sources of variation in residual feed intake in Brahman heifers during confinement feeding and on pasture 

    E-Print Network [OSTI]

    Dittmar (III), Robert Otto

    2009-05-15

    Objectives were to characterize residual feed intake (RFI) and determine the phenotypic correlation between performance, feed efficiency, and other biological measurements in Brahman heifers, as well as the relationship ...

  2. Waste Feed Delivery Transfer System Analysis

    SciTech Connect (OSTI)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  3. Commercial Feeding Stuffs in 1907-08. 

    E-Print Network [OSTI]

    Carson, J.W.; Fraps, G. S. (George Stronach)

    1908-01-01

    GICULTURAL EXPERIIMENT STATIONS. BULLETIN NO. 117. November, 1908. Commercial Feeding Stuffs in 1907-08. J. W. CARSON AND G. S. FRAPS. POSTOFFICE : COLLEGE STATION, BRAZOS COUNTY, TEXAS. AUSTIN, TEXAS: VON BOECKMANN-JONES CO., PRINTERS 1908. TEXAS AGRICULTURAI... not, nnder any circumstances, print this infornation upon the tag. The following examples show how the information which the law re- quires should appear on the tax tag: 100 POUNDS CORN CHOPS. Manufactured by J. JV. NELSON $ CO., LITTLE ELM...

  4. Feed-In Tariffs and similar programs

    Reports and Publications (EIA)

    2013-01-01

    Feed-in tariffs (FITs) are a policy mechanism used to encourage deployment of renewable electricity technologies. FITs are used to a limited extent around the United States as listed. A FIT program typically guarantees that customers who own a FIT-eligible renewable electricity generation facility, such as a roof-top solar photovoltaic system, will receive a set price from their utility for all of the electricity they generate and provide to the grid.

  5. Vitamin A Content of Foods and Feeds

    E-Print Network [OSTI]

    Treichler, Ray; Fraps, G. S. (George Stronach)

    1933-01-01

    Publications : H. G. Wick-, D. V. M.. Feed Inepeetor A. D. Jackson. Chief SUBSTATIONS No. 1, Beeville. Bee County: No. 9, Balmorhea, Reeven CountT: R. A. Hall, B. S.. Superintendent J. J. Bayles. B. S., Superintendent No. 2, Lindale. Smith County: No. 10... stover ........................... Kafir, black 6 1-31 ............................................. Kafir red Kafir, white .............................................. Loco weed, air dried .............................. 4 55 2 48 Milk, whole...

  6. Fossil fuel furnace reactor

    DOE Patents [OSTI]

    Parkinson, William J. (Los Alamos, NM)

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  7. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  8. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  9. ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    SciTech Connect (OSTI)

    Reigel, M.; Cheng, W.

    2012-01-26

    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

  10. Understanding Fish Nutrition, Feeds, and Feeding Steven Craig, Extension Specialist, Virginia-Maryland College of Veterinary Medicine, Virginia Tech

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Understanding Fish Nutrition, Feeds, and Feeding Steven Craig, Extension Specialist, Virginia to economically produce a healthy, high quality product. In fish farming, nutrition is critical because feed represents 40-50% of the production costs. Fish nutrition has advanced dramatically in recent years

  11. Annual Report of the Feed Control Service, 1951-52. 

    E-Print Network [OSTI]

    Holleman, M. P.; Brock, F. D.

    1952-01-01

    CONTROL SERVICE 1951-52 [Blank Page in Original Bulletin] Digest This bulletin is the 47th annual report of the Feed Control Service on the inspection and analysis of feeds sold in Texas. Heretofore it has been entitled "Commercial Feeding Stuffs...," for the fiscal year covered. In this bulletin is the analysis of each sample of feed taken and a detailed report of the results obtained in the inspection of feeds from September 1, 1951, to August 31, 1952. During this fiscal year, 3,611 official samples...

  12. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6, 2015Multi-phaseFebruary 28, 2014

  13. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6, 2015Multi-phaseFebruary 28, 2014April

  14. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make6, 2015Multi-phaseFebruary 28,January 9,

  15. World Resources Institute Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: navigation, searchWorld Fuel CellResources

  16. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergy BioproductsApril 15,

  17. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergy BioproductsApril

  18. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergy

  19. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergyNovember 15, 2013

  20. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergyNovember 15, 2013August

  1. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergyNovember 15,

  2. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergyNovember 15,May 22,

  3. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETO QuizResults inEnergyNovember 15,May

  4. About RSS Feeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential54 Cost of a2 LEEDFeeds »

  5. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesA CaseNovember 13, 2015 6 Charts that

  6. Burnup credit in the storage of LWR fuel - conceptual considerations

    SciTech Connect (OSTI)

    Brown, O.C.; Wimpy, P.D.

