National Library of Energy BETA

Sample records for frequency time period

  1. Time delay measurement in the frequency domain

    SciTech Connect (OSTI)

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible by simply extending the data acquisition time.

  2. Time delay measurement in the frequency domain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.; Liu, Shih -Chieh; Dufresne, Eric M.; Li, Yuelin; Wen, Haidan

    2015-08-06

    Pump–probe studies at synchrotrons using X-ray and laser pulses require accurate determination of the time delay between pulses. This becomes especially important when observing ultrafast responses with lifetimes approaching or even less than the X-ray pulse duration (~100 ps). The standard approach of inspecting the time response of a detector sensitive to both types of pulses can have limitations due to dissimilar pulse profiles and other experimental factors. Here, a simple alternative is presented, where the frequency response of the detector is monitored versus time delay. Measurements readily demonstrate a time resolution of ~1 ps. Improved precision is possible bymore » simply extending the data acquisition time.« less

  3. Emissions from Idling Trucks for Extended Time Periods | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory PDF icon 2002_deer_lewis.pdf More Documents & Publications 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 Technical Demonstration of 2010 Emissions Regulations over Transient Operation 21st Century Truck Partnership Roadmap Roadmap and

  4. Time-periodic solutions of the Benjamin-Ono equation

    SciTech Connect (OSTI)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.

  5. Spectrometer employing optical fiber time delays for frequency resolution

    DOE Patents [OSTI]

    Schuss, Jack J.; Johnson, Larry C.

    1979-01-01

    This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.

  6. Time-Periodic Solutions of Driven-Damped Trimer Granular Crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Charalampidis, E. G.; Li, F.; Chong, C.; Yang, J.; Kevrekidis, P. G.

    2015-01-01

    We consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical particles where each unit cell follows the pattern of a 2 : 1 trimer: S-W-S. The configuration at the left boundary is driven by a harmonic in-time actuation with given amplitude and frequency while the right one is a fixed wall. Similar to the case of a dimer chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For fixed driving frequencies in each of the spectral gaps, we find that the nonlinear surface modes and the statesmore » dictated by the linear drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes chaotic. While the bifurcation structure is similar for solutions within the first and second gap, those in the first gap appear to be less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. The theoretical findings are qualitatively corroborated by the experimental full-field visualization of the time-periodic structures.« less

  7. THE FREQUENCY OF LOW-MASS EXOPLANETS. III. TOWARD {eta}{sub +} AT SHORT PERIODS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; Horner, J.; Butler, R. P.; O'Toole, Simon J.; Jones, H. R. A.; Carter, B. D.

    2011-09-01

    Determining the occurrence rate of 'super-Earth' planets (m sin i < 10 M{sub +}) is a critically important step on the path toward determining the frequency of Earth-like planets ({eta}{sub +}), and hence the uniqueness of our solar system. Current radial-velocity surveys, achieving precisions of 1 m s{sup -1}, are now able to detect super-Earths and provide meaningful estimates of their occurrence rate. We present an analysis of 67 solar-type stars from the Anglo-Australian Planet Search specifically targeted for very high precision observations. When corrected for incompleteness, we find that the planet occurrence rate increases sharply with decreasing planetary mass. Our results are consistent with those from other surveys: in periods shorter than 50 days, we find that 3.0% of stars host a giant (msin i > 100 M{sub +}) planet, and that 17.4% of stars host a planet with msin i < 10 M{sub +}. The preponderance of low-mass planets in short-period orbits is in conflict with formation simulations in which the majority of super-Earths reside at larger orbital distances. This work gives a hint as to the size of {eta}{sub +}, but to make meaningful predictions on the frequency of terrestrial planets in longer, potentially habitable orbits, low-mass terrestrial planet searches at periods of 100-200 days must be made an urgent priority for ground-based Doppler planet searches in the years ahead.

  8. Zonal flow sawteeth and the time period between edge-localized transport bursts in tokamaks

    SciTech Connect (OSTI)

    Kleva, Robert G.; Guzdar, Parvez N.

    2007-01-15

    The time period between particle and energy transport bursts in simulations of tokamak edge turbulence is determined by the magnitude of the diamagnetic drift parameter {alpha}{sub d}{identical_to}{omega}{sub *}/{gamma}{sub 0}, where the diamagnetic drift frequency {omega}{sub *}={rho}{sub s}c{sub s}/L{sub 0}L{sub n} and the characteristic ballooning mode growth rate {gamma}{sub 0}=c{sub s}/(RL{sub n}/2){sup 1/2}. Here, R is the major radius of the torus, L{sub n} is the density gradient scale length, {rho}{sub s} is the ion gyroradius, and c{sub s} is the ion acoustic speed. The scale length L{sub 0} is given by L{sub 0}=2{pi}qR {nu}{sub ei}{rho}{sub s}/2{omega}{sub e}R){sup 1/2}(2R/L{sub n}){sup 1/4}, where q is the safety factor, {nu}{sub ei} is the electron-ion collision frequency, and {omega}{sub e} is the electron cyclotron frequency. When the diamagnetic drift frequency becomes larger than the ballooning mode growth rate ({alpha}{sub d}>1), then the transport in the tokamak edge is characterized by regularly recurring bursts of particles and energy with a single well-defined frequency. As {alpha}{sub d} increases above unity, the time period between the bursts becomes much longer. The temporal dependence of the energy in the zonal flow generated nonlinearly has the appearance of sawteeth.

  9. THE FREQUENCY OF LOW-MASS EXOPLANETS. II. THE 'PERIOD VALLEY'

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; O'Toole, Simon J.; Jones, H. R. A.; Butler, R. P.; Carter, B. D.

    2010-10-20

    Radial-velocity planet search campaigns are now beginning to detect low-mass 'Super-Earth' planets, with minimum masses M sin i{approx}< 10 M{sub +}. Using two independently developed methods, we have derived detection limits from nearly four years of the highest-precision data on 24 bright, stable stars from the Anglo-Australian Planet Search. Both methods are more conservative than a human analyzing an individual observed data set, as is demonstrated by the fact that both techniques would detect the radial-velocity signals announced as exoplanets for the 61 Vir system in 50% of trials. There are modest differences between the methods which can be recognized as arising from particular criteria that they adopt. What both processes deliver is a quantitative selection process such that one can use them to draw quantitative conclusions about planetary frequency and orbital parameter distribution from a given data set. Averaging over all 24 stars, in the period range P< 300 days and the eccentricity range 0.0 < e < 0.6, we could detect 99% of planets with velocity amplitudes K{approx}> 7.1 m s{sup -1}. For the best stars in the sample, we are able to detect or exclude planets with K{approx}> 3 m s{sup -1}, corresponding to minimum masses of 8 M{sub +} (P = 5 days) or 17 M{sub +} (P = 50 days). Our results indicate that the observed 'period valley', a lack of giant planets (M > 100 M{sub +}) with periods between 10 and 100 days, is indeed real. However, for planets in the mass range 10-100 M{sub +}, our results suggest that the deficit of such planets may be a result of selection effects.

  10. Time-frequency analysis of synthetic aperture radar signals

    SciTech Connect (OSTI)

    Johnston, B.

    1996-08-01

    Synthetic aperture radar (SAR) has become an important tool for remote sensing of the environment. SAR is a set of digital signal processing algorithms that are used to focus the signal returned to the radar because radar systems in themselves cannot produce the high resolution images required in remote sensing applications. To reconstruct an image, several parameters must be estimated and the quality of output image depends on the degree of accuracy of these parameters. In this thesis, we derive the fundamental SAR algorithms and concentrate on the estimation of one of its critical parameters. We show that the common technique for estimating this particular parameter can sometimes lead to erroneous results and reduced quality images. We also employ time-frequency analysis techniques to examine variations in the radar signals caused by platform motion and show how these results can be used to improve output image quality.

  11. Determination of transit time distribution and Rabi frequency by applying regularized inverse on Ramsey spectra

    SciTech Connect (OSTI)

    Park, Young-Ho; Lee, Soo Heyong; Park, Sang Eon; Lee, Ho Seong; Kwon, Taeg Yong [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2007-04-23

    The authors report on a method to determine the Rabi frequency and transit time distribution of atoms that are essential for proper operation of atomic beam frequency standards. Their method, which employs alternative regularized inverse on two Ramsey spectra measured at different microwave powers, can be used for the frequency standards with short Ramsey cavity as well as long ones. The authors demonstrate that uncertainty in Rabi frequency obtained from their method is 0.02%.

  12. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOE Patents [OSTI]

    Qian, Shie; Dunham, Mark E.

    1996-01-01

    A system and method for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos{2.pi..phi.(t)} and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {.phi.'(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series (also known as the Gabor spectrogram). The joint time-frequency transformation represents the analyzed signal energy at time t and frequency .function., P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function .phi.'(t) which best fits the multivalued function f(t), a trajectory of the joint time-frequency domain representation of x(t). Integrating .phi.'(t) along t yields .phi.(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template.

  13. System and method for constructing filters for detecting signals whose frequency content varies with time

    DOE Patents [OSTI]

    Qian, S.; Dunham, M.E.

    1996-11-12

    A system and method are disclosed for constructing a bank of filters which detect the presence of signals whose frequency content varies with time. The present invention includes a novel system and method for developing one or more time templates designed to match the received signals of interest and the bank of matched filters use the one or more time templates to detect the received signals. Each matched filter compares the received signal x(t) with a respective, unique time template that has been designed to approximate a form of the signals of interest. The robust time domain template is assumed to be of the order of w(t)=A(t)cos(2{pi}{phi}(t)) and the present invention uses the trajectory of a joint time-frequency representation of x(t) as an approximation of the instantaneous frequency function {phi}{prime}(t). First, numerous data samples of the received signal x(t) are collected. A joint time frequency representation is then applied to represent the signal, preferably using the time frequency distribution series. The joint time-frequency transformation represents the analyzed signal energy at time t and frequency f, P(t,f), which is a three-dimensional plot of time vs. frequency vs. signal energy. Then P(t,f) is reduced to a multivalued function f(t), a two dimensional plot of time vs. frequency, using a thresholding process. Curve fitting steps are then performed on the time/frequency plot, preferably using Levenberg-Marquardt curve fitting techniques, to derive a general instantaneous frequency function {phi}{prime}(t) which best fits the multivalued function f(t). Integrating {phi}{prime}(t) along t yields {phi}{prime}(t), which is then inserted into the form of the time template equation. A suitable amplitude A(t) is also preferably determined. Once the time template has been determined, one or more filters are developed which each use a version or form of the time template. 7 figs.

  14. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  15. Emergency Diesel Generation System Surveillance Test Policy Optimization Through Genetic Algorithms Using Non-Periodic Intervention Frequencies and Seasonal Constraints

    SciTech Connect (OSTI)

    Lapa, Celso M.F.; Pereira, Claudio M.N.A. [CNEN, Comissao Nacional de Energia Nuclear, Rua General Severiano 90, Rio de Janeiro, RJ-22-294-900 (Brazil); Frutuoso e Melo, P.F. [COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco G, sala 101, Ilha do Fundao, 21945-970, Rio de Janeiro - RJ (Brazil)

    2002-07-01

    Nuclear standby safety systems must frequently, be submitted to periodic surveillance tests. The main reason is to detect, as soon as possible, the occurrence of unrevealed failure states. Such interventions may, however, affect the overall system availability due to component outages. Besides, as the components are demanded, deterioration by aging may occur, penalizing again the system performance. By these reasons, planning a good surveillance test policy implies in a trade-off between gains and overheads due to the surveillance test interventions. In order maximize the systems average availability during a given period of time, it has recently been developed a non-periodic surveillance test optimization methodology based on genetic algorithms (GA). The fact of allowing non-periodic tests turns the solution space much more flexible and schedules can be better adjusted, providing gains in the overall system average availability, when compared to those obtained by an optimized periodic tests scheme. The optimization problem becomes, however, more complex. Hence, the use of a powerful optimization technique, such as GAs, is required. Some particular features of certain systems can turn it advisable to introduce other specific constraints in the optimization problem. The Emergency Diesel Generation System (EDGS) of a Nuclear Power Plant (N-PP) is a good example for demonstrating the introduction of seasonal constraints in the optimization problem. This system is responsible for power supply during an external blackout. Therefore, it is desirable during periods of high blackout probability to maintain the system availability as high as possible. Previous applications have demonstrated the robustness and effectiveness of the methodology. However, no seasonal constraints have ever been imposed. This work aims at investigating the application of such methodology in the Angra-II Brazilian NPP EDGS surveillance test policy optimization, considering the blackout probability growth during summer, due to the electrical power demand increase. Here, the model used penalizes test interventions by a continuous modulating function, which depends on the instantaneous blackout probability. Results have demonstrated the ability of the method in adapting the surveillance tests policy to seasonal behaviors. The knowledge acquired by the GA during the searching process has lead to test schedules that drastically minimize the test interventions at periods of high blackout probability. It is compensated by more frequent tests redistributed through the periods of low blackout probability, in order to provide improvement on the overall average availability at the system level. (authors)

  16. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs

    SciTech Connect (OSTI)

    Burghoff, David; Yang, Yang; Hayton, Darren J.; Gao, Jian -Rong; Reno, John L.; Hu, Qing

    2015-01-01

    Recently, much attention has been focused on the generation of optical frequency combs from quantum cascade lasers. We discuss how fast detectors can be used to demonstrate the mutual coherence of such combs, and present an inequality that can be used to quantitatively evaluate their performance. We discuss several technical issues related to shifted wave interference Fourier Transform spectroscopy (SWIFTS), and show how such measurements can be used to elucidate the time-domain properties of such combs, showing that they can possess signatures of both frequency-modulation and amplitude-modulation.

  17. Applications of time-frequency analysis to signals from manufacturing and machine monitoring sensors

    SciTech Connect (OSTI)

    Atlas, L.E.; Narayanan, S.B.; Bernard, G.D.

    1996-09-01

    Manufacturing industries are now demanding substantial increases in flexibility, productivity and reliability from their process machines as well as increased quality and value of their products. One important strategy to support this goal is sensor-based, on-line, real-time evaluation of key characteristics of both machines and products, throughout the manufacturing process. Recent advances in time-frequency (TF) analysis are particularly well suited to extracting key vibrational characteristics from monitoring sensors. Thus this paper presents applications of TF analysis to several important manufacturing and machine monitoring tasks, to show the value of these forms of digital signal processing applied to manufacturing.

  18. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    SciTech Connect (OSTI)

    Amur Margaryan

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  19. Dynamics of spintronic materials: Exploration in the time and frequency domain

    SciTech Connect (OSTI)

    Zabel, Hartmut

    2014-12-14

    X-ray and neutron reflectivity are mature experimental techniques for the exploration of film thicknesses and interface roughnesses on the nanoscale. Combining with photon and neutron polarization, these methods can be carried forward to the analysis of magnetic thin films and magnetic domain structures. New opportunities open up when these methods are used either in the time or in the frequency domain. Then dynamical processes can be studied such as domain oscillations, domain propagation, precession of spins, and damping effects. Two methods are discussed which have been developed recently: polarized neutron reflectivity from magnetic films in an alternating magnetic field and time resolved resonant magnetic x-ray reflectivity of the free precessional dynamics in films and multilayers.

  20. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    SciTech Connect (OSTI)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-10-15

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  1. Numerical study of the effect of normalised window size, sampling frequency, and noise level on short time Fourier transform analysis

    SciTech Connect (OSTI)

    Ota, T. A.

    2013-10-15

    Photonic Doppler velocimetry, also known as heterodyne velocimetry, is a widely used optical technique that requires the analysis of frequency modulated signals. This paper describes an investigation into the errors of short time Fourier transform analysis. The number of variables requiring investigation was reduced by means of an equivalence principle. Error predictions, as the number of cycles, samples per cycle, noise level, and window type were varied, are presented. The results were found to be in good agreement with analytical models.

  2. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    SciTech Connect (OSTI)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.

  3. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore » swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  4. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-08-04

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Importantmore »swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections.« less

  5. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  6. A real-time algorithm for the harmonic estimation and frequency tracking of dominant components in fusion plasma magnetic diagnostics

    SciTech Connect (OSTI)

    Alves, D.; Coelho, R. [Associao Euratom Collaboration: JET-EFDA Contributors

    2013-08-15

    The real-time tracking of instantaneous quantities such as frequency, amplitude, and phase of components immerse in noisy signals has been a common problem in many scientific and engineering fields such as power systems and delivery, telecommunications, and acoustics for the past decades. In magnetically confined fusion research, extracting this sort of information from magnetic signals can be of valuable assistance in, for instance, feedback control of detrimental magnetohydrodynamic modes and disruption avoidance mechanisms by monitoring instability growth or anticipating mode-locking events. This work is focused on nonlinear Kalman filter based methods for tackling this problem. Similar methods have already proven their merits and have been successfully employed in this scientific domain in applications such as amplitude demodulation for the motional Stark effect diagnostic. In the course of this work, three approaches are described, compared, and discussed using magnetic signals from the Joint European Torus tokamak plasma discharges for benchmarking purposes.

  7. Method of detecting system function by measuring frequency response

    DOE Patents [OSTI]

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2012-04-03

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  8. Method of detecting system function by measuring frequency response

    DOE Patents [OSTI]

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2013-01-08

    Methods of rapidly measuring an impedance spectrum of an energy storage device in-situ over a limited number of logarithmically distributed frequencies are described. An energy storage device is excited with a known input signal, and a response is measured to ascertain the impedance spectrum. An excitation signal is a limited time duration sum-of-sines consisting of a select number of frequencies. In one embodiment, magnitude and phase of each frequency of interest within the sum-of-sines is identified when the selected frequencies and sample rate are logarithmic integer steps greater than two. This technique requires a measurement with a duration of one period of the lowest frequency. In another embodiment, where selected frequencies are distributed in octave steps, the impedance spectrum can be determined using a captured time record that is reduced to a half-period of the lowest frequency.

  9. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfullymore » satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  10. Period meter for reactors

    DOE Patents [OSTI]

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  11. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  13. Comment Period Closed Explained

    Broader source: Energy.gov [DOE]

    The public comment period on the Draft Environmental Impact Statement (EIS) has ended, and DOE is preparing a Final EIS. The Final EIS will consider and respond to all timely public comments on the...

  14. Property:TimePeriod | Open Energy Information

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) 0 0.4 kV remote control (Smart Grid Project) + Not available + 2 220 kV SSSC device for power flow control...

  15. Method and apparatus for upshifting light frequency by rapid plasma creation

    DOE Patents [OSTI]

    Dawson, John M. (Pacific Palisades, CA); Wilks, Scott C. (Santa Monica, CA); Mori, Warren B. (Hermosa Beach, CA); Joshi, Chandrasekhar J. (Santa Monica, CA); Sessler, Andrew M. (Oakland, CA)

    1990-01-01

    Photons of an electromagnetic source wave are frequency-upshifted as a plasma is rapidly created around the path of this propagating source wave. The final frequency can be controlled by adjusting the gas density. A controlled time-varying frequency (chirped) pulse can be produced by using a controlled spatially varying gas density. The plasma must be created in a time which is short compared to the transit time of the light through the plasmas region. For very fast creation over one to at most a few light periods of an overdense plasma, static magnetic fields with short wavelengths are created.

  16. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    SciTech Connect (OSTI)

    Welch, E. C.; Zhang, P.; He, Z.-H.; Dollar, F.; Krushelnick, K.; Thomas, A. G. R.

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  17. Seismic isolation of two dimensional periodic foundations

    SciTech Connect (OSTI)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-07-28

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5?Hz to 50?Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  18. Do triatomic molecules echo atomic periodicity?

    SciTech Connect (OSTI)

    Hefferlin, R. Barrow, J.

    2015-03-30

    Demonstrations of periodicity among triatomic-molecular spectroscopic constants underscore the role of the periodic law as a foundation of chemistry. The objective of this work is to prepare for another test using vibration frequencies ?{sub 1} of free, ground-state, main-group triatomic molecules. Using data from four data bases and from computation, we have collected ?{sub 1} data for molecules formed from second period atoms.

  19. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of {sup 4}He nanodroplets on surfaces: {sup 4}He/graphene

    SciTech Connect (OSTI)

    Lara-Castells, María Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí

    2014-10-21

    In this work we propose a general strategy to calculate accurate He–surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.

  20. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    SciTech Connect (OSTI)

    Ryu, S.K.; Kim, Y.K.; Kim, M.K.; Won, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea); Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2010-01-15

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. (author)

  1. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  2. Scoping Period Closed

    Broader source: Energy.gov [DOE]

    The environmental impact statement (EIS) scoping period has ended. DOE is preparing a Draft EIS that will analyze and compare the potential environmental impacts of various alternative approaches...

  3. High frequency rectenna

    DOE Patents [OSTI]

    Logan, B. Grant (Danville, CA); Orvis, William J. (Livermore, CA)

    1991-01-01

    The invention provides an inexpensive array of rectifying antennas which employ field emission diodes for rectifying electromagnetic waves of microwave frequencies and higher frequencies.

  4. Genealogy of periodic trajectories

    SciTech Connect (OSTI)

    de Adguiar, M.A.M.; Maldta, C.P.; de Passos, E.J.V.

    1986-05-20

    The periodic solutions of non-integrable classical Hamiltonian systems with two degrees of freedom are numerically investigated. Curves of periodic families are given in plots of energy vs. period. Results are presented for this Hamiltonian: H = 1/2(p/sub x//sup 2/ + p/sub y//sup 2/) + 1/2 x/sup 2/ + 3/2 y/sup 2/ - x/sup 2/y + 1/12 x/sup 4/. Properties of the families of curves are pointed out. (LEW)

  5. Logic elements for reactor period meter

    DOE Patents [OSTI]

    McDowell, William P.; Bobis, James P.

    1976-01-01

    Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.

  6. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOE Patents [OSTI]

    Stevens, Fred J. (Naperville, IL)

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  7. Scoping Period Open

    Broader source: Energy.gov [DOE]

    DOE has published in the Federal Register a Notice of Intent to prepare an environmental impact statement (EIS), and the scoping period is open for public comment for at least 30 days. DOE requests...

  8. Holding Period Complete

    Broader source: Energy.gov [DOE]

    DOE has published a Final Environmental Impact Statement (EIS), and the 30-day waiting period has ended. DOE is preparing a Record of Decision to announce and explain its chosen project alternative...

  9. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  10. Eastern Frequency Response Study

    SciTech Connect (OSTI)

    Miller, N.W.; Shao, M.; Pajic, S.; D'Aquila, R.

    2013-05-01

    This study was specifically designed to investigate the frequency response of the Eastern Interconnection that results from large loss-of-generation events of the type targeted by the North American Electric Reliability Corp. Standard BAL-003 Frequency Response and Frequency Bias Setting (NERC 2012a), under possible future system conditions with high levels of wind generation.

  11. Frequency Response Tool

    Energy Science and Technology Software Center (OSTI)

    2014-03-13

    According to the North American Electric Reliability Corporation (NERC) definition: “Frequency response is a measure of an Interconnection’s ability to stabilize frequency immediately following the sudden loss of generation or load, and is a critical component of the reliable operation of the Bulk-Power System, particularly during disturbances and recoveries. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent it from being damaged, which could leadmore » to wide-spread blackouts.” Frequency Response Tool automates the power system frequency response analysis process. The tool performs initial estimation of the system frequency parameters (initial frequency, minimum frequency, settling point). User can visually inspect and adjust these parameters. The tool also calculates the frequency response performance metrics of the system, archives the historic events and baselines the system performance. Frequency response performance characteristics of the system are calculated using phasor measurement unit (PMU) information. Methodology of the frequency response performance assessment implemented in the tool complies with the NERC Frequency response standard.« less

  12. Two-frequency Ramsey interferometry

    SciTech Connect (OSTI)

    Seidel, D.; Muga, J. G. [Departmento de Quimica-Fisica, Universidad del Pais Vasco, Apartado Postal 644, 48080 Bilbao (Spain)

    2007-02-15

    We investigate Ramsey interferometry for two separated fields oscillating with different frequencies. It is shown that the interplay between average and relative detuning leads to interference effects not present in the standard, single-frequency setup. For a large free-flight time of ground-state atoms before entering the first field region, the Ramsey fringes with respect to the relative detuning become much narrower than the usual ones. The stability of these effects with respect to phase or velocity fluctuations is discussed.

