Powered by Deep Web Technologies
Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

2

SuperTruck Team Achieves 115% Freight Efficiency Improvement...  

Energy Savers [EERE]

per gallon (MPG). Increasing the efficiency of Class 8 trucks is essential because they haul 80 percent of the goods in the U.S. and use about 20 percent of the fuel consumed in...

3

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network [OSTI]

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

4

Pollution-Related Health Effects of Truck-to-Train Freight Modal Shifts in the Midwestern United States  

E-Print Network [OSTI]

by reducing air pollution. Objective: This study sought to quantify the pollution-related health impactsPollution-Related Health Effects of Truck-to-Train Freight Modal Shifts in the Midwestern United Background: Outdoor air pollution causes increases in mortality, cardiovascular events, and respiratory

Wisconsin at Madison, University of

5

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure 2012 DOE Hydrogen and Fuel Cells...

6

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Program Review Presentation NJ COMPRESSED NATURAL GAS REFUSE TRUCKS, SHUTTLE BUSES AND INFRASTRUCTURE Chuck Feinberg, Principal Investigator New Jersey Clean...

7

Heavy-Duty Natural Gas Drayage Truck Replacement Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

8

Vehicle Technologies Office Merit Review 2014: Class 8 Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Class 8 Truck Freight Efficiency Improvement Project Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project Presentation given by...

9

Liquefied Natural Gas for Trucks and Buses  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

10

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

11

Air Pollution Impacts of Shifting San Pedro Bay Ports Freight from Truck to Rail in Southern California  

E-Print Network [OSTI]

in pollutants compared to the baseline (Port trucks only).Improvement Program. 2008. 4. The Port of Long Beach.Port of Long Beach Air Emissions Inventory 2005. 2007. 5.

You, Soyoung Iris; Lee, Gunwoo; Ritchie, Stephen G.; Saphores, Jean-Daniel; Sangkapichai, Mana; Ayala, Roberto

2010-01-01T23:59:59.000Z

12

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

SciTech Connect (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

2013-01-01T23:59:59.000Z

13

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

SciTech Connect (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

14

Analysis of liquid natural gas as a truck fuel: a system dynamics approach  

SciTech Connect (OSTI)

The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

1996-10-01T23:59:59.000Z

15

Freight Wing Trailer Aerodynamics  

SciTech Connect (OSTI)

Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

Graham, Sean (Primary Investigator); Bigatel, Patrick

2004-10-17T23:59:59.000Z

16

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

2010-01-01T23:59:59.000Z

17

Truckstop -- and Truck!-- Electrification  

SciTech Connect (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

18

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network [OSTI]

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits

19

American Institute of Aeronautics and Astronautics AERODYNAMIC OPTIMIZATION FOR FREIGHT  

E-Print Network [OSTI]

American Institute of Aeronautics and Astronautics 1 AERODYNAMIC OPTIMIZATION FOR FREIGHT TRUCKS and Astronautics 2 controls,4 , flight trajectories,5 wings and airfoils,6,7,9,10 inlets,14 rockets,16,19 missiles

Roy, Chris

20

Freight Shuttle System: Cross-Border Movement of Goods  

SciTech Connect (OSTI)

The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

None

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for BioenergyBuilding TechnologiesNatural Gas

22

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

SciTech Connect (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

23

ANALYSIS OF THE NON LINEAR DYNAMICS OF A 2AXLE FREIGHT WAGON IN CURVES  

E-Print Network [OSTI]

and trucks continuously requires to increase the capacity on modern freight wagons. In order to reach this objective two options are available, increasing the total hauled mass or raising the speed of the wagons

24

Class 8 Truck Freight Efficiency Improvement Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of Energy ClarkClark ForkB O

25

Greenhouse gas emissions and the surface transport of freight in Canada  

E-Print Network [OSTI]

of several pre-defined factors to changes in energy consumption and energy-related gas emissions (Ang appearing to be rising proportionally as a transportation mode. Federal government initiatives on the US the transportation sector (Office of Energy Efficiency, 2004); a rise of nearly 25% over 1990. The geographical

26

Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report  

E-Print Network [OSTI]

fuel efficiency Higher system capacity Rural Truck-AHS Long-haulhaul other companies’ trucks or just trailers; scheduled AHS Hauling services Better fuelhaul on some freight corridors (expedited Bus and Truck AHS – Final Report to California PATH Mainline Operations: Fuel

Taso, H. S. Jacob; Botha, Jan L.

2003-01-01T23:59:59.000Z

27

The Freight Shuttle System: Automated-Secure Trade  

E-Print Network [OSTI]

the same volume) #12;HDD Truck vs. FSS (CO2 required to service the same volume) #12;Next Steps · Finalize footprint guide way ­ To be built within existing highway ROW The Freight Shuttle System 24/7 operations transportation #12;#12;#12;#12;Port of Entry Security #12;Ciudad Juarez El Paso Scan-in-motion Scan

28

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

29

Title: Best Practices in Urban Freight Management: Lessons from an International Survey Submission date: July 31, 2012  

E-Print Network [OSTI]

areas. Trucks and vans provide local "last mile" deliveries and pickups, as well as most medium haul reductions programs, local land use and parking policies, and more stringent national fuel efficiency and emissions standards for heavy duty trucks. More research is needed on intra- metropolitan freight movements

Boyer, Edmond

30

Title: Best Practices in Urban Freight Management: Lessons from an International Survey Submission date: July 31, 2012  

E-Print Network [OSTI]

policies, and more stringent national fuel efficiency and emissions standards for heavy duty trucks. More Commercial transport is crucial for the functioning of metropolitan areas. Trucks and vans provide local "last mile" deliveries and pickups, as well as most medium haul freight transport. In metro areas

Paris-Sud XI, Université de

31

Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks  

E-Print Network [OSTI]

to global climate change, diesel-fueled refuse trucks are one of the most concentrated sources of health-threatening air pollution in most cities. The landfills that they ultimately place their waste in are the second largest source of human-related methane...

Sprague, Stephen M.

2011-02-22T23:59:59.000Z

32

FREIGHT CONTAINER LIFTING STANDARD  

SciTech Connect (OSTI)

This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

POWERS DJ; SCOTT MA; MACKEY TC

2010-01-13T23:59:59.000Z

33

Transforming California's Freight Transport System  

E-Print Network [OSTI]

Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

California at Davis, University of

34

The Design of a New Freight Distribution System in Venice1  

E-Print Network [OSTI]

1 The Design of a New Freight Distribution System in Venice1 Flavio Baita, Carlos Daganzo, Walter the transshipment operations from trucks to boats, and the organization of the boat distribution. Currently. Introduction The role of distribution logistics, as a strategic factor for competitive advantage in many

Daganzo, Carlos F.

35

Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas  

SciTech Connect (OSTI)

This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

Norton, P.; Kelly, K.

1996-07-01T23:59:59.000Z

36

PREPARED BY: Regional Freight Data  

E-Print Network [OSTI]

.5% Truck, ocean, rail, air Milled grain products and preparations and bakery products 3.3% Truck, rail instruments and apparatus 3.1% Truck, air Printed products 2.9% Truck, rail, air Nonmetallic mineral products for 60% of Oregon jobs · Transportation and logistics account for 20-25% of product cost · Average

Bertini, Robert L.

37

Strategic Freight Transportation Contract Procurement  

E-Print Network [OSTI]

for truckload service contract procurement. Truckloadgiven the details of new service contracts including: demandin auctions for freight service contract procurement. 1.3.1

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

38

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect (OSTI)

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

39

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndiana Natural Gas Powers Milk Delivery

40

Liquefied U.S. Natural Gas Exports by Truck (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)CubicFeet)2009 2010 2011 2012TypesDecade

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)CubicFeet)2009 2010 2011

42

Liquefied U.S. Natural Gas Exports by Truck to Mexico (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)CubicFeet)2009 2010 2011Decade Year-0

43

Liquefied U.S. Natural Gas Exports by Vessel and Truck (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)CubicFeet)2009 2010 2011Decade

44

Lift truck safety review  

SciTech Connect (OSTI)

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

45

Class 8 Truck Freight Efficiency Improvement Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of Energy ClarkClark ForkB O2

46

Class 8 Truck Freight Efficiency Improvement Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of Energy ClarkClark ForkB O21

47

Class 8 Truck Freight Efficiency Improvement Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of Energy ClarkClark ForkB

48

Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote55 JeffersonFuel-Efficient

49

Super Truck -- 50% Improvement In Class 8 Freight Efficiency | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ce U.S.Super Dutyof

50

Guidance on measuring and reporting Greenhouse Gas  

E-Print Network [OSTI]

Guidance on measuring and reporting Greenhouse Gas (GHG) emissions from freight transport This guidance provides clear instructions on calculating the greenhouse gas (GHG) emissions from freight and report your greenhouse gas emissions', by providing more specific information and examples relating

51

Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

52

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los Angeles  

E-Print Network [OSTI]

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los or organization) Volvo Research and Educational Foundation- $79,604.00 Total Project Cost $79,604.00 Agency ID of Research Project This project will develop models to optimize the balance of freight demand across rail

California at Davis, University of

53

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

54

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

SciTech Connect (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

55

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

SciTech Connect (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

56

STATE-OF-THE-PRACTICE IN FREIGHT DATA: A REVIEW OF AVAILABLE FREIGHT DATA IN THE U.S.  

E-Print Network [OSTI]

procedures, freight demand characteristics, freight data quality control procedures, freight database, survey method, quality control procedure, geographical coverage, frequency of updates of each publicly available database, and the available documentation of commercial databases. In total, 31

Texas at Austin, University of

57

Planning for Freight Management: Urban Freight and Gateway Strategies  

E-Print Network [OSTI]

Low Low Off-hours deliveries High Medium Intelligent Transport Systems (ITS) Medium Medium Environment and parking regulations Medium High Local planning policy High High City logistics and consolidation programs Truck fuel efficiency and emissions standards High High Alternative fuels and vehicles Low Medium Low

California at Davis, University of

58

Freight Analysis Framework version 3 (FAF3)  

E-Print Network [OSTI]

Freight Analysis Framework version 3 (FAF3) Oak Ridge National Laboratory managed by UT Technologies Research Brief T he Freight Analysis Framework version 3 (FAF3) database is a Federal Highway data to enable users to perform train analysis. FAF3 Geography Figure 1 shows the analysis regions

59

Effect of a sudden fuel shortage on freight transport in the United States: an overview  

SciTech Connect (OSTI)

A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

Hooker, J N

1980-01-01T23:59:59.000Z

60

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Aerodynamic Forces on Truck Models, Including Two Trucks in Tandem  

E-Print Network [OSTI]

rear-edge shaping on the aerodynamic drag of bluff vehiclesOF CALIFORNIA, BERKELEY Aerodynamic Forces on Truck Models,TRANSIT AND HIGHWAYS Aerodynamic Forces on Truck Models,

Hammache, Mustapha; Michaelian, Mark; Browand, Fred

2001-01-01T23:59:59.000Z

62

Haul truck selection  

SciTech Connect (OSTI)

Haul truck selection involves the consideration of a vast amount of information before the final decision is made. This judgment should not be made simply on the choice of power train, because to go for mechanical or electric drive has always been a case of horses for courses. Some sites are just better suited to electric drive. It could, for instance, be argued that coming out of deep mines with long haul roads is an ideal application for electric drive, but negotiating steep down gradients fully laden would favor mechanical drive. Engine selection on the other hand is easier to define but normally is the direct responsibility of the customer, with the truck manufacturer acting as impartial adviser. Understandably each will offer engines it believes to be well matched to the truck and to the site application requirements. Long term mine planning with careful attention to future equipment requirements is the key to all equipment purchases. This paper discusses the various considerations.

Porter, D.

1993-10-01T23:59:59.000Z

63

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect (OSTI)

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL] [ORNL; Knee, Helmut E [ORNL] [ORNL; Slezak, Lee [U.S. Department of Energy] [U.S. Department of Energy

2010-01-01T23:59:59.000Z

64

A Note on “Multistage Methods for Freight Train Classification”  

E-Print Network [OSTI]

Freight Train Classification”. Dirk Briskorn. 1. , Florian Jaehn. 2,?. November, 2012. 1 Universität Siegen, Lehrstuhl für Quantitative Planung, Hölderlinstraße 3,

2012-11-21T23:59:59.000Z

65

Improving haul truck productivity  

SciTech Connect (OSTI)

The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

Fiscor, S.