    1987-01-01

    As a natural outgrowth of improved nodal calculation methods and the accessibility of detailed fuel assembly operating data from core monitoring systems, taking credit for burnup in the storage of light water reactor fuel represents a logical alternative to reracking for storing higher enriched fuel. The paper summarizes a number of array reactivity calculations that indicate: (1) taking credit for burnup leads to significantly lower array k/sub eff's/; (2) axial exposure distribution effects on array reactivity increase with exposure and are more significant in BWR than PWR fuel; (3) BWR fuel void history effects on array reactivity can be significant; and (4) an array of all fresh 3.83 wt% enriched PWR fuel is equivalent in array reactivity to a checkerboard array of 20 GWd/tonne U and fresh fuel enriched to 5.1 wt%. One approach to minimizing operator error in the handling of assemblies would be to first select and store exposed fuel in a checkerboard arrangement throughout the array. These cells could then be capped with a lockout device to preclude removal with the grappling machine. Once these assemblies were in place, all other assemblies could be safely stored in any other available cell.

  7. The effects of feed area design on the social behaviour of dairy cattle 

    E-Print Network [OSTI]

    Rioja-Lang, Fiona C

    2009-01-01

    The overall objective of this thesis was to assess the effect of feed area design including feeding space availability, barrier type and stocking density, on the feeding behaviour of dairy cows. Feed intake in dairy cows ...

  8. Like this post? Subscribe to our RSS feed and stay up to date. Navy Develops Battery that Runs on Mud

    E-Print Network [OSTI]

    Lovley, Derek

    Planetsave Like this post? Subscribe to our RSS feed and stay up to date. Navy Develops Battery that Runs on Mud (http://planetsave.com/blog/2010/04/20/navy-develops-battery-that-runs-on- mud/) (http by Joshua S Hill Published on April 20th, 2010 in Energy & Fuel 1 Comment 5/4/2010 Navy Develops Battery

  9. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  10. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  11. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  12. Micro Fuel Cells Direct Methanol Fuel Cells

    E-Print Network [OSTI]

    Micro Fuel Cells TM Direct Methanol Fuel Cells for Portable Power A Fuel Cell System Developer-17, 2002 Phoenix, Arizona #12;Micro Fuel Cells Direct Methanol Fuel Cells for Portable Power Outline (1 Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

  13. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-07-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  14. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect (OSTI)

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  15. The performance of PEM fuel cells fed with oxygen through the free-convection mode

    E-Print Network [OSTI]

    The performance of PEM fuel cells fed with oxygen through the free-convection mode Pei-Wen Li; accepted 27 September 2002 Abstract The feasibility and restrictions of feeding oxygen to a PEM fuel cell at the cathode surface, which can be viewed in terms of the relationship of the fuel cell current density

  16. Commercial Feeding Stuffs, from September 1, 1949 to August 31, 1950. 

    E-Print Network [OSTI]

    Holleman, M. P.; Brock, F. D.

    1950-01-01

    . ( sho - *, :hemica1 standards for special-purpose mixed feeds a1 kwn, together with additional information on the requirt nts of the Texas Feed Law, the composition of feeds an thods of calculating guaranties of mixed feeds. CONTENTS Digest... .................................................. 7 Definitions and Standards ........................................ 8 .................... Method of Calculating Guaranties olf Mixed Feeds 8 .............................................. Suggested Guaranties 9 Special-purpose Mixed Feeds...

  17. Characterization of Feeding Behavior Traits and Associations with Performance and Feed Efficiency in Finishing Beef Cattle 

    E-Print Network [OSTI]

    Mendes, Egleu Diomedes Marinho

    2011-10-21

    ., 2000). Many studies have examined the relationships between feeding behavior traits and feed efficiency in poultry (Van Eerden et al., 2004), swine (de Haer et al., 1993; Rauw et al., 2006a, b; Von Felde et al., 1996), sheep (Cammack et al., 2005.... (2007); eRauw et al. (2006a); fRauw et al. (2006b); gRobinson and Oddy (2004); hSchwartzkopf-Genswein et al. (2002); iVon Felde et al. (1996) Bold values are correlated with P < 0.05 There were no specification for the P-value for the phenotypic...

  18. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal PowerGuidelines | OpenFedi Impianti

  19. Climate Technology Initiative Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal Technologies Place:StandardsFinanceClimate Technology

  20. Netherlands Development Organisation Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,MeregNIFESpinningLtd JumpPFAN) | OpenUNEPNet

  1. Widget:TwitterFeed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What IsLogoCloudTATGallery Jump to:

  2. World Watch Institute Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation,WoodInformation inWasteWorld Watch

  3. International Energy Agency Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian CentreHoldings JumpInteriorInternational

  4. ClimateWorks Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures Jump to: navigation, search Name:Climate

  5. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand TheBiotaNovember 19, 2012

  6. Blog Feed: Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio Centers Announcementand TheBiotaNovember 19,January

  7. Group effects on fuel NOx emissisons from coal 

    E-Print Network [OSTI]

    Vadakkath, Anand Anakkara

    1991-01-01

    are significant, especially in the context of a steadily increasing energy consumption. Such explosive growth brings fresh urgency to the search for clean coal technologies that could help resolve the historical conflict between the environmental protection... coal: The control of NOx using low nitrogen fuels does not seem to be the right solution to the problem in the context of the vast amounts of coal reserves available. But methods like coal clean-up are fast developing as viable alternatives. New...