  13. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2013-05-28

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  14. Frequency selective infrared sensors

    DOE Patents [OSTI]

    Davids, Paul; Peters, David W

    2014-11-25

    A frequency selective infrared (IR) photodetector having a predetermined frequency band. The exemplary frequency selective photodetector includes: a dielectric IR absorber having a first surface and a second surface substantially parallel to the first surface; an electrode electrically coupled to the first surface of the dielectric IR absorber; and a frequency selective surface plasmonic (FSSP) structure formed on the second surface of the dielectric IR absorber. The FSSP structure is designed to selectively transmit radiation in the predetermined frequency band that is incident on the FSSP structure substantially independent of the angle of incidence of the incident radiation on the FSSP structure.

  15. Tracking multiple generation and suppression of secondary electrons on periodic triangular surface

    SciTech Connect (OSTI)

    Li, S.; Wang, J. G.; Zhu, M.; Peng, J. C.; Xie, J. L.; Wu, X. L.; Guo, L. T.; Chang, C.; Xiong, Z. F.; Department of Engineering Physics, Tsinghua University, Beijing 10084

    2013-12-15

    To research the dynamic course of multipactor suppression on the periodically patterned surface, tens of electron collision processes are tracked by numerical calculation. The influences of microwave frequency, amplitude of RF electric field, slope angle, the local field enhancement, and the tilted incident electric field on the multipactor suppression are studied by tracking multi-generation electrons' trajectories, hopping and flight time, collision energy, and secondary emission yield. Meanwhile, the dynamic processes of secondary electrons on the periodic surface are analyzed by particle-in-cell (PIC) simulation. The PIC results are consistent with the analytical results in which the electrons fly reciprocatingly between the slopes and impact on the slopes; the methods of increasing the slope angle, enlarging the RF field, and lowering the frequency in a certain range are helpful to enhance the multipactor suppression steadily and persistently.

  16. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    SciTech Connect (OSTI)

    Hippke, Michael; Learned, John G.; Zee, A.; Edmondson, William H.; Lindner, John F.; Kia, Behnam; Ditto, William L.; Stevens, Ian R. E-mail: jgl@phys.hawaii.edu E-mail: w.h.edmondson@bham.ac.uk E-mail: wditto@hawaii.edu E-mail: irs@star.sr.bham.ac.uk

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  17. System and method for implementing periodic early discard in on-chip buffer memories of network elements

    DOE Patents [OSTI]

    Francini, Andrea

    2013-05-14

    An advance is made over the prior art in accordance with the principles of the present invention that is directed to a new approach for a system and method for a buffer management scheme called Periodic Early Discard (PED). The invention builds on the observation that, in presence of TCP traffic, the length of a queue can be stabilized by selection of an appropriate frequency for packet dropping. For any combination of number of TCP connections and distribution of the respective RTT values, there exists an ideal packet drop frequency that prevents the queue from over-flowing or under-flowing. While the value of the ideal packet drop frequency may quickly change over time and is sensitive to the series of TCP connections affected by past packet losses, and most of all is impossible to compute inline, it is possible to approximate it with a margin of error that allows keeping the queue occupancy within a pre-defined range for extended periods of time. The PED scheme aims at tracking the (unknown) ideal packet drop frequency, adjusting the approximated value based on the evolution of the queue occupancy, with corrections of the approximated packet drop frequency that occur at a timescale that is comparable to the aggregate time constant of the set of TCP connections that traverse the queue.

  18. Radio frequency detection assembly and method for detecting radio frequencies

    DOE Patents [OSTI]

    Cown, Steven H. (Rigby, ID); Derr, Kurt Warren (Idaho Falls, ID)

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  19. Frequency Response Analysis Tool

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Kosterev, Dmitry; Dai, T.

    2014-12-31

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of North American Electricity Reliability Corporation (NERC) BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. This report is prepared to describe the details of the work conducted by Pacific Northwest National Laboratory (PNNL) in collaboration with the Bonneville Power Administration and Western Electricity Coordinating Council (WECC) Joint Synchronized Information Subcommittee (JSIS) to develop a frequency response analysis tool (FRAT). The document provides the details on the methodology and main features of the FRAT. The tool manages the database of under-frequency events and calculates the frequency response baseline. Frequency response calculations are consistent with frequency response measure (FRM) in NERC BAL-003-1 for an interconnection and balancing authority. The FRAT can use both phasor measurement unit (PMU) data, where available, and supervisory control and data acquisition (SCADA) data. The tool is also capable of automatically generating NERC Frequency Response Survey (FRS) forms required by BAL-003-1 Standard.

  20. Variable Frequency Drives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing Toolkit The Benefits of Variable Frequency Drives (VFDs) VFDs help adjust motor speeds to match loads and improve efficiency while conserving energy. The benefits...

  1. Holding Period Ongoing

    Broader source: Energy.gov [DOE]

    DOE has published a Final Environmental Impact Statement (EIS) that considers all timely public comments on the Draft EIS and identifies DOE’s preferred project alternative(s). The U.S....

  2. Short-period pulsar oscillations following a glitch

    SciTech Connect (OSTI)

    Van Eysden, C. A.

    2014-07-10

    Following a glitch, the crust and magnetized plasma in the outer core of a neutron star are believed to rapidly establish a state of co-rotation within a few seconds by process analogous to classical Ekman pumping. However, in ideal magnetohydrodynamics, a final state of co-rotation is inconsistent with conservation of energy of the system. We demonstrate that, after the Ekman-like spin up is completed, magneto-inertial waves continue to propagate throughout the star, exciting torsional oscillations in the crust and plasma. The crust oscillation is irregular and quasi-periodic, with a dominant frequency of the order of seconds. Crust oscillations commence after an Alfvn crossing time, approximately half a minute at the magnetic pole, and are subsequently damped by the electron viscosity over approximately an hour. In rapidly rotating stars, the magneto-inertial spectrum in the core approaches a continuum, and crust oscillations are damped by resonant absorption analogous to quasi-periodic oscillations in magnetars. The oscillations predicted are unlikely to be observed in timing data from existing radio telescopes, but may be visible to next generation telescope arrays.

  3. Stabilized radio frequency quadrupole

    DOE Patents [OSTI]

    Lancaster, Henry D. (Orinda, CA); Fugitt, Jock A. (Berkeley, CA); Howard, Donald R. (Danville, CA)

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  4. Microfabricated ion frequency standard

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  5. Scheduled Maintenance Periods | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduled Maintenance Periods The CNM holds three maintenance periods per year. During these times certain CNM facilities may not be available for user activities. The Sector 26 beamline will not be available, the High-Performance Computing Cluster and nanofabrication facilities often are not available, and other facilities may undergo maintenance for only one or two days. Please contact your CNM Scientific Contact prior to arrival and plan your work visits and schedules accordingly. To better

  6. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Janus, Michael C. (Baltimore, MD); Griffith, Richard A. (Morgantown, WV)

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  7. Time-Dependent Reliability Analysis

    Energy Science and Technology Software Center (OSTI)

    1999-10-27

    FRANTIC-3 was developed to evaluate system unreliability using time-dependent techniques. The code provides two major options: to evaluate standby system unavailability or, in addition to the unavailability to calculate the total system failure probability by including both the unavailability of the system on demand as well as the probability that it will operate for an arbitrary time period following the demand. The FRANTIC-3 time dependent reliability models provide a large selection of repair and testingmore » policies applicable to standby or continously operating systems consisting of periodically tested, monitored, and non-repairable (non-testable) components. Time-dependent and test frequency dependent failures, as well as demand stress related failure, test-caused degradation and wear-out, test associated human errors, test deficiencies, test override, unscheduled and scheduled maintenance, component renewal and replacement policies, and test strategies can be prescribed. The conditional system unavailabilities associated with the downtimes of the user specified failed component are also evaluated. Optionally, the code can perform a sensitivity study for system unavailability or total failure probability to the failure characteristics of the standby components.« less

  8. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    SciTech Connect (OSTI)

    Concepcion, Ricky James; Elliott, Ryan Thomas

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  9. Dual frequency optical cavity

    DOE Patents [OSTI]

    George, E. Victor (Livermore, CA); Schipper, John F. (Palo Alto, CA)

    1985-01-01

    Method and apparatus for generating two distinct laser frequencies in an optical cavity, using a "T" configuration laser cavity and means for intermittently increasing or decreasing the index of refraction n of an associated transmission medium in one arm of the optical cavity to enhance laser action in one arm or the second arm of the cavity.

  10. Parc Periodical | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parc Periodical Parc Periodical PARC Periodical | Volume 7, Issue 2 PARC Periodical | Volume 7, Issue 1 PARC Periodical | Volume 6, Issue 6 PARC Periodical | Volume 6, Issue 5 PARC...

  11. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  12. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  13. Development of Seismic Isolation Systems Using Periodic Materials

    SciTech Connect (OSTI)

    Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh; Stokoe, II, Kenneth H.; Perkins, Judy; Tang, Yu

    2014-12-10

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are not desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the periodic foundation is a promising and effective way to mitigate structural damage caused by earthquake excitation.

  14. Shortest recurrence periods of novae

    SciTech Connect (OSTI)

    Kato, Mariko [Department of Astronomy, Keio University, Hiyoshi, Yokohama 223-8521 (Japan); Saio, Hideyuki [Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Nomoto, Ken'ichi, E-mail: mariko@educ.cc.keio.ac.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

    2014-10-01

    Stimulated by the recent discovery of the 1 yr recurrence period nova M31N 2008-12a, we examined the shortest recurrence periods of hydrogen shell flashes on mass-accreting white dwarfs (WDs). We discuss the mechanism that yields a finite minimum recurrence period for a given WD mass. Calculating the unstable flashes for various WD masses and mass accretion rates, we identified a shortest recurrence period of about two months for a non-rotating 1.38 M {sub ?} WD with a mass accretion rate of 3.6 10{sup 7} M {sub ?} yr{sup 1}. A 1 yr recurrence period is realized for very massive (? 1.3 M {sub ?}) WDs with very high accretion rates (? 1.5 10{sup 7} M {sub ?} yr{sup 1}). We revised our stability limit of hydrogen shell burning, which will be useful for binary evolution calculations toward Type Ia supernovae.

  15. Magnetomechanically induced long period fiber gratings

    SciTech Connect (OSTI)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  16. Low frequency ac waveform generator

    DOE Patents [OSTI]

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  17. Low frequency AC waveform generator

    DOE Patents [OSTI]

    Bilharz, Oscar W. (Scotia, NY)

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  18. Confinement Time Exceeding One Second for a Toroidal Electron Plasma

    SciTech Connect (OSTI)

    Marler, J. P.; Stoneking, M. R.

    2008-04-18

    Nearly steady-state electron plasmas are trapped in a toroidal magnetic field for the first time. We report the first results from a new toroidal electron plasma experiment, the Lawrence Non-neutral Torus II, in which electron densities on the order of 10{sup 7} cm{sup -3} are trapped in a 270 deg. toroidal arc (670 G toroidal magnetic field) by application of trapping potentials to segments of a conducting shell. The total charge inferred from measurements of the frequency of the m=1 diocotron mode is observed to decay on a 3 s time scale, a time scale that approaches the predicted limit due to magnetic pumping transport. Three seconds represents {approx_equal}10{sup 5} periods of the lowest frequency plasma mode, indicating that nearly steady-state conditions are achieved.

  19. Frequency doubling crystals

    DOE Patents [OSTI]

    Wang, Francis (Danville, CA); Velsko, Stephan P. (Livermore, CA)

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  20. Radio frequency coaxial feedthrough

    DOE Patents [OSTI]

    Owens, Thomas L. (Kingston, TN)

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  1. High frequency nanotube oscillator

    DOE Patents [OSTI]

    Peng, Haibing; Zettl, Alexander K.

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  2. Frequency mixing crystal

    DOE Patents [OSTI]

    Ebbers, Christopher A.; Davis, Laura E.; Webb, Mark

    1992-01-01

    In a laser system for converting infrared laser light waves to visible light comprising a source of infrared laser light waves and means of harmoic generation associated therewith for production of light waves at integral multiples of the frequency of the original wave, the improvement of said means of harmonic generation comprising a crystal having the chemical formula X.sub.2 Y(NO.sub.3).sub.5 .multidot.2 nZ.sub.2 o wherein X is selected from the group consisting of Li, Na, K, Rb, Cs, and Tl; Y is selected from the group consisting of Sc, Y, La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In; Z is selected from the group consisting of H and D; and n ranges from 0 to 4.

  3. PARC Periodical | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Periodical PARC Periodical February 16, 2016 PARC Periodical | Volume 7, Issue 3 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 3 December 7, 2015 PARC Periodical | Volume 7, Issue 2 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 2 October 12, 2015 PARC Periodical | Volume 7, Issue 1 VIEW ARTICLE HERE Read more about PARC Periodical | Volume 7, Issue 1 August 20, 2015 PARC Periodical | Volume 6, Issue 6 VIEW ARTICLE HERE Read more about PARC

  4. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  5. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  6. Adhesive bonding using variable frequency microwave energy

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  7. ON THE FREQUENCY OF JUPITER ANALOGS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Tinney, C. G.; Bailey, J.; O'Toole, Simon J.; Jones, H. R. A.; Butler, R. P.; Carter, B. D.

    2011-02-01

    The Anglo-Australian Planet Search has now accumulated 12 years of radial-velocity data with long-term instrumental precision better than 3 m s{sup -1}. In this paper, we expand on earlier simulation work, to probe the frequency of near-circular, long-period gas-giant planets residing at orbital distances of 3-6 AU-the so-called Jupiter analogs. We present the first comprehensive analysis of the frequency of these objects based on radial-velocity data. We find that 3.3% of stars in our sample host Jupiter analogs; detailed, star-by-star simulations show that no more than 37% of stars host a giant planet between 3 and 6 AU.

  8. Rapid prototyping for radio-frequency geolocation applications (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: Rapid prototyping for radio-frequency geolocation applications Citation Details In-Document Search Title: Rapid prototyping for radio-frequency geolocation applications Previous space-to-ground, single-platform geolocation experiments exploiting time-difference-of arrival (TDOA) via interferometry were successful at separating and quantitatively characterizing interfering radio frequency (RF) signals from expected RF transmissions. Much of the success of these

  9. Diffuse Shortwave Intensive Observation Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Diffuse Shortwave Intensive Observation Period The Diffuse Shortwave IOP ran from September 23 to October 12, 2001. During this IOP, Joe Michalsky (The State University of New York-Albany) and Tom Stoffel (National Renewable Energy Laboratory) deployed approximately 15 radiometers of various designs and manufacturers on the SGP Radiometer Calibration Facility. The purpose was to compare the accuracy of the radiometers for diffuse shortwave measurements. The Scripps Institution of Oceanography

  10. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  11. Plasmonics in graphene at infrared frequencies

    SciTech Connect (OSTI)

    Jablan, Marinko; Buljan, Hrvoje; Soljacic, Marin

    2009-12-23

    We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch ??Oph ?0.2 eV . Large plasmon losses occur in the interband regime (via excitation of electron-hole pairs), which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth of frequencies from ?Oph up to the interband threshold, where a plasmon decay channel via emission of an optical phonon together with an electron-hole pair is nonegligible. The calculation of losses is performed within the framework of a random-phase approximation and number conserving relaxation-time approximation. The measured DC relaxation-time serves as an input parameter characterizing collisions with impurities, whereas the contribution from optical phonons is estimated from the influence of the electron-phonon coupling on the optical conductivity. Optical properties of plasmons in graphene are in many relevant aspects similar to optical properties of surface plasmons propagating on dielectric-metal interface, which have been drawing a lot of interest lately because of their importance for nanophotonics. Therefore, the fact that plasmons in graphene could have low losses for certain frequencies makes them potentially interesting for nanophotonic applications.

  12. Effective switching frequency multiplier inverter

    DOE Patents [OSTI]

    Su, Gui-Jia (Oak Ridge, TN); Peng, Fang Z. (Okemos, MI)

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  13. Radio Frequency Engineering, MDE, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RF Technology & Electronics, RFE About Us AOT Home Teams Low-Level Radio Frequency Magnet Power Supplies, Pulsed Power Radio Frequency, High Voltage Technologies Radio Frequency...

  14. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    SciTech Connect (OSTI)

    Pachon, Leonardo A.; Rueda, Jorge A.; Valenzuela-Toledo, Cesar A. E-mail: jorge.rueda@icra.it

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  15. Periodic permanent magnet focused klystron

    DOE Patents [OSTI]

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  16. Stabilized radio-frequency quadrupole

    DOE Patents [OSTI]

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  17. Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves

    SciTech Connect (OSTI)

    Kuo, Spencer; Snyder, Arnold; Chang, Chia-Lie

    2010-08-15

    Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

  18. Acoustic resonance frequency locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  19. Space charge effects with periodic focusing (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Space charge effects with periodic focusing Citation Details In-Document Search Title: Space charge effects with periodic focusing The dielectric response of a charged particle beam to a periodic focusing field enhances the effective focusing strength of the channel, reducing the matched beam radius and affecting the motion of halo particles. The dielectric response depends on the shape of the beam, the type of focusing and the ratio of the plasma frequency of the beam to the

  20. Microwave and Radio Frequency Workshop

    Broader source: Energy.gov [DOE]

    At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies such as microwave ...

  1. Frequency regulator for synchronous generators

    DOE Patents [OSTI]

    Karlicek, R.F.

    1982-08-10

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

  2. Frequency regulator for synchronous generators

    DOE Patents [OSTI]

    Karlicek, Robert F. (1920 Camino Centroloma, Fullerton, CA 92633)

    1982-01-01

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

  3. Reactor control rod timing system

    DOE Patents [OSTI]

    Wu, Peter T. K. (Clifton Park, NY)

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  4. Reactor control rod timing system

    SciTech Connect (OSTI)

    Wu, P.T.

    1982-02-09

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (Above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  5. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  6. Compact, flexible, frequency agile parametric wavelength converter

    DOE Patents [OSTI]

    Velsko, Stephan P. (Livermore, CA); Yang, Steven T. (Danville, CA)

    2002-01-01

    This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.

  7. Effects of confinement on short-period surface waves: Observations from a new dataset

    SciTech Connect (OSTI)

    Hooper, H.; Bonner, J.; Leidig, M.

    2006-04-15

    The Source Phenomenology Experiment (SPE) was conducted during the summer of 2003 in Arizona. Single-fired chemical shots were detonated and recorded at two locations, including a coal mine in the Black Mesa district of northern Arizona. This article reports on research into the effects of confinement on the generation of short-period, fundamental-mode Rayleigh waves (Rg), using a subset of the SPE data. Results show important differences between the Rg amplitudes of confined and unconfined explosions which must be understood to develop discriminants for mining explosions, which are an important aspect of nuclear test monitoring. Rg energy and frequency content depend on explosive weight and confinement, and unconfined explosions generate up to eight times less energy than equivalent confined explosions. For this reason, unconfined mining explosions cannot be simulated using a Mueller and Murphy (1971) source without including an empirical chemical decoupling factor. Rg chemical decoupling factors for unconfined shots vary from 0.5 to 8.2 at frequencies between 0.5 and 11 Hz. The effects of the bench free face are evident in radiation patterns. Explosions on the topographic bench show increased spectral energies for Rg (by a factor of 1.5) at azimuths behind the bench. This suggests that a discriminant based on the relative azimuthal spectral energies of Rg may be a possibility.

  8. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    SciTech Connect (OSTI)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  9. Variable frequency microwave heating apparatus

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN); Johnson, Arvid C. (Lake in the Hills, IL); Thigpen, Larry T. (Angier, NC)

    1999-01-01

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  10. Coherence revivals in two-photon frequency combs

    SciTech Connect (OSTI)

    Torres-Company, Victor; Lancis, Jesus; Lajunen, Hanna; Friberg, Ari T.

    2011-09-15

    We describe and theoretically analyze the self-imaging Talbot effect of entangled photon pairs in the time domain. Rich phenomena are observed in coherence propagation along dispersive media of mode-locked two-photon states with frequency entanglement exhibiting a comblike correlation function. Our results can be used to remotely transfer frequency standards through optical fiber networks with two-photon light, avoiding the requirement of dispersion compensation.

  11. Reliability of unstable periodic orbit based control strategies in biological systems

    SciTech Connect (OSTI)

    Mishra, Nagender; Singh, Harinder P.; Hasse, Maria; Biswal, B.

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  12. Frequency agile optical parametric oscillator

    DOE Patents [OSTI]

    Velsko, S.P.

    1998-11-24

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy. 14 figs.

  13. Frequency agile optical parametric oscillator

    DOE Patents [OSTI]

    Velsko, Stephan P. (Livermore, CA)

    1998-01-01

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy.

  14. Ionospheric very low frequency transmitter

    SciTech Connect (OSTI)

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HF heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.

  15. Two-frequency lidar technique for mesospheric Na temperature measurements

    SciTech Connect (OSTI)

    She, C.Y.; Latifi, H.; Yu, J.R.; Alvarez, R.J. II ); Bills, R.E.; Gardner, C.S. )

    1990-06-01

    The authors describe a new two-frequency lidar for measuring Na temperature profiles that uses a stabilized cw single-mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed-dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler-free structure of the Na D{sub 2} fluorescence spectrum in a vapor cells. The lidar technique and the initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6{degree}N,105{degree}W) are described. Absolute temperature accuracies at the Na layer peak of better than {plus minus}3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.

  16. Self-similar space-time evolution of an initial density discontinuity

    SciTech Connect (OSTI)

    Rekaa, V. L.; Pcseli, H. L.; Trulsen, J. K.

    2013-07-15

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  17. Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography

    SciTech Connect (OSTI)

    Tian Yue Montelli, Raffaella; Nolet, Guust; Dahlen, F.A.

    2007-10-01

    The efficient computation of finite-frequency traveltime and amplitude sensitivity kernels for velocity and attenuation perturbations in global seismic tomography poses problems both of numerical precision and of validity of the paraxial approximation used. We investigate these aspects, using a local model parameterization in the form of a tetrahedral grid with linear interpolation in between grid nodes. The matrix coefficients of the linear inverse problem involve a volume integral of the product of the finite-frequency kernel with the basis functions that represent the linear interpolation. We use local and global tests as well as analytical expressions to test the numerical precision of the frequency and spatial quadrature. There is a trade-off between narrowing the bandpass filter and quadrature accuracy and efficiency. Using a minimum step size of 10 km for S waves and 30 km for SS waves, relative errors in the quadrature are of the order of 1% for direct waves such as S, and a few percent for SS waves, which are below data uncertainties in delay time or amplitude anomaly observations in global seismology. Larger errors may occur wherever the sensitivity extends over a large volume and the paraxial approximation breaks down at large distance from the ray. This is especially noticeable for minimax phases such as SS waves with periods >20 s, when kernels become hyperbolic near the reflection point and appreciable sensitivity extends over thousands of km. Errors becomes intolerable at epicentral distance near the antipode when sensitivity extends over all azimuths in the mantle. Effects of such errors may become noticeable at epicentral distances > 140{sup o}. We conclude that the paraxial approximation offers an efficient method for computing the matrix system for finite-frequency inversions in global tomography, though care should be taken near reflection points, and alternative methods are needed to compute sensitivity near the antipode.

  18. Monochromatic radio frequency accelerating cavity

    DOE Patents [OSTI]

    Giordano, Salvatore (Port Jefferson, NY)

    1985-01-01

    A radio frequency resonant cavity having a fundamental resonant frequency and characterized by being free of spurious modes. A plurality of spaced electrically conductive bars are arranged in a generally cylindrical array within the cavity to define a chamber between the bars and an outer solid cylindrically shaped wall of the cavity. A first and second plurality of mode perturbing rods are mounted in two groups at determined random locations to extend radially and axially into the cavity thereby to perturb spurious modes and cause their fields to extend through passageways between the bars and into the chamber. At least one body of lossy material is disposed within the chamber to damp all spurious modes that do extend into the chamber thereby enabling the cavity to operate free of undesired spurious modes.

  19. Radio frequency coaxial feedthrough device

    DOE Patents [OSTI]

    Owens, Thomas L.; Baity, Frederick W.; Hoffman, Daniel J.; Whealton, John H.

    1987-01-01

    A radio frequency coaxial vacuum feedthrough is provided which utilizes a cylindrical ceramic vacuum break formed of an alumina ceramic. The cylinder is coaxially disposed and brazed between tapered coaxial conductors to form a vacuum sealed connection between a pressurized upstream coaxial transmission line and a utilization device located within a vacuum container. The feedthrough provides 50 ohm matched impedance RF feedthrough up to about 500 MHz at power levels in the multimegawatt range.

