National Library of Energy BETA

Sample records for freight truck load-factors

  1. Super Truck -- 50% Improvement In Class 8 Freight Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- 50% Improvement In Class 8 Freight Efficiency Presents first year highlights from Detroit Diesel Corporation and Daimler Trucks, NA joint SuperTruck engine and vehicle project...

  2. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #846: Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

  3. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by Weight and 74% of Freight by Value

    Broader source: Energy.gov [DOE]

    According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and value. The two pie charts below show the share of freight moved...

  4. Fact #846: November 10, 2014 Trucks Move 70% of all Freight by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Weight and 74% of Freight by Value According to the preliminary 2012 Commodity Flow Survey (CFS) data, trucks transport the vast majority of freight by both weight and...

  5. Class 8 Truck Freight Efficiency Improvement Project

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energy <ofEnergy Today, the|< BackTrucks

  6. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Office of Environmental Management (EM)

    the SuperTruck program in 2009 to explore how teams of truck manufacturers and suppliers could design and optimize a variety of high-efficiency technologies together in a...

  7. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heavy vehicles like buses or class 8 trucks get much fewer miles per gallon than cars, a greater percentage of their mass is payload which means that they are much more...

  8. SuperTruck Team Achieves 115% Freight Efficiency Improvement in Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable EnergyStaffSunShot NewsLong-Haul Truck |

  9. Volvo Super Truck Overview and Approach

    Broader source: Energy.gov [DOE]

    Provides overview and discusses approach of the Volvo Super Truck Team to develop a number of advanced technologies to significantly improve freight efficiency of long-haul trucks

  10. Freight Wing Trailer Aerodynamics

    SciTech Connect (OSTI)

    Graham, Sean (Primary Investigator); Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  11. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey

    Broader source: Energy.gov [DOE]

    Results from the 2007 Commodity Flow Survey (CFS) show that about 70% of all freight movement in the U.S. is by truck, in terms of the shipment value and tonnage. Rail moves about 15% of freight...

  12. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, T.; Heffington, W. M.

    2009-01-01

    factors and operating hours of small and medium-sized industrial plants are analyzed to classify shift-work patterns and develop energy conservation diagnostic tools. This paper discusses two types of electric load factors for each shift... The purpose of this paper is to analyze operating hours of small and medium-sized manufacturing plants in the United States and develop ranges of load factors for use as diagnostic tools for effective energy management. Load factor is defined...

  13. Vehicle Technologies Office Merit Review 2015: Class 8 Truck...

    Energy Savers [EERE]

    8 Truck Freight Efficiency Improvement Project Presentation given by DTNA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and...

  14. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  15. Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List

    E-Print Network [OSTI]

    California at Davis, University of

    Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List California's freight sector is a critical part of California's economic engine, generating. California's freight sector, including trucks, trains, and ships is also the largest contributor to ozone

  16. Freight Shuttle System: Cross-Border Movement of Goods

    SciTech Connect (OSTI)

    None

    2011-05-31

    The Freight Shuttle System (FSS) is designed to provide freight transportation services between those short and intermediate distance locations (within 600 miles) that are currently handling large volumes of freight traffic. Much like trucks, the FSS's transporters are autonomous: each transporter has its own propulsion and travels independently of other transporters. Inspired by railroads, each FSS transporter has steel wheels operating on a steel running surface and can carry either a standardsize freight container or an over-the-road truck trailer. However, unlike either rail or trucks, the FSS runs on an elevated, dedicated guideway to avoid the interference of other transportation systems. The objective of this report is to examine the potential viability for an alternative transportation system for trailers and containers in a multi-national, cross-border setting. The El Paso-Ciudad Juarez region serves as the environment of this analysis.