  8. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  9. Nutritional and Feeding Management of Broodmares 

    E-Print Network [OSTI]

    Gibbs, Pete G.; Potter, Gary D.; Vogelsang, M. M.

    2005-04-13

    well-be ing is an im por tant part of an effective broodmare op er a tion. Broodmares have specifi c nu tri - tion al re quire ments that differ from other class es of horses. There are differences both in the amount of feed mares need... tion relative to the effect of nu tri tion on re pro - duc tive per for mance in mares. It has been clearly shown that mares should be kept in good condition the year round, and es pe cial ly as breed ing season approaches. By check ing...

  10. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle Fuel

  11. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublicationsPlug-InBenefits

  12. A Fresh Look at Weather Impact on Peak Electricity Demand and

    E-Print Network [OSTI]

    LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data Road, Berkeley, CA 94720, USA 2 Green Energy and Environment Research Laboratories, Industrial

  13. population Fresh and Canned Cured July 1 (1) frozen (2) (3) (4)

    E-Print Network [OSTI]

    ) Canned fish consumption for 1920 is estimated. Beginning in 1921, it is based on production reports and 1920 and civilian resident population for 1930 to date. (2) Fresh and frozen fish consumption for 1910 and 1920 is estimated. Beginning in 1973, data include consumption of artificially cultivated catfish. (3

  14. Effect of non-ageing and ageing ceria nanoparticles suspensions on fresh water micro-algae

    E-Print Network [OSTI]

    Boyer, Edmond

    Effect of non-ageing and ageing ceria nanoparticles suspensions on fresh water micro-algae Manier nanoparticle (nCeO2) suspensions, towards freshwater micro-algae assessing the effect nCeO2 suspensions microscopy (TEM). In addition, the interaction between NPs and algae were investigated using flow

  15. Investigation of Feasibility of All-Fresh Air Supply in an All-Air System 

    E-Print Network [OSTI]

    Wang, J.; Yan, Z.

    2006-01-01

    The feasibility of an all-fresh air supply in an all-air system is investigated in theory, and the problem of AHU-handling air in low efficiency in summer and winter conditions is analyzed. The air supply temperature is almost up to standards when a...

  16. Hydro-geologic Investigation of the Fresh Water lens in a Small Rock Principle Investigators

    E-Print Network [OSTI]

    Rhode Island, University of

    Hydro-geologic Investigation of the Fresh Water lens in a Small Rock Principle Investigators Daniel W. Urish #12;Abstract Rose Island is a small rock island located in Narragansett Bay, Rhode Island Island is a small 18.5 acre rock island located in Narragansett Bay, Rhode Island (Fig. 1

  17. Product Refrigerator Freezer Fresh, in shell 4 to 5 weeks Don't freeze

    E-Print Network [OSTI]

    Burke, Peter

    with USDA seal, unopened 2 weeks Don't freeze well Raw Hamburger, Ground & Stew Meat Hamburger & stew meats just before using. · If freezing meat and poultry in its original package longer than 2 monthsProduct Refrigerator Freezer Eggs Fresh, in shell 4 to 5 weeks Don't freeze Raw yolks, whites 2

  18. Freshly Prepared Autumn Menu 1 of 2 Everyday Dine Central offers four main courses,

    E-Print Network [OSTI]

    Sussex, University of

    Freshly Prepared Autumn Menu 1 of 2 Everyday Dine Central offers four main courses, including a chicken, meat, fish and vegetarian option. Meal Deal: One main, two sides and two Vegetables £5.10 Monday - Each main costs £3.55 Roast chicken breast Roast beef with Yorkshire pudding Salmon fillet with rarebit

  19. Antimicrobial packaging system for optimization of electron beam irradiation of fresh produce 

    E-Print Network [OSTI]

    Han, Jaejoon

    2006-10-30

    This study evaluated the potential use of an antimicrobial packaging system in combination with electron beam irradiation to enhance quality of fresh produce. Irradiated romaine lettuce up to 3.2 kGy showed negligible (p > 0.05) changes in color...

  20. Keeping a Search Engine Index Fresh: Risk and optimality in estimating refresh rates

    E-Print Network [OSTI]

    Cortes, Corinna

    and search engine indexes scale similarly, the cost of re-crawling every document all the time becomesKeeping a Search Engine Index Fresh: Risk and optimality in estimating refresh rates for web pages Search engines strive to maintain a "current" repository of all web pages on the internet to index

  1. A Fresh Look at Entropy and the Second Law of Thermodynamics

    E-Print Network [OSTI]

    A Fresh Look at Entropy and the Second Law of Thermodynamics Elliott H. Lieb 1 , and Jakob Yngvason to either statistical mechanics or heat engines. In days long gone, the second law of thermodynamics (which numbers of atoms. Willard Gibbs wrote: ``The laws of thermodynamics may easily be obtained from

  2. Fertilization of Fresh Water Fish Ponds 1 Craig Watson and Charles E. Cichra2

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    FA17 Fertilization of Fresh Water Fish Ponds 1 Craig Watson and Charles E. Cichra2 1. This document to increase productivity of a field. One can also increase the productiv- ity of a pond by adding fertilizer, then pond fertilization can increase the production of these fish. Fertilizers provide nutrients