  20. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  1. Variable frequency microwave furnace system

    DOE Patents [OSTI]

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  2. Time Off

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Off Time Off A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505)...

  3. Processor Frequency on the Cori Data Partition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Configuration » Processor Frequency on the Cori Data Partition Processor Frequency on the Cori Data Partition The Haswell processors in Cori's data partition have a "Turbo Boost" feature to dynamically adjust CPU frequency and achieve the maximum possible performance. When Turbo Boost is enabled, the processor operates at the maximum frequency allowed by the available power and thermal limits. Further, on Cori (unlike Edison), each core can operate at a different frequency. The

  4. Methods and apparatus for broadband frequency comb stabilization

    DOE Patents [OSTI]

    Cox, Jonathan A; Kaertner, Franz X

    2015-03-17

    Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.

  5. Dynamic frequency tuning of electric and magnetic metamaterial response

    DOE Patents [OSTI]

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  6. PARC Periodical | Vol. 6, Issue 4 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARC Periodical | Vol. 6, Issue 4 April 6, 2015 PARC Periodical | Vol. 6, Issue 4 VIEW PERIODICAL HERE

  7. High-frequency electric field measurement using a toroidal antenna

    DOE Patents [OSTI]

    Lee, Ki Ha (Lafayette, CA)

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  8. Multi-frequency communication system and method

    DOE Patents [OSTI]

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2004-06-01

    A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.

  9. Radio frequency sustained ion energy

    DOE Patents [OSTI]

    Jassby, Daniel L.; Hooke, William M.

    1977-01-01

    Electromagnetic (E.M.) energy injection method and apparatus for producing and sustaining suprathermal ordered ions in a neutral, two-ion-species, toroidal, bulk equilibrium plasma. More particularly, the ions are produced and sustained in an ordered suprathermal state of existence above the average energy and velocity of the bulk equilibrium plasma by resonant rf energy injection in resonance with the natural frequency of one of the ion species. In one embodiment, the electromagnetic energy is injected to clamp the energy and velocity of one of the ion species so that the ion energy is increased, sustained, prolonged and continued in a suprathermal ordered state of existence containing appreciable stored energy that counteracts the slowing down effects of the bulk equilibrium plasma drag. Thus, selective deuteron absorption may be used for ion-tail creation by radio-frequency excitation alone. Also, the rf can be used to increase the fusion output of a two-component neutral injected plasma by selective heating of the injected deuterons.

  10. PARC Periodical | Vol. 6, Issue 3 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 6, Issue 3 February 9, 2015 PARC Periodical | Vol. 6, Issue 3 View Periodical Here

  11. Processor Frequency on the Cori Data Partition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by CPU frequency, not memory bandwidth. The DGEMM and EXP kernels were run on a single core while manually adjusting the CPU frequency to constant values between 1.2 and 2.3...

  12. Variable-Period Undulators For Synchrotron Radiation

    DOE Patents [OSTI]

    Shenoy, Gopal (Naperville, IL); Lewellen, John (Plainfield, IL); Shu, Deming (Darien, IL); Vinokurov, Nikolai (Novosibirsk, RU)

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  13. High resolution time interval meter

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  14. A radio frequency coaxial feedthrough

    DOE Patents [OSTI]

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  15. Frequency and damping rate of fast sausage waves

    SciTech Connect (OSTI)

    Farahani, S. Vasheghani; Van Doorsselaere, T.; Goossens, M.; Hornsey, C.

    2014-02-01

    We investigate the frequency and damping rate of fast axisymmetric waves that are subject to wave leakage for a one-dimensional magnetic cylindrical structure in the solar corona. We consider the ideal magnetohydrodynamic (MHD) dispersion relation for axisymmetric MHD waves superimposed on a straight magnetic cylinder in the zero ? limit, similar to a jet or loop in the solar corona. An analytic study accompanied by numerical calculations has been carried out to model the frequency, damping rate, and phase speed of the sausage wave around the cut-off frequency and in the long wavelength limit. Analytic expressions have been obtained based on equations around the points of interest. They are linear approximations of the dependence of the sausage frequency on the wave number around the cut-off wavelength for both leaky and non-leaky regimes and in the long wavelength limit. Moreover, an expression for the damping rate of the leaky sausage wave has been obtained both around the cut-off frequency and in the long wavelength limit. These analytic results are compared with numerical computations. The expressions show that the complex frequencies are mainly dominated by the density ratio. In addition, it is shown that the damping eventually becomes independent of the wave number in the long wavelength limit. We conclude that the sausage mode damping directly depends on the density ratios of the internal and external media where the damping declines in higher density contrasts. Even in the long wavelength limit, the sausage mode is weakly damped for high-density contrasts. As such, sausage modes could be observed for a significant number of periods in high-density contrast loops or jets.

  16. Heterodyne laser instantaneous frequency measurement system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Johnson, Michael A. (Pleasanton, CA); Globig, Michael A. (Livermore, CA)

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  17. Heterodyne laser instantaneous frequency measurement system

    DOE Patents [OSTI]

    Wyeth, Richard W. (Livermore, CA); Johnson, Michael A. (Pleasanton, CA); Globig, Michael A. (Livermore, CA)

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  18. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    FY2012 Fee Information Minimum Fee Maximum Fee September 2015 Contract Number: Cost Plus Incentive Fee Contractor: 3,264,909,094 Contract Period: EM Contractor Fee s Idaho...

  19. Time delay spectrum conditioner

    DOE Patents [OSTI]

    Greiner, Norman R. (Los Alamos, NM)

    1980-01-01

    A device for delaying specified frequencies of a multiple frequency laser beam. The device separates the multiple frequency beam into a series of spatially separated single frequency beams. The propagation distance of the single frequency beam is subsequently altered to provide the desired delay for each specific frequency. Focusing reflectors can be utilized to provide a simple but nonadjustable system or, flat reflectors with collimating and focusing optics can be utilized to provide an adjustable system.

  20. Nagios Down-Time scripts

    Energy Science and Technology Software Center (OSTI)

    2014-11-11

    The Nagios Down-Time scripts are a set of Python scripts that create a commandline interface to Nagios' scheduled down-times. This allows for large-scale management of down-times, beyond what is feasible with the default web interface. Additionally, one of the scripts can be setup to periodically send emails of down-times that are scheduled to end within a specified amount of time after the script has been run; for example, it could run once a day andmore » send an email including down-times ending within the next 24 hours.« less

  1. Gas breakdown mechanism in pulse-modulated asymmetric ratio frequency dielectric barrier discharges

    SciTech Connect (OSTI)

    Wang, Qi; Sun, Jizhong, E-mail: jsun@dlut.edu.cn; Ding, Zhenfeng; Ding, Hongbin; Wang, Dezhen [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116023 (China); Nozaki, Tomohiro [Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Wang, Zhanhui [Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-08-15

    The gas breakdown mechanisms, especially the roles of metastable species in atmospheric pressure pulse-modulated ratio frequency barrier discharges with co-axial cylindrical electrodes, were studied numerically using a one dimensional self-consistent fluid model. Simulation results showed that in low duty cycle cases, the electrons generated from the channels associated with metastable species played a more important role in initializing next breakdown than the direct ionization of helium atoms of electronic grounded states by electron-impact. In order to quantitatively evaluate the contribution to the discharge by the metastables, we defined a characteristic time and examined how the value varied with the gap distance and the electrode asymmetry. The results indicated that the lifetime of the metastable species (including He*and He{sub 2}{sup *}) was much longer than that of the pulse-on period and as effective sources of producing electrons they lasted over a period up to millisecond. When the ratio of the outer radius to the inner radius of the cylindrical electrodes was far bigger than one, it was found that the metastables distributed mainly in a cylindrical region around the inner electrode. When the ratio decreased as the inner electrode moved outward, the density of metastables in the discharge region near the outer electrode became gradually noticeable. As the discharging gap continued to decrease, the two hill-shaped distributions gradually merged to one big hill. When the discharge spacing was fixed, asymmetric electrodes facilitated the discharge.

  2. Multiple frequency method for operating electrochemical sensors

    DOE Patents [OSTI]

    Martin, Louis P. (San Ramon, CA)

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  3. Component Repair Times Obtained from MSPI Data

    SciTech Connect (OSTI)

    Eide, Steven A.

    2015-05-01

    Information concerning times to repair or restore equipment to service given a failure is valuable to probabilistic risk assessments (PRAs). Examples of such uses in modern PRAs include estimation of the probability of failing to restore a failed component within a specified time period (typically tied to recovering a mitigating system before core damage occurs at nuclear power plants) and the determination of mission times for support system initiating event (SSIE) fault tree models. Information on equipment repair or restoration times applicable to PRA modeling is limited and dated for U.S. commercial nuclear power plants. However, the Mitigating Systems Performance Index (MSPI) program covering all U.S. commercial nuclear power plants provides up-to-date information on restoration times for a limited set of component types. This paper describes the MSPI program data available and analyzes the data to obtain median and mean component restoration times as well as non-restoration cumulative probability curves. The MSPI program provides guidance for monitoring both planned and unplanned outages of trains of selected mitigating systems deemed important to safety. For systems included within the MSPI program, plants monitor both train UA and component unreliability (UR) against baseline values. If the combined system UA and UR increases sufficiently above established baseline results (converted to an estimated change in core damage frequency or CDF), a white (or worse) indicator is generated for that system. That in turn results in increased oversight by the US Nuclear Regulatory Commission (NRC) and can impact a plants insurance rating. Therefore, there is pressure to return MSPI program components to service as soon as possible after a failure occurs. Three sets of unplanned outages might be used to determine the component repair durations desired in this article: all unplanned outages for the train type that includes the component of interest, only unplanned outages associated with failures of the component of interest, and only unplanned outages associated with PRA failures of the component of interest. The paper will describe how component repair times can be generated from each set and which approach is most applicable. Repair time information will be summarized for MSPI pumps and diesel generators using data over 2003 2007. Also, trend information over 2003 2012 will be presented to indicate whether the 2003 2007 repair time information is still considered applicable. For certain types of pumps, mean repair times are significantly higher than the typically assumed 24 h duration.

  4. Integrally formed radio frequency quadrupole

    DOE Patents [OSTI]

    Abbott, Steven R. (Concord, CA)

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  5. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of KohnSham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with KohnSham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  6. PARC Periodical | Volume 7, Issue 3 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center PARC Periodical | Volume 7, Issue 3 February 16, 2016 PARC Periodical | Volume 7, Issue 3 VIEW ARTICLE HERE News/Media PARC Periodical

  7. A multiple deep attenuation frequency window for harmonic analysis in power systems

    SciTech Connect (OSTI)

    Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)

    1994-04-01

    A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.

  8. Method and means for generating a synchronizing pulse from a repetitive wave of varying frequency

    DOE Patents [OSTI]

    DeVolpi, Alexander; Pecina, Ronald J.; Travis, Dale J.

    1976-01-01

    An event that occurs repetitively at continuously changing frequencies can be used to generate a triggering pulse which is used to synchronize or control. The triggering pulse is generated at a predetermined percentage of the period of the repetitive waveform without regard to frequency. Counts are accumulated in two counters, the first counting during the "on" fraction of the period, and the second counting during the "off" fraction. The counts accumulated during each cycle are compared. On equality the trigger pulse is generated. Count input rates to each counter are determined by the ratio of the on-off fractions of the event waveform and the desired phase relationship. This invention is of particular utility in providing a trigger or synchronizing pulse during the open period of the shutter of a high-speed framing camera during its acceleration as well as its period of substantially constant speed.

  9. Off-site Intensive Operational Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Participating in Off-site Intensive Operational Period The ARM Program is playing a role in the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) intensive operational period (IOP), under way through July in South Florida. The objective of CRYSTAL-FACE is to investigate the physical properties and formation processes of tropical cirrus clouds. The ARM Program has deployed a suite of ground-based instruments in Florida for CRYSTAL-FACE

  10. Reactor control rod timing system. [LMFBR

    DOE Patents [OSTI]

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  11. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    SciTech Connect (OSTI)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  12. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  13. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  14. Low Frequency Wireless Communications Technology

    SciTech Connect (OSTI)

    Bartone, Erik J; Carbone, John F

    2004-01-27

    The purpose of this project was to demonstrate Nxegen's real-time wireless electricity monitoring and load management technologies in selected commercial, industrial, and municipal end user facilities. The purpose of which is to demonstrate the ability for Nxegen's technology to collect real-time electricity data to a central location (Nxegen's Network Operation Center "NOC"), aggregate customer load profiles into portfolios of profiles, and be able to dispatch load curtailment commands from the NOC to individual customer loads to demonstrate the ability to integrate demand resources into the overall electric utility system for the purpose of; (1) improving overall system reliability, (2) reducing wholesale electric generation prices (locational marginal prices "LMP"), and (3) reducing congestion costs in energy constrained areas (southwest Connecticut).

  15. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect (OSTI)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 11901199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  16. Frequency modulation drive for a piezoelectric motor

    DOE Patents [OSTI]

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  17. PARC Periodical | Vol. 6, Issue 1 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 October 1, 2014 PARC Periodical | Vol. 6, Issue 1

  18. PARC Periodical | Vol. 6, Issue 2 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 December 1, 2014 PARC Periodical | Vol. 6, Issue 2

  19. Frequency spectrum analyzer with phase-lock

    DOE Patents [OSTI]

    Boland, Thomas J. (Idaho Falls, ID)

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  20. Pulsations and period changes of the non-Blazhko RR lyrae variable Y oct observed from Dome A, Antarctica

    SciTech Connect (OSTI)

    Zhihua, Huang; Jianning, Fu; Weikai, Zong; Lingzhi, Wang; Zonghong, Zhu; M, Macri Lucas; Lifan, Wang; Ashley, Michael C. B.; S, Lawrence Jon; Daniel, Luong-Van; Xiangqun, Cui; Long-Long, Feng; Xuefei, Gong; Qiang, Liu; Huigen, Yang; Xiangyan, Yuan; Xu, Zhou; Zhenxi, Zhu; R, Pennypacker Carl; G, York Donald

    2015-01-01

    During the operation of the Chinese Small Telescope Array (CSTAR) in Dome A of Antarctica in the years 2008, 2009, and 2010, large amounts of photometric data have been obtained for variable stars in the CSTAR field. We present here the study of one of six RR Lyrae variables, Y Oct, observed with CSTAR in Dome A, Antarctica. Photometric data in the i band were obtained in 2008 and 2010, with a duty cycle (defined as the fraction of time representing scientifically available data to CSTAR observation time) of about 44% and 52%, respectively. In 2009, photometric data in the g and r bands were gathered for this star, with a duty cycle of 65% and 60%, respectively. Fourier analysis of the data in the three bands only shows the fundamental frequency and its harmonics, which is characteristic of the non-Blazhko RR Lyrae variables. Values of the fundamental frequency and the amplitudes, as well as the total pulsation amplitude, are obtained from the data in the three bands separately. The amplitude of the fundamental frequency and the total pulsation amplitude in the g band are the largest, and those in the i band the smallest. Two-hundred fifty-one times of maximum are obtained from the three seasons of data, which are analyzed together with 38 maximum times provided in the GEOS RR Lyrae database. A period change rate of −0.96 ± 0.07 days Myr{sup −1} is then obtained, which is a surprisingly large negative value. Based on relations available in the literature, the following physical parameters are derived: [Fe/H] = −1.41 ± 0.14, M{sub V} = 0.696 ± 0.014 mag, V−K = 1.182 ± 0.028 mag, logT{sub eff} = 3.802 ± 0.003 K, logg = 2.705 ± 0.004, logL/L{sub ⊙} = 1.625 ± 0.013, and logM/M{sub ⊙} = −0.240 ± 0.019.

  1. Nonlinear periodic waves solutions of the nonlinear self-dual network equations

    SciTech Connect (OSTI)

    Laptev, Denis V. Bogdan, Mikhail M.

    2014-04-15

    The new classes of periodic solutions of nonlinear self-dual network equations describing the breather and soliton lattices, expressed in terms of the Jacobi elliptic functions have been obtained. The dependences of the frequencies on energy have been found. Numerical simulations of soliton lattice demonstrate their stability in the ideal lattice and the breather lattice instability in the dissipative lattice. However, the lifetime of such structures in the dissipative lattice can be extended through the application of ac driving terms.

  2. QUASI-PERIODIC OSCILLATIONS AND BROADBAND VARIABILITY IN SHORT MAGNETAR BURSTS

    SciTech Connect (OSTI)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; Van der Horst, Alexander J.; Van der Klis, Michiel; Kouveliotou, Chryssa; Goegues, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H.

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  3. Edge effects in propagation of terahertz radiation in subwavelength periodic structures

    SciTech Connect (OSTI)

    Gelmont, B. Parthasarathy, R.; Globus, T.

    2008-08-15

    Improving detection sensitivity of biological molecules with low absorption characteristics in the terahertz gap still remains an important issue in terahertz vibrational resonance spectroscopy. One possible way to increase coupling of incident terahertz radiation to molecules is to exploit local enhancement of electromagnetic field in periodic slot arrays. In this work, we show that periodic arrays of rectangular slots with subwavelength widths provide for local electromagnetic field enhancements due to edge effects in our low frequency range of interest, 10-25 cm{sup -1}. Periodic structures of Au doped Si and InSb were studied. The half power enhancement width is {approx}500 nm or less around the slot, edges in all cases, thereby possibly bringing terahertz sensing to the nanoscale. InSb is confirmed to offer the highest results with local power enhancements on the order of 1100 at frequency 14 cm{sup -1}. InSb and Si have large skin depths in our frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Surface impedance boundary conditions were employed to model the Au structure. The applications possibly include development of novel biosensors, and monitoring biophysical processes such as DNA denaturation.

  4. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    DOE Patents [OSTI]

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  5. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  6. Digital slip frequency generator and method for determining the desired slip frequency

    DOE Patents [OSTI]

    Klein, Frederick F. (Monroeville, PA)

    1989-01-01

    The output frequency of an electric power generator is kept constant with variable rotor speed by automatic adjustment of the excitation slip frequency. The invention features a digital slip frequency generator which provides sine and cosine waveforms from a look-up table, which are combined with real and reactive power output of the power generator.

  7. Mo Year Report Period: EIA ID NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S.

  8. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect (OSTI)

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  9. Turbine bucket natural frequency tuning rib

    DOE Patents [OSTI]

    Wang, John Zhiqiang (Greenville, SC); Norton, Paul Francis (Greenville, SC); Barb, Kevin Joseph (Halfmoon, NY); Jacala, Ariel Caesar-Prepena (Simpsonville, SC)

    2002-01-01

    A tuning rib is added preferably in the aft cavity of a cored turbine bucket to alter the bucket's natural frequencies. The tuning rib may be a solid rib or a segmented rib and is particularly suited for altering high order frequency modes such as 2T, 4F and 1-3S. As such, detrimental crossings of natural bucket frequencies and gas turbine stimuli can be avoided to thereby improve the reliability of a gas turbine without impacting other features of the bucket that are important to the performance of the gas turbine.

  10. Multi-mode radio frequency device

    DOE Patents [OSTI]

    Gilbert, Ronald W.; Carrender, Curtis Lee; Anderson, Gordon A.; Steele, Kerry D.

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  11. High power radio frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Quentin A. (Bloomingdale, IL); Miller, Harold W. (Winfield, IL)

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  12. Variable frequency iteration MPPT for resonant power converters

    DOE Patents [OSTI]

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  13. Femtosecond laser induced periodic surface structures on multi-layer graphene

    SciTech Connect (OSTI)

    Beltaos, Angela Kova?evi?, Aleksander G.; Matkovi?, Aleksandar; Ralevi?, Uro; Savi?-evi?, Svetlana; Jovanovi?, Djordje; Jelenkovi?, Branislav M.; Gaji?, Rado

    2014-11-28

    In this work, we present an observation of laser induced periodic surface structures (LIPSS) on graphene. LIPSS on other materials have been observed for nearly 50 years, but until now, not on graphene. Our findings for LIPSS on multi-layer graphene were consistent with previous reports of LIPSS on other materials, thus classifying them as high spatial frequency LIPSS. LIPSS on multi-layer graphene were generated in an air environment by a linearly polarized femtosecond laser with excitation wavelength ? of 840?nm, pulse duration ? of ?150 fs, and a fluence F of ?4.34.4 mJ/cm{sup 2}. The observed LIPSS were perpendicular to the laser polarization and had dimensions of width w of ?3040?nm and length l of ?0.51.5??m, and spatial periods ? of ?70100?nm (??/8?/12), amongst the smallest of spatial periods reported for LIPSS on other materials. The spatial period and width of the LIPSS were shown to decrease for an increased number of laser shots. The experimental results support the leading theory behind high spatial frequency LIPSS formation, implying the involvement of surface plasmon polaritons. This work demonstrates a new way to pattern multi-layer graphene in a controllable manner, promising for a variety of emerging graphene/LIPSS applications.

  14. Characterization of arcs in frequency domain

    SciTech Connect (OSTI)

    D'Inca, R.; Siegl, G.; Faugel, H.; Braun, F.; Eckert, B.; Bobkov, V.; El Khaldi, M.; Noterdaeme, J.-M.

    2009-11-26

    Arc detection systems are developed for ICRH on ITER to prevent arcs from damaging the RF components. One of the detectors, the Sub-Harmonic Arc Detector (SHAD) is based on the detection of the frequencies emitted in the MHz range by arcs [R1]. To ensure the high level of reliability required for this safety system, it is necessary to demonstrate that these frequencies present a signal with a Signal to Noise Ratio high enough to be detected under the wide range of operational conditions (frequency, power, configuration) and for the different types of arcs that can appear in the feeding lines and on the antennas (vacuum arc, glow discharge, multipactor-induced discharge). For each type of arc, we analyze the evolution of the frequency spectrum relative to the evolution of other electrical parameters (reflected power, voltage)

  15. Spin relaxation and linear-in-electric-field frequency shift in an

    Office of Scientific and Technical Information (OSTI)

    arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field A method is presented to calculate the spin relaxation times T{sub 1}, T{sub 2} due to a nonuniform magnetic field, and the

  16. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges

    SciTech Connect (OSTI)

    Li, Chunhui; Ke, Manzhu Ye, Yangtao; Xu, Shengjun; Qiu, Chunyin; Liu, Zhengyou

    2014-07-14

    In this paper, an acoustic system with broadband asymmetric transmission is designed and fabricated, which consists of a water-immersed aluminum plate engraved with quasi-periodically-patterned ridges on single surface. It demonstrates that when the acoustic waves are launched into the system from the structured side, they can couple into the Lamb modes in the plate efficiently and attain a high transmission; on the contrary, when the waves are incident from the opposite flat side, the coupling is weak, and the transmission is low. Superior to systems with periodic patterning, this quasi-periodically-patterned system has a broad working frequency range due to the collective contributions from the multiple diffractions specific to the structure.

  17. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequency Instability Problems in North American Interconnections May 1, 2011 DOE/NETL-2011/1473 Frequency Instability Problems in North American Interconnections Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  18. Frequency-feedback cavity enhanced spectrometer

    DOE Patents [OSTI]

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  19. Property:Building/EndPeriod | Open Energy Information

    Open Energy Info (EERE)

    EndPeriod Jump to: navigation, search This is a property of type Date. End of the period (last day of the month) Pages using the property "BuildingEndPeriod" Showing 25 pages...

  20. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    SciTech Connect (OSTI)

    Eklund, Anders Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; stling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; kerman, Johan

    2014-03-03

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150?MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 1825?GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  1. Extremely high frequency RF effects on electronics.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  2. Self-seeded single-frequency laser peening method

    DOE Patents [OSTI]

    DAne, C.Brent; Hackey, Lloyd A.; Harris, Fritz B.