2007-06-15T23:59:59.000Z

66

Investigating the Possibility of Using BART for Air Freight Movement  

E-Print Network [OSTI]

generally at night; Long-haul truck fleets are used forgenerally at night; (4) Long-haul truck fleets are used forand deliveries; Trucks are used for long distance haul. Each

Lu, Xiao-Yun; Hanson, Matt; Graham, Michael; Nishinaga, Eugene; Lu, Richard

2008-01-01T23:59:59.000Z

67

Executive Education Program Freight Transportation and  

E-Print Network [OSTI]

Executive Education Program Freight Transportation and Logistics: Delivering Results in a Volatile Environment September 9 ­11, 2013 Northwestern University Transportation Center NonprofitOrganization U.S.Postage PAID NorthwesternUniversity TransportationCenter RobertR.McCormickSchool of

Bustamante, Fabián E.

68

Aerospace Engineering Pickup Truck AerodynamicsPickup Truck Aerodynamics  

E-Print Network [OSTI]

distribution on a generic pickup truck geometry. · To measure the unsteady flow field in the near wake, suction type wind tunnel · Pickup truck model provided by GM R&D · Ground board mounted on top side of tunnel · Actual wind tunnel cross section 60 x 50 cm · Model mounted 380 mm from ground board leading

Al-Garni, Abdullah M.

69

A Note on “Multistage Methods for Freight Train Classification”  

E-Print Network [OSTI]

Nov 21, 2012 ... Abstract: The paper “Multistage Methods for Freight Train Classification” by Jacob et al. ([2]) provides a great insight to the theory and practice ...

Dirk Briskorn

2012-11-21T23:59:59.000Z

70

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

SciTech Connect (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

71

Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

value because rail is often used to haul bulk commodities like coal and grains that are heavy but low value. Conversely, air transport carries just 0.04% (rounds to 0% in the pie...

72

SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:StepRenewable Energy (EERE)to

73

Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July|Rise | Department of2011of

74

Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards,GrowingOperation

75

SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAs much as halfThe winners

76

Emissions and Air Quality Impacts of Freight Transportation Erica Bickford  

E-Print Network [OSTI]

Emissions and Air Quality Impacts of Freight Transportation by Erica Bickford A dissertation rights reserved. #12;Abstract Emissions and Air Quality Impacts of Freight Transportation Erica Bickford.S. transportation is the largest source of national nitrogen oxide (NOx) emissions and the third largest source

Wisconsin at Madison, University of

77

Multistage Methods for Freight Train Classification Riko Jacob1  

E-Print Network [OSTI]

Multistage Methods for Freight Train Classification Riko Jacob1 , Peter M´arton2 , Jens Maue3 , and Marc Nunkesser3 1 Computer Science Department, TU M¨unchen, Germany jacob@in.tum.de 2 Faculty, train classification 1 Introduction In real-world railways, a freight train consists of an engine

Riko Jacob

78

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

79

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

80

Raley's LNG Truck Site Final Data Report  

SciTech Connect (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heavy Truck Engine Program  

SciTech Connect (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

82

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

83

New Funding Boosts Carbon Capture, Solar Energy and High Gas...  

Office of Environmental Management (EM)

Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

84

Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)  

E-Print Network [OSTI]

data from trucks operating in long-haul operations. The research program was designed to be conductedHeavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project. The project involves efforts to collect, analyze and archive data and information related to class -8 truck

85

Truck acoustic data analyzer system  

DOE Patents [OSTI]

A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

2006-07-04T23:59:59.000Z

86

Optimal capital structure of deep sea foreign freight transportation companies  

E-Print Network [OSTI]

This thesis aims to understand the optimal leverage range for shipping companies (maritime foreign freight transportation companies - SIC 4412), through data analysis. This study confirms that in a traditional industry ...

Georgiadis, Vasilis

2014-01-01T23:59:59.000Z

87

Inbound freight consolidation : a simulation model to evaluate consolidation rules  

E-Print Network [OSTI]

In logistics, freight can be consolidated over time (temporally) or over space (spatially). This thesis presents a simulation model to evaluate temporal and spatial consolidation rules. The model is the result of a research ...

Ford, Daniel J. (Daniel Jerome)

2006-01-01T23:59:59.000Z

88

Truck Thermoacoustic Generator and Chiller  

SciTech Connect (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

89

Carrier strategies in the spot trucking market  

E-Print Network [OSTI]

How an owner-operator chooses a specific load is a relatively unstudied field in transportation literature. Stakeholders in the decisions, such as freight brokers, stand to benefit from a better understanding of the selection ...

Leopando, Paul Jeffrey Ramirez

2014-01-01T23:59:59.000Z

90

Barge Truck Total  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564 1,1460 0Year0Barge

91

State-of-the art of freight forecast modeling: lessons learned and the road ahead  

E-Print Network [OSTI]

of-the art of freight forecast modeling: lessons learned andof goods as well as to forecast the expected future truckused for the short-term forecasts of freight volumes on

Chow, Joseph Y.; Yang, Choon Heon; Regan, Amelia C.

2010-01-01T23:59:59.000Z

92

Merging qualitative and quantitative criteria for freight investment using scenario planning  

E-Print Network [OSTI]

Freight transportation is vital to the economy of the United States. The total volume of freight moving inside the nation is expected to continue growing, while the U.S. transportation system is aging and becoming more ...

Sánchez-Valero, Miguel Ángel

2011-01-01T23:59:59.000Z

93

Mitigating the Social and Environmental Impacts of Multimodal Freight Corridor Operations at Southern California Ports  

E-Print Network [OSTI]

SPBP freight traffic, air pollution, and the health of localSPBP freight traffic, air pollution, and the health of localhealth impact assessment to quantitatively assess the characteristics of the populations bearing the brunt of air pollution

Recker, Will W

2008-01-01T23:59:59.000Z

94

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

95

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy new traffic flow and traffic light control concepts with respect to emissions and fuel economy. Some

California at Davis, University of

96

Calibraton of a Directly Injected Natural Gas HD Engine for Class...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck Applications This...

97

Tipagornwong and Figliozzi 1 An Analysis of the Competitiveness of Freight Tricycle Delivery Services in  

E-Print Network [OSTI]

. Freight tricycles, also known as electric- assisted trikes, are low-emissions vehicles powered by a combination of human effort and an electric engine. This research develops a cost model incorporating vehicle of freight tricycles, low-capacity freight delivery vehicles, as compared to diesel vans in urban areas

Bertini, Robert L.

98

Emission Controls for Heavy-Duty Trucks  

Broader source: Energy.gov (indexed) [DOE]

DEER Conference Emission Controls for Heavy-Duty Trucks Overview Emission Standards - US and Worldwide Technology Options for Meeting Emissions System Integration ...

99

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

SciTech Connect (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

100

Trucking | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) JumpCorpDist JumpTrucking Home

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

102

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

103

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network [OSTI]

of most line-haul class 8 trucks. Ballard Nexa Fuel Cell Thefuel cell powered auxiliary power units (APUs) to reduce idling in line-haul trucks.

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

104

Vehicle Technologies Office Merit Review 2014: SuperTruck Program...  

Energy Savers [EERE]

SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel Corporation...

105

Thermoelectric Generator Development at Renault Trucks-Volvo...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trucks-Volvo Group Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is...

106

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...  

Broader source: Energy.gov (indexed) [DOE]

NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

107

Ten Years of Development Experience with Advanced Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine...

108

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

109

Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California  

E-Print Network [OSTI]

California-registered long-haul trucks that travel throughreferred to as “long haul” trucks. These trucks tend to beto include both “long haul” trucks and trucks that operate

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

110

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

Hydrogen (Natural Gas, pipeline) Hydrogen (Natural Gas,liquid H2 truck) Hydrogen (Coal, pipeline) Electricity (production? Hydrogen Production Mix Natural Gas, pipeline,

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

111

Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report  

SciTech Connect (OSTI)

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

2012-11-01T23:59:59.000Z

112

William W. Hay Railroad Engineering Seminar Freight Railroad Energy  

E-Print Network [OSTI]

(importance v difficulties) North American freight RRs (defining characteristics) Energy density of diesel fuel & alternatives (Btu's per gallon) Biodiesel, Fischer-Tropsch syn fuel & DME Liquefied natural of European RRs (lessons learned) Dual-mode locomotives ("electro-diesels") Unconventional alternatives

Barkan, Christopher P.L.

113

Optimizing the Aerodynamic Efficiency of IM Freight Trains  

E-Print Network [OSTI]

Optimizing the Aerodynamic Efficiency of IM Freight Trains Yung-Cheng Lai University of Illinois aerodynamic penalties and fuel consumption than general trains IM trains suffer from their equipment design and loading pattern These large gaps directly affect the aerodynamic drag of the train. This effect is greater

Barkan, Christopher P.L.

114

Optimizing the aerodynamic efficiency of intermodal freight trains  

E-Print Network [OSTI]

Optimizing the aerodynamic efficiency of intermodal freight trains Yung-Cheng Lai a,*, Christopher form 24 April 2007; accepted 17 May 2007 Abstract We develop an aerodynamic loading assignment model fuel-efficient trains. This is the first use of optimization modeling to address the aerodynamics

Barkan, Christopher P.L.

115

Freight/logistics symposium ..2 Airport guidebook...................3  

E-Print Network [OSTI]

· Freight/logistics symposium ..2 · Airport guidebook...................3 · State Fair exhibit Administration in Boston, is charged with improving the nation's transpor- tation system through collaborations between the USDOT and other federal, state, local, and international agencies and entities. "This

Minnesota, University of

116

Mixing Fast Trains on Freight Rail Corridors presented by  

E-Print Network [OSTI]

Mixing Fast Trains on Freight Rail Corridors presented by: Minnesota Department of Transportation May 23, 2012 #12;Presentation Outline · State Plans for Fast (Passenger) Trains · Overarching) Suggest picture of CP grain train be inserted here #12;Passenger Rail Development Overarching Principles

Minnesota, University of

117

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

SciTech Connect (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

118

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

SciTech Connect (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

119

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

SciTech Connect (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

120

In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop  

SciTech Connect (OSTI)

At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

Lee, Doh-Won [Texas Transportation Institute; Zietsman, Josias [Texas Transportation Institute; Farzaneh, Mohamadreza [Texas Transportation Institute; Li, Wen-Whai [University of Texas, El Paso; Olvera, Hector [University of Texas, El Paso; Storey, John Morse [ORNL; Kranendonk, Laura [ORNL

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Slow speed object detection for haul trucks  

SciTech Connect (OSTI)

Caterpillar integrates radar technology with its current camera based system. Caterpillar has developed the Integrated Object Detection System, a slow speed object detection system for mining haul trucks. Object detection is a system that aids the truck operator's awareness of their surroundings. The system consists of a color touch screen display along with medium- and short-range radar as well as cameras, harnesses and mounting hardware. It is integrated into the truck's Work Area Vision System (WAVS). After field testing in 2007, system commercialization began in 2008. Prototype systems are in operation in Australia, Utah and Arizona and the Integrated Object Detection System will be available in the fourth quarter of 2009 and on production trucks 785C, 789C, 793D and 797B. The article is adapted from a presentation by Mark Richards of Caterpillar to the Haulage & Loading 2009 conference, May, held in Phoenix, AZ. 1 fig., 5 photos.

NONE

2009-09-15T23:59:59.000Z

122

Water by truck in Mexico City  

E-Print Network [OSTI]

Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

Pike, Jill (Jill Susan)

2005-01-01T23:59:59.000Z

123

FedEx Freight Delivers on Clean Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

by Latham, NY -based Plug Power. Refueling equipment and hydrogen will be supplied by Air Products of Allentown, PA. The forklift conversion project illustrates FedEx Freight's...