  17. Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETUCivil Penalty - Policy Statement ~ 1 ~ MarchSuper

  18. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  19. Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  20. Freight Wing Trailer Aerodynamics Final Technical Report

    SciTech Connect (OSTI)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products intended to further improve efficiency, lower costs, and enhance durability. Resulting products demonstrated a 30% efficiency improvement in full scale wind tunnel tests. The fuel savings of our most promising product, the “Belly Fairing” increased from 4% to 6% in scientific track and operational tests. The project successfully demonstrated the economic feasibility of trailer aerodynamics and positioned the technology to realize significant public benefits. Scientific testing conducted with partners such as the EPA Smartway program and Transport Canada clearly validated the fuel and emission saving potential of the technology. The Smartway program now recommends trailer aerodynamics as a certified fuel saving technology and is offering incentives such as low interest loans. Trailer aerodynamics can save average trucks over 1,100 gallons of fuel an 13 tons of emissions every 100,000 miles, a distance many trucks travel annually. These fuel savings produce a product return on investment period of one to two years in average fleet operations. The economic feasibility of the products was validated by participating fleets, several of which have since completed large implementations or demonstrated an interest in volume orders. The commercialization potential of the technology was also demonstrated, resulting in a national distribution and manufacturing partnership with a major industry supplier, Carrier Transicold. Consequently, Freight Wing is well positioned to continue marketing trailer aerodynamics to the trucking industry. The participation of leading fleets in this project served to break down the market skepticism that represents a primary barrier to widespread industry utilization. The benefits of widespread utilization of the technology could be quite significant for both the transportation industry and the public. Trailer aerodynamics could potentially save the U.S. trucking fleet over a billion gallons of fuel and 20 million tons of emissions annually.

  1. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  2. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  3. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  4. Transforming California's Freight Transport System

    E-Print Network [OSTI]

    California at Davis, University of

    Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport in Achieving Clean Air, Climate Goals, Economic Growth and Healthy Communities in California Jack Kitowski April 19, 2013 1 #12;Freight Impacts at Many Levels 2 #12;Freight Transport Today: Contribution

  5. FREIGHT CONTAINER LIFTING STANDARD

    SciTech Connect (OSTI)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  6. Truckstop -- and Truck!-- Electrification

    SciTech Connect (OSTI)

    Skip Yeakel

    2001-12-13

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

  7. PREPARED BY: Regional Freight Data

    E-Print Network [OSTI]

    Bertini, Robert L.

    -modal transportation system ­Creates jobs, generates income · Freight transportation-dependent businesses account, petroleum/coal products Nonmetallic mineral products Cereal grains Wood products Gravel and crushed stone, components Precision instruments and apparatus Mixed freight Gas, fuel, petroleum/coal products Milled grain

  8. Class 8 Truck Freight Efficiency Improvement Project | Department...

    Energy Savers [EERE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt080vssrotz2013o.pdf More Documents & Publications...

  9. SuperTruck Team Achieves 115% Freight Efficiency Improvement...

    Energy Savers [EERE]

    low-rolling resistance tires, a long-haul hybrid system, and engine waste heat recovery. Many of the technologies build on VTO's research in a number of areas such as...

  10. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart ofClark Energy Group ESCO Qualification Sheet Clark2

  11. Class 8 Truck Freight Efficiency Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart ofClark Energy Group ESCO Qualification Sheet

  12. Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICES ofEfficiency Improvement Project

  13. Vehicle Technologies Office Merit Review 2015: Class 8 Truck Freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 TimelineUtility-ScaleTechnology andNext

  14. Current Directions in Freight and Logistics Industry

    E-Print Network [OSTI]

    Minnesota, University of

    Current Directions in Freight and Logistics Industry CTS Freight and Logistics Symposium November- the-box #12;Perspective Be sure to look-up from time-to-time #12;Why Discuss Freight and Logistics....Large Part of the Economy Logistics Cost As A Percent of GDP ­ 10% Source: CSCMP State of Logistics 2007 #12

  15. Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

  16. Planning for Freight Management: Urban Freight and Gateway Strategies

    E-Print Network [OSTI]

    California at Davis, University of

    Sacramento CA May 10, 2013 Tom O'Brien Center for International Trade and Transportation CSULB #12 Low Low Off-hours deliveries High Medium Intelligent Transport Systems (ITS) Medium Medium Environment time periods · London Freight Operator Recognition Scheme, Netherlands PIEK label program #12;2. Local

  17. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  18. Property:Geothermal/LoadFactor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, search This is aAnnualGenGwhYrLoadFactor Jump to:

  19. Transportation Energy Futures Series: Freight Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may make slow steaming a permanent feature of marine operations by integrating slower-design speeds into the construction of new vessels (Maersk Line 2011). - Freight Demand...