  3. A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D.

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A FRESH LOOK AT OFFSHORE WIND OPPORTUNITIES IN MASSACHUSETTS Anthony L. Rogers, Ph.D. James F at Amherst Amherst, MA 01003 The utilization of offshore winds for generating electricity was first proposed that offshore wind development anywhere would be unlikely. More recently, a number of European countries have

  4. ARPA-E: A Fresh Perspective on Next-generation EV

    E-Print Network [OSTI]

    the University of California, Berkeley, where he developed a new class of low-cost photovoltaics based on printedARPA-E: A Fresh Perspective on Next-generation EV Battery Technology The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) was created to be the "DARPA for Energy", with a focus

  5. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the

    E-Print Network [OSTI]

    Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects dozens of alien species. 2. Invasions are highly nonrandom with respect to the taxonomic identity, which probably have been underestimated as an ecological force. 4. The number of alien species

  6. Alternative Fuel Implementation Toolkit

    E-Print Network [OSTI]

    ? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas

  7. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  8. 'Lollachilipalooza' benefits Feds Feed Families effort | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National Nuclear Securityhr |of energyvision |

  9. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenryInhibiting Individual NotchInspiringAppendixRadiationHomeDocuments

  10. Framework Topic Briefing: Direct Feed LAW

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming Upgrades to the ARMD.PortalFissionFebruary

  11. NOTES ON SOME FRESH-WATER FISHES FROM MAINE, DESCRIlYfIONS OF THREE NEW SPECIES.

    E-Print Network [OSTI]

    NOTES ON SOME FRESH-WATER FISHES FROM MAINE, WITH DESCRIlYfIONS OF THREE NEW SPECIES. By VVILLIAM FROM MAINE, WITH DESCRIPTIONS OF THREE NEW SPECIES. By WILLIAM CONVERSE KENDALL, Assistant, United the first-record of observations upon Maine fresh-water fishes since Holmes's publication. Prior

  12. Electron Beam Pasteurization of Fresh Fruit for Neutropenic Diet: E-beam Reduces Bioburden While Preserving Quality 

    E-Print Network [OSTI]

    Smith, Bianca R

    2013-08-09

    microorganisms from fresh produce. Electron beam (e-beam) irradiation is a non-thermal process that has been approved by the FDA to treat fresh foods and is able to eliminate bacteria. Another technology used to extend shelf life is modified atmosphere packaging...

  13. Analysis of the Energy-Saving Potential of a Three-Rotary Wheel Fresh Air-Handling Unit 

    E-Print Network [OSTI]

    Hao, X.; Zhang, G.; Zou, S.; Liu, H.

    2006-01-01

    To evaluate the energy-saving potential of a proposed three-rotary wheel fresh air-handling unit (TRWFAHU), it is numerically simulated with weather data of Changsha by using a mathematical model. Compared with a conventional fresh air-handling unit...

  14. Commercial Feeding Stuffs, September 1, 1940 to August 31, 1941. 

    E-Print Network [OSTI]

    Sullivan, James; Fuller, F. D. (Frederick Driggs)

    1941-01-01

    .44 11.59 11.24 9.85 6.03 FEEDS Wheat Gray Shorts and Screenings.._. Wheat Mixed Feed Wheat Mixed Feed and Screenings_.- Dried Whey 13.34 15.55 27.79 5.87 6.07 7.54 6.27 6.00 18.60 21.65 31.90 6.33 5.72 4.07 4.26 4.46 1.69 4...

  15. The Salt or Sodium Chloride Content of Feeds 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

    1920-01-01

    STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, Preeident BULLETIN NO. 271 OCTOBER, 1920 DIVISION OF CHEMISTRY THE SALT OR SODIUM CHLORIDE CONTENT OF FEEDS B. YOUNGBLOOD, DIRECTOK COLLEGE STATION, BRAZOS COUNTT, TEXAS I..... ................... Summary ancl conclusions. Page. l1 [Blank Page in Original Bulletin] BULLETIN XO. 271. OCTOBE- '"On THE SALT OR SODIUM CHLORIDE CONTENT OF FEI The Texas feed law requires the statement of the ingredients of many mixed feeds. Common salt or sodium...

  16. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  17. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  18. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to

  19. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanol PrintableEthanol

  20. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places toEthanolVehicles Printable

  1. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNaturalDimethyl

  2. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanol Benefits and

  3. Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

    Broader source: Energy.gov [DOE]

    Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

  4. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a Vehicle FuelFueling Stations to

  5. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  6. Automatic feed system for ultrasonic machining

    DOE Patents [OSTI]

    Calkins, Noel C. (Los Alamos, NM)

    1994-01-01

    Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.

  7. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  8. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Reforming for Molten Carbonate Fuel Cells," Berichte derVan Dijkum, "The Molten Carbonate Fuel Cell Programme in thealkaline, molten carbonate, and solid oxide. (Fuel cells

  9. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    regenerative braking, as do Saving Fuel, Reducing Emissionsconditions, the expected savings in fuel costs are notis whether the fuel cost savings over the lifetime of the

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  13. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DNR) has defined. Eligible alternative fuels include natural gas, propane, hydrogen, coal-derived liquid fuels, fuels other than alcohol derived from biological materials, and...