124

Promoting technological investment in the Australian rail freight sector: evaluating the feasibility of accelerated depreciation.  

E-Print Network [OSTI]

??Although regulation for emissions, pollution, etc., is becoming stricter, the Australian rail freight industry is still locked in to using large numbers of existing rolling… (more)

Koowattanatianchai, Nattawoot

2011-01-01T23:59:59.000Z

125

E-Print Network 3.0 - analytic intermodal freight Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: these were given the highest priority in the simulations. Of the freight trains considered, intermodal trains... . For example we use "intermodal" as shorthand to...

126

Health Impacts of Moving Freight In and Out of the Ports of Long Beach and Los Angeles  

E-Print Network [OSTI]

and Health Impacts of Port-Related Freight Movement in aMoving Freight In and Out of the Ports of Long Beach and LosISSUE The San Pedro Bay Port (SPBP) of Los Angeles and Long

2010-01-01T23:59:59.000Z

127

Health Impacts of Moving Freight In and Our of the Ports of Long Beach and Los Angeles  

E-Print Network [OSTI]

and Health Impacts of Port-Related Freight Movement in aMoving Freight In and Out of the Ports of Long Beach and LosISSUE The San Pedro Bay Port (SPBP) of Los Angeles and Long

2010-01-01T23:59:59.000Z

128

Caterpillar Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

129

Interim Results from Alternative Fuel Truck Evaluation Project  

SciTech Connect (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

130

Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California  

E-Print Network [OSTI]

haul” trucks. These trucks tend to be the newest (median model year of 2004), have higher average fuel economy,

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

131

An Econometrics Analysis of Freight Rail Demand Growth in Albert Wijeweera a, *  

E-Print Network [OSTI]

1 An Econometrics Analysis of Freight Rail Demand Growth in Australia Albert Wijeweera a, * , Hong of non-bulk freight demand in Australia. The paper uses a simple but robust econometrics method this growth at about four per cent per year (BTRE, 2006). The econometric model used herein enables us

132

Service quality planning for freight distribution with time windows in large networks  

E-Print Network [OSTI]

as a quality factor of the service, since its nature and configuration also affects the total transportation1 Service quality planning for freight distribution with time windows in large networks Francesco introduces a methodology whose aim is to evaluate how the quality of a freight distribution service with time

Paris-Sud XI, Université de

133

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train  

E-Print Network [OSTI]

Two algorithms for the sorting of unknown train vibration signals into freight and passenger train in particular. To facilitate this, two algorithms have been constructed with the aim of sorting unknown train vibration signals into freight and passenger train categories so that they can be further analysed. 307

Paris-Sud XI, Université de

134

RELATIONSHIP BUILDING WITH FREIGHT RAILROADS CRITICAL TO SUPPORT INTERCITY PASSENGER RAIL DEVELOPMENT  

E-Print Network [OSTI]

.4 million (2011) 93% of Amtrak's approximately 21,000 route system utilizes freight railroad owned Relationship between freight railroads and governments remains highly combative HOW CAN GOVERNMENT ENHANCE animosity; address issues through established relationships and dialog over regulation Generate Utility

Illinois at Chicago, University of

135

Heavy Truck Clean Diesel Cooperative Research Program  

SciTech Connect (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

136

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

137

How to lighten trucks to haul bigger payloads  

SciTech Connect (OSTI)

The paper discusses how lighter truck components can be used wisely for the highway transportation of coal, with maintenance and costs in mind, to increase the hauling capacity of trucks.

Smiely, C.H.

1981-07-01T23:59:59.000Z

138

Improved performance of railcar/rail truck interface components  

E-Print Network [OSTI]

turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center...

Story, Brett Alan

2009-05-15T23:59:59.000Z

139

Fact #787: July 8, 2013 Truck Stop Electrification Reduces Idle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption Fact 787: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption The U.S. Department of...

140

Vehicle Technologies Office: 21st Century Truck Partners  

Broader source: Energy.gov [DOE]

The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hamilton Truck Route Study Prepared for the City of Hamilton  

E-Print Network [OSTI]

Hamilton Truck Route Study Prepared for the City of Hamilton March 2012 #12;#12;Hamilton Truck and Logistics McMaster University Hamilton, Ontario March 2012 mitl.mcmaster.ca #12;#12;McMaster Institute

Haykin, Simon

142

Curbside eating : mobilizing food trucks to activate public space  

E-Print Network [OSTI]

In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

Sheppard, Alison Marguerite

2013-01-01T23:59:59.000Z

143

Examining factors affecting the safety performance and design of exclusive truck facilities  

E-Print Network [OSTI]

models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks or more) and single-truck crashes. The results suggested that the percentage of trucks in Average Annual Daily Traffic (AADT...

Iragavarapu, Vichika

2009-05-15T23:59:59.000Z

144

Driving Pattern Recognition for Control of Hybrid Electric Trucks  

E-Print Network [OSTI]

Driving Pattern Recognition for Control of Hybrid Electric Trucks CHAN-CHIAO LIN1 , SOONIL JEON2 strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified trucks. The 21st Century Truck program in the US, spearheaded by two government agencies, Department

Peng, Huei

145

Solar Energy for Charging Fork Truck Batteries  

E-Print Network [OSTI]

this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial...

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

146

Fire Department Gets New Trucks, Saves Money  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

147

Towards understanding the impacts of congestion pricing on urban trucking  

E-Print Network [OSTI]

Understanding policy impacts on freight is essential for planners who have overlooked this transport group in the past and must evaluate new congestion alleviation policies with respect to regional economic and social ...

Waliszewski, Janine M

2005-01-01T23:59:59.000Z

148

Examining factors affecting the safety performance and design of exclusive truck facilities  

E-Print Network [OSTI]

were used to establish a relationship between truck crashes and various environmental, geometric and traffic variables. Separate models were developed for truck-related (involving at least one truck and another vehicle), truck-only (two trucks... Table 1: Proposed selection criterion for truck treatments (Middleton et al., 2006).......... 7 Table 2: Revised design vehicle dimensions to accommodate trucks in roadway design (Harwood et al., 2003...

Iragavarapu, Vichika

2008-10-10T23:59:59.000Z

149

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

conventional truck; the hydrogen fuel cell truck can improveconventional truck; the hydrogen fuel cell truck can improveLNG engines, fuel cell vehicles using hydrogen, and battery

Zhao, Hengbing

2013-01-01T23:59:59.000Z

150

FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION  

SciTech Connect (OSTI)

This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.

Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

2014-09-25T23:59:59.000Z

151

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on DiggFederalNationalandElectric-driveMobile Truck Stop

152

Estimation of economic impact of freight distribution due to highway closure  

E-Print Network [OSTI]

The main aim of this study is to provide a theoretical framework and methodology to estimate and analyze the economic impact of freight disruption due to highway closure. The costs in this study will be classified into ...

Hu, Shiyin

2008-01-01T23:59:59.000Z

153

THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT  

E-Print Network [OSTI]

1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

Paris-Sud XI, Université de

154

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

SciTech Connect (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

155

Contracting Rail Freight Services for Country Elevators in the Texas Panhandle.  

E-Print Network [OSTI]

rooe ZTA245.7 B873 r\\O. 1473 -.-_ LIBRARY B-1473 JUDe 1984 JUL 27 1984 Co Rail Freight Services for Country Elevators in the Texas Panhandle The Texas Agricultural Experiment Station, Neville P. Clarke, Director, The Texas A&M University... ............................................................... 14 ACKNOWLEDGEMENTS ........................................................... 14 CONTRACTING RAIL FREIGHT-SERVICES FOR COUNTRY ELEVATORS IN THE TEXAS PANHANDLE Stephen Fuller Department of Agricultural Economics Texas Agricultural Experiment...

Fuller, Stephen

1984-01-01T23:59:59.000Z

156

Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program  

SciTech Connect (OSTI)

Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

2012-01-03T23:59:59.000Z

157

SuperTruck Program: Engine Project Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program: Engine Project Review SuperTruck Program: Engine Project Review 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

158

WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...  

Energy Savers [EERE]

Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for...

159

21st Century Truck Partnership Roadmap Roadmap and Technical...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

160

21st Century Truck Partnership - Roadmap and Technical White...  

Broader source: Energy.gov (indexed) [DOE]

- Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rollover analysis of rotary mode core sampler truck No. 2  

SciTech Connect (OSTI)

This document provides estimate of limiting speed and rollover analysis of rotary mode core sampler truck No. 2 (RMCST No. 2).

Ziada, H.H.

1994-11-08T23:59:59.000Z

162

VP 100: Producing Electric Truck Vehicles with a Little Something...  

Broader source: Energy.gov (indexed) [DOE]

Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects...

163

Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy Duty Truck, Narrow Range Speed Engine, Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain Very High Fuel...

164

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

165

Zero Emission Heavy Duty Drayage Truck Demonstration | Department...  

Office of Environmental Management (EM)

Zero Emission Heavy Duty Drayage Truck Demonstration 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

166

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

SciTech Connect (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

167

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network [OSTI]

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

168

Environmental implications of trade liberalization on North American transport services: the case of the trucking sector  

E-Print Network [OSTI]

drayage ?eet is older. Line-haul trucks in the US and Mexicoacross the border. Line-haul trucks then pick up theand older than line-haul trucks and tend to produce higher

Fernandez, Linda

2010-01-01T23:59:59.000Z

169

Roadmap and Technical White Papers for 21st Century Truck Partnership...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

170

DOE SuperTruck utilizes ORNL technology to boost fuel economy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Media Relations 865.574.4165 DOE SuperTruck utilizes ORNL technology to boost fuel economy DOE SuperTruck DOE SuperTruck (hi-res image) Listen to the audio The Department of...

171

Mechanical properties of radial truck tires  

E-Print Network [OSTI]

determination of static properties of tire load vs. tire deflection and tire load vs. tire footprint area for radial and wide base radial truck tires is described and results are discussed. Determination of transmissibility for a conventional radial and a... (right) 12 13 15 Figure 7: Sidewall bulge measurement 16 Figure 8: Load vs. deflection; 385/65R22. 5 wide base tire tested at 90 psi inflation pressure 20 Figure 9: Load vs. deflection; 385/65R22. 5 wide base tire tested at 100 psi inflation...

Wasti, Mansoor-ul-Hassan

1992-01-01T23:59:59.000Z

172

NREL: Transportation Research - Truck Platooning Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportationTruck

173

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

174

SciTech Connect: Normal Conditions of Transport Truck Test of...  

Office of Scientific and Technical Information (OSTI)

Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

175

Cummins Improving Pick-Up Truck Engine Efficiency with DOE and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

better fuel economy. | Photo courtesy of Cummins. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Cummins Improving Pick-Up Truck...

176

Can the Trucking Industry Benefit From Distance-Based Fees?  

E-Print Network [OSTI]

capital cost: $129 billion (over 30 years); today's reconstruction cost estimate: $1.3 to $2.5 trillion trucks pay more · Neither trucks nor cars pay for most cost externalities · Estimated THF revenues: $32B and other highways Comments: · Initial capital and ongoing maintenance costs were paid for · The system

Minnesota, University of

177

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF)  

E-Print Network [OSTI]

Safeguarding Truck-Shipped Wholesale and Retail Fuels (STSWRF) Oak Ridge National Laboratory at the wholesaler/distributor level or below. This presents additional challenges in tracking untaxed fuel after approved ORNL's plan to conduct a Phase II Pilot Test titled Safeguarding Truck-Shipped Wholesale

178

Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report  

SciTech Connect (OSTI)

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

2011-01-01T23:59:59.000Z

179

Anti-Idling Battery for Truck Applications  

SciTech Connect (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

180

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network [OSTI]

1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural Gas As a Transportation Fuel About Clean Energy Liquefied Natural Gas (LNG) Port Trucking LNG Station

Minnesota, University of

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CONTAINER MOVEMENT BY TRUCKS IN METROPOLITAN NETWORKS: MODELING  

E-Print Network [OSTI]

, Maged Dessouky , Petros Ioannou , and Anastasios Chassiakos * Department of Electrical Engineering Engineering, University of Southern California, Los Angeles, CA 90089-0193 *** College of Engineering/LB) twin ports, the U.S. largest ocean freight hub and busiest container port complex, has been quite

Dessouky, Maged

182

National Deployment Strategy for Truck Stop Electrification Josias Zietsman, Ph.D., P.E.*  

E-Print Network [OSTI]

,000 long-haul trucks operating in the United States (2). The U.S. Department of Transportation mandates that drivers spend resting and sleeping in the cabs of their trucks. As a consequence, long-haul truck driversNational Deployment Strategy for Truck Stop Electrification by Josias Zietsman, Ph.D., P

183

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network [OSTI]

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad fuel ce · SOFC based truck APU will reduce long haul truck fuel usage and dependence on foreign oil Long-haul trucks require electrical power to operate lights, heating/air conditioning and televisions

184

Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information  

SciTech Connect (OSTI)

The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.