  20. Fourteenth Annual Freight & Logistics Symposium December 2010

    E-Print Network [OSTI]

    Minnesota, University of

    Fourteenth Annual Freight & Logistics Symposium December 2010 Sustainability: Does It Make Cents social responsibility ·Transparency ·Sustainable logistics ·Fuel efficiency ·Energy efficiency ·Quality

  1. Fact #602: December 21, 2009 Freight Statistics by Mode, 2007...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Fact 602: December 21, 2009 Freight Statistics by Mode, 2007 Commodity Flow Survey Results from the...

  2. Supertruck technologies for 55% thermal efficiency and 68% freight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Discusses technological...

  3. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  4. Fact #655: December 27, 2010 New Freight Analysis Tool | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    map below shows the tons of freight moved by highway (red), rail (brown), and water (blue), with the thickness of the lines corresponding to the amount of freight moved. The...

  5. SuperTruck Initiative Partner Improves Class 8 Truck Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    their efficiency is essential to increasing energy security and reducing carbon pollution. If all Class 8 trucks used SuperTruck technologies, we could lower oil use by an...

  6. The productivity effects of truck size and weight policies: Final report

    SciTech Connect (OSTI)

    Middendorf, D.P.; Bronzini, M.S. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis

    1994-11-01

    While previous studies have indicated that increases in truck size and weight limits could improve motor carrier productivity, the question of whether or not freight shippers will also benefit has not been adequately addressed. It is generally assumed that competitive conditions in the motor carrier industry will result in cost savings being passed to shippers in the form of lower freight rates. Transportation costs, however, are only one component of shipper total logistics cost. Warehousing cost, inventory holding cost, order processing cost, and other categories of business logistics cost may also change as a result of the less frequent but larger shipments typically associated with the use of longer combination vehicles (LCVs). If switching from single trailer truckload shipments to LCVs causes shipper non-transport logistics costs to increase more than the savings available from lower freight rates, then productivity gains may be lost to the firm and the economy as a whole. This research was undertaken to determine the net effect of truck size and weight policy changes on shipper total logistics cost and how these effects might influence the demand for alternative tractor-trailer configurations.

  7. Taiwanese Trash Trucks

    E-Print Network [OSTI]

    Hacker, Randi; Boyd, David

    2011-01-26

    on the street for collection. Instead, the trash truck plays music from a roof-mounted speaker as it passes through, to let people know when to bring out their garbage. It may be an efficient system, but it feels bogus to a hot kid. Poor things. They run out...

  8. The Potential for Using Transit Infrastructure for Air Freight Cargo Movement: Feasibility Analysis of Freight Train Operation Logistics, Phase II

    E-Print Network [OSTI]

    Lu, Xiao-Yun

    2015-01-01

    the BART car and truck; (a) without a platform in between; (platform needs to be built to link the BART car and truck.with a platform in between the truck and BART car Solution

  9. The Potential of Using Transit Infrastructure for Air Freight Movement: A Case Study in the Bay Area

    E-Print Network [OSTI]

    Wang, Rui; Lu, Xiao-Yun; Sivakumaran, Karthik

    2010-01-01

    of dedicated freight lift for accessing BART aerial station(freight lift for accessing BART aerial station(s) Height(

  10. SuperTruck Program: Engine Project Review, Recovery Act …Class 8 Truck Freight Efficiency Improvement Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdateBowl City

  11. The Potential for Using Transit Infrastructure for Air Freight Cargo Movement: Feasibility Analysis of Freight Train Operation Logistics, Phase II

    E-Print Network [OSTI]

    Lu, Xiao-Yun

    2015-01-01

    Freight Train Operation Logistics 6. PERFORMING ORGANIZATIONsupply chain in an urban logistics context, METRAN Nationaland A. Papson, Modeling the Logistics of FedEx International

  12. Emissions and Air Quality Impacts of Freight Transportation Erica Bickford

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Emissions and Air Quality Impacts of Freight Transportation by Erica Bickford A dissertation rights reserved. #12;Abstract Emissions and Air Quality Impacts of Freight Transportation Erica Bickford.S. transportation is the largest source of national nitrogen oxide (NOx) emissions and the third largest source