  14. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

  15. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  16. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  17. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  18. OptFuels: Fuel Treatment Optimization

    E-Print Network [OSTI]

    OptFuels: Fuel Treatment Optimization Scientists a Rocky Mountain Research Station Missoula, MT, scientists at the University of Montana, are developing a tool to help forest managers prioritize forest fuel reduction treatments. Although several computer models analyz stand-level effects of fuel treatments

  19. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  20. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel Cell

  1. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanol Benefits andFueling Stations

  2. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDCHydrogen PrintableFueling

  3. Chemistry & Biology Hemoglobin Digestion in Blood-Feeding Ticks

    E-Print Network [OSTI]

    Bogyo, Matthew

    Chemistry & Biology Article Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase: mares@uochb.cas.cz DOI 10.1016/j.chembiol.2009.09.009 SUMMARY Hemoglobin digestion is an essential transmission is linked to the physiology of blood feeding and digestion. Blood provides a rich source

  4. FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT

    E-Print Network [OSTI]

    Firestone, Jeremy

    FEED-IN TARIFFS AND OFFSHORE WIND POWER DEVELOPMENT Prepared by Jon Lilley, Blaise Sheridan, Dawn.......................................................................................................................... 25 FERC Clarification as Applied to Offshore Wind........................................................................................................................ 28 #12; 3 Feed-in Tariffs and Offshore Wind Power Development Prepared Pursuant to DOE Grant Em

  5. Application of New Feeding Rules To Risering of Steel Castings

    E-Print Network [OSTI]

    Beckermann, Christoph

    and predicted shrinkage porosity in the castings to the expected level of porosity based on the new feeding1 Application of New Feeding Rules To Risering of Steel Castings Doug Smith , Tony Faivre , Shouzhu Engineering , ABC-NACO TECHNOLOGIES, Lombard, IL1 Project Engineer - Casting Simulation, ABC-NACO TECHNOLOGIES

  6. MODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING

    E-Print Network [OSTI]

    Beckermann, Christoph

    , or even larger shrinkage cavities found in inadequately fed cast sections. Microporosity can cause leaksMODELING OF POROSITY FORMATION AND FEEDING FLOW IN STEEL CASTING Kent D. Carlson, Zhiping Lin pressure, feeding flow, and porosity formation and growth in steel castings during solidification

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    & Fuel Vehicles & Fuels Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles...

  8. (Fuel Cells)(Fuel Cells) William Grove

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    Fuel Cell #12; H2 O2 Power CH4 H2 Toyota H2 H2 #12; H2 ~253 #12; 2. 3. : 1. #12; #12;Fuel Cell #12; (Fuel Cells)(Fuel Cells) 1839 William Grove A H2O2 H2O2 2H; Fuel Cell #12;!! PEMFC DMFC SOFC (60~200) (60~100) (600~1000) #12; Proton

  9. Inline evenflow material distributor for pneumatic material feed systems

    DOE Patents [OSTI]

    Thiry, Michael J. (Oakdale, CA)

    2007-02-20

    An apparatus for reducing clogs in a pneumatic material feed line, such as employed in abrasive waterjet machining systems, by providing an evenflow feed of material therethrough. The apparatus preferably includes a hollow housing defining a housing volume and having an inlet capable of connecting to an upstream portion of the pneumatic material feed line, an outlet capable of connecting to a downstream portion of the pneumatic material feed line, and an air vent located between the inlet and outlet for venting excess air pressure out from the housing volume. A diverter, i.e. an impingement object, is located at the inlet and in a path of incoming material from the upstream portion of the pneumatic material feed line, to break up clumps of ambient moisture-ridden material impinging on the diverter. And one or more filter screens is also preferably located in the housing volume to further break up clumps and provide filtering.

  10. Environmental Levels Of 129I Present In Bovine Thyroid And Fresh Water In Argentina

    SciTech Connect (OSTI)

    Negri, A. E.; Arazi, A.; Carnellia, P. F. F.; Barbara, E. de; Figueira, J. M.; Fimiani, L.; Heimanna, D. M.; Zalazara, L.; Fernandez Niello, J.; La Gamma, A. M.; Wallner, A.

    2010-08-04

    Concentrations of {sup 129}I in bovine thyroid and fresh water samples coming from all over Argentina were analyzed by Accelerator Mass Spectrometry (AMS) and total iodine present in samples by Gas Chromatography (GC) and Inductive Coupled Plasma Mass Spectrometry (ICP-MS), respectively. Once we complete this study, it will be the first set of data of this kind from an extended region of the south American subcontinent.