Franzese, Oscar [ORNL

2010-08-01T23:59:59.000Z

185

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt051tifeinberg2011...

186

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. tiarravt051feinberg2010...

187

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT STEPS The nextEnergy

188

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT STEPS The nextEnergyDepartment

189

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXT STEPS The

190

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStationHydrogenNatural

191

Supercomputers, Semi Trucks and America's Clean Energy Future...  

Broader source: Energy.gov (indexed) [DOE]

South Carolina and Georgia, the BMI corporation, has used the Jaguar to develop some aerodynamic components that can be attached to the undercarriage of a semi truck to reduce wind...

192

Dual-Fuel Truck Fleet: Start-Up Experience  

SciTech Connect (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

193

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network [OSTI]

performed a study on PEM fuel cell APUs. Based upon previousConsiderations for a PEM Fuel Cell Powered Truck APU Davidsuccessfully demonstrated a PEM fuel cell APU on a Century

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

194

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...  

Office of Environmental Management (EM)

Plus, it's compliant with new emissions standards -- an important element in cutting our air pollution in the U.S. If all light trucks and SUVs used an engine like this, Americans...

195

Assessing the Environmental and Health Impacts of Port-Related Freight Movement in a Major Urban Transportation Corridor  

E-Print Network [OSTI]

NO X for port trucks, line-haul, and railyards for winterhaul movements. Compared to PM and NO X emission from port truckshaul distance and speed of locomotives are used. After estimating emissions for both trains and drayage trucks

2010-01-01T23:59:59.000Z

196

Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

Not Available

2014-01-01T23:59:59.000Z

197

Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles--Freight  

E-Print Network [OSTI]

Source(s) and Amounts Provided (by each agency or organization) US DOT $38,884 Total Project Cost $38Project Information Form Project Title Strategies for Transitioning to Zero-Emission Vehicles Description of Research Project According to the EIA, freight modes accounted for 29% of transportation fuel

California at Davis, University of

198

Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List  

E-Print Network [OSTI]

List California's freight sector is a critical part of California's economic engine, generating-duty vehicles in California. This includes, in the near term: efficiency improvements in the engines-in electric and hydrogen fuel cell electric powertrains and lower-carbon fuels. · In addition to their energy

California at Davis, University of

199

Costs and benefits of logistics pooling for urban freight distribution: scenario  

E-Print Network [OSTI]

logistics; resource sharing; freight transport pooling; policy-oriented modelling; simulation is that of logistics pooling, that can be defined analogously to car-pooling as the common usage of logistics resources). We observe several projects dealing with urban logistics resource sharing in the last years, most

Paris-Sud XI, Université de

200

A Geographical Information System-Based Decision Support Tool: GeoFreight  

E-Print Network [OSTI]

Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy@ornl.gov or hwanghl@ornl.gov The Port Statistics menu, accessed from the Major Ports map, allows the user to examine

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

202

Aerodynamic Analysis of Intermodal Freight Trains Using Machine Vision World Congress on Railway Research, May 22-26, 2011  

E-Print Network [OSTI]

Aerodynamic Analysis of Intermodal Freight Trains Using Machine Vision 9 th World Congress. However, intermodal trains use rolling stock that generates significantly greater aerodynamic drag increases annual operating expenditures. There are opportunities to improve intermodal train aerodynamics

Illinois at Urbana-Champaign, University of

203

Productivity of the U.S. freight rail industry: a review of the past and prospects for the future  

E-Print Network [OSTI]

Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

Kriem, Youssef

2011-01-01T23:59:59.000Z

204

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect (OSTI)

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

2013-01-01T23:59:59.000Z

205

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network [OSTI]

and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

206

Acceptance test report for core sample trucks 3 and 4  

SciTech Connect (OSTI)

The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

Corbett, J.E.

1996-04-10T23:59:59.000Z

207

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

208

Design & Development of e-TurboTM for SUV and Light Truck Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Development of e-TurboTM for SUV and Light Truck Applications Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER Conference Presentation: Garrett...

209

Design and Development of e-Turbo for SUV and Light Truck Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Development of e-Turbo for SUV and Light Truck Applications Design and Development of e-Turbo for SUV and Light Truck Applications 2004 Diesel Engine Emissions Reduction (DEER)...

210

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities...  

Broader source: Energy.gov (indexed) [DOE]

four recycling trucks with hydraulic hybrid power systems implemented by Ohio-based Eaton Corporation. For these trucks, which make up to 1,200 stops each day, the Hydraulic...

211

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

212

Heavy-Duty Truck Idling Characteristics: Results from a Nationwide Survey  

E-Print Network [OSTI]

fuel consumption long-heul for trucks. CONCLUSIONS This study provides an enhanced understanding of long-haul

Lutsey, Nicholas P.; Brodrick, Christie-Joy; Sperling, Dan; Oglesby, Carollyn

2004-01-01T23:59:59.000Z

213

The market for large rigid haul trucks in surface mining  

SciTech Connect (OSTI)

Originally published in 2001 this updated report provides a definition of the market for large rigid haulers in surface mining. The analysis covers changes to the mining market segments buying these machines including the gains made by coal producers, retrenchment in copper mining, the consolidation taking place among gold mining companies, and the expansion of iron ore producers in Australia and Brazil. It includes a detailed accounting of 2001 truck shipments, and an analysis of trends in the Ultra-truck segment. It concludes with a revised forecast for shipments through 2006. 12 charts, 56 tabs., 2 apps.

Gilewicz, P.

2002-04-15T23:59:59.000Z

214

ORNL/TM-2008/122 Class-8 Heavy Truck Duty Cycle  

E-Print Network [OSTI]

.............................................................................................2 1.1.2 Heavy Truck Long-Haul OperationsORNL/TM-2008/122 Class-8 Heavy Truck Duty Cycle Project Final Report December 2008 Prepared by Mary Government or any agency thereof. #12;ORNL/TM-2008/122 Vehicle Systems Program CLASS-8 HEAVY TRUCK DUTY CYCLE

215

Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE  

E-Print Network [OSTI]

Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

216

CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

Not Available

2010-02-01T23:59:59.000Z

217

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant Emissions  

E-Print Network [OSTI]

Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant, Schneider, Lee, Bubbosh 2 ABSTRACT Extended truck idling is a very large source of fuel wastage, greenhouse, most long-haul truck drivers idle their vehicles for close to 10 hours per day to operate heating

218

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network [OSTI]

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated. The fleet of these heavy-duty diesel trucks exhibits a distribution that is close to normal where the top 20

Denver, University of

219

The Effects of Altitude on Heavy-Duty Diesel Truck On-Road  

E-Print Network [OSTI]

The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly health risk (2). These and other factors have brought new attention to diesel truck emissions. Because

Denver, University of

220

TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based  

E-Print Network [OSTI]

TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and Zhai 1 ABSTRACT Heavy-duty diesel vehicles contribute a substantial fraction of nitrogen oxides unloaded trucks. Replacing diesel fuel with biodiesel fuel for heavy-duty trucks may reduce tailpipe

Frey, H. Christopher

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2010 Minnesota Comprehensive Statewide Freight and Passenger Rail Plan  

E-Print Network [OSTI]

and transit connections ·! Positive return on investment, 1.5-2.5 times more than cost ·! Bridge, bottleneck for rail investment creates a unique opportunity ·! Global and national economic and environmental trends are likely to increase fuel costs and impose controls on greenhouse gas emission ·! Therefore, Minnesota

Minnesota, University of

222

RESULTSRESULTS Assisted in selection of APU mounting configuration on truck  

E-Print Network [OSTI]

subcomponents, using actual frame-rail data as vibration input from truck · Enabled measurement location Motion Fuel Cell Auxiliary Power Unit (APU): Dynamic ModelingFuel Cell Auxiliary Power Unit (APU@coe.eng.ua.edu OBJECTIVESOBJECTIVES ·Develop a computer model to predict the vibratory response of the fuel cell APU components ·Use

Carver, Jeffrey C.

223

DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program  

SciTech Connect (OSTI)

The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

Eric Fluga

2004-09-30T23:59:59.000Z

224

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

225

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect (OSTI)

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are ope

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

226

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect (OSTI)

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

227

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

228

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

Broader source: Energy.gov [DOE]

Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

229

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

230

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies Office Merit...

231

DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Experiments and Computations DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

232

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel Engine  

Broader source: Energy.gov (indexed) [DOE]

Ton Pick-up Truck application 40% Better miles per gallon - Compared to V8 gasoline powered equivalent US Tier 2, Bin 2 emissions levels Commercially Viable...

233

208 | Intermodal transportatIon: movIng FreIght In a global economy 7.1 Introduction  

E-Print Network [OSTI]

208 | Intermodal transportatIon: movIng FreIght In a global economy #12;7 7.1 Introduction Air become an indispensible part of the world's global economy, holding an important niche in the transport al mutawaly | 209© 2010 EnoTransportation Foundation.www.enotrans.com Reprinted from IntermodalTransportation:MovingFreightinaGlobalEconomy

Keskinocak, Pinar

234

Personal revised version of: Howitt et al. (2011), Carbon dioxide emissions from international air freight. Paper to appear in  

E-Print Network [OSTI]

presents a methodology to calculate the amount of fuel burnt and the resulting CO2 emissions from New calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements

Otago, University of

2011-01-01T23:59:59.000Z

235

Schewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1  

E-Print Network [OSTI]

understanding of the full cost of5 fossil fuel reliance, and help create the foundation for models to analyzeSchewel and Schipper 1 FOSSIL FREIGHT: HOW MUCH FOSSIL FUEL DOES IT TAKE TO MOVE FOSSIL1 FUEL?2.schewel@berkeley.edu)13 UC Berkeley Energy and Resources Group14 310 Barrows Hall15 UC Berkeley16 Berkeley CA 9470917 Cell

Kammen, Daniel M.

236

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of a Class 8 Line-Haul Truck, SAE 2010 Commercial VehicleHeavy-Duty Long Haul Combination Truck Fuel Consumption andhaul, and long haul driving cycles were constructed using truck

Zhao, Hengbing

2013-01-01T23:59:59.000Z

237

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Heavy-Duty Long Haul Combination Truck Fuel Consumption andand fuel cell trucks over the day drive and the short and long hauland fuel cell trucks were modeled and simulated over the day drive, the short haul

Zhao, Hengbing

2013-01-01T23:59:59.000Z

238

"Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."  

SciTech Connect (OSTI)

The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

Dever, Thomas J.

2011-11-29T23:59:59.000Z

239

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network [OSTI]

sludge, and non hazardous industrial waste (8,9). The solid waste materials are classified under Subtitle D of the Resource Conservation and Recovery Act (10). The next section describes different methods used for managing... REVIEW.......................................................................................4 Solid Waste Management.................................................................................4 LFG Cleaning Processes...

Gokhale, Bhushan

2007-04-25T23:59:59.000Z

240

The 21st Century Truck Partnership | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century Truck Partnership The

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Diesel Trucks - Then and Now | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) | DepartmentTrucks - Then

242

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

243

58 THE JOURNAL OF COMMERCE www.joc.com JUNE 14.2010 TRUCKING ECONOMICS  

E-Print Network [OSTI]

58 THE JOURNAL OF COMMERCE www.joc.com JUNE 14.2010 TRUCKING ECONOMICS By Chris CapliceBy Chris.Andwithaprivatefleetexperiencing.Andwithaprivatefleetexperiencing.Andwithaprivatefl ofmorethan6,500trucks part, long-haul full truckload ship- ments. Most vendors are moving these loads using contracted, for

de Weck, Olivier L.