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  3. Self-seeded single-frequency laser peening method

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd (Livermore, CA); Harris, Fritz B. (Rocklin, CA)

    2009-08-11

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  4. Particle formation and its control in dual frequency plasma etching reactors

    SciTech Connect (OSTI)

    Kim, Munsu; Cheong, Hee-Woon; Whang, Ki-Woong

    2015-07-15

    The behavior of a particle cloud in plasma etching reactors at the moment when radio frequency (RF) power changes, that is, turning off and transition steps, was observed using the laser-light-scattering method. Two types of reactors, dual-frequency capacitively coupled plasma (CCP) and the hybrid CCP/inductively coupled plasma (ICP), were set up for experiments. In the hybrid CCP/ICP reactor (hereafter ICP reactor), the position and shape of the cloud were strongly dependent on the RF frequency. The particle cloud becomes larger and approaches the electrode as the RF frequency increases. By turning the lower frequency power off later with a small delay time, the particle cloud is made to move away from the electrode. Maintaining lower frequency RF power only was also helpful to reduce the particle cloud size during this transition step. In the ICP reactor, a sufficient bias power is necessary to make a particle trap appear. A similar particle cloud to that in the CCP reactor was observed around the sheath region of the lower electrode. The authors can also use the low-frequency effect to move the particle cloud away from the substrate holder if two or more bias powers are applied to the substrate holder. The dependence of the particle behavior on the RF frequencies suggests that choosing the proper frequency at the right moment during RF power changes can reduce particle contamination effectively.

  5. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  6. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  7. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  8. Periodic Trends in Highly Dispersed Groups IV and V Supported...

    Office of Scientific and Technical Information (OSTI)

    Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for ... Title: Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts ...

  9. Mirant: Summary of Monitored SO2 Concentrations During Periods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    during periods of highest impact as well as ERMOD modeling results for SO2 scenarios. PDF icon Mirant: Summary of Monitored SO2 Concentrations During Periods of Highest...

  10. Negative Effective Gravity in Water Waves by Periodic Resonator...

    Office of Scientific and Technical Information (OSTI)

    Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Prev Next Title: Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Authors: Hu,...

  11. EIS-0374: Notice of Extension of Comment Period | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Comment Period EIS-0374: Notice of Extension of Comment Period Klondike IIIBiglow Canyon Wind Integration Project This notice extends the close of comment for scoping from the...

  12. IUPAC Periodic Table of Isotopes for the Educational Community

    SciTech Connect (OSTI)

    Holden N. E.; Holden,N.E.; Coplen,T.B.

    2012-07-15

    John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in this area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).

  13. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  14. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-04-04

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  15. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    SciTech Connect (OSTI)

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; Namkung, W.; Cho, M. H.; Park, H.; Hosea, J.; Ellis, R.

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different deposition position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (?N~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.

  16. Demonstration of sawtooth period control with EC waves in KSTAR plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, J. H.; Bae, Y. S.; Joung, M.; Kim, D.; Goodman, T. P.; Sauter, O.; Sakamoto, K.; Kajiwara, K.; Oda, Y.; Kwak, J. G.; et al

    2015-03-12

    The sawtooth period control in tokamak is important issue in recent years because the sawtooth crash can trigger TM/NTM instabilities and drive plasmas unstable. The control of sawtooth period by the modification of local current profile near the q=1 surface using ECCD has been demonstrated in a number of tokamaks [1, 2] including KSTAR. As a result, developing techniques to control the sawtooth period as a way of controlling the onset of NTM has been an important area of research in recent years [3]. In 2012 KSTAR plasma campaign, the sawtooth period control is carried out by the different depositionmore » position of EC waves across the q=1 surface. The sawtooth period is shortened by on-axis co-ECCD (destabilization), and the stabilization of the sawtooth is also observed by off-axis co-ECCD at outside q=1 surface. In 2013 KSTAR plasma campaign, the sawtooth locking experiment with periodic forcing of 170 GHz EC wave is carried out to control the sawtooth period. The optimal target position which lengthens the sawtooth period is investigated by performing a scan of EC beam deposition position nearby q=1 surface at the toroidal magnetic field of 2.9 T and plasma current of 0.7 MA. The sawtooth locking by the modulated EC beam is successfully demonstrated as in [3-5] with the scan of modulation-frequency and duty-ratio at the low beta (βN~0.5) plasma. In this paper, the sawteeth behavior by the location of EC beam and the preliminary result of the sawtooth locking experiments in KSTAR will be presented.« less

  17. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  18. High frequency inductive lamp and power oscillator

    DOE Patents [OSTI]

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  19. A novel radio frequency assisted heat pump dryer

    SciTech Connect (OSTI)

    Marshall, M.G.; Metaxas, A.C.

    1999-09-01

    This paper compares an experimental heat pump batch dryer with the implementation of volumetric Radio Frequency (RF) heating, in the combination drying of crushed brick particulate. Results are presented showing overall improvements in drying. A simplified mathematical drying model including the RF energy source has been developed using mass and energy conservation, confirming the experimental results. Drying is a widespread, energy intensive industrial unit operation. The economics of a drying process operation largely depend upon the dryers performance and ultimately the cost of energy consumption. To enhance the performance of a drying system, the damp air stream that exits the drying chamber can be recycled to reclaim the enthalpy of evaporation that it carries, by using a heat pump (Hodgett, 1976). However, because the medium that dries is still warm air, this system also suffers from heat transfer limitations, particularly towards the falling drying rate period. Such limitations in drying performance can be overcome with the use of Radio Frequency (RF) energy which generates heat volumetrically within the wet material by the combined mechanisms of dipole rotation and conduction effects which speeds up the drying process (Metaxas et al, 1983). Despite the clear advantages that heat pumps and high frequency heating offer for drying, the combination of these two techniques until recently has not been studied (Kolly et al, 1990; Marshall et al, 1995).A series of experiments carried out comprising a motor driven heat pump which was retro-fitted with the ability of imparting RF energy into a material at various stages of the drying cycle are described and compared with a mathematical model.

  20. PARC Periodical | Volume 7, Issue 2 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 2 December 7, 2015 PARC Periodical | Volume 7, Issue 2 VIEW ARTICLE HERE

  1. Radio frequency sheaths in an oblique magnetic field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  2. Radio frequency sheaths in an oblique magnetic field

    SciTech Connect (OSTI)

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numerically to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.

  3. Spin relaxation and linear-in-electric-field frequency shift in an

    Office of Scientific and Technical Information (OSTI)

    arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  4. EIS-0463: Extension of Scoping Period | Department of Energy

    Office of Environmental Management (EM)

    Extension of Scoping Period EIS-0463: Extension of Scoping Period Presidential Permit Application for Northern Pass Transmission, New Hampshire The U.S. Department of Energy (DOE) is reopening the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS) (DOE/EIS-0463). In anticipation of additional alternative route information being provided by Northern Pass, DOE is reopening the scoping period. DOE will determine the close of the scoping period

  5. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOE Patents [OSTI]

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  6. Seismic isolation systems with distinct multiple frequencies

    DOE Patents [OSTI]

    Wu, Ting-shu (Downers Grove, IL); Seidensticker, Ralph W. (Wheaton, IL)

    1990-01-01

    A method and apparatus for isolating a building or other structure from smic vibratory motion which provides increased assurance that large horizontal motion of the structure will not occur than is provided by other isolation systems. Increased assurance that large horizontal motion will not occur is achieved by providing for change of the natural frequency of the support and structure system in response to displacement of the structure beyond a predetermined value. The natural frequency of the support and structure system may be achieved by providing for engaging and disengaging of the structure and some supporting members in response to motion of the supported structure.

  7. Computing Instantaneous Frequency by normalizing Hilbert Transform

    DOE Patents [OSTI]

    Huang, Norden E.

    2005-05-31

    This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.

  8. Chaotic dynamics in a periodically driven spin-1 condensate

    SciTech Connect (OSTI)

    Cheng Jing [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

    2010-02-15

    We use periodically modulated magnetic fields to drive spin-1 Bose-Einstein condensates (BECs) and study the corresponding spin-mixing dynamics. Due to the time-dependent driving, this system permits chaotic dynamics depending on the drive parameters, which could not occur in previous studies. From the investigation of the Poincare sections, we find there exist complex trajectories in the phase space, leading to very complicated structures of the phase space with mixed regular and chaotic regions. By calculating the quasienergy levels of the corresponding Floquet operators, the signatures of quantum chaos are also found in this system. The level spacing distribution is very close to the Poisson distribution or Wigner distribution when the corresponding classical dynamics is regular or chaotic.

  9. Instrumentation to Monitor Transient Developing Periodic Flow in Newtonian Slurries

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Enderlin, Carl W.

    2014-08-03

    This paper describes measurement techniques developed and applied to characterize solids mobilization and mixing of Newtonian slurries that are subjected to transient, periodic, developing flows. Metrics to characterize mobilization and mixing are the just suspended velocity (UJS) and the cloud height (HC). Two ultrasonic instruments to characterize pulse jet mixing of slurries were developed and deployed to measure related metrics: the thickness of the settled bed (used to determine mobilization) and the concentration within the cloud as a function of elevation [C(Z)]. A second method, continuous sample extraction, characterization, and reinsertion was successfully used to measure average density and characterize the concentration within the cloud. Testing focused on mixing vessels using intermitent jet mixers oriented vertically downward. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents, and to determine mixing times for process evaluation.

  10. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect (OSTI)

    Petrovi?, Suzana M.; Gakovi?, B.; Peruko, D.; Stratakis, E.; Department of Materials Science and Technology, University of Crete, 710 03 Heraklion, Crete ; Bogdanovi?-Radovi?, I.; ?ekada, M.; Fotakis, C.; Department of Physics, University of Crete, 714 09 Heraklion, Crete ; Jelenkovi?, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  11. Climate signal detection using wavelet transform: How to make a time series sing

    SciTech Connect (OSTI)

    Lau, K.M.; Weng, H.

    1995-12-01

    In this paper, the application of the wavelet transform (WT) to climate time series analyses is introduced. A tutorial description of the basic concept of WT, compared with similar concepts used in music, is also provided. Using an analogy between WT representation of a time series and a music score, the authors illustrate the importance of local versus global information in the time-frequency localization of climate signals. Examples of WT applied to climate data analysis are demonstrated using analytic signals as well as real climate time series. Results of WT applied to two climate time series-that is, a proxy paleoclimate time series with a 2.5-Myr deep-sea sediment record of {gamma}{sup 18}O and a 140-yr monthly record of Northern Hemisphere surface temperature-are presented. The former shows the presence of a 40-kyr and a 100-kyr oscillation and an abrupt transition in the oscillation regime at 0.7 Myr before the present, consistent with previous studies. The latter possesses a myriad of oscillatory modes f rom interannual (2-5 yr), interdecadal (10-12 yr, 20-25 yr, and 40-60 yr), and century ({approximately}180 yr) scales at different periods of the data record. In spite of the large difference in timescales, common features in time-frequency characteristics of these two time series have been identified. These features suggest that the variations of the earth`s climate are consistent with those exhibited by a nonlinear dynamical system under external forcings. 32 refs., 9 figs.

  12. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  13. Electron-paramagnetic resonance detection with software time locking

    SciTech Connect (OSTI)

    Aloisi, Giovanni Mannini, Matteo; Caneschi, Andrea; Dolci, David; Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino ; Carl, Marcello

    2014-02-15

    A setup for electron paramagnetic resonance with narrow band digital detection is described. A low frequency reference tone is added to the radio frequency signal. This reference signal, after digital detection, is used to lock the resonance signal, even in the absence of hardware time locking among the radio frequency generator, the conversion local oscillators, and the sampling stage. Results obtained with 2,2-Diphenyl-1-Pycryl-Hydrazil are presented and discussed.

  14. Frequency Modulation Spectroscopy Modeling for Remote Chemical Detection

    SciTech Connect (OSTI)

    Sheen, David M.

    2000-09-30

    Frequency modulation (FM) spectroscopy techniques show promise for active infrared remote chemical sensing. FM spectroscopy techniques have reduced sensitivity to optical and electronic noise, and are relatively immune to the effects of various electronic and mechanical drifts. FM systems are responsive to sharp spectral features and can therefore reduce the effects of spectral clutter due to interfering chemicals in the plume or in the atmosphere. The relatively high modulation frequencies used for FM also reduces the effects of albedo (reflectance) and plume variations. Conventional differential absorption lidar (DIAL) systems are performance limited by the noise induced by speckle. Analysis presented in this report shows that FM based sensors may reduce the effects of speckle by one to two orders of magnitude. This can result in reduced dwell times and faster area searches, as well as reducing various forms of spatial clutter. FM systems will require a laser system that is continuously tunable at relatively high frequencies (0.1 to 20 MHz). One promising candidate is the quantum-cascade (QC) laser [1, 2]. The QC laser is potentially capable of power levels on the order of 1 Watt and frequency tuning on the order of 3 - 6 GHz, which is the performance level required for FM spectroscopy based remote sensing. In this report we describe a high-level numerical model for an FM spectroscopy based remote sensing system, and application to two unmanned airborne vehicle (UAV) scenarios. A Predator scenario operating at a slant range of 6.5 km with a 10 cm diameter telescope, and a Global Hawk scenario operating at a range of 30 km with a 20 cm diameter telescope, has been assumed to allow estimation of the performance of potential FM systems.

  15. High-frequency electric field measurement using a toroidal antenna

    SciTech Connect (OSTI)

    Lee, K.H.

    1997-01-01

    In this paper the author describes an innovative method of measuring high-frequency electric fields using a toroid. For typical geophysical applications the new sensor will detect electric fields for a wide range of spectrum starting from 1.0 MHz. This window, in particular the lower frequency range between 1.0 to 100 MHz, has not been used for existing electromagnetic or radar systems to detect small objects in the upper few meters of the ground. Ground penetrating radar (GPR) can be used successfully in this depth range if the ground is resistive but most soils are, in fact, conductive (0.01 to 1.0 S/m) rendering GPR inefficient. Other factors controlling the resolution of GPR system for small objects is the spatial averaging inherent in the electric dipole antenna and the scattering caused by soil inhomogeneities of dimensions comparable to the wavelength (and antenna size). For maximum resolution it is desirable to use the highest frequencies but the scattering is large and target identification is poor. Time-varying magnetic fields induce an emf (voltage) in a toroid. The electric field at the center of the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroid one can easily and accurately determine the electric field. The new sensor will greatly simplify the cumbersome procedure involved with GPR measurements with its center frequency less than 100 MHz. The overall size of the toroidal sensor can be as small as a few inches. It is this size advantage that will not only allow easy fabrication and deployment of multi-component devices either on the surface or in a borehole, but it will render greatly improved resolution over conventional systems.

  16. Rapid prototyping for radio-frequency geolocation applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rapid prototyping for radio-frequency geolocation applications Citation Details In-Document Search Title: Rapid prototyping for radio-frequency geolocation applications...

  17. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced ...

  18. Dynamic frequency tuning of electric and magnetic metamaterial...

    Office of Scientific and Technical Information (OSTI)

    The geometrically modifiable resonator can achieve active optical andor electronic control of the frequency response in metamaterials andor frequency selective surfaces,...

  19. Integration of Full Tensor Gravity and ZTEM Passive Low Frequency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments for Simultaneous Data Acquisition Integration of Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments...

  20. Category:Controlled Source Frequency-Domain Magnetics | Open...

    Open Energy Info (EERE)

    Controlled Source Frequency-Domain Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Controlled Source Frequency-Domain...

  1. Advanced Radio Frequency-Based Sensors for Monitoring Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter ...

  2. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, S.; Craxton, R.S.; Soures, J.

    1990-10-02

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.

  3. Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Craxton, R. Stephen (Rochester, NY); Soures, John (Pittsford, NY)

    1990-01-01

    In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.

  4. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect (OSTI)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  5. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The...

  6. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOE Patents [OSTI]

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  7. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect (OSTI)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  8. Count-doubling time safety circuit

    DOE Patents [OSTI]

    Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.

  9. Remote Whispering Applying Time Reversal

    SciTech Connect (OSTI)

    Anderson, Brian Eric

    2015-07-16

    The purpose of this project was to explore the use of time reversal technologies as a means for communication to a targeted individual or location. The idea is to have the privacy of whispering in one’s ear, but to do this remotely from loudspeakers not located near the target. Applications of this work include communicating with hostages and survivors in rescue operations, communicating imaging and operational conditions in deep drilling operations, monitoring storage of spent nuclear fuel in storage casks without wires, or clandestine activities requiring signaling between specific points. This technology provides a solution in any application where wires and radio communications are not possible or not desired. It also may be configured to self calibrate on a regular basis to adjust for changing conditions. These communications allow two people to converse with one another in real time, converse in an inaudible frequency range or medium (i.e. using ultrasonic frequencies and/or sending vibrations through a structure), or send information for a system to interpret (even allowing remote control of a system using sound). The time reversal process allows one to focus energy to a specific location in space and to send a clean transmission of a selected signal only to that location. In order for the time reversal process to work, a calibration signal must be obtained. This signal may be obtained experimentally using an impulsive sound, a known chirp signal, or other known signals. It may also be determined from a numerical model of a known environment in which the focusing is desired or from passive listening over time to ambient noise.

  10. Department of Energy Extends Comment Period on Proposed Revisions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extends Comment Period on Proposed Revisions to its NEPA Rules Department of Energy Extends Comment Period on Proposed Revisions to its NEPA Rules February 17, 2011 - 5:29pm ...

  11. Property:Building/StartPeriod | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Date. Start of the period (first day o the month) Pages using the property "BuildingStartPeriod" Showing 25 pages using this...

  12. Property:Wave Period Range(s) | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave...

  13. PARC Periodical | Volume 6, Issue 5 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 5 June 3, 2015 PARC Periodical | Volume 6, Issue 5 VIEW ARTICLE HERE

  14. PARC Periodical | Volume 6, Issue 6 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Volume 6, Issue 6 August 20, 2015 PARC Periodical | Volume 6, Issue 6 VIEW ARTICLE HERE

  15. PARC Periodical | Volume 7, Issue 1 | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 1 October 12, 2015 PARC Periodical | Volume 7, Issue 1 VIEW ARTICLE HERE News/Media

  16. EIS-0463: Reopening of Scoping Period for the Environmental Impact

    Office of Environmental Management (EM)

    Statement | Department of Energy Reopening of Scoping Period for the Environmental Impact Statement EIS-0463: Reopening of Scoping Period for the Environmental Impact Statement Northern Pass Transmission Line Project The U.S. Department of Energy (DOE) is reopening the public scoping period for the Northern Pass Transmission Line Project Environmental Impact Statement (EIS) (DOE/EIS-0463). The scoping period now ends on June 14, 2011. For more information see the project page at:

  17. High frequency background quantization of gravity

    SciTech Connect (OSTI)

    von Borzeszkowski, H.

    1982-06-01

    Considering background quantization of gravitational fields, it is generally assumed that the classical background satisfies Einstein's gravitational equations. However, there exist arguments showing that, for high frequency (quantum) fluctuations, this assumption has to be replaced by a condition describing the back reaction of fluctuations on the background. It is shown that such an approach leads to limitations for the quantum procedure which occur at distances larger than Planck's elementary length 1 = (Gh/c/sup 3/)/sup 1/2/.

  18. Passive radio frequency peak power multiplier

    DOE Patents [OSTI]

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  19. High-frequency plasma-heating apparatus

    DOE Patents [OSTI]

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  20. Frequency dependent thermal expansion in binary viscoelasticcomposites

    SciTech Connect (OSTI)

    Berryman, James G.

    2007-12-01

    The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.

  1. An optical beam frequency reference with 10{sup -14} range frequency instability

    SciTech Connect (OSTI)

    McFerran, J. J.; Hartnett, J. G.; Luiten, A. N. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, 6009 Western Australia (Australia)

    2009-07-20

    The authors report on a thermal beam optical frequency reference with a fractional frequency instability of 9.2x10{sup -14} at 1 s reducing to 2.0x10{sup -14} at 64 s before slowly rising. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator. A diode laser at 423 nm probes the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions on the atoms. The measured fractional frequency instability is an order of magnitude improvement on previously reported thermal beam optical clocks. The photon shot-noise of the read-out produces a limiting square root {lambda}-variance of 7x10{sup -14}/{radical}({tau})

  2. The PDV Velocity History and Shock Arrival Time Analyzer

    Energy Science and Technology Software Center (OSTI)

    2006-08-29

    This software allows the user to analyze heterodyne beat signals generated when a Doppler-shifted laser light interacts with un-shifted laser light. The software analyzes the data in a joint time frequency domain to extract instantaneous velocity.

  3. Statistical Stability and Time-Reversal Imgaing in Random Media

    SciTech Connect (OSTI)

    Berryman, J; Borcea, L; Papanicolaou, G; Tsogka, C

    2002-02-05

    Localization of targets imbedded in a heterogeneous background medium is a common problem in seismic, ultrasonic, and electromagnetic imaging problems. The best imaging techniques make direct use of the eigenfunctions and eigenvalues of the array response matrix, as recent work on time-reversal acoustics has shown. Of the various imaging functionals studied, one that is representative of a preferred class is a time-domain generalization of MUSIC (MUltiple Signal Classification), which is a well-known linear subspace method normally applied only in the frequency domain. Since statistical stability is not characteristic of the frequency domain, a transform back to the time domain after first diagonalizing the array data in the frequency domain takes optimum advantage of both the time-domain stability and the frequency-domain orthogonality of the relevant eigenfunctions.

  4. Enhanced transportation of energetic electrons in dual-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Kim, H. Y.; Won, I. H.; Lee, H. Wk.; Shin, H. K.; Lee, J. K.

    2013-02-15

    A comparative study of electron kinetics between single-frequency (SF) microplasmas and their equivalent dual-frequency (DF) microplasmas with matching effective frequencies in atmospheric-pressure helium discharges was performed using particle-in-cell simulation with a Monte Carlo collision. The effective-frequency concept helps in analyzing DF microplasmas in a fashion similar to SF microplasmas with effective parameters. In this study, the plasma characteristics such as the plasma potential, density, and electron energy probability functions of the SF microplasma and its DF counterpart were almost the same. However, the oscillating sheath edge was pushed further into the electrode for a substantial fraction of the time and the sheath width decreased in DF microplasmas. As a result, the transportation of the energetic electrons ({epsilon} > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is enhanced in DF microplasmas as compared to SF microplasmas.

  5. NATIONAL EVALUATION OF THE WEATHERIZATION ASSISTANCE PROGRAM DURING THE ARRA PERIOD: PROGRAM YEARS 2009-2011

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M; Schmoyer, Richard L; Eisenberg, Joel Fred; Ternes, Mark P; Schweitzer, Martin; Hendrick, Timothy P

    2012-08-01

    This report describes the third major evaluation of the Program, encompassing program years 2009 to 2011. In this report, this period of time is referred to as the ARRA Period. This is a special period of time for the Program because the American Recovery and Reinvestment Act (ARRA) of 2009 has allocated $5 billion of funding for the Program. In normal program years, WAP s annual appropriation is in the range of $200-250 million, supporting the weatherization of approximately 100,000 homes. With the addition of ARRA funding during these program years, the expectation is that weatherization activity will exceed 300,000 homes per year. In addition to saving energy and reducing low-income energy bills, expanded WAP funding is expected to stimulate the economy by providing new jobs in the weatherization field and allowing low-income households to spend more money on goods and services by spending less on energy.

  6. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    SciTech Connect (OSTI)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  7. A high frequency resonance gravity gradiometer

    SciTech Connect (OSTI)

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N.; Bezrukov, L. B.; Krysanov, V. A.; Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S.; Rudenko, V. N.

    2014-06-15

    A new setup OGRANthe large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare eventsgravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  8. Self isolating high frequency saturable reactor

    DOE Patents [OSTI]

    Moore, James A. (Powell, TN)

    1998-06-23

    The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.

  9. Low frequency pressure modulation of indium antimonide

    SciTech Connect (OSTI)

    Hallock, Gary A.; Meier, Mark A.

    2012-07-15

    A lumped parameter resonator capable of generating megapascal pressures at low frequency (kilohertz) is described. Accelerometers are used to determine the applied pressure, and are calibrated with a piezoelectric sample. A laser diagnostic was also developed to measure the pressure in semiconductor samples through the band gap pressure dependence. In addition, the laser diagnostic has been used to measure the attenuation coefficient {alpha} of commercially available indium antimonide (InSb) wafers. The resonator and laser diagnostic have been used with InSb samples to verify the pressure response.

  10. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  11. High efficiency, oxidation resistant radio frequency susceptor

    DOE Patents [OSTI]

    Besmann, Theodore M.; Klett, James W.

    2004-10-26

    An article and method of producing an article for converting energy from one form to another having a pitch-derived graphitic foam carbon foam substrate and a single layer coating applied to all exposed surfaces wherein the coating is either silicon carbide or carbides formed from a Group IVA metal. The article is used as fully coated carbon foam susceptors that more effectively absorb radio frequency (RF) band energy and more effectively convert the RF energy into thermal band energy or sensible heat. The essentially non-permeable coatings also serve as corrosion or oxidation resistant barriers.