  11. Demonstration of a Piston Plug feed System for Feeding Coal/Biomass Mixtures across a Pressure Gradient for Application to a Commercial CBTL System

    SciTech Connect (OSTI)

    Santosh Gangwal

    2011-06-30

    Producing liquid transportation fuels and power via coal and biomass to liquids (CBTL) and integrated gasification combined cycle (IGCC) processes can significantly improve the nation's energy security. The Energy Independence and Security Act of 2007 mandates increasing renewable fuels nearly 10-fold to >2.3 million barrels per day by 2022. Coal is abundantly available and coal to liquids (CTL) plants can be deployed today, but they will not become sustainable without large scale CO{sub 2} capture and storage. Co-processing of coal and biomass in CBTL processes in a 60 to 40 ratio is an attractive option that has the potential to produce 4 million barrels of transportation fuels per day by 2020 at the same level of CO{sub 2} emission as petroleum. In this work, Southern Research Institute (Southern) has made an attempt to address one of the major barriers to the development of large scale CBTL processes - cost effective/reliable dry-feeding of coal-biomass mixtures into a high pressure vessel representative of commercial entrained-flow gasifiers. Present method for dry coal feeding involves the use of pressurized lock-hopper arrangements that are not only very expensive with large space requirements but also have not been proven for reliably feeding coal-biomass mixtures without the potential problems of segregation and bridging. The project involved the development of a pilot-scale 250 lb/h high pressure dry coal-biomass mixture feeder provided by TKEnergi and proven for feeding biomass at a scale up to 6 ton/day. The aim of this project is to demonstrate cost effective feeding of coal-biomass mixtures (50:50 to 70:30) made from a variety of coals (bituminous, lignite) and biomass (wood, corn stover, switch grass). The feeder uses a hydraulic piston-based approach to produce a series of plugs of the mixture that act as a seal against high back-pressure of the gasification vessel in to which the mixture is being fed. The plugs are then fed one by one via a plug breaker into the high pressure gasification vessel. A number of runs involving the feeding of coal and biomass mixtures containing 50 to 70 weight % coal into a high pressure gasification vessel simulator have shown that plugs of sufficient density can be formed to provide a seal against pressures up to 450 psig if homogeneity of the mixture can be maintained. However, the in-homogeneity of coal-biomass mixtures can occur during the mixing process because of density, particle size and moisture differences. Also, the much lower compressibility of coal as opposed to biomass can contribute to non-uniform plug formation which can result in weak plugs. Based on present information, the piston plug feeder offered marginal economic advantages over lock-hoppers. The results suggest a modification to the piston feeder that can potentially seal against pressure without the need for forming plugs. This modified design could result in lower power requirements and potentially better economics.

  12. Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose

    SciTech Connect (OSTI)

    Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.; Kiselev, I.

    2009-05-23

    In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4 deg. C and 25 deg. C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nose training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFueling

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFuelingVehicle

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNaturalFuelingVehicleLoans

  16. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0Department ofHigh2 DOEFactory-Built

  17. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOE Patents [OSTI]

    Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  18. In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.

    E-Print Network [OSTI]

    Wang, Chao-Yang

    In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

  19. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  20. Apparatus for feeding an MTG conversion reactor

    SciTech Connect (OSTI)

    Mao, C.H.; Schreiner, M. Jr.

    1989-05-02

    A continuous system is described comprising: first distillation means; second distillation means; pressurized chemical reactor means containing dehydration catalyst; methanol-to-gasoline conversion reactor means containing conversion catalyst; means for passing a crude methanol feed containing a minor amount of water to an upper stage of the first distillation means; means for maintaining the first distillation means at a pressure at least equal to the pressure of the pressurized chemical reactor means; means for withdrawing dehydration product from pressurized chemical reactor means; means for adding dehydration product to an intermediate stage of the first distillation means; means for withdrawing from first distillation means a first overhead stream comprising essentially water-free dimethylether; means for withdrawing from first distillation means a first bottoms stream containing aqueous methanol; means for passing the dimethylether-containing first overhead stream from the first distillation means to methanol-to-gasoline conversion reactor means; means for passing the first bottoms stream containing aqueous methanol from the first distillation means to the second distillation means; means for withdrawing from second distillation means a second overhead stream comprising methanol; means for withdrawing from second distillation means a second bottoms stream comprising water; means for passing the second overhead methanol stream to pressurized chemical reactor means; and means for recycling the dehydration product to an intermediate stage of the first distillation means.

  1. In vitro gas production provides effective method for assessing ruminant feeds

    E-Print Network [OSTI]

    Getachew, Girma; DePeters, Edward J.; Robinson, Peter H.

    2004-01-01

    in numerous experiments. Ani- mal experiments will continuevalue of ruminant feeds. Ani- mal Feed Sci Technol 102:169–value, or energy content, of an ani- mal feed is determined

  2. Generator module architecture for a large solid oxide fuel cell power plant

    DOE Patents [OSTI]

    Gillett, James E.; Zafred, Paolo R.; Riggle, Matthew W.; Litzinger, Kevin P.

    2013-06-11

    A solid oxide fuel cell module contains a plurality of integral bundle assemblies, the module containing a top portion with an inlet fuel plenum and a bottom portion receiving air inlet feed and containing a base support, the base supports dense, ceramic exhaust manifolds which are below and connect to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the fuel cells comprise a fuel cell stack bundle all surrounded within an outer module enclosure having top power leads to provide electrical output from the stack bundle, where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all 100% of the weight of the stack, and each bundle assembly has its own control for vertical and horizontal thermal expansion control.