244

IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS  

E-Print Network [OSTI]

IMPACT OF TIRE AND AERODYNAMIC AIDS ON TRUCK PERFORMANCE ALONG UPGRADE SECTIONS Hesham Rakha1 and aerodynamics aids on the truck acceleration behavior. The objectives of this paper are two-fold. First of vehicle tires, the vehicle's aerodynamic features, the percentage mass on the tractive axle

Rakha, Hesham A.

245

HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS  

E-Print Network [OSTI]

HEALTHY FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales FOOD OUTSIDE: FARMERS' MARKETS, TACO TRUCKS, AND SIDEWALK FRUIT VENDORS Alfonso Morales1 and Gregg College School of Law. #12;2009 Healthy Food Outside 21 INTRODUCTION One hundred years ago street vendors

Illinois at Chicago, University of

246

The impact of incentives on the use of toll roads by trucks  

E-Print Network [OSTI]

. Unfortunately, the low profit margin in the trucking industry and the relatively high tolls truckers pay leads to their reluctance to use toll facilities. Incentives for truck use of a toll road, State Highway 130 (SH 130) near Austin, Texas, were analyzed...

Zhou, Lin

2010-07-14T23:59:59.000Z

247

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

SciTech Connect (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

248

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network [OSTI]

Japan which has short-hauls and small trucks turns out to beFor example trucks and locomotives used to haul freight can

2008-01-01T23:59:59.000Z

249

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

250

Stress analysis of jacks, frame and bearing connections, and drill rod for core sampler truck No. 2  

SciTech Connect (OSTI)

This analysis evaluates the structural design adequacy of several components and connections for the rotary mode core sampler truck (RMCST) No. 2. This analysis was requested by the Characterization Equipment Group (WHC 1994a). The components addressed in this report are listed below: front jack assembly and connection to the truck chassis; rear jack assembly and connection to the truck chassis; center outrigger jacks and connection to the truck chassis; lower frame assembly and connection to the truck chassis; bolt connections for bearing plate assembly (for path of maximum load); traverse slide brackets and mounting of the traverse jack cylinders; and drill rod (failure loads).

Ziada, H.H.

1995-02-28T23:59:59.000Z

251

Current Trends and Future Challenges in the Freight Railroad Industry: Balancing Private Industry Interests and the Public Welfare  

E-Print Network [OSTI]

?dimensional?impact?on?the?public?welfare,?local,?state,?and?federal?government?entities?play?a? significant?role?in?ensuring?the?industry?operates?efficiently?and?safely.?In?October?2006,?the?Government? Accountability?Office?(GAO)?released?a?report?on...? ? Current?Trends?and?Future?Challenges?in? the?Freight?Railroad?Industry Balancing?Private?Industry?Interests?and?the?Public?Welfare? ? ? ? Sarah?Allen? Kendra?Kelson? Hayden?Migl? Rodney?Schmidt? David?Shoemaker? Heather?Thomson? ? ? A?Report...

Allen, Sarah; Kelson, Kendra; Migl, Hayden; Schmidt, Rodney; Shoemaker, David; Thomson, Heather

2008-01-01T23:59:59.000Z

252

Design and Development of a Continuous Precast Prestressed Concrete Bridge System for the Multimodal Freight Shuttle Project  

E-Print Network [OSTI]

American Society for Testing and Materials CARD Control and Repairability Damage CIP Cast-in-place DAD Damage Avoidance Design DBE Design Basis Earthquake DC Dead load of structural components and nonstructural attachments Ec Modulus of Elasticity... Pretensioned Precast Bulb T PCI Precast Concrete Institute viii SIP Stay-in-place TTI Texas Transportation Institute TxDOT Texas Department of Transportation MFS Multimodal Freight Shuttle NCHRP National Cooperative Highway Research Program NU...

Parkar, Anagha 1984-

2011-04-27T23:59:59.000Z

253

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks  

SciTech Connect (OSTI)

We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

Gao, Zhiming [ORNL; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; LaClair, Tim J [ORNL; Smith, David E [ORNL

2014-01-01T23:59:59.000Z

254

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

255

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network [OSTI]

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions Nakul Sathaye, Arpad emissions, raising the question of whether increased vehicle weights may cause unintended environmental consequences. This paper presents scenarios with estimated emissions resulting from load consolidation

California at Berkeley, University of

256

Trucking country : food politics and the transformation of rural life in Postwar America  

E-Print Network [OSTI]

Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

Hamilton, Shane, 1976-

2005-01-01T23:59:59.000Z

257

Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks  

SciTech Connect (OSTI)

This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks.

BOGER, R.M.

2000-02-03T23:59:59.000Z

258

Productivity and competition in the U.S. trucking industry since deregulation  

E-Print Network [OSTI]

In 1980 Congress passed the Motor Carrier Act, substantially liberating trucking carriers from a federal regulatory structure that had exercised broad economic control over the industry for over four decades. Changes in ...

Parming, Veiko Paul

2013-01-01T23:59:59.000Z

259

Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice  

Broader source: Energy.gov [DOE]

Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

260

Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine ATP-LD; Cummins Next Generation...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

2006-01-01T23:59:59.000Z

262

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportationsearchDEMAND Freight

263

Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG)  

E-Print Network [OSTI]

need heavier trucks and vans to haul equipment, on the other hand, and they could be assigned either1 5/2014 Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG): Build adopted natural gas in 2011 because of the fuel's environmental and cost benefits. BuildSense's customers

264

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

265

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

266

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect (OSTI)

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

267

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

SciTech Connect (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

268

Network Design Formulations, Modeling, and Solution Algorithms for Goods Movement Strategic Planning  

E-Print Network [OSTI]

1956). The long haul less-than-truck-load and truckloadare competitive to truck when the line haul is more than 500haul freight demand is decided by the shipper model which represents the truck

Apivatanagul, Pruttipong

2008-01-01T23:59:59.000Z

269

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

heavy- duty long-haul Class 8 trucks getting approximately 6which the trucks are sold from long-haul freight companiesof these trucks commonly involves initial use in long-haul

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

270

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect (OSTI)

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

271

Statistical Modeling of Freight Train Derailments at Highway-Rail Level Crossings Samantha G. Chadwick, C. Tyler Dick, Mohd Rapik Saat, Christopher P.L. Barkan  

E-Print Network [OSTI]

discusses level-crossing-caused freight train derailments in a larger risk-analysis context. We generalize an additional tool for decision makers to prioritize level crossings upgrades and/or closures. 2. Development reduction in the risk of level crossings to North American highway users over the past several decades. Much

Barkan, Christopher P.L.

272

The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland,  

E-Print Network [OSTI]

The impacts of congestion on time-definitive urban freight distribution networks CO2 emission Accepted 29 November 2010 Keywords: Vehicle routing Time-dependent travel time speed GHG or CO2 emissions pressures to limit the impacts associated with CO2 emissions are mounting rapidly. A key challenge

Bertini, Robert L.

273

The Impacts of Congestion on Time-definitive Urban Freight Distribution1 Networks CO2 Emission Levels: results from a case study in Portland,2  

E-Print Network [OSTI]

1 The Impacts of Congestion on Time-definitive Urban Freight Distribution1 Networks CO2 Emission pressures to limit the impacts13 associated with CO2 emissions are mounting rapidly. A key challenge on CO2 emissions are hindered by the complexities of vehicle routing18 problems with time

Bertini, Robert L.

274

Preemptive Strike: Law in the Campaign for Clean Trucks  

E-Print Network [OSTI]

Gas & Elec. Co. v. State Energy Res. Conservation & Dev.Federal Preemption and Clean Energy Floors, 91 N.C. L. Ra fraction of the effort and energy doing it. ”). 112. B

Cummings, Scott

2015-01-01T23:59:59.000Z

275

Texas A&M Veterinary Medical Diagnostic Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks  

E-Print Network [OSTI]

: Automobiles/Trucks Approved: September 20, 2011 Revised: March 26, 2013 Next Scheduled Review: March 26, 2015: Automobiles/Trucks Page 1 of 2 PROCEDURE STATEMENT To comply with the provisions of the applicable civil Laboratory Procedures 21.01.08.V0.03 Vehicle Use Reports: Automobiles/Trucks Page 2 of 2 2.6 Record

276

NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than  

E-Print Network [OSTI]

). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour, Hector A. Olvera, John M. E. Storey, and Laura Kranendonk 17 At night, long-haul truck drivers rest were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were

277

STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS  

SciTech Connect (OSTI)

The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

Schittler, M

2003-08-24T23:59:59.000Z

278

Liquefied U.S. Natural Gas Exports by Truck (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan Feb Mar Apr May Jun

279

Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan Feb Mar Apr May

280

Liquefied U.S. Natural Gas Exports by Truck to Mexico (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan Feb Mar Apr MayYear

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Liquefied U.S. Natural Gas Exports by Vessel and Truck (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422Year Jan Feb Mar AprYear Jan

282

Price of Liquefied U.S. Natural Gas Exports by Truck (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on the U.S.

283

Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on the U.S.Thousand Cubic Feet) Year Jan

284

Price of Liquefied U.S. Natural Gas Exports by Truck to Mexico (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on the U.S.Thousand Cubic Feet) Year

285

Price of Liquefied U.S. Natural Gas Exports by Vessel and Truck (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on the U.S.Thousand Cubic Feet)

286

Price of Liquefied U.S. Natural Gas Exports by Truck (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear(DollarsDollars perCubic Feet) Decade

287

Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear(DollarsDollars perCubic Feet)

288

Price of Liquefied U.S. Natural Gas Exports by Truck to Mexico (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear(DollarsDollars perCubic Feet)Thousand

289

Price of Liquefied U.S. Natural Gas Exports by Vessel and Truck (Dollars  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear(DollarsDollars perCubicper Thousand Cubic

290

Price of Liquefied U.S. Natural Gas Exports by Truck (Dollars per Thousand  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,3106.PDFResults forFor:Thousand CubicCubic

291

Price of Liquefied U.S. Natural Gas Exports by Truck to Canada (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,3106.PDFResults forFor:Thousand

292

Price of Liquefied U.S. Natural Gas Exports by Truck to Mexico (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,3106.PDFResults forFor:ThousandThousand

293

Price of Liquefied U.S. Natural Gas Exports by Vessel and Truck (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,3106.PDFResultsCubic Feet) Year Jan Feb

294

Liquefied U.S. Natural Gas Exports by Truck (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear Coke and4.3Decade Year-0Decade

295

Liquefied U.S. Natural Gas Exports by Truck to Canada (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear Coke and4.3DecadeDecade Year-0

296

Liquefied U.S. Natural Gas Exports by Truck to Mexico (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear Coke and4.3DecadeDecadeDecade

297

Liquefied U.S. Natural Gas Exports by Vessel and Truck (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear CokeDecade Year-0

298

Calibraton of a Directly Injected Natural Gas HD Engine for Class 8 Truck  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartment ofDepartment of

299

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDuty HCCIModelingLean

300

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDuty

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Heavy-Duty Natural Gas Drayage Truck Replacement Program | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergy 0 DOE Vehicle

302

Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? |EnergyDepartmentMilestoneFilters

303

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4RoguebuttonsEnergy Office of isIRSIix

304

A Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems  

E-Print Network [OSTI]

cost) so that the day- to-day operational cost could be kept at the minimum. 1.2 Background on VehicleA Hybrid Multiobjective Evolutionary Algorithm For Solving Truck And Trailer Vehicle Routing Problems K. C. Tan, T. H. Lee, Y. H. Chew Department of Electrical and Computer Engineering National

Coello, Carlos A. Coello

305

Home Away from Home: The Evolution and Meaning of American Truck Stops  

E-Print Network [OSTI]

Truck stops provide a tie to place for mobile, long-haul drivers. Truckers rely on these businesses for necessities and help to shape their form and function with their perceptions and actions. An increasing domination of the industry by chain...