  12. Why high-frequency pulse tubes can be tipped

    SciTech Connect (OSTI)

    Swift, Gregory W092710; Backhaus, Scott N

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  13. THE DECAYING LONG-PERIOD OSCILLATION OF A STELLAR MEGAFLARE

    SciTech Connect (OSTI)

    Anfinogentov, S.; Nakariakov, V. M.; Mathioudakis, M.; Van Doorsselaere, T.; Kowalski, A. F.

    2013-08-20

    We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s{sup -1} would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.

  14. Fractional frequency instability in the 10{sup -14} range with a thermal beam optical frequency reference

    SciTech Connect (OSTI)

    McFerran, John J.; Luiten, Andre N. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. (Australia)

    2010-02-15

    We demonstrate a means of increasing the signal-to-noise ratio in a Ramsey-Borde interferometer with spatially separated oscillatory fields on a thermal atomic beam. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator, with an extended cavity diode laser at 423 nm probing the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions with the atoms. Evaluation of the instability of the Ca frequency reference is carried out by comparison with (i) a hydrogen-maser and (ii) a cryogenic sapphire oscillator. In the latter case the Ca reference exhibits a square-root {Lambda} variance of 9.2x10{sup -14} at 1 s and 2.0x10{sup -14} at 64 s. This is an order-of-magnitude improvement for optical beam frequency references, to our knowledge. The shot noise of the readout fluorescence produces a limiting square-root {Lambda} variance of 7x10{sup -14}/{radical}({tau}), highlighting the potential for improvement. This work demonstrates the feasibility of a portable frequency reference in the optical domain with 10{sup -14} range frequency instability.

  15. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  16. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  17. Periodicals collection management using a decision support system

    SciTech Connect (OSTI)

    Compton, M.L.; Moser, E.C.

    1993-12-31

    Sandia National Laboratories is a multiprogram national laboratory established in 1949. The Library currently uses DOBIS for its automated system, including the Periodicals Control function for periodical check-in. DOBIS performs processing and control functions adequately, but could not meet our reporting needs. Therefore the Library`s Periodicals Decision Team decided that they needed another ``system`` for collection management. A Periodicals Decision Support System was created using information downloaded from DOBIS and uploaded into dBASE IV. The Periodical Decision Support System functions as an information-processing system that has aided us in making collection management decisions for periodicals. It certainly allows us to do interactive ad-hoc analysis; although there are no modeling tools currently incorporated in the system. We hope that these modeling tools will come later. We have been gathering information and developing needed reports to achieve this goal.

  18. PARC Periodical-Volume 5, Issue 6 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Periodical-Volume 5, Issue 6 August 12, 2014 PARC Periodical-Volume 5, Issue 6 View the Periodical here

  19. Chapter 18: Variable Frequency Drive Evaluation Protocol

    SciTech Connect (OSTI)

    Romberger, J.

    2014-11-01

    An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol. Other ASD devices, such as magnetic drive, eddy current drives, variable belt sheave drives, or direct current motor variable voltage drives, are also not addressed. The VFD is by far the most common type of ASD hardware. With VFD speed control on a centrifugal fan or pump motor, energy use follows the affinity laws, which state that the motor electricity demand is a cubic relationship to speed under ideal conditions. Therefore, if the motor runs at 75% speed, the motor demand will ideally be reduced to 42% of full load power; however, with other losses it is about 49% of full load power.

  20. Trirotron: triode rotating beam radio frequency amplifier

    DOE Patents [OSTI]

    Lebacqz, Jean V. (Stanford, CA)

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  1. Recommendation 186: Option Periods in Prime Contract Language | Department

    Office of Environmental Management (EM)

    of Energy 6: Option Periods in Prime Contract Language Recommendation 186: Option Periods in Prime Contract Language ORSSAB recommends the inclusion of option periods in the language of all future DOE Request for Proposals for prime contracts when appropriate. PDF icon Recommendation 186 PDF icon DOE response to recommendation 186 More Documents & Publications EM SSAB Recommendations and Letters - 2010-01 EM SSAB Recommendations and Letters - 2010-02 Recommendation 194: 2012 Budget

  2. EIS-0489: Notice of Comment Period Extension and Additional Scoping

    Office of Environmental Management (EM)

    Meetings | Department of Energy Comment Period Extension and Additional Scoping Meetings EIS-0489: Notice of Comment Period Extension and Additional Scoping Meetings Jordan Cove Liquefaction Project (Coos County, OR) and Pacific Connector Pipeline Project (Coos, Klamath, Jackson, and Douglas Counties, OR) FERC announces the extension of the public comment periond and additional scoping meetings. The comment period has been extended from September 4, 2012 to October 29, 2012. For more

  3. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect (OSTI)

    Warne, Larry K.; Jorgenson, Roy E.

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  4. Hydraulic impulse generator and frequency sweep mechanism for borehole applications

    DOE Patents [OSTI]

    Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.

    2006-11-21

    This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.

  5. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  6. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  7. Method for imaging with low frequency electromagnetic fields

    DOE Patents [OSTI]

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  8. CEQ Extends Comment Period on Revised Draft Guidance on Consideration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in NEPA Reviews CEQ Extends Comment Period on Revised Draft Guidance on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews February 20, ...

  9. Guidance on the Required Period for Grantees to Obligate Funds...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the Required Period for Grantees to Obligate Funds and the Procedures for Reporting of Obligated Funds for the Energy Efficiency Conservation Block Grant (EECBG) Program...

  10. Notice of Extension of Public Comment Period for Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extension of Public Comment Period for Application for Proposed Project for Clean Line Plains & Eastern Transmission Line: Federal Register Notice, Volume 80, No. 116 - Jun. 17, ...

  11. Extension of Comment Period on the Draft Integrated, Interagency...

    Energy Savers [EERE]

    of Comment Period on the Draft Integrated, Interagency Pre-Application (IIP) Process for Electric Transmission Projects Requiring Federal Authorizations Extension of Comment...

  12. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Storage Cylinders Periodic Inspection and End of Life Issues High Pressure Fuel ... Lessons Learned from Practical Field Experience with High Pressure Gaseous Fuels The ...

  13. EIS-0403: Notice to Extend Public Comment Period | Department...

    Broader source: Energy.gov (indexed) [DOE]

    States The Department of Energy and the Bureau of Land Management (BLM) (the Agencies) extended the public comment period for the Programmatic Environmental Impact Statement to...

  14. EIS-0431: Extension of public comment period; Notice of public...

    Energy Savers [EERE]

    EIS-0431: Extension of public comment period; Notice of public hearing (Correction) Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and...

  15. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  16. EIS-0391: Extension of the Public Comment Period | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Tank Closure and Waste Management for the Hanford Site, Richland, WA Extension of the Public Comment Period for the Draft Tank Closure and Waste Management Environmental Impact...

  17. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect (OSTI)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Vias, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  18. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    SciTech Connect (OSTI)

    Hopkins, Mark A. King, Lyon B.

    2014-05-15

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  19. Comments on Landau damping due to synchrotron frequency spread

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2005-01-01

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.

  20. Plasma acceleration using a radio frequency self-bias effect...

    Office of Scientific and Technical Information (OSTI)

    Plasma acceleration using a radio frequency self-bias effect Citation Details In-Document Search Title: Plasma acceleration using a radio frequency self-bias effect In this work...

  1. Using Synchrophasors for Frequency Response Analysis in the Western Interconnection

    SciTech Connect (OSTI)

    Kosterev, Dmitry; Davies, Donald; Etingov, Pavel V.; Silverstein, Alison; Eto, Joseph H.

    2014-10-19

    Frequency response has received a lot of attention in recent years at the national level, which culminated in the development and approval of NERC BAL-003-1 Frequency Response and Frequency Bias Setting Reliability Standard. WECC JSIS, NASPI, BPA, CERTS and PNNL collaborate on the common goals to deliver to the industry applications for frequency response analysis at interconnection, Balancing Authority and individual power plant levels. This paper describes a Frequency Response Analysis Tool that has been used for establishing a frequency response baseline for the Western Interconnection. This paper describes how synchrophasor data is used in for determination of generator characteristics frequency responsive, under load control or baseloaded. This paper also discusses and provides an example of how the frequency response distribution can impact power pick-up on major transmission paths.

  2. High-frequency signal transmission through single-atom contacts...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ATOMS; DATA TRANSMISSION; FREQUENCY DEPENDENCE; GHZ RANGE; GOLD; PLATINUM; RADIOWAVE RADIATION; ...

  3. Microwave and Radio Frequency Workshop | Department of Energy

    Office of Environmental Management (EM)

    Workshops » Microwave and Radio Frequency Workshop Microwave and Radio Frequency Workshop July 25, 2012 At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies - such as microwave (MW) and radio frequency (RF) energy - and their potential to impact advanced manufacturing. Exploiting the material interactions of MW and RF energy is a route to developing energy-saving process

  4. EA-1631: Beacon Power Corporation Frequency Regulation Facility in

    Office of Environmental Management (EM)

    Stephentown, NY | Department of Energy 1: Beacon Power Corporation Frequency Regulation Facility in Stephentown, NY EA-1631: Beacon Power Corporation Frequency Regulation Facility in Stephentown, NY February 2, 2009 EA-1631: Final Environmental Assessment Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York February 27, 2009 EA-1631: Finding of No Significant Impact Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in

  5. An improved integrally formed radio frequency quadrupole

    DOE Patents [OSTI]

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  6. Resonant frequency method for bearing ball inspection

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  7. Resonant frequency method for bearing ball inspection

    DOE Patents [OSTI]

    Khuri-Yakub, B. T. (Palo Alto, CA); Hsieh, Chung-Kao (Stanford, CA)

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  8. Period-doubling reconstructions of semiconductor partial dislocations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Park, Ji -Sang; Huang, Bing; Wei, Su -Huai; Kang, Joongoo; McMahon, William E.

    2015-09-18

    Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90° partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantly reduced;more » hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. Lastly, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less

  9. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    DOE Patents [OSTI]

    Harrison; Neil , Singleton; John , Migliori; Albert

    2008-08-05

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  10. Alternative Approaches for Incentivizing the Frequency Responsive Reserve Ancillary Service

    SciTech Connect (OSTI)

    Ela, E.; Tuohy, A.; Milligan, M.; Kirby, B.; Brooks, D.

    2012-05-01

    Frequency responsive reserve is the autonomous response of generators and demand response to deviations of system frequency, usually as a result of the instantaneous outage of a large supplier. This article discusses the issues that can occur without proper incentives and even disincentives, and proposes alternatives to introduce incentives for resources to provide frequency responsive reserve to ensure an efficient and reliable power system.

  11. Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Frequency Stabilization in Nonlinear MEMS and NEMS Oscillators Technology available for licensing: a method to create micro- and nanoscale mechanical oscillators with excellent frequency stability. Excellent frequency stability; provides a strategy for optimizing and engineering micro- and nanoscale devices Easy to fabricate at reduced cost PDF icon MEMS_NEMS_oscillators

  12. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing PDF icon mw_rf_workshop_background_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Advanced Manufacturing Office Overview Manufacturing Demonstration Facility Workshop

  13. Consequences of dynamical disruption and mass segregation for the binary frequencies of star clusters

    SciTech Connect (OSTI)

    Geller, Aaron M.; De Grijs, Richard; Li, Chengyuan; Hurley, Jarrod R.

    2013-12-10

    The massive (13,000-26,000 M {sub ?}) and young (15-30 Myr) Large Magellanic Cloud star cluster NGC 1818 reveals an unexpected increasing binary frequency with radius for F-type stars (1.3-2.2 M {sub ?}). This is in contrast to many older star clusters that show a decreasing binary frequency with radius. We study this phenomenon with sophisticated N-body modeling, exploring a range of initial conditions, from smooth virialized density distributions to highly substructured and collapsing configurations. We find that many of these models can reproduce the cluster's observed properties, although with a modest preference for substructured initial conditions. Our models produce the observed radial trend in binary frequency through disruption of soft binaries (with semi-major axes, a ? 3000 AU), on approximately a crossing time (?5.4 Myr), preferentially in the cluster core. Mass segregation subsequently causes the binaries to sink toward the core. After roughly one initial half-mass relaxation time (t {sub rh}(0) ? 340 Myr) the radial binary frequency distribution becomes bimodal, the innermost binaries having already segregated toward the core, leaving a minimum in the radial binary frequency distribution that marches outward with time. After 4-6 t {sub rh}(0), the rising distribution in the halo disappears, leaving a radial distribution that rises only toward the core. Thus, both a radial binary frequency distribution that falls toward the core (as observed for NGC 1818) and one that rises toward the core (as for older star clusters) can arise naturally from the same evolutionary sequence owing to binary disruption and mass segregation in rich star clusters.

  14. Microwave Radiometer-High Frequency (MWRHF) Handbook

    SciTech Connect (OSTI)

    Caddedu, MP

    2011-03-17

    The 90/150-GHz Vapor Radiometer provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two channels are sensitive to the presence of liquid water and precipitable water vapor.

  15. Daylight Savings Time Starts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daylight Savings Time Starts Daylight Savings Time Starts WHEN: Mar 08, 2015 3:00 AM - 11:59 PM WHERE: World Time Zones CATEGORY: Holiday INTERNAL: Calendar Login Daylight Savings...

  16. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  17. Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3

    Office of Scientific and Technical Information (OSTI)

    films (Journal Article) | SciTech Connect Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films Citation Details In-Document Search Title: Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO3 films Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved

  18. THE LOW-FREQUENCY CHARACTERISTICS OF PSRJ04374715 OBSERVED WITH THE MURCHISON WIDE-FIELD ARRAY

    SciTech Connect (OSTI)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.; Tingay, S. J.; Oronsaye, S.; Emrich, D.; Deshpande, A. A.; Van Straten, W.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Goeke, R.; Hewitt, J. N.; Greenhill, L. J.; Kasper, J. C.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; and others

    2014-08-20

    We report on the detection of the millisecond pulsar PSRJ04374715 with the Murchison Wide-field Array (MWA) at a frequency of 192MHz. Our observations show rapid modulations of pulse intensity in time and frequency that arise from diffractive scintillation effects in the interstellar medium (ISM), as well as prominent drifts of intensity maxima in the time-frequency plane that arise from refractive effects. Our analysis suggests that the scattering screen is located at a distance of ?80-120pc from the Sun, in disagreement with a recent claim that the screen is closer (?10pc). Comparisons with higher frequency data from Parkes reveal a dramatic evolution of the pulse profile with frequency, with the outer conal emission becoming comparable in strength to that from the core and inner conal regions. As well as demonstrating the high time resolution science capabilities currently possible with the MWA, our observations underscore the potential to conduct low-frequency investigations of timing-array millisecond pulsars, which may lead to increased sensitivity in the detection of nanoHertz gravitational waves via the accurate characterization of ISM effects.

  19. UGE Scheduler Cycle Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UGE Scheduler Cycle Time UGE Scheduler Cycle Time Genepool Cycle Time Genepool Daily Genepool Weekly Phoebe Cycle Time Phoebe Daily Phoebe Weekly What is the Scheduler Cycle? The Univa Grid Engine Scheduler cycle performs a number of important tasks, including: Prioritizing Jobs Reserving Resources for jobs requesting more resources (slots / memory) Dispatching jobs or tasks to the compute nodes Evaluating job dependencies The "cycle time" is the length of time it takes the scheduler

  20. Black Bear Prep plant replaces high-frequency screens with fine wire sieves

    SciTech Connect (OSTI)

    Barbee, C.J.; Nottingham, J.

    2007-12-15

    At the Black Bear prep plant (near Wharncliffe, WV, USA) the clean coal from the spirals traditionally reported to high-frequency screens, which removed high-ash clay fines. Screens have inherent inefficiencies that allow clean coal to report to the screen underflow. The goal of this project was to capture the maximum amount of spiral clean coal while still removing the high-ash clay material found in the spiral product. The reduction of the circulating load and plant downtime for unscheduled maintenance were projected as additional benefits. After the plant upgrade, the maintenance related to the high frequency screens was eliminated and an additional 2.27 tons per hour (tph) of fine coal was recovered, which resulted in a payback period of less than one year. The article was adapted from a paper presented at Coal Prep 2007 in April 2007, Lexington, KY, USA. 1 ref., 1 fig., 1 tab.

  1. Department of Energy Extends Public Comment Period | Department of Energy

    Office of Environmental Management (EM)

    Extends Public Comment Period Department of Energy Extends Public Comment Period September 29, 2011 - 12:00pm Addthis Media Contacts Darwin J. Morgan morgan@nv.doe.gov 702-295-3521 Kelly K. Snyder snyderk@nv.doe.gov 702-295-3521 In response to public comments and requests, the U.S. Department of Energy National Nuclear Security Administration Nevada Site Office is extending the public comment period for the Draft Site-Wide Environmental Impact Statement (SWEIS) for the Nevada National Security

  2. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  3. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate the dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.

  4. Frequency adding lasers and optical amplifiers

    SciTech Connect (OSTI)

    Goldstone, J.A.

    1989-02-21

    A method is described for creating population inversions for use in stimulated emission devices which beam combine, beam cleanup, or frequency up-convert electromagnetic radiation, comprising: (a) providing a multilevel quantum medium; (b) providing pump beams for near resonantly enhanced multiphoton pumping of the multilevel quantum medium, the multilevel quantum medium having atoms or molecules with three or more energy levels whose transition energies are near resonant with the pump beams, the near resonantly enhanced multiphoton pumping being defined such that each pump beam photon energy is close to but not equal to a transition energy between two energy levels of the multilevel quantum medium, thus producing small single photon detunings between the pump beams and the energy levels, these small single photon detunings thereby defining interacting energy levels of the multilevel quantum medium; and directing the pump beams into the multilevel quantum medium having decay rates into an intermediate energy level greater than decay rates out of the intermediate energy level, the intermediate energy level lying between the lowest and highest of the interacting energy levels.

  5. (Low frequency electromagnetic fields and public health)

    SciTech Connect (OSTI)

    Aldrich, T.E.

    1988-05-23

    The traveler participated in the IARC-sponsored workshop entitled Extremely Low Frequency Electromagnetic Fields (EMF) and Public Health'' where he delivered the keynote address. This address set the stage for deliberations among the EMF public health professionals regarding strategies for international collaborative work on this topic. Strong emphasis was placed in explicit exposure monitoring. The traveler also participated in the Tenth Yves Biraud Seminar on rare-event surveillance as a sentinel system for detection potential environmental hazards. He presented an invited paper describing a means for making rapid, preliminary decisions regarding potential health impacts due to contamination of the environment around point sources of toxic substances. He served as the symposium's expert on numerical techniques on the use of spatial and temporal aggregation of rare health events. There is considerable variation among countries in emphasis on application of sentinel systems and application of sentinel systems and data gathering. France has a highly automated, statistically-sophisticated system involving individual physician reporting of specific reportable infectious diseases to a central location. The European Common Market nations are sold on this concept and are supporting the development of an internationally coordinated system.

  6. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.J.

    1991-07-23

    A Stark-tuned laser operating in the 119 micron line of CH[sub 3]OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth. 10 figures.

  7. Laser for high frequency modulated interferometry

    DOE Patents [OSTI]

    Mansfield, Dennis K. (E. Windsor, NJ); Vocaturo, Michael (Columbus, NJ); Guttadora, Lawrence J. (Iselin, NJ)

    1991-01-01

    A Stark-tuned laser operating in the 119 micron line of CH.sub.3 OH has an output power of several tens of milliwatts at 30 Watts of pump power while exhibiting a doublet splitting of about ten MHz with the application of a Stark field on the order of 500 volts/cm. This output power allows for use of the laser in a multi-channel interferometer, while its high operating frequency permits the interferometer to measure rapid electron density changes in a pellet injected or otherwise fueled plasma such as encountered in magnetic fusion devices. The laser includes a long far-infrared (FIR) pyrex resonator tube disposed within a cylindrical water jacket and incorporating charged electrodes for applying the Stark field to a gas confined therein. With the electrodes located within the resonator tube, the resonator tube walls are cooled by a flowing coolant without electrical breakdown in the coolant liquid during application of the Stark field. Wall cooling allows for substantially increased FIR output powers. Provision is made for introducing a buffer gas into the resonator tube for increasing laser output power and its operating bandwidth.

  8. Frequency extrapolation by nonconvex compressive sensing

    SciTech Connect (OSTI)

    Chartrand, Rick; Sidky, Emil Y; Pan, Xiaochaun

    2010-12-03

    Tomographic imaging modalities sample subjects with a discrete, finite set of measurements, while the underlying object function is continuous. Because of this, inversion of the imaging model, even under ideal conditions, necessarily entails approximation. The error incurred by this approximation can be important when there is rapid variation in the object function or when the objects of interest are small. In this work, we investigate this issue with the Fourier transform (FT), which can be taken as the imaging model for magnetic resonance imaging (MRl) or some forms of wave imaging. Compressive sensing has been successful for inverting this data model when only a sparse set of samples are available. We apply the compressive sensing principle to a somewhat related problem of frequency extrapolation, where the object function is represented by a super-resolution grid with many more pixels than FT measurements. The image on the super-resolution grid is obtained through nonconvex minimization. The method fully utilizes the available FT samples, while controlling aliasing and ringing. The algorithm is demonstrated with continuous FT samples of the Shepp-Logan phantom with additional small, high-contrast objects.

  9. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect (OSTI)

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  10. Low-frequency Interlayer Breathing Modes in Few-layer Black Phosphorus

    SciTech Connect (OSTI)

    Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Dresselhaus, M; Meunier, V.; Liang, Liangbo; Ling, Xi

    2015-01-01

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and nano-optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand low-frequency (LF) interlayer breathing modes (<100 cm-1) in few-layer BP for the first time. Using laser polarization dependence study and group theory analysis the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and thus their frequencies show stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that the breathing modes have a harmonic behavior, in contrast to HF Raman modes which exhibit anharmonicity.

  11. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOE Patents [OSTI]

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  12. Property:Building/MeanAnnualTempCalculationPeriod | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingMeanAnnualTempCalculationPeriod Jump to: navigation, search This is a property of type Number. Mean annual temperature during the...

  13. Progress report for the period October 1981-September 1982

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The mission-related activities of the DOE New Brunswick Laboratory involving development, calibration, and evaluation of nuclear material measurement technology and providing measurement-related services for the Government during the period are described and summarized.

  14. Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions

    SciTech Connect (OSTI)

    Gustavo E. Scuseria

    2008-02-08

    The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.

  15. Resonant-frequency discharge in a multi-cell radio frequency cavity

    SciTech Connect (OSTI)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  16. ARM Intensive Operational Period Scheduled to Validate New NASA Satellite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Intensive Operational Period Scheduled to Validate New NASA Satellite Beginning in July, all three ARM sites (Southern Great Plains [SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched

  17. Extension of Comment Period on Improving Performance of Federal Permitting

    Energy Savers [EERE]

    and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 | Department of Energy Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 On August 29,

  18. DOE Extends Public Comment Period for Uranium Program Environmental Impact

    Energy Savers [EERE]

    Statement | Department of Energy Uranium Program Environmental Impact Statement DOE Extends Public Comment Period for Uranium Program Environmental Impact Statement April 18, 2013 - 1:08pm Addthis Contractor, Bob Darr, S.M. Stoller Corporation Public Affairs, (720) 377-9672, ULinfo@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy (DOE) today announced that the public comment period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)

  19. Extension of Comment Period on Improving Performance of Federal Permitting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 | Department of Energy Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 Extension of Comment Period on Improving Performance of Federal Permitting and Review of Infrastructure Projects: Federal Register Notice Volume 78, No. 186 - September 25, 2013 On August 29,

  20. Extension of Comment Period on the Draft Integrated, Interagency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pre-Application (IIP) Process for Electric Transmission Projects Requiring Federal Authorizations | Department of Energy Extension of Comment Period on the Draft Integrated, Interagency Pre-Application (IIP) Process for Electric Transmission Projects Requiring Federal Authorizations Extension of Comment Period on the Draft Integrated, Interagency Pre-Application (IIP) Process for Electric Transmission Projects Requiring Federal Authorizations September 25, 2013 - 4:24pm Addthis On August 29,

  1. Department of Energy Announces Plans for Additional Comment Period on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Interest Electric Transmission Corridors | Department of Energy Announces Plans for Additional Comment Period on National Interest Electric Transmission Corridors Department of Energy Announces Plans for Additional Comment Period on National Interest Electric Transmission Corridors November 9, 2006 - 9:38am Addthis Under Section 1221(a) of the Energy Policy Act of 2005, the Department of Energy must issue a report based on the Department's August 8 Congestion Study. In that report,

  2. Notice of extension of public comment period for reply comments. |

    Energy Savers [EERE]

    Department of Energy extension of public comment period for reply comments. Notice of extension of public comment period for reply comments. On July 27, 2010, the Department of Energy (DOE) published in the Federal Register a notice of inquiry (NOI) and request for comment from the public in its development of regulations pertaining to section 934, of the Energy Independence and Security Act of 2007 (''Act''). Section 934 addresses how the United States will meet its obligations under the

  3. Development of transient initiating event frequencies for use in probabilistic risk assessments

    SciTech Connect (OSTI)

    Mackowiak, D.P.; Gentillon, C.D.; Smith, K.L.