  3. Combustion of refuse derived fuel in a fluidized bed

    SciTech Connect (OSTI)

    Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa; Kondoh, Motohiro; Yamaguchi, Masataka

    1998-12-31

    Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

  4. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  5. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuelMaterials

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure Tax

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure TaxSecond

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel Infrastructure

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative Fuel

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualified

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualifiedPropane

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative FuelQualifiedPropaneBiofuel

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNational Alternative Fuels

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean PortsRenewable Fuel

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvancedAlternative Fuel

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManualLiquefiedVehicleAlternative Fuel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane RollsMississippiNaturalAlternative Fuel Vehicle

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane RollsMississippiNaturalAlternative Fuel

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropane School Bus Grants TheDieselFuel

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV) Definition

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV)

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle (AFV)Incentives

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel Vehicle

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel VehicleIncentives

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel VehicleIncentivesElectric

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative Fuel

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas and Propane

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas and

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural Gas

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural GasEthanol

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropanePropaneAlternative FuelNatural

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel, Advanced Vehicle,

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel, Advanced

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel,

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel,High Occupancy

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel,High

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesTheAlternative Fuel,HighHigh

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternative Fuel and

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternative Fuel

  20. The Texas- Oklahoma Cattle Feeding Industry: Structure and Operational Characteristics. 

    E-Print Network [OSTI]

    Dietrich, Raymond A.

    1968-01-01

    and Mississippi were not published until 1960. Source: Cattle on Feed, U.S. Dept. Agri., Crop. Rpt. Bd., Stat. Rptg. Serv., Selected issues. :ABLE 3. SIZE AND CAPACITY OF TEXAS CATTLE FEEDLOTS, JANU- ARY 1, 1955-68 1,000 head or more Less than 1,000 heod... Total Total Yeor Feedlots capacity Feedlots capacity 1.000 1,000 Number head Ncrmber head 'Estimated by authorities in the livestock and cattle feeding industry. Source: Texas Cattle on Feed, U.S. Dept. Agr., Crop Rpt. Bd., Stat. Rptg. Sew...

  1. Corn fiber hulls as a food additive or animal feed

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IN); Cecava, Michael J. (Decatur, IN); Doane, Perry H. (Decatur, IN)

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  2. Effects of sodium lactate and sodium propionate on the sensory, microbial, and chemical characteristics of fresh aerobically stored ground beef 

    E-Print Network [OSTI]

    Eckert, Laura Anne

    1995-01-01

    EFFECTS OF SODIUM LACTATE AND SODIUM PROPIONATE ON THE SENSORY, MICROBIAL, AND CHEMICAL CHARACTERISTICS OF FRESH AEROBICALLY STORED GROUND BEEF A Thesis by LAURA ANNE ECKERT Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1995 Major Subject: Food Science and Technology EFFECTS OF SODIUM LACTATE AND SODIUM PROPIONATE ON THE SENSORY, MICROBIAL, AND CHEMICAL CHARACTERISTICS OF FRESH...

  3. Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia)

    E-Print Network [OSTI]

    Benton, Michael

    Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian

  4. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  5. Algae culture for cattle feed and water purification. Final report

    SciTech Connect (OSTI)

    Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

    1980-05-16

    The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

  6. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  7. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  8. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel CellsCells Fuel

  9. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  10. Qualitative Reasoning Feeding Back into Quantitative Model-Based Tracking

    E-Print Network [OSTI]

    Nebel, Bernhard

    Qualitative Reasoning Feeding Back into Quantitative Model-Based Tracking Christian K¨ohler, 1- bilize basic signal processing and pattern recognition processes like the reliable extraction of some

  11. Qualitative Reasoning Feeding Back into Quantitative ModelBased Tracking

    E-Print Network [OSTI]

    Nebel, Bernhard

    Qualitative Reasoning Feeding Back into Quantitative Model­Based Tracking Christian KË? ohler, 1­ bilize basic signal processing and pattern recognition processes like the reliable extraction of some

  12. Time phased alternate blending of feed coals for liquefaction

    DOE Patents [OSTI]

    Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

    1985-01-01

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  13. Reducing stress in sheep by feeding the seaweed Ascophyllum nodosum 

    E-Print Network [OSTI]

    Archer, Gregory Scott

    2005-11-01

    in poultry during heat stress (Belay et al., 1992). Increased feed intake and growth has been seen in prawns fed diets containing beatine (Felix and Sudharsan, 2004). Ducks fed diets containing betaine also exhibited increased growth and improved carcass...

  14. THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS Pavel Hrma,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THERMAL ANALYSIS OF WASTE GLASS MELTER FEEDS Pavel Hrma, 1,2 David A. Pierce, 2 Richard Pokorn 3 1 Division of Advanced Nuclear Engineering, Pohang University of Science and...

  15. THERMAL ANALYSIS OF WASTE GLASS MELTER FEED Pavel Hrma,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THERMAL ANALYSIS OF WASTE GLASS MELTER FEED Pavel Hrma, (a,b) David A. Pierce, (b) Richard Pokorn (b,c) (a) Division of Advanced Nuclear Engineering, Pohang University of Science...