Day, Stephanie L.

2009-12-03T23:59:59.000Z

306

Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and  

E-Print Network [OSTI]

Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

307

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint  

SciTech Connect (OSTI)

In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

2011-05-01T23:59:59.000Z

308

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

SciTech Connect (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

309

Field monitoring and modeling of pavement response and service life consumption due to overweight truck traffic  

E-Print Network [OSTI]

A number of pavement structures experience deterioration due to high traffic volume and growing weights. Recently, the Texas Legislatures passed bills allowing trucks of gross vehicle weight (GVW) up to 556 kN routinely to use a route in south Texas...

Oh, Jeong-Ho

2004-11-15T23:59:59.000Z

310

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network [OSTI]

Chan-Chiao Lin, Huei Peng and J. W. Grizzle University of Michigan Jason Liu and Matt Busdiecker Eaton Corporation Copyright © 2003 SAE International ABSTRACT The power management control system development management control system for the prototype truck produced by the Eaton Innovation Center

Grizzle, Jessy W.

311

See More Jobs From Agrium Wholesale Truck Analyst (175535-001) -(Calgary, Alberta, Western Canada, Canada)  

E-Print Network [OSTI]

See More Jobs From Agrium Wholesale Truck Analyst (175535-001) - (Calgary, Alberta, Western Canada, Canada) Company: Agrium Wholesale Apply below Industry Sector: Agribusiness Industry Type: Agronomy a growing world. Growth is a top priority for Agrium Wholesale and it doesn't just apply to the nutrients we

Behmer, Spencer T.

312

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect (OSTI)

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

313

Analysis of technology options to reduce the fuel consumption of idling trucks  

SciTech Connect (OSTI)

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000--3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

Stodolsky, F.; Gaines, L.; Vyas, A.

2000-08-22T23:59:59.000Z

314

Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1  

E-Print Network [OSTI]

Hybrid Control of a Truck and Trailer Vehicle Claudio Altafini1 , Alberto Speranzon2 , and Karl, SE-10044 Stockholm, Sweden, albspe@s3.kth.se, kallej@s3.kth.se Abstract. A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed

Johansson, Karl Henrik

315

Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks  

E-Print Network [OSTI]

Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks of California, Dept. of Civil & Environmental Engineering, Berkeley, CA 94720-1710 Abstract Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel

316

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint  

SciTech Connect (OSTI)

Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

2014-02-01T23:59:59.000Z

317

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

SciTech Connect (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

318

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

SciTech Connect (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

319

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network [OSTI]

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup...

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

320

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect (OSTI)

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks  

SciTech Connect (OSTI)

Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

2012-10-01T23:59:59.000Z

322

Assessment of the risk of transporting propane by truck and train  

SciTech Connect (OSTI)

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

323

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

SciTech Connect (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

324

Engineering task plan for upgrades to the leveling jacks on core sample trucks number 3 and 4  

SciTech Connect (OSTI)

Characterizing the waste in underground storage tanks at the Hanford Site is accomplished by obtaining a representative core sample for analysis. Core sampling is one of the numerous techniques that have been developed for use given the environmental and field conditions at the Hanford Site. Core sampling is currently accomplished using either Push Mode Core Sample Truck No.1 or; Rotary Mode Core Sample Trucks No.2, 3 or 4. Past analysis (WHC 1994) has indicated that the Core Sample Truck (CST) leveling jacks are structurally inadequate when lateral loads are applied. WHC 1994 identifies many areas where failure could occur. All these failures are based on exceeding the allowable stresses listed in the American Institute of Steel Construction (AISC) code. The mode of failure is for the outrigger attachments to the truck frame to fail resulting in dropping of the CST and possible overturning (Ref. Ziada and Hundal, 1996). Out of level deployment of the truck can exceed the code allowable stresses in the structure. Calculations have been performed to establish limits for maintaining the truck level when lifting. The calculations and the associated limits are included in appendix A. The need for future operations of the CSTS is limited. Sampling is expected to be complete in FY-2001. Since there is limited time at risk for continued use of the CSTS with the leveling controls without correcting the structural problems, there are several design changes that could give incremental improvements to the operational safety of the CSTS with limited impact on available operating time. The improvements focus on making the truck easier to control during lifting and leveling. Not all of the tasks identified in this ETP need to be performed. Each task alone can improve the safety. This engineering task plan is the management plan document for implementing the necessary additional structural analysis. Any additional changes to meet requirements of standing orders shall require a Letter of Instruction from Numatec Hanford Company (NHC).

KOSTELNIK, A.J.

1999-02-24T23:59:59.000Z

325

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

Duty Diesel Truck Internal Combustion Engine Lower Heatinglow efficiency internal combustion engine (ICE) operation,the fuel in internal combustion engines, there are several

Zhao, Hengbing

2013-01-01T23:59:59.000Z

326

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

trucks can increase fuel economy by 3-6% over the long haultrucks can increase fuel economy by 3-6% over the long haul

Zhao, Hengbing

2013-01-01T23:59:59.000Z

327

Fuel Cell Forklift Project Final Report  

SciTech Connect (OSTI)

This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

328

Electric Boosting System for Light Truck/SUV Application  

SciTech Connect (OSTI)

Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

2005-06-22T23:59:59.000Z

329

NREL: Transportation Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to heavy-duty freight trucks. Female researcher holding coin cell battery. NREL's transportation research spans from the materials to the systems level. Fuel cell electric sports...

330

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

SciTech Connect (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

331

Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19, 2010 The CostsTrucks|to 2010

332

SuperTruck Making Leaps in Fuel Efficiency | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making Leaps

333

SuperTruck Making Leaps in Fuel Efficiency | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making

334

Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982  

SciTech Connect (OSTI)

The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

none,

1982-01-01T23:59:59.000Z

335

System design specification for rotary mode core sample trucks No. 2, 3, and 4 programmable logic controller  

SciTech Connect (OSTI)

The system this document describes controls several functions of the Core Sample Truck(s) used to obtain nuclear waste samples from various underground storage tanks at Hanford. The system will monitor the sampling process and provide alarms and other feedback to insure the sampling process is performed within the prescribed operating envelope. The intended audience for this document is anyone associated with rotary or push mode core sampling. This document describes the Alarm and Control logic installed on Rotary Mode Core Sample Trucks (RMCST) {number_sign}2, 3, and 4. It is intended to define the particular requirements of the RMCST alarm and control operation (not defined elsewhere) sufficiently for detailed design to implement on a Programmable Logic Controller (PLC).

Dowell, J.L.; Akers, J.C.

1995-12-31T23:59:59.000Z

336

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

SciTech Connect (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

337

Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving  

E-Print Network [OSTI]

initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

Peng, Huei

338

INTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads on Louisiana interstate highways.These heavier loads are currently being  

E-Print Network [OSTI]

, are significant parameters of highway traffic.TEA 21 is allowing sugarcane trucks to haul loads up to 100,000 lb that the study include vehicles hauling sugarcane biomass for alternative fuel and electricity generation. DuringINTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads

Harms, Kyle E.

339

Optimal Vehicle Routing with Real-Time Traffic Information Seongmoon Kim1  

E-Print Network [OSTI]

to accidents, bad weather, traffic con- gestion, etc., trucks hauling time-sensitive freight build "buffer time cost. Indeed a truck parked at the origin is less expensive than one that is in use. Moreover

Lewis, Mark E.

340

Delivery Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Purification Storage Tanks CompressionVaporization Fuel Dispensers Trucks (compressed gas, liquids) Distribution Pipelines (gas) Trucks (compressed gas, liquid) Crosscutting...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural gas vehicles : Status, barriers, and opportunities.  

SciTech Connect (OSTI)

In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

2010-11-29T23:59:59.000Z

342

Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,  

E-Print Network [OSTI]

Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

Denver, University of

343

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect (OSTI)

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

344

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

E road ) of long-haul trucks, including improvingfor local truck deliveries rather than long-haul highway

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

345

UF{sub 6} tiedowns for truck transport - right way/wrong way  

SciTech Connect (OSTI)

Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

Stout, F.W. Jr. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

346

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

347

Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication  

SciTech Connect (OSTI)

In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

2014-01-01T23:59:59.000Z

348

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

SciTech Connect (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

349

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr  

E-Print Network [OSTI]

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

350

Diesel Truck Traffic in Low-Income and Minority Communities Adjacent to Ports: Environmental Justice Implications of Near-Roadway Land Use Conflicts  

E-Print Network [OSTI]

Panel OKs Cleanup Plan for Port Trucks. Los Angeles Times,in Communities near the Ports of Los Angeles and Long Beach.8. Emission Reduction Plan for Ports and Goods Movement.

Houston, Douglas; Krudysz, Margaret; Winer, Arthur

2008-01-01T23:59:59.000Z

351

Examining the market potential for natural-gas-powered trucks : barriers and opportunities for promoting environmental sustainability and economic prosperity.  

E-Print Network [OSTI]

??Over the past decade, public concerns have grown over America's energy use and production. Pushes towards more environmentally friendly and sustainable sources of energy have… (more)

Hazlett, Ryan

2013-01-01T23:59:59.000Z

352

REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY  

SciTech Connect (OSTI)

The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

Blau, P.J.

2003-02-03T23:59:59.000Z

353

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

SciTech Connect (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z

354

Shielding and criticality analyses of phase I reference truck and rail cask designs for spent nuclear fuel  

SciTech Connect (OSTI)

Results are presented herein to determine the adequacy with respect to shielding regulations of reference designs for a truck cask containing 2 PWR or 5 BWR assemblies of standard burnup (45 GWd/MTU for PWR, 40 GWd/MTU for BWR) and 1 PWR assembly with extended burnup (55 GWd/MTU). The study also includes reference and modified rail cask designs with projected payloads of 8, 10, or 12 PWR assemblies. The burnup/age trends are analyzed in one dimension for both Pb and depleted uranium (DU) gamma-ray shields. The results of the two-dimensional shielding analysis uphold the one-dimensional results as being an appropriate means of studying the burnup/age trends for the truck cask. These results show that the reference design for the Pb-shield truck cask is inadequate for all cases considered, while the DU-shield truck cask is capable of carrying the desired payloads. The one-dimensional shielding analysis results for the reference Pb and DU rail casks indicate substantial margins exist in the side doses for reasonable burnup/age combinations. For a Pb-cask configuration, margins exist primarily for long-cooled (15 years) fuel. For the modified Pb and DU rail casks, the 2-m dose rates offer substantial margins below the regulatory limits for all burnup values considered provided the spent fuel has cooled for {>=}10 years. The modified Pb and DU casks yield essentially identical results and, hence, could be considered equivalent from a shielding perspective. The criticality analyses that were performed indicate that a truck basket can be designed to provide an adequate subcritical margin for 2 PWR assemblies enriched to 5 wt%. While the 10- and 12- assembly rail cask designs are very close to the regulatory limit of 0.95 for k{sub eff}, after accounting for a 0.01 {Delta}k bias and 2 standard deviations, the limit is exceeded by about 3%. It is believed that a combination of decreased enrichments and/or increased water gaps should allow these baskets to be acceptable.

Broadhead, B.L.; Childs, R.L.; Parks, C.V.

1996-03-01T23:59:59.000Z

355

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network [OSTI]

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

356

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect (OSTI)

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

357

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations  

SciTech Connect (OSTI)

This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

LaClair, Tim J [ORNL

2011-05-01T23:59:59.000Z

358

DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report  

SciTech Connect (OSTI)

DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

Hakim, Nabil Balnaves, Mike

2003-05-27T23:59:59.000Z

359

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

SciTech Connect (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-02-24T23:59:59.000Z

360

ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions  

ScienceCinema (OSTI)

Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

Boysen, Dane; Loukus, Josh; Hansen, Rita

2014-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, JANUARY 2001; REVISED MAY 2001, AND AUG 2001 1 A feedback control scheme for reversing a truck  

E-Print Network [OSTI]

SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, JANUARY 2001; REVISED MAY 2001, AND AUG 2001 1 A feedback control scheme for reversing a truck and trailer vehicle Claudio Alta#12;ni, Alberto the parts of the multibody vehicle, sometimes it is necessary to drive forward to enter in a speci#12;c

Altafini, Claudio

362

Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL  

E-Print Network [OSTI]

TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

363

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

364

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

365

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

SciTech Connect (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

366

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

367

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

SciTech Connect (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

368

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStation Locations toNatural GasBusFrito-Lay

369

Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles/Trucks  

E-Print Network [OSTI]

Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles, 2014 Texas A&M AgriLife Extension Service Procedures 21.01.08.X0.03 Vehicle Use Reports: Automobiles Use Reports: Automobiles/Trucks Page 2 of 2 2.5 Enter the purpose of use for each trip. Terms

370

Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system  

SciTech Connect (OSTI)

This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

BOGER, R.M.