    1985-05-01

    Transient initiating event frequencies are an essential input to the analysis process of a nuclear power plant probabilistic risk assessment. These frequencies describe events causing or requiring scrams. This report documents an effort to validate and update from other sources a computer-based data file developed by the Electric Power Research Institute (EPRI) describing such events at 52 United States commercial nuclear power plants. Operating information from the United States Nuclear Regulatory Commission on 24 additional plants from their date of commercial operation has been combined with the EPRI data, and the entire data base has been updated to add 1980 through 1983 events for all 76 plants. The validity of the EPRI data and data analysis methodology and the adequacy of the EPRI transient categories are examined. New transient initiating event frequencies are derived from the expanded data base using the EPRI transient categories and data display methods. Upper bounds for these frequencies are also provided. Additional analyses explore changes in the dominant transients, changes in transient outage times and their impact on plant operation, and the effects of power level and scheduled scrams on transient event frequencies. A more rigorous data analysis methodology is developed to encourage further refinement of the transient initiating event frequencies derived herein. Updating the transient event data base resulted in approx.2400 events being added to EPRI's approx.3000-event data file. The resulting frequency estimates were in most cases lower than those reported by EPRI, but no significant order-of-magnitude changes were noted. The average number of transients per year for the combined data base is 8.5 for pressurized water reactors and 7.4 for boiling water reactors.

  4. Low-frequency quantitative ultrasound imaging of cell death in vivo

    SciTech Connect (OSTI)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.; Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5; Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 ; Papanicolau, Naum; Tadayyon, Hadi; Lee, Justin; Zubovits, Judit; Sadeghian, Alireza; Karshafian, Raffi; Al-Mahrouki, Azza; Giles, Anoja; Kolios, Michael C.

    2013-08-15

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicated significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant frequency, in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.

  5. WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED

    SciTech Connect (OSTI)

    Hebb, L.; Collier-Cameron, A.; Enoch, B.; Horne, K.; Triaud, A.H.M.J.; Gillon, M.; Queloz, D.; Mayor, M.; Pepe, F.; Segransan, D.; Lister, T.A.; Smalley, B.; Maxted, P.F.L.; Hellier, C.; Anderson, D.R.; Bentley, S.; Pollacco, D.; West, R.G.; Haswell, C.A.; Skillen, I.

    2010-01-01

    We report on the discovery of a new extremely short period transiting extrasolar planet, WASP-19b. The planet has mass M{sub pl} = 1.15 +- 0.08 M{sub J} , radius R{sub pl} = 1.31 +- 0.06 R{sub J} , and orbital period P = 0.7888399 +- 0.0000008 days. Through spectroscopic analysis, we determine the host star to be a slightly super-solar metallicity ([M/H] = 0.1 +- 0.1 dex) G-dwarf with T{sub eff} = 5500 +- 100 K. In addition, we detect periodic, sinusoidal flux variations in the light curve which are used to derive a rotation period for the star of P{sub rot} = 10.5 +- 0.2 days. The relatively short stellar rotation period suggests that either WASP-19 is somewhat young (approx 600 Myr old) or tidal interactions between the two bodies have caused the planet to spiral inward over its lifetime resulting in the spin-up of the star. Due to the detection of the rotation period, this system has the potential to place strong constraints on the stellar tidal quality factor, Q'{sub s}, if a more precise age is determined.

  6. Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications

    SciTech Connect (OSTI)

    K?os, J. W. Krawczyk, M.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-05-07

    We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceived by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.

  7. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  8. On-clip high frequency reliability and failure test structures

    DOE Patents [OSTI]

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  9. On-clip high frequency reliability and failure test structures

    DOE Patents [OSTI]

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  10. Low-Frequency Sonic Mixing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequency Sonic Mixing Technology Low-Frequency Sonic Mixing Technology New Acoustic Mixing Technology Improves Productivity Using Low-Frequency, High-Intensity Sound Energy Typical mixing technology uses a drive mechanism-usually an electric, hydraulic, or pneumatic motor-to rotate a shaft with one or more impellers. While many other mixer designs are available, including static mixers that do not use motors, the motor-driven mixer is the most prevalent mixing method. Resodyn Corporation's

  11. Dynamic frequency tuning of electric and magnetic metamaterial response

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Dynamic frequency tuning of electric and magnetic metamaterial response Citation Details In-Document Search Title: Dynamic frequency tuning of electric and magnetic metamaterial response A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in

  12. Frequency dispersion of nonlinear response of thin superconducting films in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | DOE PAGES Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by

  13. Method and apparatus for optical communication by frequency modulation

    DOE Patents [OSTI]

    Priatko, Gordon J. (Oakland, CA)

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  14. Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins R&D 100 Award | Department of Energy Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award October 15, 2014 - 4:51pm Addthis Developed jointly by Corning, the FEV Group, Maguffin Microwave, Detroit Diesel, and Oak Ridge National Laboratory (ORNL) in cooperation with the New York City Department of Sanitation, the Radio Frequency Diesel

  15. Time of Flight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beam is pulsed, the energy of the neutrons that are produced can be determined by Time-of-Flight (TOF) techniques. Neutron Time-of-Flight Since the LANSCE proton beam is...

  16. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences...

    Office of Scientific and Technical Information (OSTI)

    This case study may help researchers and practitioners develop a better understanding of joint flood frequency with consideration of upstream dam regulation among several ...

  17. Nonlinear frequency shift of electrostatic waves in general collisionl...

    Office of Scientific and Technical Information (OSTI)

    Nonlinear frequency shift of electrostatic waves in general collisionless plasma: Unifying theory of fluid and kinetic nonlinearities Citation Details In-Document Search This...

  18. Frequency Control Concerns in the North American Electric Power...

    Office of Scientific and Technical Information (OSTI)

    Control Concerns in the North American Electric Power System Kirby, B.J. 24 POWER TRANSMISSION AND DISTRIBUTION; EFFICIENCY; FREQUENCY CONTROL; MARKET; PERFORMANCE; POWER...

  19. (U) modulator to provide a continuous stepped frequency signal format

    DOE Patents [OSTI]

    Walters, Glenn A. (Escondido, CA)

    1991-01-01

    A modulator provides a continuous signal format composed of discrete freqcy steps and is designed to eliminate frequency overlap or smearing normally associated with filter ringing.

  20. Western Wind and Solar Integration Study Phase 3 … Frequency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-AC36-08GO28308 Western Wind and Solar Integration Study Phase 3 - Frequency Response ... Interface CSP concentrating solar thermal power DC direct current DG ...

  1. Electricity demand as frequency controlled reserves, ForskEL...

    Open Energy Info (EERE)

    ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ForskEL Country Denmark Coordinates 56.26392,...

  2. Electricity demand as frequency controlled reserves, ENS (Smart...

    Open Energy Info (EERE)

    ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS Country Denmark Coordinates 56.26392, 9.501785...

  3. On the validation of seismic imaging methods: Finite frequency...

    Office of Scientific and Technical Information (OSTI)

    On the validation of seismic imaging methods: Finite frequency or ray theory? Citation Details In-Document Search Title: On the validation of seismic imaging methods: Finite ...

  4. Method and apparatus for radio frequency ceramic sintering

    DOE Patents [OSTI]

    Hoffman, D.J.; Kimrey, H.D. Jr.

    1993-11-30

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.

  5. Method and apparatus for radio frequency ceramic sintering

    DOE Patents [OSTI]

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  6. Controlled Source Frequency-Domain Magnetics (Montgomery, Et...

    Open Energy Info (EERE)

    (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics (Montgomery, Et Al.,...

  7. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  8. Frequency-Domain Electromagnetics Survey At Kilauea East Rift...

    Open Energy Info (EERE)

    1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Frequency-Domain Electromagnetics Survey At Kilauea East Rift Geothermal Area (FURUMOTO,...

  9. Smart Frequency-Sensing Charge Controller for Electric Vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology available for licensing:System uses frequency-sensing charge controllers that provide automatic demand response and regulation service to the grid by reducing or turning ...

  10. "Smart" Frequency-Sensing Charge Controller for Electric Vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Smart" Frequency-Sensing Charge Controller for Electric Vehicles Method for implementing demand response and regulation services to power grids Argonne National Laboratory Contact ...

  11. Alternative Approaches for Incentivizing the Frequency Responsive Reserve Ancillary Service

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.; Tuohy, A.; Brooks, D.

    2012-03-01

    Frequency responsive reserve is the autonomous response of generators and demand response to deviations of system frequency, usually as a result of the instantaneous outage of a large supplier. Frequency responsive reserve arrests the frequency decline resulting in the stabilization of system frequency, and avoids the triggering of under-frequency load-shedding or the reaching of unstable frequencies that could ultimately lead to system blackouts. It is a crucial service required to maintain a reliable and secure power system. Regions with restructured electricity markets have historically had a lack of incentives for frequency responsive reserve because generators inherently provided the response and on large interconnected systems, more than sufficient response has been available. This may not be the case in future systems due to new technologies and declining response. This paper discusses the issues that can occur without proper incentives and even disincentives, and proposes alternatives to introduce incentives for resources to provide frequency responsive reserve to ensure an efficient and reliable power system.

  12. Time-Resolved

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and time) three correspond to the three broad categories of synchrotron experimental measurement techniques: spectroscopy (energy), scattering (momentum), and imaging...

  13. REAL TIME SYSTEM OPERATIONS 2006-2007

    SciTech Connect (OSTI)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  14. EIS-0236-S4: Extension of Comment Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extension of Comment Period EIS-0236-S4: Extension of Comment Period Complex Transformation Extension of Comment Period for the Draft Complex Transformation Supplemental...

  15. National Weatherization Assistance Program Characterization Describing the Recovery Act Period

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Hawkins, Beth A.

    2015-10-01

    This report characterizes the U.S. Department of Energy s Weatherization Assistance Program (WAP) during the American Recovery and Reinvestment Act of 2009 (Recovery Act) period. This research was one component of the Recovery Act evaluation of WAP. The report presents the results of surveys administered to Grantees (i.e., state weatherization offices) and Subgrantees (i.e., local weatherization agencies). The report also documents the ramp up and ramp down of weatherization production and direct employment during the Recovery Act period and other challenges faced by the Grantees and Subgrantees during this period. Program operations during the Recovery Act (Program Year 2010) are compared to operations during the year previous to the Recovery Act (Program Year 2008).

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Shawn M. Allan; Patricia M. Strickland; Holly S. Shulman

    2009-11-11

    Ceralink Inc. developed FastFuse, a rapid, new, energy saving process for lamination of glass and composites using radio frequency (RF) heating technology. The Inventions and Innovations program supported the technical and commercial research and development needed to elevate the innovation from bench scale to a self-supporting technology with significant potential for growth. The attached report provides an overview of the technical and commerical progress achieved for FastFuse during the course of the project. FastFuse has the potential to revolutionize the laminate manufacturing industries by replacing energy intensive, multi-step processes with an energy efficient, single-step process that allows higher throughput. FastFuse transmits RF energy directly into the interlayer to generate heat, eliminating the need to directly heat glass layers and the surrounding enclosures, such as autoclaves or vacuum systems. FastFuse offers lower start-up and energy costs (up to 90% or more reduction in energy costs), and faster cycles times (less than 5 minutes). FastFuse is compatible with EVA, TPU, and PVB interlayers, and has been demonstrated for glass, plastics, and multi-material structures such as photovoltaics and transparent armor.

  17. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect (OSTI)

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 ??mm?mrad and the fraction of He+ is about 99%.

  18. Time series association learning

    DOE Patents [OSTI]

    Papcun, George J. (Santa Fe, NM)

    1995-01-01

    An acoustic input is recognized from inferred articulatory movements output by a learned relationship between training acoustic waveforms and articulatory movements. The inferred movements are compared with template patterns prepared from training movements when the relationship was learned to regenerate an acoustic recognition. In a preferred embodiment, the acoustic articulatory relationships are learned by a neural network. Subsequent input acoustic patterns then generate the inferred articulatory movements for use with the templates. Articulatory movement data may be supplemented with characteristic acoustic information, e.g. relative power and high frequency data, to improve template recognition.

  19. Periodicities in the X-ray emission from the solar corona

    SciTech Connect (OSTI)

    Chowdhury, Partha; Jain, Rajmal; Awasthi, Arun K. E-mail: parthares@gmail.com E-mail: awasthi@prl.res.in

    2013-11-20

    We have studied the time series of full disk integrated soft and hard X-ray emission from the solar corona during 2004 January to 2008 December, covering the entire descending phase of solar cycle 23 from a global point of view. We employ the daily X-ray index derived from 1 s cadence X-ray observations from the Si and CZT detectors of the 'Solar X-ray Spectrometer' mission in seven different energy bands ranging between 6 and 56 keV. X-ray data in the energy bands 6-7, 7-10, 10-20, and 4-25 keV from the Si detector are considered, while 10-20, 20-30, and 30-56 keV high energy observations are taken from the CZT detector. The daily time series is subjected to power spectrum analysis after appropriate correction for noise. The Lomb-Scargle periodogram technique has shown prominent periods of ?13.5 days, ?27 days, and a near-Rieger period of ?181 days and ?1.24 yr in all energy bands. In addition to this, other periods like ?31, ?48, ?57, ?76, ?96, ?130, ?227, and ?303 days are also detected in different energy bands. We discuss our results in light of previous observations and existing numerical models.

  20. Dielectric supported radio-frequency cavities

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Lee, Terry G. (Cupertino, CA)

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  1. Ultra high frequency imaging acoustic microscope

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  2. Some Thoughts on Stability in Nonlinear Periodic Focusing Systems

    DOE R&D Accomplishments [OSTI]

    McMillan, E. M.

    1967-09-05

    A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.

  3. Laser frequency modulator for modulating a laser cavity

    DOE Patents [OSTI]

    Erbert, Gaylen V. (Livermore, CA)

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  4. Monitoring method and apparatus using high-frequency carrier

    DOE Patents [OSTI]

    Haynes, Howard D. (Knoxville, TN)

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  5. Monitoring method and apparatus using high-frequency carrier

    DOE Patents [OSTI]

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  6. Frequency Control Concerns in the North American Electric Power System

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-03-26

    This paper examines the relationship between system frequency, reliability and markets. It was prompted by the frequency deviations recently experienced at 2200 hours daily but is more generally concerned with the question of what frequency control is necessary. The paper does not provide new information or document new research. Nor is it intended to educate readers concerning power system engineering. Instead, the purpose is to reexamine well known truths concerning the power system and to freshly explore the basic relationship between frequency, reliability and markets: stepping back, if you will, to see if we are collectively missing something. The concern of this paper is with frequency and reliability. Off-nominal frequency can impact reliability and markets efficiency (as we are using the term here) in four ways. It could damage equipment (generation, transmission, or load). It could degrade the quality of the product being delivered to end users (too low and lights would flicker unacceptably, for example). It could result in the collapse of the power system itself (by triggering protective system actions, for example). Or it could result in overloading transmission lines as various generators try to restore system frequency impacting markets efficiency. Often these causes operate in concert. Generator protective systems take action to prevent generator damage, for example, but exacerbate the overall generation/load imbalance. The paper is divided into two sections. The Introduction is followed by a section titled ''A Perspective on Frequency Control'' which addresses the physical requirements of the power system and how market transactions interact with the physical system. The ''Frequency Standards and Control Performance'' section discusses the various NERC and regional reliability council policies that govern utility performance and how these relate to frequency and reliability. Finally, Conclusions are provided.

  7. Submission Format for IMS2004 (Title in 18-point Times font)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    method of time- domain signal extension is that reconstruction past the original signal length-when n > N-1 in (3)-relies on periodic extension. For any particular...

  8. PARC Periodical-Volume 5, Issue 4 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Periodical-Volume 5, Issue 4 April 14, 2014 PARC Periodical-Volume 5, Issue 4 View Issue

  9. Coordinated optical and ultraviolet observations of short period RS CVn and W UMa type stars

    SciTech Connect (OSTI)

    Newmark, J.S.

    1990-01-01

    Data from the Fiber Optic Echelle Charge Coupled Device (CCD) Spectrograph at KPNO as well as IUE data were analyzed in this study of short period RS CVn and W UMa type binaries. Optical data were analyzed using a spectral subtraction technique to find excess emission (or absorption) in the component spectra. Analysis of data for the W UMa type contact binary VW Cep strongly suggests the existence of extended material near the contact region but clearly outside the Roche lobes. This material is presumably confined in magnetic loops bridging the two components. Making simple assumptions, the density can be estimated at 4 to 5 times 10 {sup 12} cm (sup {minus}3). A possible prominence was also detected on the secondary component of the detached short period RS CVn system DH Leo.

  10. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    SciTech Connect (OSTI)

    Rekker, A.; Lumi, N.; Mankin, R.

    2014-11-12

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species.

  11. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    SciTech Connect (OSTI)

    Feister, S. Orban, C.; Nees, J. A.; Morrison, J. T.; Frische, K. D.; Chowdhury, E. A.; Roquemore, W. M.

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser noise (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120 phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements with instantaneous plasma profiles and for enabling realistic Particle-in-Cell simulations of the ultra-intense laser-matter interaction.

  12. Generation of green frequency comb from chirped ?{sup (2)} nonlinear photonic crystals

    SciTech Connect (OSTI)

    Lai, C.-M.; Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H.; Yu, N. E.; Boudrioua, A.; Kung, A. H.

    2014-12-01

    Spectrally broad frequency comb generation over 510555?nm range was reported on chirped quasi-phase-matching (QPM) ?{sup (2)} nonlinear photonic crystals of 12?mm length with periodicity stepwise increased from 5.9??m to 7.1??m. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040?nm to 1090?nm wavelength range, the 520?nm to 545?nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450?GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (10201040?nm) and the idler (10901110?nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510520?nm and the 545555?nm spectral regime. Additional 530535?nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ?10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  13. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOE Patents [OSTI]

    Meyerhofer, David D. (Spencerport, NY); Schmid, Ansgar W. (Honeoye Falls, NY); Chuang, Yung-ho (Rochester, NY)

    1992-01-01

    Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required.

  14. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOE Patents [OSTI]

    Meyerhofer, D.D.; Schmid, A.W.; Chuang, Y.

    1992-03-10

    Ultrashort (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required. 4 figs.

  15. Task Time Tracker

    Energy Science and Technology Software Center (OSTI)

    2013-07-24

    This client-side web app tracks the amount of time spent on arbitrary tasks. It allosw the creation of an unlimited number of arbitrarily named tasks ans via simple interactions, tracks the amount of time spent working on the drfined tasks.

  16. Effective terahertz-to-near-infrared photon conversion in slant-stripe-type periodically poled LiNbO{sub 3}

    SciTech Connect (OSTI)

    Nawata, K.; Notake, T.; Qi, F.; Takida, Y.; Fan, S.; Hayashi, S.; Minamide, H.; Ishizuki, H.; Taira, T.

    2014-03-03

    We propose a slant-stripe-type periodically poled LiNbO{sub 3} crystal for the construction of a practical quasi-phase-matched (QPM) device for terahertz (THz) detection. A minimum detectable THz-wave energy of 25 fJ/pulse is demonstrated, and a linear input-output property with a dynamic range of 60?dB is achieved. The working frequency range of 0.15?THz for THz detection is obtained, and the central frequency of the sensitivity can be controlled by the design of the periodically poled structure. THz detection using this QPM device is a promising technique that may allow the detection of a coherent THz photon.

  17. Total Estimated Contract Cost: Contract Option Period: Maximum Fee

    Office of Environmental Management (EM)

    Maximum Fee Performance Period Fee Earned FY2011/2012 $4,059,840 FY2013 $2,928,000 FY2014 $3,022,789 FY2015 FY2016 Cumulative Fee $10,010,629 $19,878,019 $3,214,544 $5,254,840 $5,662,028 $1,421,695 Fee Available $4,324,912 $417,833,183 Contract Base Period: January 3, 2011 - September 2, 2016 (Extended) Fee Information Minimum Fee $0 N/A $19,878,019 Contractor: Babcock & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee

  18. Quasi-periodic quantum dot arrays produced by electrochemical synthesis

    SciTech Connect (OSTI)

    Bandyopadhyay, S.; Miller, A.E.; Yue, D.F.; Banerjee, G.; Ricker, R.E.; Jones, S.; Eastman, J.A.; Baugher, E.; Chandrasekhar, M.

    1994-06-01

    We discuss a ``gentle`` electrochemical technique for fabricating quasi-periodic quantum dot arrays. The technique exploits a self-organizing phenomenon to produce quasi-periodic arrangement of dots and provides excellent control over dot size and interdot spacing. Unlike conventional nanolithography, it does not cause radiation damage to the structures during exposure to pattern delineating beams (e-beam, ion-beam or x-ray). Moreover, it does not require harsh processing steps like reactive ion etching, offers a minimum feature size of {approximately}40 {angstrom}, allows the fabrication of structures on nonplanar surfaces (e.g. spherical or cylindrical substrates), is amenable to mass production (millions of wafers can be processed simultaneously) and is potentially orders of magnitude cheaper than conventional nanofabrication. In this paper, we describe our initial results and show the promise of this technique for low-cost and high-yield nanosynthesis.

  19. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  20. High-power radio-frequency attenuation device

    DOE Patents [OSTI]

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  1. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  2. High-Impact, Low-Frequency Event Risk Report

    Office of Environmental Management (EM)

    nerc.com | www.doe.gov June 2010 High-Impact, Low-Frequency Event Risk to the North American Bulk Power System A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the U.S. Department of Energy's November 2009 Workshop About This Report High-Impact, Low-Frequency Event Risk to the North American Bulk Power System June 2010 2 About the High-Impact, Low-Frequency (HILF) Event Risk Effort The North American Electric Reliability Corporation (NERC) and the

  3. Digital time delay

    DOE Patents [OSTI]

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  4. Parallel time integration software

    Energy Science and Technology Software Center (OSTI)

    2014-07-01

    This package implements an optimal-scaling multigrid solver for the (non) linear systems that arise from the discretization of problems with evolutionary behavior. Typically, solution algorithms for evolution equations are based on a time-marching approach, solving sequentially for one time step after the other. Parallelism in these traditional time-integrarion techniques is limited to spatial parallelism. However, current trends in computer architectures are leading twards system with more, but not faster. processors. Therefore, faster compute speeds mustmore » come from greater parallelism. One approach to achieve parallelism in time is with multigrid, but extending classical multigrid methods for elliptic poerators to this setting is a significant achievement. In this software, we implement a non-intrusive, optimal-scaling time-parallel method based on multigrid reduction techniques. The examples in the package demonstrate optimality of our multigrid-reduction-in-time algorithm (MGRIT) for solving a variety of parabolic equations in two and three sparial dimensions. These examples can also be used to show that MGRIT can achieve significant speedup in comparison to sequential time marching on modern architectures.« less

  5. The research performed during the last granting period involved trasnscriptomic

    Office of Scientific and Technical Information (OSTI)

    research performed during the last granting period involved trasnscriptomic analysis of extracellular proteins expressed by wood-degrading fungi. Here we studied both the brown rot fungus Postia placenta and white rot fungus Phanerochaete chrysosporium. Our most recent efforts have been on the brown rot fungus. We have grown these fungi on their woody substrates and isolated the mRNA for 454 sequencing. We recognized that this approach could potentially lead to discovery of new enzymes involved

  6. MONTICELLO PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1-

    Office of Legacy Management (LM)

    PROJECTS FEDERAL FACILITIES AGREEMENT REPORT Report Period: January 1- March 31, 2006 DOE Project Coordinator: Ray Plieness HIGHLIGHTS The Federal Facilities Agreement meeting was held February 21-22 in Salt Lake City, UT. Representatives from the U.S. Depattment of Energy (DOE), U.S. Environmental Protection Agency (EPA), Utah Department of Environmental Quality (UDEQ), and the DOE contractor attended. The schedule of work through the end of the fiscal year was determined. MSG-OUIII The scope

  7. Enforcement Policy Statement: Compliance Period for Regional Standards

    Office of Environmental Management (EM)

    Compliance Period for Regional Standards Applicable to Central Air Conditioners April 24, 2014 On June 27, 2011, the U.S. Department of Energy (DOE) published in the Federal Register a direct final rule (DFR) under the Energy Policy and Conservation Act (EPCA), 42 U.S.C. §§ 6291-6309, which set forth amended energy conservation standards for residential furnaces, central air conditioners, and heat pumps, including regional standards for different product types in indicated States. 76 FR 37408.