  16. NNSA Production Office more than doubles Feds Feed Families campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posted: October 14, 2015 - 11:16am NPO employees are shown making a bulk purchase of food from employee donations to the Feds Feed Families campaign. This food went to the...

  17. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration Production Office have donated 17,348 pounds of food as part of the annual U.S. Department of Energy's "Feds Feed Families" campaign. The...

  18. PSEG Long Island- Solar Initiative Feed-in Tariff

    Broader source: Energy.gov [DOE]

    The PSEG Long Island Feed-in Tariff II (FIT II) program provides fixed payments for electricity produced by approved photovoltaic systems over a fixed period of time. The program operates under a...

  19. THE FEEDING HABITS OF THE GREEN CRAB, CARC/NUS MAENAS (L.) BY JOHN W. ROPES, Fishery Biologist

    E-Print Network [OSTI]

    digging and feeding. Accessory organs other than eyes aid in directing it to food. Feeding is influenced and presumably feeding as well. Low salinities, however, apparently did not affect feeding. Because female crabs

  20. Commercial Feeding Stuffs, September 1, 1931 to August 31, 1932. 

    E-Print Network [OSTI]

    Fuller, F. D. (Frederick Driggs); Sullivan, James

    1932-01-01

    table and the digestible protein and the productive energy of the feeds are given. A table is given showing the average protein content of the cottonseed products made by each oil mill so that the reader can see which mills maintain the guaranties... -_----------___------------------.---------------------------------------.--------.c------ 21 Miscellaneous Products 22 Tentative Definitions ___-_.._----_-.----------------------------.-------------...-.-. 23 Fish Oils 223 Marine Products 23 Milk Products 24 Miscellaneous Products 24 Mineral Feeds...

  1. Annual Report of the Feed Control Service, 1952-53. 

    E-Print Network [OSTI]

    Holleman, M. P.; Brock, F. D.

    1953-01-01

    protein. fat. 1 percent percent 1 Minimum Maximum nitroaen- e I free percent edrart, SPECIAL-PURPOSE FORMULA FEEDS. Grain sorghum gluten meal ................. Grain sorghum meal ....................... Grain sorghum head stems... protein, minimum percentage of crude fat, mimimum percentage of nitrogen-free extract, maxi- mum percentage of crude fiber, names of ingredients of a mixed feed, percentage of each ingredient when adulterants are present, and the percentage of each...

  2. Morphometry and feeding habits of two ommastrephid squid 

    E-Print Network [OSTI]

    Wolff, Gary Arthur

    1977-01-01

    MORPHOMETRY AND FEEDING HABITS OF TWO OFKASTREPHID SQUID A Thesis by GARY ARTHUR WOLFF Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1977... Major Subject: Oceanography NORPHO~ifETRY AND FEEDING HABITS OF TWO OM'IASTREPHID SQUID A Thesis by GARY ARTHUR WOEFF Approved as to style and content by: rkfk ( (Chairman of Committee) (Head of Departme ' '(rremb er ) (Nember August 1977...

  3. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    Experience with the German Hydrogen Fuel Project," HydrogenHydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would be

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  5. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  6. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  7. The influence of feed/cattle price relationships on the optimum cattle feeding systems and on the optimum location of feeding in Texas 

    E-Print Network [OSTI]

    Williams, Eddy Joe

    1971-01-01

    on feed, a wide variety of systems with different rates of gain and conversion ratios were selected, The ob]ectives of the study were to determine (1) the competitive advantage of feeding cattle in each area, (2) the optimum location of each cattle...- ations of this model were used to (1) measure the effect of consider- ing only variable costs in selecting among alternative systems and areas; and (2) measure the effect of a change in the operating capital restriction. Selected combinations of milo...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE: Alternative

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE: AlternativeLocal

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE:

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalStateVehicleTools Printable

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalStateVehicleTools

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalStateVehicleToolsIdle

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternative

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNational Alternative

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNational AlternativeSmartWay

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNational

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestion Mitigation

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestion

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestionTier 2 and

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestionTier 2

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestionTier

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find MoreAlternativeNationalCongestionTierSchool

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USA is an

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USA is

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USA

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USAVoluntary Airport Low

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USAVoluntary Airport

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USAVoluntary

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports USAVoluntaryAftermarket

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean Ports

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean PortsRenewable

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean PortsRenewableIncome

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA Clean

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvanced Technology Vehicle

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvanced Technology

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvanced

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvancedAlternative

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA CleanAdvancedAlternativePayments

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USA

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure Grants and

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure Grants

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure GrantsAmerican

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol Infrastructure

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol InfrastructureImprovement and

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol InfrastructureImprovement

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanol

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolState Printable Version Share

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolState Printable Version

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolState Printable

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolState PrintableState

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual del

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual delBiodiesel Tax

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual delBiodiesel

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual delBiodieselIdle

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManualLiquefied Natural Gas (LNG)

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManualLiquefied Natural Gas