1999-05-12T23:59:59.000Z

371

Strategic Freight Transportation Contract Procurement  

E-Print Network [OSTI]

Based Procurement for Transportation Services, Journal ofCoia, A. , Evolving transportation exchanges, World trade,an Auction Based Transportation Marketplace, Transportation

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

372

Strategic Freight Transportation Contract Procurement  

E-Print Network [OSTI]

will be lowered if a follow-on load is available after doingof ?nding a follow-on load out of that destination. Securingprobability of getting a follow on load is more and remove

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

373

Natural Gas as a Future Fuel for Heavy-Duty Vehicles  

SciTech Connect (OSTI)

In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

Wai-Lin Litzke; James Wegrzyn

2001-05-14T23:59:59.000Z

374

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

375

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

376

Regulation and deregulation of natural gas in the US: 1938-1985  

SciTech Connect (OSTI)

Public policy towards natural gas has swung first towards, and then away from regulation in this century. In 1906, the Congress specifically excluded natural gas from the jurisdiction of the Interstate Commerce Commission. Three decades later, a New Deal Congress passed the Natural Gas Act of 1938 bringing pipelines under the control of the Federal Power Commission (FDC). Forty years thereafter, the Congress passed a phased decontrol bill, the Natural Gas Policy Act (NGPA) of 1978, as part of the Carter Administration's National Energy Plan. Recently, the Congress has backed off from New Deal legislation in other markets - notably aviation and trucking. In this study, the rise and fall of economic regulation in the natural gas industry are examined to understand: (1) why public policy has followed a pendulum's path, and (2) the economic consequences of regulation and deregulation. The main part of the analysis is directed toward the Natural Gas Policy Act of 1978. Widely viewed as a deregulation measure, the author finds that the Act is more restrictive and burdensome than the pricing policies it superceded. The path toward deregulation in natural gas and perhaps other markets is not as direct or simple as might be expected.

Merrill, Peter R.

1980-06-01T23:59:59.000Z

377

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

378

Georgia Tech Dangerous Gas  

E-Print Network [OSTI]

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

379

Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks  

SciTech Connect (OSTI)

The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

Willigan, Rhonda

2009-09-30T23:59:59.000Z

380

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

generation of electricity in California, which resulted in more air pollution than central power plants [electricity-intensive liquid hydrogen truck pathway, emis- sions from diesel truck delivery and electric generation at power plants

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA  

SciTech Connect (OSTI)

Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

LaClair, Tim J [ORNL] [ORNL; Gao, Zhiming [ORNL] [ORNL; Fu, Joshua S. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Calcagno, Jimmy [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Yun, Jeongran [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK)

2014-01-01T23:59:59.000Z

382

Fuel gas conditioning process  

DOE Patents [OSTI]

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

383

A ROUTING SYSTEM BASED ON SPACEFILLING CURVES  

E-Print Network [OSTI]

. It is cheapest to ship long distance by train and so railroads are capturing an in- creasing amount of long-haul, and all local freight, is handled by truck. The basic problem faced by a distribution manager, then among the vehicles so that not too many trucks are required. Copyright c 1995,6 John J. Bartholdi, III

Bartholdi III, John J.

384

Scheduling Direct and Indirect Trains and Containers in an Intermodal Setting  

E-Print Network [OSTI]

transportation to compete effectively with long-haul trucking. To improve the scheduling and coordination transportation consists of combining modes, usually ship, truck, or rail to transport freight. The focus of our research is on rail transpor- tation of intermodal containers for the long-haul portion of their journey

385

Technical Report Documentation Page 1. Report No.  

E-Print Network [OSTI]

Corridors, Megaregions, Rail, Truck, Fuel Efficiency, Freight Operating Costs. 18. Distribution Statement. To address this need, a truck-rail intermodal toolkit was developed for multimodal corridor analysis characteristics. The toolkit includes techniques to acquire data for simulating line-haul movements, and models

386

Occult Trucking and Storage  

E-Print Network [OSTI]

wondering about the strap-on porn. Well, so what? I likeone. I like two kinds of porn. Asian Milf and Teachers withWATSON What is it, kiddie porn? Acid? The Sheriff unfolds it

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

387

Occult Trucking and Storage  

E-Print Network [OSTI]

in. INSIDE OWSLEY MANOR TODD Hello? Mr. Owsley? Keith? It'sRIORDAN (CONT'D) Yes, hi, hello to your little friends too.Fitz Family. FATHER TITUS Hello boys. I know you were here

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

388

Hydrogen Industrial Trucks  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

389

Occult Trucking and Storage  

E-Print Network [OSTI]

it last night. MIKE The porno aboretum thing. Totally! TODDset the children are watching switches to porno. MRS.poltergeist really likes porno. SMALL CHILD 1 This is Anal

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

390

Empty WIPP truck overturns  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage of theEMIKristen Honig June9 of

391

Pennsylvania's Natural Gas Future  

E-Print Network [OSTI]

1 Pennsylvania's Natural Gas Future Penn State Natural Gas Utilization Workshop Bradley Hall sales to commercial and industrial customers ­ Natural gas, power, oil · Power generation ­ FossilMMBtuEquivalent Wellhead Gas Price, $/MMBtu Monthly US Spot Oil Price, $/MMBtu* U.S. Crude Oil vs. Natural Gas Prices, 2005

Lee, Dongwon

392

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

393

Gas Utilities (New York)  

Broader source: Energy.gov [DOE]

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

394

Industrial Gas Turbines  

Broader source: Energy.gov [DOE]

A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

395

Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

396

Gas Production Tax (Texas)  

Broader source: Energy.gov [DOE]

A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

397

Natural gas dehydration apparatus  

DOE Patents [OSTI]

A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

2006-11-07T23:59:59.000Z

398

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

399

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

400

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Compressed gas manifold  

DOE Patents [OSTI]

A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

2001-01-01T23:59:59.000Z

402

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

403

Noble gas magnetic resonator  

DOE Patents [OSTI]

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

404

Transportation and Greenhouse Gas Mitigation  

E-Print Network [OSTI]

fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

405

Natural gas monthly  

SciTech Connect (OSTI)

The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

NONE

1998-01-01T23:59:59.000Z

406

DOE/BNL Liquid Natural Gas Heavy Vehicle Program  

SciTech Connect (OSTI)

As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

1998-08-11T23:59:59.000Z

407

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emera’s CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emera’s CNG facility for export, during periods of maintenance at Emera’s facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

408

Cost of Gas Adjustment for Gas Utilities (Maine)  

Broader source: Energy.gov [DOE]

This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports...

409

Enhanced membrane gas separations  

SciTech Connect (OSTI)

An improved membrane gas separation process is described comprising: (a) passing a feed gas stream to the non-permeate side of a membrane system adapted for the passage of purge gas on the permeate side thereof, and for the passage of the feed gas stream in a counter current flow pattern relative to the flow of purge gas on the permeate side thereof, said membrane system being capable of selectively permeating a fast permeating component from said feed gas, at a feed gas pressure at or above atmospheric pressure; (b) passing purge gas to the permeate side of the membrane system in counter current flow to the flow of said feed gas stream in order to facilitate carrying away of said fast permeating component from the surface of the membrane and maintaining the driving force for removal of the fast permeating component through the membrane from the feed gas stream, said permeate side of the membrane being maintained at a subatmospheric pressure within the range of from about 0.1 to about 5 psia by vacuum pump means; (c) recovering a product gas stream from the non-permeate side of the membrane; and (d) discharging purge gas and the fast permeating component that has permeated the membrane from the permeate side of the membrane, whereby the vacuum conditions maintained on the permeate side of the membrane by said vacuum pump means enhance the efficiency of the gas separation operation, thereby reducing the overall energy requirements thereof.

Prasad, R.

1993-07-13T23:59:59.000Z

410

Natural Gas & Local Governments  

E-Print Network [OSTI]

-trailers New business ventures Frac services Water hauling Brine water remediation Pipeline Group #12;2. Sublette County, Wyoming Largest gas-producing county in Wyoming (44% of states gas

Boyer, Elizabeth W.

411

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

Yu, Conrad M. (Antioch, CA)

1996-01-01T23:59:59.000Z

412

Microminiature gas chromatograph  

DOE Patents [OSTI]

A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

Yu, C.M.

1996-12-10T23:59:59.000Z

413

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

414

Recirculating rotary gas compressor  

DOE Patents [OSTI]

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

415

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

416

Gas and Oil (Maryland)  

Broader source: Energy.gov [DOE]

The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

417

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

418

Purchased Gas Adjustment Rules (Tennessee)  

Broader source: Energy.gov [DOE]

The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

419

COMPUTATIONAL OPTIMIZATION OF GAS COMPRESSOR ...  

E-Print Network [OSTI]

Feb 26, 2015 ... When considering cost-optimal operation of gas transport net- works ..... The four most frequently used drive types are gas turbines, gas driven.

2015-02-26T23:59:59.000Z

420

Alternative Fuels Data Center: Choice Environmental Services...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

important issue," Miller said. "So we brand each truck as 'Powered by Natural Gas-The Green Choice for Florida.'" Choice Environmental has 14 CNG collection trucks serving...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Residual gas analysis device  

DOE Patents [OSTI]

A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

Thornberg, Steven M. (Peralta, NM)

2012-07-31T23:59:59.000Z

422

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

423

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

424

Gas Cylinders: Proper Management  

E-Print Network [OSTI]

Compressed Gas Cylinders: Proper Management And Use Published by the Office of Environment, Health;1 Introduction University of California, Berkeley (UC Berkeley) departments that use compressed gas cylinders (MSDS) and your department's Job Safety Analyses (JSAs). Talk to your gas supplier about hands

Boyer, Elizabeth W.

425

Gas Chromatography -Mass Spectrometry  

E-Print Network [OSTI]

GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

Nizkorodov, Sergey

426

Static gas expansion cooler  

DOE Patents [OSTI]

Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

Guzek, J.C.; Lujan, R.A.

1984-01-01T23:59:59.000Z

427

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, C.A.; Rurbage, C.H.

1982-03-17T23:59:59.000Z

428

Welcome FUPWG- Natural Gas Overview  

Broader source: Energy.gov [DOE]

Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—provides an overview of natural gas, including emissions, compressed natural gas (CNG) vehicles, and landfill gas supplement for natural gas system.

429

Natural gas leak mapper  

DOE Patents [OSTI]

A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

Reichardt, Thomas A. (Livermore, CA); Luong, Amy Khai (Dublin, CA); Kulp, Thomas J. (Livermore, CA); Devdas, Sanjay (Albany, CA)

2008-05-20T23:59:59.000Z

430

Flue gas desulfurization  

DOE Patents [OSTI]

A process and apparatus for removing sulfur oxide from combustion gas to form Na.sub.2 SO.sub.4 and for reducing the harmful effects of Na.sub.2 SO.sub.4 on auxiliary heat exchangers in which a sodium compound is injected into the hot combustion gas forming liquid Na.sub.2 SO.sub.4 in a gas-gas reaction and the resultant gas containing Na.sub.2 SO.sub.4 is cooled to below about 1150.degree. K. to form particles of Na.sub.2 SO.sub.4 prior to contact with at least one heat exchanger with the cooling being provided by the recycling of combustion gas from a cooled zone downstream from the introduction of the cooling gas.