  8. Some Thoughts on Stability in Nonlinear Periodic Focusing Systems [Addendum

    DOE R&D Accomplishments [OSTI]

    McMillan, Edwin M.

    1968-03-29

    Addendum to September 5, 1967 report with the same title and with the abstract: A brief discussion is given of the long-term stability of particle motions through periodic focusing structures containing lumped nonlinear elements. A method is presented whereby one can specify the nonlinear elements in such a way as to generate a variety of structures in which the motion has long-term stability.

  9. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    SciTech Connect (OSTI)

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  10. Frequency multiplexed flux locked loop architecture providing an array of DC SQUIDS having both shared and unshared components

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-01-01

    Architecture for frequency multiplexing multiple flux locked loops in a system comprising an array of DC SQUID sensors. The architecture involves dividing the traditional flux locked loop into multiple unshared components and a single shared component which, in operation, form a complete flux locked loop relative to each DC SQUID sensor. Each unshared flux locked loop component operates on a different flux modulation frequency. The architecture of the present invention allows a reduction from 2N to N+1 in the number of connections between the cryogenic DC SQUID sensors and their associated room temperature flux locked loops. Furthermore, the 1.times.N architecture of the present invention can be paralleled to form an M.times.N array architecture without increasing the required number of flux modulation frequencies.

  11. VARIABLE TIME DELAY MEANS

    DOE Patents [OSTI]

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  12. X Time Series

    Energy Savers [EERE]

    11 Figure 5-11: 1-Hour Ozone Time Series Observed (C506) v. Predicted (CAMx) for WRF AACOG Base Case Run 3, 2006 5-12 5.3.2 Hourly NO X Time Series Time series plots of modeled and predicted hourly NO X for each monitor located in the San Antonio MSA were constructed. The model over predicted NO X emissions at the C58 monitor on almost every day during the June 2006 episode. The average predicted hourly NO X was 7.3 ppb, while the average observed hourly NO X was only 3.9 ppb. Likewise, the

  13. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    SciTech Connect (OSTI)

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.671.33 Hz) that is significantly higher than the classic microseism band (~0.050.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement with previous observations in the double-frequency (DF) microseism band (~0.10.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.

  14. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    SciTech Connect (OSTI)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF lamination users. A path to industrial energy benefits and revenue through industrial equipment sales was established in a partnership with Thermex Thermatron, a manufacturer of RF equipment.

  15. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  16. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user

  17. Time-Resolved

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Real-Time Chemical Imaging of Bacterial Biofilm Development Using Light to Control How X Rays Interact with Matter X-Ray Imaging of...

  18. Time Card Entry System

    Energy Science and Technology Software Center (OSTI)

    1996-05-07

    The Time Card Entry System was developed for the Department of Enegy, Idaho Operations Office (DOE-ID) to interface with the DOE headquarters (DOE-HQ) Electronic Time and Attendance (ETA) system for payroll. It features pop-up window pick lists for Work Breakdown Structure numbers and Hour Codes and has extensive processing that ensures that time and attendance reported by the employee fulfills U.S. Government/OMB requirements before Timekeepers process the data at the end of the two weekmore » payroll cycle using ETA. A tour of duty profile (e.g., ten hour day, four day week with Sunday, friday and Saturday off), previously established in the ETA system, is imported into the Time Card Entry System by the timekeepers. An individual''s profile establishes the basis for validation of time of day and number of hours worked per day. At the end of the two cycle, data is exported by the timekeepers from the Time Card Entry System into ETA files.« less

  19. Frequency shift measurement in shock-compressed materials

    DOE Patents [OSTI]

    Moore, David S. (Los Alamos, NM); Schmidt, Stephen C. (Los Alamos, NM)

    1985-01-01

    A method for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the shock front advancing through the sample, thereby minimizing adverse effects of refraction.

  20. Distributed Frequency Control of Prosumer-Based Electric Energy Systems

    SciTech Connect (OSTI)

    Nazari, MH; Costello, Z; Feizollahi, MJ; Grijalva, S; Egerstedt, M

    2014-11-01

    In this paper, we propose a distributed frequency regulation framework for prosumer-based electric energy systems, where a prosumer (producer-consumer) is defined as an intelligent agentwhich can produce, consume, and/or store electricity. Despite the frequency regulators being distributed, stability can be ensured while avoiding inter-area oscillations using a limited control effort. To achieve this, a fully distributed one-step model-predictive control protocol is proposed and analyzed, whereby each prosumer communicates solely with its neighbors in the network. The efficacy of the proposed frequency regulation framework is shown through simulations on two real-world electric energy systems of different scale and complexity. We show that prosumers can indeed bring frequency and power deviations to their desired values after small perturbations.

  1. Spin relaxation and linear-in-electric-field frequency shift...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an ... It is found that the rectangular cell geometry admits of a general result for Tsub 1, ...

  2. Frequency shift measurement in shock-compressed materials

    DOE Patents [OSTI]

    Moore, D.S.; Schmidt, S.C.

    1984-02-21

    A method is disclosed for determining molecular vibrational frequencies in shock-compressed transparent materials. A single laser beam pulse is directed into a sample material while the material is shock-compressed from a direction opposite that of the incident laser beam. A Stokes beam produced by stimulated Raman scattering is emitted back along the path of the incident laser beam, that is, in the opposite direction to that of the incident laser beam. The Stokes beam is separated from the incident beam and its frequency measured. The difference in frequency between the Stokes beam and the incident beam is representative of the characteristic frequency of the Raman active mode of the sample. Both the incident beam and the Stokes beam pass perpendicularly through the stock front advancing through the sample, thereby minimizing adverse effects of refraction.

  3. ARM - Field Campaign - Single Frequency GPS Water Vapor Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSingle Frequency GPS Water Vapor Network ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  4. PV Arc Fault Detector Challenges Due to Module Frequency Response...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pink AC noise on top of the DC current. This signal travels down the line through the system. 2. As the signal passes through the modules and connectors, some of the frequency...

  5. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    SciTech Connect (OSTI)

    Hernndez, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100?Hz, 1?MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Bttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  6. A STUDY OF VARIABILITY IN THE FREQUENCY DISTRIBUTIONS OF THE...

    Office of Scientific and Technical Information (OSTI)

    the Kepler measurements have been analyzed in detail. The total value of the power-law index of the flare frequency distribution as a function of energy (dNdE E sup -)...

  7. High-frequency matrix converter with square wave input

    DOE Patents [OSTI]

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  8. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    Energy Science and Technology Software Center (OSTI)

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore »data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  9. Pulsar timing signal from ultralight scalar dark matter

    SciTech Connect (OSTI)

    Khmelnitsky, Andrei; Rubakov, Valery E-mail: rubakov@ms2.inr.ac.ru

    2014-02-01

    An ultralight free scalar field with mass around 10{sup ?23}?10{sup ?22} eV is a viable dark mater candidate, which can help to resolve some of the issues of the cold dark matter on sub-galactic scales. We consider the gravitational field of the galactic halo composed out of such dark matter. The scalar field has oscillating in time pressure, which induces oscillations of gravitational potential with amplitude of the order of 10{sup ?15} and frequency in the nanohertz range. This frequency is in the range of pulsar timing array observations. We estimate the magnitude of the pulse arrival time residuals induced by the oscillating gravitational potential. We find that for a range of dark matter masses, the scalar field dark matter signal is comparable to the stochastic gravitational wave signal and can be detected by the planned SKA pulsar timing array experiment.

  10. Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences:

    Office of Scientific and Technical Information (OSTI)

    Nashville, Tennessee (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Citation Details In-Document Search Title: Copula-Based Flood Frequency Analysis at Ungauged Basin Confluences: Nashville, Tennessee Many cities are located at or near the confluence of streams where availability of water resources may be enhanced to sustain user needs while also posing an increased

  11. Frequency dispersion of nonlinear response of thin superconducting films in

    Office of Scientific and Technical Information (OSTI)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | SciTech Connect Journal Article: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Citation Details In-Document Search Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the

  12. Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filter Loading and Regeneration | Department of Energy Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Advanced Radio Frequency-Based Sensors for Monitoring Diesel Particulate Filter Loading and Regeneration Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_sappok.pdf More Documents & Publications Vehicle Technologies Office Merit

  13. Frequency dispersion of nonlinear response of thin superconducting films in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Berezinskii-Kosterlitz-Thouless state (Journal Article) | SciTech Connect Journal Article: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state Citation Details In-Document Search Title: Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the

  14. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    SciTech Connect (OSTI)

    Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 ; Jaffray, D. A.; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup ?1} and 7/(2?) rad{sup ?1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and ?/7 rad (?25) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.

  15. Self-seeded single-frequency solid-state ring laser and system using same

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  16. System for adjusting frequency of electrical output pulses derived from an oscillator

    DOE Patents [OSTI]

    Bartholomew, David B.

    2006-11-14

    A system for setting and adjusting a frequency of electrical output pulses derived from an oscillator in a network is disclosed. The system comprises an accumulator module configured to receive pulses from an oscillator and to output an accumulated value. An adjustor module is configured to store an adjustor value used to correct local oscillator drift. A digital adder adds values from the accumulator module to values stored in the adjustor module and outputs their sums to the accumulator module, where they are stored. The digital adder also outputs an electrical pulse to a logic module. The logic module is in electrical communication with the adjustor module and the network. The logic module may change the value stored in the adjustor module to compensate for local oscillator drift or change the frequency of output pulses. The logic module may also keep time and calculate drift.

  17. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    SciTech Connect (OSTI)

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to the theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.

  18. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malik, V.; Goodwill, J.; Mallapragada, S.; Prozorov, T.; Prozorov, R.

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  19. Heterodyne interferometer with angstrom-level periodic nonlinearity

    DOE Patents [OSTI]

    Schmitz, Tony L. (Gainesville, FL); Beckwith, John F. (Indialantic, FL)

    2005-01-25

    Displacement measuring interferometer systems and methods are disclosed. One or more acousto-optic modulators for receiving a laser light beam from a laser light source can be utilized to split the laser light beam into two or more laser light beams, while spatially separating frequencies thereof. One or more reflective mechanisms can be utilized to reflect one or more of the laser light beams back to the acousto-optic modulator. Interference of two or more of the laser light beams generally at the acousto-optic modulator can provide an interfered laser light beam thereof. A detector for receiving the interfered laser light beam can be utilized to provide interferometer measurement data.

  20. Beyond periodic orbits: An example in nonhydrogenic atoms

    SciTech Connect (OSTI)

    Dando, P.A.; Monteiro, T.S.; Delande, D.; Taylor, K.T. (Department of Mathematics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX (United Kingdom) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris (France) Department of Applied Mathematics and Theoretical Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom))

    1995-02-13

    The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be analyzed accurately by periodic-orbit-type theories. In nonhydrogenic atoms, the core induces pure quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in terms of classical orbits and their stability parameters. Provided core-scattered waves are included consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in excellent agreement with quantum results. We consider whether these systems correspond to quantum chaos.

  1. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  2. DURING THIS REPORTING PERIOD, WE ISSUED 39 REPORTS; IDENTIFIED

    Energy Savers [EERE]

    39 REPORTS; IDENTIFIED $12.6 MILLION IN FUNDS PUT TO BETTER USE AND $19.3 MILLION IN QUESTIONED COSTS; OBTAINED $6.2 MILLION IN FINES, SETTLEMENTS, AND RECOVERIES, 6 CRIMINAL CONVICTIONS, 20 SUSPENSIONS AND DEBARMENTS, AND 51 CIVIL AND ADMINISTRATIVE ACTIONS; AND RECEIVED 1,679 HOTLINE CONTACTS. DURING THIS REPORTING PERIOD, WE ISSUED 39 REPORTS; IDENTIFIED $12.6 MILLION IN FUNDS PUT TO BETTER US AND $19.3 MILLION IN QUESTIONED COSTS; OBTAINED $6.2 MILLION IN FINES, SETTLEMENTS, AND RECOVERIES,

  3. Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate

    SciTech Connect (OSTI)

    Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Anderson, R. P. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); School of Physics, Monash University, Victoria 3800 (Australia)

    2011-08-15

    We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.

  4. Numerical investigation of pulse-modulated atmospheric radio frequency discharges in helium under different duty cycles

    SciTech Connect (OSTI)

    Sun Jizhong; Ding Zhengfen; Li Xuechun; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China)

    2011-12-15

    Experiments observed that the pulse duty cycle has effects on the plasma homogeneity in pulse-modulated radio frequency (rf) discharges. In this paper, pulse-modulated rf (13.56 MHz) helium discharges are theoretically investigated using a two dimensional fluid model. With the pulse period being fixed to 15 {mu}s, it is found that when the pulse-on duration is over 4 {mu}s, i.e., the duty cycle is larger than approximately 27%, the discharge transits from an inhomogeneous to a homogeneous mode in every specific part of each pulse cycle under currently-used simulation parameters. More quantitative analysis shows that the discharge becomes more homogeneous as the duty cycle is increased but does not reach complete homogeneity. Possible reasons for the homogeneity improvement are discussed.

  5. Events in time: Basic analysis of Poisson data

    SciTech Connect (OSTI)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  6. Genepool Time Heatmaps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Time Heatmaps Heatmap of Time and Slots Requested vs Time Waited (in hours) | Queue: All | Last 7 Days Time Requested Slots <1h 1-2h 2-6h 6-12h 12-24h 24-36h 36-48h 48h-1wk >1wk Job Count Longest Wait 1 23.0 (233) 0.37 (1819) 27.54 (49888) 5.85 (124593) 1.23 (39835) 0.34 (732) 0 0.4 (224) 0.02 (1) 217325 538.96 2 0 0.01 (19) 2.54 (78) 0.2 (140) 0.99 (2683) 0 0 0 0 2920 9.1 4 0.08 (1) 0 2.82 (141) 0.36 (143) 1.07 (12) 0.06 (5) 0.01 (5) 0.06 (1) 1.3 (5) 313 20.48 6 0.01 (2) 0 0.09

  7. Time reversal communication system

    DOE Patents [OSTI]

    Candy, James V. (Danville, CA); Meyer, Alan W. (Danville, CA)

    2008-12-02

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  8. Time-Encoded Imagers.

    SciTech Connect (OSTI)

    Marleau, Peter; Brubaker, Erik

    2014-11-01

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  9. Time and Attendance Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-22

    DOE O 535.1 establishes the Department's requirements and responsibilities governing time and attendance reporting. The purpose of this revision is to reflect the transition of payroll processing from the Capital Accounting Center to the Defense Finance and Accounting System. Cancels DOE O 3600.1B. Canceled by DOE O 322.1C.

  10. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; Burlacu, Relu

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  11. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOE Patents [OSTI]

    Kotter, Dale K. (Shelley, ID) [Shelley, ID; Rohrbaugh, David T. (Idaho Falls, ID) [Idaho Falls, ID

    2010-09-07

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  12. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    SciTech Connect (OSTI)

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the application of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.

  13. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3rd-order distributed feedback quantum cascade laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.; Gao, J. R.; Kao, T. Y.; Hu, Q.; Reno, J. L.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less

  14. Reduced Switching Frequency Active Harmonic Elimination for Multilevel Converters

    SciTech Connect (OSTI)

    Du, Zhong; Tolbert, Leon M; Chiasson, John N; Ozpineci, Burak

    2008-01-01

    This paper presents a reduced switching-frequency active-harmonic-elimination method (RAHEM) to eliminate any number of specific order harmonics of multilevel converters. First, resultant theory is applied to transcendental equations to eliminate low-order harmonics and to determine switching angles for a fundamental frequency-switching scheme. Next, based on the number of harmonics to be eliminated, Newton climbing method is applied to transcendental equations to eliminate high-order harmonics and to determine switching angles for the fundamental frequency-switching scheme. Third, the magnitudes and phases of the residual lower order harmonics are computed, generated, and subtracted from the original voltage waveform to eliminate these low-order harmonics. Compared to the active-harmonic-elimination method (AHEM), which generates square waves to cancel high-order harmonics, RAHEM has lower switching frequency. The simulation results show that the method can effectively eliminate all the specific harmonics, and a low total harmonic distortion (THD) near sine wave is produced. An experimental 11-level H-bridge multilevel converter with a field-programmable gate-array controller is employed to experimentally validate the method. The experimental results show that RAHEM does effectively eliminate any number of specific harmonics, and the output voltage waveform has low switching frequency and low THD.

  15. Frequency hopping millimeter-wave reflectometry in ASDEX upgrade

    SciTech Connect (OSTI)

    Cupido, L.; Graca, S.; Conway, G. D.; Manso, M.; Serra, F.

    2006-10-15

    Millimeter-wave reflectometers for performing density fluctuations have traditionally used either tunable fixed frequency (heterodyne and homodyne) systems or multichannel fixed frequency arrangements. Only recently novel systems were brought into operation with the ability to hop from one frequency to another over a large bandwidth, during each plasma discharge, while retaining the quality of fixed frequency phase locked sources. The new broadband fast hopping millimeter-wave reflectometer incorporates frequency synthesizers for both plasma signal and local oscillators, and the receivers are heterodyne producing full phase/amplitude outputs. Two identical systems were recently installed in (ASDEX upgrade tokamak - IPP-MPG Germany) covering the Q band (33-50 GHz) and the V band (50-75 GHz). In the present article the system is described and the particular implementation on ASDEX, using monostatic antenna system, is presented showing the possibility of correlation studies in fully optimized antenna scenarios. With both Q and V channels in operation it was possible to devise several operation schemes that are described here and a result showing the radial localization of magnetohydrodynamic activity is also presented.

  16. Dependence of enhanced asymmetry-induced transport on collision frequency

    SciTech Connect (OSTI)

    Eggleston, D. L.

    2014-07-15

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ?{sub 1}(r)?cos(kz)?cos(?t?l?), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ? matches the azimuthal rotation frequency ?{sub R}, is usually dominant at low collision frequency ? but becomes negligible at higher ?. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ? (banana) regime, the radial oscillations have amplitude ?r???v{sub r}/?{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ? increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ? values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  17. Periodic local MP2 method employing orbital specific virtuals

    SciTech Connect (OSTI)

    Usvyat, Denis Schütz, Martin; Maschio, Lorenzo

    2015-09-14

    We introduce orbital specific virtuals (OSVs) to represent the truncated pair-specific virtual space in periodic local Møller-Plesset perturbation theory of second order (LMP2). The OSVs are constructed by diagonalization of the LMP2 amplitude matrices which correspond to diagonal Wannier-function (WF) pairs. Only a subset of these OSVs is adopted for the subsequent OSV-LMP2 calculation, namely, those with largest contribution to the diagonal pair correlation energy and with the accumulated value of these contributions reaching a certain accuracy. The virtual space for a general (non diagonal) pair is spanned by the union of the two OSV sets related to the individual WFs of the pair. In the periodic LMP2 method, the diagonal LMP2 amplitude matrices needed for the construction of the OSVs are calculated in the basis of projected atomic orbitals (PAOs), employing very large PAO domains. It turns out that the OSVs are excellent to describe short range correlation, yet less appropriate for long range van der Waals correlation. In order to compensate for this bias towards short range correlation, we augment the virtual space spanned by the OSVs by the most diffuse PAOs of the corresponding minimal PAO domain. The Fock and overlap matrices in OSV basis are constructed in the reciprocal space. The 4-index electron repulsion integrals are calculated by local density fitting and, for distant pairs, via multipole approximation. New procedures for determining the fit-domains and the distant-pair lists, leading to higher efficiency in the 4-index integral evaluation, have been implemented. Generally, and in contrast to our previous PAO based periodic LMP2 method, the OSV-LMP2 method does not require anymore great care in the specification of the individual domains (to get a balanced description when calculating energy differences) and is in that sense a black box procedure. Discontinuities in potential energy surfaces, which may occur for PAO-based calculations if one is not careful, virtually disappear for OSV-LMP2. Moreover, due to much increased compactness of the pair-specific virtual spaces, the OSV-LMP2 calculations are faster and require much less memory than PAO-LMP2 calculations, despite the noticeable overhead of the initial OSV construction procedure.

  18. Low-frequency elastic waves alter pore-scale colloid mobilization

    SciTech Connect (OSTI)

    Beckham, Richard Edward; Abdel-fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sownitri

    2009-01-01

    Naturally occurring seismic events and artificially generated low-frequency elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of water wells. TEe decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of elastic wave stimulations on the release of colloidal particles and investigates the microscopic mechanism of particle release during stimulation. Experiments on a column packed with 1-mm borosilicate beads loaded with polystyrene microspheres demonstrate that low-frequency elastic wave stimulations enhance the mobilization of captured microspheres. Increasing the intensity of the stimulations increases the number of microspheres released and can also result in cyclical variations in effluent microsphere concentration during and after stimulations. Under a prolonged period of stimulation, the cyclical effluent variations coincided with fluctuations in the column pressure data. This behavior can be attributed to flow pathways fouling and/or rearrangements of the beads in the column. Optical microscopy observations of the beads during low frequency oscillations reveal that the individual beads rotate, thereby rubbing against each other and scraping off portions of the adsorbed microspheres. These results support the theory that mechanical interactions between soil grains are important mechanisms in flow path alteration and the mobilization of naturally occurring colloidal particles during elastic wave stimulation. These results also point to both continuous and discrete, en masse releases of colloidal particles.

  19. Adaptive real-time methodology for optimizing energy-efficient computing

    DOE Patents [OSTI]

    Hsu, Chung-Hsing; Feng, Wu-Chun

    2013-01-29

    Dynamic voltage and frequency scaling (DVFS) is an effective way to reduce energy and power consumption in microprocessor units. Current implementations of DVFS suffer from inaccurate modeling of power requirements and usage, and from inaccurate characterization of the relationships between the applicable variables. A system and method is proposed that adjusts CPU frequency and voltage based on run-time calculations of the workload processing time, as well as a calculation of performance sensitivity with respect to CPU frequency. The system and method are processor independent, and can be applied to either an entire system as a unit, or individually to each process running on a system.

  20. Adaptive real-time methodology for optimizing energy-efficient computing

    DOE Patents [OSTI]

    Hsu, Chung-Hsing (Los Alamos, NM); Feng, Wu-Chun (Blacksburg, VA)

    2011-06-28

    Dynamic voltage and frequency scaling (DVFS) is an effective way to reduce energy and power consumption in microprocessor units. Current implementations of DVFS suffer from inaccurate modeling of power requirements and usage, and from inaccurate characterization of the relationships between the applicable variables. A system and method is proposed that adjusts CPU frequency and voltage based on run-time calculations of the workload processing time, as well as a calculation of performance sensitivity with respect to CPU frequency. The system and method are processor independent, and can be applied to either an entire system as a unit, or individually to each process running on a system.

  1. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect (OSTI)

    Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

    2011-03-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.

  2. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  3. Transverse commensurability effect for vortices on periodic pinning arrays

    SciTech Connect (OSTI)

    Reichhardt, Charles; Reichhardt, Cynthia J

    2008-01-01

    Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.

  4. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Performance Period Fee Earned FY2000 thru 2008 $102,622,325 FY2009 $12,259,719 FY2010 $35,789,418 FY2011 $24,126,240 FY2012 $24,995,209 FY2013 $6,340,762 FY2014 $16,285,867 FY2015 $35,931,000 $8,595,000 FY2016 $25,181,000 FY2017 $24,849,000 FY2018 $99,100,000 FY2019 $129,700,000 Cumulative Fee $231,014,540 $599,588,540 $12,259,719 $35,789,418 $38,554,240 $41,785,209 $16,698,762 $37,117,867 Maximum Fee $599,588,540 Fee Available $102,622,325 $10,868,785,789 Completion Contract: December 11, 2000

  5. Physics Division progress report for period ending September 30, 1984

    SciTech Connect (OSTI)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  6. Property:OpenEI/UtilityRate/DemandChargePeriod1 | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 1 Pages using the property "OpenEIUtilityRateDemandChargePeriod1"...

  7. Resonance at the Rabi frequency in a superconducting flux qubit

    SciTech Connect (OSTI)

    Greenberg, Ya. S.; Il'ichev, E.; Oelsner, G.; Shevchenko, S. N.

    2014-10-15

    We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.

  8. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

    1998-02-24

    A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

  9. Present and Future Modes of Low Frequency Climate Variability

    SciTech Connect (OSTI)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  10. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect (OSTI)

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  11. Method for curing polymers using variable-frequency microwave heating

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Paulauskas, Felix L. (Oak Ridge, TN)

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  12. Fluid simulations of frequency effects on nonlinear harmonics in inductively coupled plasma

    SciTech Connect (OSTI)

    Si Xuejiao; Xu Xiang; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Zhao Shuxia [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium); Bogaerts, A. [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2011-03-15

    A fluid model is self-consistently established to investigate the harmonic effects in an inductively coupled plasma, where the electromagnetic field is solved by the finite difference time domain technique. The spatiotemporal distribution of harmonic current density, harmonic potential, and other plasma quantities, such as radio frequency power deposition, plasma density, and electron temperature, have been investigated. Distinct differences in current density have been observed when calculated with and without Lorentz force, which indicates that the nonlinear Lorentz force plays an important role in the harmonic effects, especially at low frequencies. Moreover, the even harmonics are larger than the odd harmonics both in the current density and the potential. Finally, the dependence of various plasma quantities with and without the Lorentz force on various driving frequencies is also examined. It is shown that the deposited power density decreases and the depth of penetration increases slightly because of the Lorentz force. The electron density increases distinctly while the electron temperature remains almost the same when the Lorentz force is taken into account.

  13. Proposal of a truncated atomic beam fountain for reduction of collisional frequency shift

    SciTech Connect (OSTI)

    Takamizawa, A.; Yanagimachi, S.; Ikegami, T. [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8563 (Japan); Shirakawa, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda shi, Chiba 278-8510 (Japan)

    2010-07-15

    We propose an atomic fountain clock with a truncated cold atomic beam to achieve both a low collisional frequency shift and high frequency stability. In this clock, the launching velocity of a cold atomic beam can be swept to reduce the atomic density in the interrogation region for the Ramsey resonance and to increase the atomic density in the detection region. Before the top of the beam arrives at the interrogation region, the cold atomic beam is truncated by turning off the cooling laser beams to remove the unnecessary light shift. The atomic density in the interrogation region is theoretically evaluated to be 0.04 times that in an ordinary atomic fountain with optical molasses for the same number of detected atoms. The frequency stability limit due to quantum projection noise is calculated to reach 6.4x10{sup -14} in 1 s from the number of detected atoms while the fractional collisional shift is estimated to be {approx}{sup -}2x10{sup -16}.

  14. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect (OSTI)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  15. Ultrafast spectroscopy of super high frequency mechanical modes of doubly clamped beams

    SciTech Connect (OSTI)

    Ristow, Oliver; Merklein, Moritz; Grossmann, Martin; Hettich, Mike; Schubert, Martin; Bruchhausen, Axel; Scheer, Elke; Dekorsy, Thomas; Barretto, Elaine C. S.; Grebing, Jochen; Erbe, Artur; Mounier, Denis; Gusev, Vitalyi

    2013-12-02

    We use ultrafast pump-probe spectroscopy to study the mechanical vibrations in the time domain of doubly clamped silicon nitride beams. Beams with two different clamping conditions are investigated. Finite element method calculations are performed to analyse the mode spectra of both structures. By calculating the strain integral on the surface of the resonators, we are able to reproduce the effect of the detection mechanism and identify all the measured modes. We show that our spectroscopy technique combined with our modelling tools allow the investigation of several different modes in the super high frequency range (3-30?GHz) and above, bringing more information about the vibration modes of nanomechanical resonators.

  16. ARM - Field Campaign - 2001 Multi-Frequency Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaigns2001 Multi-Frequency Radar IOP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2001 Multi-Frequency Radar IOP 2001.03.01 - 2001.09.30 Lead Scientist : Stephen Sekelsky Data Availability http://abyss.ecs.umass.edu For data sets, see below. Summary Install UMass and NOAA Aeronomy Laboratory "guest instrument" radars at the SGP CART site adjacent to the MMCR system. Both the UMass and

  17. High Frequency Ultrasonic NDE of Titanium Metal Matrix Composites

    SciTech Connect (OSTI)

    Smith, Robert A.; Pettigrew, Irene; Kirk, Katherine

    2006-03-06

    Pulse-echo wave propagation through a multi-layered TiMMC with a honeycomb-layered structural arrangement was measured experimentally. Embedded in each of the layers are unidirectional, horizontally positioned, parallel oriented silicon carbide fibers cored with tungsten. During the manufacturing process it has been realised that NDE of TiMMC is necessary because fibers are vulnerable to misalignment and breakage resulting in a reduction in mechanical properties. In this paper, results show that frequency dependence exists within the structure. This paper presents the results of fiber position, waviness and orientation detection in TiMMCs. Influences of step size, transducer frequency, focus and filtering are investigated.

  18. EERE Success Story-Radio Frequency Diesel Particulate Filter Sensor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduces Fuel Consumption, Wins R&D 100 Award | Department of Energy Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award EERE Success Story-Radio Frequency Diesel Particulate Filter Sensor Reduces Fuel Consumption, Wins R&D 100 Award October 15, 2014 - 4:51pm Addthis Developed jointly by Corning, the FEV Group, Maguffin Microwave, Detroit Diesel, and Oak Ridge National Laboratory (ORNL) in cooperation with the New York City Department of

  19. Motor monitoring method and apparatus using high frequency current components

    DOE Patents [OSTI]

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  20. Motor monitoring method and apparatus using high frequency current components

    DOE Patents [OSTI]

    Casada, Donald A. (Knoxville, TN)

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  1. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    SciTech Connect (OSTI)

    A. Jeffrey Sondrup; Arthur S. Rood

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INLs annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National Emission Standards for Hazardous Air Pollutants maximum exposed individual location (i.e., Frenchmans Cabin) was no more than 0.1 mrem yr1 (i.e., 1% of the 10 mrem yr1 standard). Detection frequencies were calculated separately for the onsite and offsite monitoring network. As expected, detection frequencies were generally less for the offsite sampling network compared to the onsite network. Overall, the monitoring network is very effective at detecting the potential releases of Cs-137 or Sr-90 from all sources/facilities using either the ESER or BEA MDAs. The network was less effective at detecting releases of Pu-239. Maximum detection frequencies for Pu-239 using ESER MDAs ranged from 27.4 to 100% for onsite samplers and 3 to 80% for offsite samplers. Using BEA MDAs, the maximum detection frequencies for Pu-239 ranged from 2.1 to 100% for onsite samplers and 0 to 5.9% for offsite samplers. The only release that was not detected by any of the samplers under any conditions was a release of Pu-239 from the Idaho Nuclear Technology and Engineering Center main stack (CPP-708). The methodology described in this report could be used to improve sampler placement and detection frequency, provided clear performance objectives are defined.

  2. Elementary wideband timing of radio pulsars

    SciTech Connect (OSTI)

    Pennucci, Timothy T.; Demorest, Paul B.; Ransom, Scott M. E-mail: pdemores@nrao.edu

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J18242452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  3. Aug 2010 Times

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 August 2010 www.y12.doe.gov/news/times.php P.O. Box 2009 Oak Ridge, TN 37831-8245 W H A T ' S I N S I D E Page 2 ARRA work continues Page 4 Sharing secrets with the public Page 5 Apprentices are a sure bet Page 6 Need a yo-yo? Stop by JA BizTown's Y-12 booth Page 8 Employees drop the pounds B&W Technical Services Y-12, LLC, a partnership between Babcock & Wilcox Technical Services Group Inc. and Bechtel National Inc., operates the Y-12 National Security Complex. A newsletter for

  4. Dec 09 Times

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 December 2009 www.y12.doe.gov/news/times.php P.O. Box 2009 Oak Ridge, TN 37831-8245 W H A T ' S I N S I D E Pages 2 and 3 The Top 10 of 2009 Pages 4 and 5 More Q and A with Darrel Kohlhorst: What's ahead for 2010 Page 6 Holiday wishes to you and yours Page 8 Sharing the holiday spirit with those who protect our country B&W Technical Services Y-12, LLC, a partnership between Babcock & Wilcox Technical Services Group Inc. and Bechtel National Inc., operates the Y-12 National Security

  5. Real time Faraday spectrometer

    DOE Patents [OSTI]

    Smith, Jr., Tommy E. (Fremont, CA); Struve, Kenneth W. (Albuquerque, NM); Colella, Nicholas J. (Livermore, CA)

    1991-01-01

    This invention uses a dipole magnet to bend the path of a charged particle beam. As the deflected particles exit the magnet, they are spatially dispersed in the bend-plane of the magnet according to their respective momenta and pass to a plurality of chambers having Faraday probes positioned therein. Both the current and energy distribution of the particles is then determined by the non-intersecting Faraday probes located along the chambers. The Faraday probes are magnetically isolated from each other by thin metal walls of the chambers, effectively providing real time current-versus-energy particle measurements.

  6. Self-consistent modeling of radio-frequency plasma generation in stellarators

    SciTech Connect (OSTI)

    Moiseenko, V. E. Stadnik, Yu. S.; Lysoivan, A. I.; Korovin, V. B.

    2013-11-15

    A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwells equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwells equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwells equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwells equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.

  7. Numerical analysis of radio-frequency sheath-plasma interactions in the ion cyclotron range of frequencies

    SciTech Connect (OSTI)

    Kohno, H.; Myra, J. R.; D'Ippolito, D. A.

    2012-01-15

    A new finite element numerical scheme for analyzing self-consistent radio-frequency (RF) sheath-plasma interaction problems in the ion cyclotron range of frequencies is applied to various problems represented by simplified models for the tokamak scrape-off layer. The present code incorporates a modified boundary condition, which is called a sheath boundary condition, that couples the radio-frequency waves and sheaths at the material boundaries by treating the sheath as a thin vacuum layer. A series of numerical analyses in one- and two-dimensional domains show several important physical properties, such as the existence of multiple roots, hysteresis effects, presence and characteristics of the sheath-plasma waves, and the phase shift of a reflected slow wave, some of which are newly identified by introducing a spatially varying plasma density and background magnetic field.

  8. Abnormal electron-heating mode and formation of secondary-energetic electrons in pulsed microwave-frequency atmospheric microplasmas

    SciTech Connect (OSTI)

    Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701 ; Jung, S. Y.; Kim, H. Y.; Won, I. H.; Lee, J. K.

    2014-03-15

    The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50?eV.

  9. ACT-ARA: Code System for the Calculation of Changes in Radiological Source Terms with Time

    Energy Science and Technology Software Center (OSTI)

    1988-02-01

    The program calculates the source term activity as a function of time for parent isotopes as well as daughters. Also, at each time, the "probable release" is produced. Finally, the program determines the time integrated probable release for each isotope over the time period of interest.

  10. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    SciTech Connect (OSTI)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinko, J.

    2013-06-15

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of {approx}78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs-but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the H{alpha} line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  11. A frequency and amplitude scanned quadrupole mass filter for the analysis of high m/z ions

    SciTech Connect (OSTI)

    Shinholt, Deven L.; Anthony, Staci N.; Alexander, Andrew W.; Draper, Benjamin E.; Jarrold, Martin F.

    2014-11-15

    Quadrupole mass filters (QMFs) are usually not used to analyze high m/z ions, due to the low frequency resonant circuit that is required to drive them. Here we describe a new approach to generating waveforms for QMFs. Instead of scanning the amplitude of a sine wave to measure the m/z spectrum, the frequency of a trapezoidal wave is digitally scanned. A synchronous, narrow-range (<0.2%) amplitude scan overlays the frequency scan to improve the sampling resolution. Because the frequency is the primary quantity that is scanned, there is, in principle, no upper m/z limit. The frequency signal is constructed from a stabilized base clock using a field programmable gate array. This signal drives integrating amplifiers which generate the trapezoidal waves. For a trapezoidal wave the harmonics can be minimized by selecting the appropriate rise and fall times. To achieve a high resolving power, the digital signal has low jitter, and the trapezoidal waveform is generated with high fidelity. The QMF was characterized with cesium iodide clusters. Singly and multiply charged clusters with z up to +5 were observed. A resolving power of ∼1200 (FWHM) was demonstrated over a broad m/z range. Resolution was lost above 20 000 Th, partly because of congestion due to overlapping multiply charged clusters. Ions were observed for m/z values well in excess of 150 000 Th.

  12. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect (OSTI)

    Franois, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192?GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192?GHz output signal are measured to be ?42, ?100, ?117 dB?rad{sup 2}/Hz and ?129 dB?rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 10{sup ?14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  13. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device

    SciTech Connect (OSTI)

    Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho

    2014-05-15

    We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 ? whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.

  14. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect (OSTI)

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  15. Attempt to accelerate asymmetric species with unequal frequencies in RHIC

    SciTech Connect (OSTI)

    Liu, C.; Luo, Y.; Marusic, A.; Minty, M.; Robert-Demolaize, G.; Smith, K.; Mernick, K.; Hayes, T.; Severino, F.

    2015-07-09

    This report summarizes the beam studies on accelerating asymmetric beams with unequal frequencies, during the proton-Gold/Aluminum run in 2015. The experiment failed due to modulated beam-beam effects even though the beams were separated by at least 15 mm.

  16. Recent developments in thermoacoustically-driven low-frequency projectors

    SciTech Connect (OSTI)

    Ward, W.C.; Merrigan, M.A.

    1992-01-01

    Thermoacoustic engines are a recent class of devices that can efficiently convert heat to acoustic energy without moving parts or intervening mechanisms. These engines have a natural potential for powering low-frequency sonar projectors with high reliability and efficiencies that cannot be matched by conventional technologies. A recent design study has produced thermoacoustic projector configurations that can execute standard projector performance requirements such as FM sweep and velocity magnitude and phase control in array environments for a wide range of positive and negative radiation resistances. The thermoacoustic driver is a vertically oriented, helium-filled resonator that contains a movable tuning element to vary the resonator frequency. It is coupled to a variable length water column that is tunable by a similar means to adjust the effective source impedance of the device. Modeling results indicate a sweep range of at least an octave for a single device, and maximum overall (heat-to-acoustic) conversion efficiencies of 25% at 50 Hz. Efficiency increases slightly at lower frequencies, and the lowest operational frequency is limited only by the size of the projector. Output power increases linearly with mean pressure, and at depths of 200 m or more, power densities in excess of 500 kW/m{sup 2} are achievable. Control aspects have been investigated, including rapid startup and shutdown that can be performed by manipulating the water tuning column. Future trends and development prospects are discussed. 4 refs.

  17. Recent developments in thermoacoustically-driven low-frequency projectors

    SciTech Connect (OSTI)

    Ward, W.C.; Merrigan, M.A.

    1992-05-01

    Thermoacoustic engines are a recent class of devices that can efficiently convert heat to acoustic energy without moving parts or intervening mechanisms. These engines have a natural potential for powering low-frequency sonar projectors with high reliability and efficiencies that cannot be matched by conventional technologies. A recent design study has produced thermoacoustic projector configurations that can execute standard projector performance requirements such as FM sweep and velocity magnitude and phase control in array environments for a wide range of positive and negative radiation resistances. The thermoacoustic driver is a vertically oriented, helium-filled resonator that contains a movable tuning element to vary the resonator frequency. It is coupled to a variable length water column that is tunable by a similar means to adjust the effective source impedance of the device. Modeling results indicate a sweep range of at least an octave for a single device, and maximum overall (heat-to-acoustic) conversion efficiencies of 25% at 50 Hz. Efficiency increases slightly at lower frequencies, and the lowest operational frequency is limited only by the size of the projector. Output power increases linearly with mean pressure, and at depths of 200 m or more, power densities in excess of 500 kW/m{sup 2} are achievable. Control aspects have been investigated, including rapid startup and shutdown that can be performed by manipulating the water tuning column. Future trends and development prospects are discussed. 4 refs.

  18. ATWS: a reappraisal. Part 3. Frequency of anticipated transients

    SciTech Connect (OSTI)

    McClymont, A.S.; Poehlman, B.W.

    1982-01-01

    This document is the first revision of Part 3 of the EPRI study of the anticipated transients without scram question. This revision includes an update of events at nuclear power plants which had led to fast reactor shutdowns (scrams). The purpose of this document is to present the nuclear power plant operating experience, reflecting the frequency of these events identified by their principal characteristics.

  19. Method and apparatus for resonant frequency waveform modulation

    DOE Patents [OSTI]

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  20. Understanding Inertial and Frequency Response of Wind Power Plants: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Gevorgian, V.; Singh, M.; Santoso, S.

    2012-07-01

    The objective of this paper is to analyze and quantify the inertia and frequency responses of wind power plants with different wind turbine technologies (particularly those of fixed speed, variable slip with rotor-resistance controls, and variable speed with vector controls).

  1. Localized radio frequency communication using asynchronous transfer mode protocol

    DOE Patents [OSTI]

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  2. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  3. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect (OSTI)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  4. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect (OSTI)

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  5. Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Furnaces and Boilers, Comment Period Extension

  6. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings - Spring 2014 Date Times Group Speakers Tues, 1-13 2:30-3:30pm Faculty Meeting Fri, 1-24 12:30-1:30pm Group Research Meeting Emmanuel Giannelis Fri, 1-31 12:30-1:30pm Student & Postdoc Mtg Apostolos Enotiadis; Nikki Ritzert & Megan Holtz Fri, 2-7 12:30-1:30pm Group Research Meeting CHESS Mon, 2-10 2:30-3:30pm Faculty Meeting Will Dichtel Fri, 2-14 12:30-1:30pm Student & Postdoc Mtg Frank DiSalvo Fri, 2-21 12:30-1:30pm Group Research Meeting Lynden Archer Fri, 2-28

  7. Real time automated inspection

    DOE Patents [OSTI]

    Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.

    1985-05-21

    A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.

  8. Real time automated inspection

    DOE Patents [OSTI]

    Fant, Karl M. (Minneapolis, MN); Fundakowski, Richard A. (Saint Paul, MN); Levitt, Tod S. (Minneapolis, MN); Overland, John E. (Plymouth, MN); Suresh, Bindinganavle R. (New Brighton, MN); Ulrich, Franz W. (Minneapolis, MN)

    1985-01-01

    A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.

  9. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  10. Design, development, and acceleration trials of radio-frequency quadrupole

    SciTech Connect (OSTI)

    Rao, S. V. L. S. Jain, Piyush; Pande, Rajni; Roy, Shweta; Mathew, Jose V.; Kumar, Rajesh; Pande, Manjiri; Krishnagopal, S.; Gupta, S. K.; Singh, P.

    2014-04-15

    A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 ?m leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (?40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D{sup +}) beam, we tested it by accelerating both the proton (H{sup +}) and D{sup +} beams. The RFQ was operated in pulsed mode and accelerated both H{sup +} and D{sup +} beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.

  11. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    SciTech Connect (OSTI)

    Smetanin, S N [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 ?m and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes anti-Stokes coupling ?kL ? 15, where ?k is the wave detuning from phase matching of Stokes anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)

  12. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S.; Husar, J.D.; Husar, R.B.; Brimblecombe, P.

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  13. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    SciTech Connect (OSTI)

    Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William

    2015-01-01

    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen concentrations or higher fueling rates, in general led to a greater fraction of net recovered fuel energy and work as heat losses were minimized. These observations were supported by complementary single-zone reactor model results, which further indicated that kinetic time-scales favor chemical energy-consuming exothermic oxidation over slower endothermic reformation. Nonetheless, fuel energy recovery close to the thermodynamic equilibrium solution was achieved for baseline conditions that featured 4% NVO-period oxygen concentration.

  14. EIS-0472: Re-Opening of the Public Comment Period | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Re-Opening of the Public Comment Period EIS-0472: Re-Opening of the Public Comment Period Draft Uranium Leasing Program PEIS, Mesa, Montrose, and San Miguel Counties, Colorado DOE is re-opening the public comment period for the Draft Uranium Leasing Programmatic Environmental Impact Statement made available for public comment on March 15, 2013. The public comment period will now end on July 1, 2013. PDF icon EIS-0472-DEIS-CmntPeriod-Reopening-2013.pdf PDF icon

  15. Chapter 18: Variable Frequency Drive Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: September 2011 … December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Variable Frequency Drive Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 - December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik Subcontract Report NREL/SR-7A40-63166 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

  16. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOE Patents [OSTI]

    Warren, R.W.

    1992-09-01

    A microwiggler assembly produces large magnetic fields for oscillating charged particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180[degree] relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube. 10 figs.

  17. High field pulsed microwiggler comprising a conductive tube with periodically space slots

    DOE Patents [OSTI]

    Warren, Roger W. (Santa Fe, NM)

    1992-01-01

    A microwiggler assembly produces large magnetic fields for oscillating ched particle beams, particularly electron beams for free electron laser (FEL) application. A tube of electrically conductive material is formed with radial slots axially spaced at the period of the electron beam. The slots have alternate 180.degree. relationships and are formed to a maximum depth of 0.6 to 0.7 times the tube circumference. An optimum slot depth is selected to eliminate magnetic quadrupole fields within the microwiggler as determined from a conventional pulsed wire technique. Suitable slot configurations include single slits, double slits, triple slits, and elliptical slots. An axial electron beam direction is maintained by experimentally placing end slits adjacent entrance and exit portions of the assembly, where the end slit depth is determined by use of the pulsed wire technique outside the tube.

  18. Miniband Transport in a Two-Dimensional Electron Gas with a Strong Periodic Unidirectional Potential Modulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyo, Sungkwun K.; Pan, Wei

    2014-08-07

    In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weakmore » potential modulation.« less

  19. System efficiency analysis for high power solid state radio frequency transmitter

    SciTech Connect (OSTI)

    Jain, Akhilesh, E-mail: ajain@rrcat.gov.in; Sharma, D. K.; Gupta, A. K.; Lad, M. R.; Hannurkar, P. R. [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)] [RF Systems Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Pathak, S. K. [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)] [Electromagnetics and Microwave Engineering, Institute for Plasma Research, Gandhinagar 382 428 (India)

    2014-02-15

    This paper examines some important relationships, related with the system efficiency, for very high power, radio frequency solid-state transmitter; incorporating multiple solid-state power amplifier modules, power combiners, dividers, couplers, and control/interlock hardware. In particular, the characterization of such transmitters, at the component as well as the system level, is discussed. The analysis for studying the influence of the amplitude and phase imbalance, on useful performance parameters like system efficiency and power distribution is performed. This analysis is based on a scattering parameter model. This model serves as a template for fine-tuning the results, with the help of a system level simulator. For experimental study, this approach is applied to a recently designed modular and scalable solid-state transmitter, operating at the centre frequency of 505.8?MHz and capable of delivering a continuous power of 75 kW. Such first time presented, system level study and experimental characterization for the real time operation will be useful for the high power solid-state amplifier designs, deployed in particle accelerators.

  20. Day/Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Day/Time Mon, 12:00 - 6:00 pm Mon, 5:00 pm Mon, 7:00 pm Tues, 7:00 am Tues, 8:00 am Tues, 8:10 am Tues, 8:25 am Tues, 9:25 am Tues, 9:45 am Tues, 11:15 am Tues, 3:45 pm Tues, 4:05 pm Tues, 6:00 pm Wednesday, March 30th Wed, 7:00 am Tues, 7:45 am Tues, 8:00 am Wed, 8:30 am Wed, 12:20 pm Wed, 4:10 pm Wed, 4:30 pm Thursday, March 31st Thurs, 7:00 am Thurs, 11:00 am Thurs, 11:20 am Thurs, 12:30 pm Thurs, 1:00 pm - 4:00 pm P o s t e r s D i s p l a y e d Continental Breakfast / Posters (Salon Del Ray