Im, Kwan H. (Lisle, IL); Ahluwalia, Rajesh K. (Clarendon Hills, IL)

1985-01-01T23:59:59.000Z

431

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

432

A Local Perspective on Natural Gas Extraction  

E-Print Network [OSTI]

& compressors. · Light pollution ­ dark sky issues. · Air/Dust pollution from drilling & trucking. · Water. · Infrastructure demands & conflicts with existing industries (tourism) hotels and amenities. · Population increase/Labor Intensive) · Well-pad and Access Road Construction · Drilling of the Well · Fracturing of the Well

Boyer, Elizabeth W.

433

Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage  

E-Print Network [OSTI]

gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

Oldenburg, Curtis M.

2003-01-01T23:59:59.000Z

434

Flue gas desulfurization  

DOE Patents [OSTI]

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

435

Gas shielding apparatus  

DOE Patents [OSTI]

An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

Brandt, D.

1984-06-05T23:59:59.000Z

436

Valve for gas centrifuges  

DOE Patents [OSTI]

The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

Hahs, Charles A. (Oak Ridge, TN); Burbage, Charles H. (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

437

Thermodynamics of Chaplygin gas  

E-Print Network [OSTI]

We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

Yun Soo Myung

2011-05-11T23:59:59.000Z

438

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

439

Liquefied Natural Gas (Iowa)  

Broader source: Energy.gov [DOE]

This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling, and use of liquefied natural gas. The NFPA standards...

440

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Natural Gas Rules (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

442

String Gas Baryogenesis  

E-Print Network [OSTI]

We describe a possible realization of the spontaneous baryogenesis mechanism in the context of extra-dimensional string cosmology and specifically in the string gas scenario.

G. L. Alberghi

2010-02-19T23:59:59.000Z

443

Polyport atmospheric gas sampler  

DOE Patents [OSTI]

An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

Guggenheim, S. Frederic (Teaneck, NJ)

1995-01-01T23:59:59.000Z

444

,"Colorado Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Prices",8,"Monthly","112014","1151989" ,"Release Date:","1302015"...

445

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

446

Oil and Gas Outlook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

447

Natural gas annual 1997  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

448

Gas venting system  

DOE Patents [OSTI]

A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

2010-06-29T23:59:59.000Z

449

EXTENDED PERFORMANCE HANDHELD AND MOBILE SENSORS FOR REMOTE DETECTION OF NATURAL GAS LEAKS  

SciTech Connect (OSTI)

This report summarizes work performed by Physical Sciences Inc. (PSI) to advance the state-of-the-art of surveying for leaks of natural gas from transmission and distribution pipelines. The principal project goal was to develop means of deploying on an automotive platform an improved version of the handheld laser-based standoff natural gas leak detector previously developed by PSI and known as the Remote Methane Leak Detector or RMLD. A laser beam which interrogates the air for methane is projected from a spinning turret mounted upon a van. As the van travels forward, the laser beam scans an arc to the front and sides of the van so as to survey across streets and to building walls from a moving vehicle. When excess methane is detected within the arc, an alarm is activated. In this project, we built and tested a prototype Mobile RMLD (MRMLD) intended to provide lateral coverage of 10 m and one lateral scan for every meter of forward motion at forward speeds up to 10 m/s. Using advanced detection algorithms developed as part of this project, the early prototype MRMLD, installed on the back of a truck, readily detected simulated gas leaks of 50 liters per hour. As a supplement to the originally planned project, PSI also participated in a DoE demonstration of several gas leak detection systems at the Rocky Mountain Oilfield Testing Center (RMOTC) during September 2004. Using a handheld RMLD upgraded with the advanced detection algorithms developed in this project, from within a moving vehicle we readily detected leaks created along the 7.4 mile route of a virtual gas transmission pipeline.

Michael B. Frish; B. David Green; Richard T. Wainner; Francesca Scire-Scappuzzo; Paul Cataldi; Matthew C. Laderer

2005-05-01T23:59:59.000Z

450

Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector  

SciTech Connect (OSTI)

Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

Stephen C. Yborra

2007-04-30T23:59:59.000Z

451

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

452

47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS  

E-Print Network [OSTI]

47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

453

Current Directions in Freight and Logistics Industry  

E-Print Network [OSTI]

Sources: Department of Energy & ATASources: Department of Energy & ATA #12;Rural Manufacturing Plants

Minnesota, University of

454

NEMS Freight Transportation Module Improvement Study  

U.S. Energy Information Administration (EIA) Indexed Site

basic shapes 33. Articles of base metal 41. Waste and scrap 3. Processed food 5. Meat, fish, seafood, and their preparations 6. Milled grain products and preparations, and bakery...

455

An analysis of international grain freight rates  

E-Print Network [OSTI]

and large holds arranged and structurally reinforced to carry ore, oil and light bulk cargoes. Other types include ore/oil (OO) and ore/slurry/oil (OSO). These tankers have a tight hatch provided on top of a central tank (Bernhard 1980). While adding... and suggestions for further research. CHAPTER H OVERVIEW OF OCEAN SHIPPING INDUSTRY Ocean shipping is often divided into the carriage of liquid and dry cargoes. The discussion in this chapter is mainly concentrated on ocean shipping of dry cargoes. The dry...

Jonnala, Sneha Latha

1999-01-01T23:59:59.000Z

456

Freight Best Practice Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome

457

16th Annual Freight and Logistics Symposium  

E-Print Network [OSTI]

performance and results, prices and demand for oil, our ability to make acquisitions on economically/7/2012 2 #12;Shale Development ­ "Boom" Shale Development Wind Energy Ethanol 2003 · Logistics and related infrastructure of greater importance in shale development, and therefore a major

Minnesota, University of

458

Fission gas detection system  

DOE Patents [OSTI]

A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

Colburn, Richard P. (Pasco, WA)

1985-01-01T23:59:59.000Z

459

Illinois Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals NA NA NA NA NA NA 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014...

460

Montana Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals NA NA NA NA NA NA 1991-2014 From Gas Wells NA NA NA NA NA NA 1991-2014 From Oil Wells NA NA NA NA NA NA 1991-2014 From Shale Gas Wells NA NA NA NA NA NA 2007-2014...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Gas Kick Mechanistic Model  

E-Print Network [OSTI]

-gain and temperature profile in the annulus. This research focuses on these changes in these parameters to be able to detect the occurrence of gas kick and the circulation of the gas kick out from the well. In this thesis, we have developed a model that incorporates...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

462

Gas pump with movable gas pumping panels  

DOE Patents [OSTI]

Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

Osher, John E. (Alamo, CA)

1984-01-01T23:59:59.000Z

463

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

of Gas Price ($/Mscf) for Offshore Gas Hydrate StudyEvaluation of deepwater gas-hydrate systems. The Leadingfor Gas Production from Gas Hydrates Reservoirs. J. Canadian

Moridis, G.J.

2011-01-01T23:59:59.000Z

464

Supersonic gas compressor  

DOE Patents [OSTI]

A gas compressor based on the use of a driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by the use of a pre-swirl compressor, and using a bypass stream to bleed a portion of the intermediate pressure gas after passing through the pre-swirl compressor back to the inlet of the pre-swirl compressor. Inlet guide vanes to the compression ramp enhance overall efficiency.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2007-11-13T23:59:59.000Z

465

Cryogenic treatment of gas  

DOE Patents [OSTI]

Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

2012-04-03T23:59:59.000Z

466

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)  

Broader source: Energy.gov [DOE]

This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

467

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

468

Peoples Gas and North Shore Gas- Bonus Rebate Program (Illinois)  

Broader source: Energy.gov [DOE]

The Peoples Gas and North Shore Gas Natural Gas Savings Programs are offering the following bonus rebates (in addition to the joint utilities bonus rebate). For both offers below, installation must...

469

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

470

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Gasoline and Diesel Fuel Update (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

471

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

472

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

473

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

474

,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

475

Questar Gas- Home Builder Gas Appliance Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar Gas provides incentives for home builders who incorporate energy efficiency into new construction. Rebates are provided for energy efficient gas equipment placed into new construction....

476

Questar Gas- Home Builder Gas Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for energy efficient gas equipment. Builders can also receive whole house rebates for...

477

Questar Gas- Home Builder Gas Appliance Rebate Program  

Broader source: Energy.gov [DOE]

Questar Gas provides incentives for home builders to construct energy efficient homes. Rebates are provided for both energy efficient gas equipment and whole home Energy Star certification. All...

478

Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas  

E-Print Network [OSTI]

Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas, desorbtion, tracing, migration Overview The discovery of shale gas in UK Shales demonstrates how important and no doubt will vary from shale to shale. An improved understanding of the controls on gas production from

Henderson, Gideon

479

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

480

Oil and Gas Program (Tennessee)  

Broader source: Energy.gov [DOE]

The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

Note: This page contains sample records for the topic "freight trucks gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Oil and Gas Production (Missouri)  

Broader source: Energy.gov [DOE]

A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

482

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

483

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

484

Exhaust gas recirculation apparatus  

SciTech Connect (OSTI)

Apparatus is disclosed for recirculating combustion exhaust gases to the burner region of a Stirling cycle hot-gas engine to lower combustion temperature and reduct NO/sub x/ formation includes a first wall separating the exhaust gas stream from the inlet air stream, a second wall separating the exhaust gas stream from the burner region, and low flow resistance ejectors formed in the first and second walls for admitting the inlet air to the burner region and for entraining and mixing with the inlet air portion of the exhaust gas stream. In a preferred embodiment the ejectors are arranged around the periphery of a cylindrical burner region and oriented to admit the air/exhaust gas mixture tangentially to promote mixing. In another preferred embodiment a single annular ejector surrounds and feeds the air/exhaust gas mixture to a cylindrical burner region. The annular ejector includes an annular plate with radially-directed flow passages to provide an even distribution of the air/exhaust gas mixture to the burner region.

Egnell, R.A.; Hansson, B.L.

1981-07-14T23:59:59.000Z

485

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

486

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-07-06T23:59:59.000Z

487

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

488

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

489

Gas only nozzle  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

2002-01-01T23:59:59.000Z

490

Gas ampoule-syringe  

DOE Patents [OSTI]

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, D.D.

1985-02-02T23:59:59.000Z

491

Gas ampoule-syringe  

DOE Patents [OSTI]

A gas ampoule for the shipment and delivery of radioactive gases. The gas ampoule having a glass tube with serum bottle stopper on one end and a plunger tip in the opposite end all fitting in a larger plastic tube threaded on each end with absorbent between the tubes, is seated onto the internal needle assembly via a bushing associated with the plunger and locked into the syringe barrel via barrel-bushing locking caps. The design practically eliminates the possibility of personnel contamination due to an inadvertent exposure of such personnel to the contained radioactive gas.

Gay, Don D. (Aiken, SC)

1986-01-01T23:59:59.000Z

492

Landfill Gas Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

493

Citizens Gas- Residential Efficiency Rebates  

Broader source: Energy.gov [DOE]

Citizens Gas of Indiana offers rebates to its residential customers for the installation of several types of efficient natural gas appliances. Rebates are generally available for residential homes...

494

Regulations For Gas Companies (Tennessee)  

Broader source: Energy.gov [DOE]

The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

495

Historical Natural Gas Annual 1999  

U.S. Energy Information Administration (EIA) Indexed Site

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

496

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fossil Natural Gas Natural Gas September 15, 2014 NETL Releases Hydraulic Fracturing Study The National Energy Technology Laboratory has released a technical report on the...

497

ComEd, Nicor Gas, Peoples Gas and North Shore Gas- Bonus Rebate Program (Illinois)  

Broader source: Energy.gov [DOE]

ComEd, Nicor Gas, Peoples Gas and North Shore Gas are offering a Complete System Replacement Rebate Program to residential customers. The program is a bundled promotion in partnership with ComEd...

498

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

499

Gas-Saving Tips  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Properly Tuned Fixing a car that is noticeably out of tune or has failed an emis- sions test can improve its gas mileage by an average of 4 percent. However, results vary based on...

500

Fluid Inclusion Gas Analysis  

SciTech Connect (OSTI)

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z