  13. Finite Element Analysis Skateboard Truck

    E-Print Network [OSTI]

    De, Suvranu

    Finite Element Analysis Of a Skateboard Truck #12;2 Executive Summary: Engineering is and always is an element of the `truck,' which holds the wheels. Finite Element analysis will be conducted on this piece a combination of SolidWorks (for modeling) and ABAQUS (for finite element analysis). It is evident from

  14. How to save truck fuel

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The future of fuel costs and its availability is discussed. Six areas of potential fuel savings for trucks discussed are: aerodynamic drag, rolling resistance, power train efficiency and speed control, vehicle maintenance, driving practices, and operational techniques. (MCW)

  15. Optimal capital structure of deep sea foreign freight transportation companies

    E-Print Network [OSTI]

    Georgiadis, Vasilis

    2014-01-01

    This thesis aims to understand the optimal leverage range for shipping companies (maritime foreign freight transportation companies - SIC 4412), through data analysis. This study confirms that in a traditional industry ...

  16. Estimation of run times in a freight rail transportation network

    E-Print Network [OSTI]

    Bonsra, Kunal (Kunal Baldev)

    2012-01-01

    The objective of this thesis is to improve the accuracy of individual freight train run time predictions defined as the time between departure from an origin node to arrival at a destination node not including yard time. ...

  17. The Diversification Effects on the Freight Forwarding Industry 

    E-Print Network [OSTI]

    Greer, Britney 1990-

    2011-11-14

    studied. Most studies were conducted with data from manufacturing firms. I will test a unique service sector, the freight forwarder. I hypothesize and confirm the relationship between a service firm’s multinationality and performance is an inverted ‘U...

  18. French intensive truck garden

    SciTech Connect (OSTI)

    Edwards, T D

    1983-01-01

    The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for complete soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.

  19. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  20. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  1. Fact #671: April 18, 2011 Average Truck Speeds | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks...

  2. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

  3. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  4. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  5. Merging qualitative and quantitative criteria for freight investment using scenario planning

    E-Print Network [OSTI]

    Sánchez-Valero, Miguel Ángel

    2011-01-01

    Freight transportation is vital to the economy of the United States. The total volume of freight moving inside the nation is expected to continue growing, while the U.S. transportation system is aging and becoming more ...

  6. Survey Design to Unravel Freight Transportation Demand of Establishments in Cities

    E-Print Network [OSTI]

    Lee, Yin Jin

    2015-05-22

    Freight transportation serves the vital role of fulfilling the goods demand of residents in cities, yet little is known about the mechanisms that generate freight movements and their impact on traffic. Even though technology ...

  7. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Robert Keolian

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  8. Tipagornwong and Figliozzi 1 An Analysis of the Competitiveness of Freight Tricycle Delivery Services in

    E-Print Network [OSTI]

    Bertini, Robert L.

    /unloading zones, noise level and pollution constraints, and vehicle size limits. For example, there are some of freight tricycles, low-capacity freight delivery vehicles, as compared to diesel vans in urban areas. Freight tricycles, also known as electric- assisted trikes, are low-emissions vehicles powered

  9. Design and scenario assessment for collaborative logistics and freight transport systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Design and scenario assessment for collaborative logistics and freight transport systems Jesus Collaboration between partners is a very popular subject in both logistics and decision support research of logistics and freight transport, as well as to describe the links between freight transport and supply chain

  10. Development of analytic intermodal freight networks for use within a GIS

    SciTech Connect (OSTI)

    Southworth, F.; Xiong, D.; Middendorf, D.

    1997-05-01

    The paper discusses the practical issues involved in constructing intermodal freight networks that can be used within GIS platforms to support inter-regional freight routing and subsequent (for example, commodity flow) analysis. The procedures described can be used to create freight-routable and traffic flowable interstate and intermodal networks using some combination of highway, rail, water and air freight transportation. Keys to realistic freight routing are the identification of intermodal transfer locations and associated terminal functions, a proper handling of carrier-owned and operated sub-networks within each of the primary modes of transport, and the ability to model the types of carrier services being offered.

  11. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  12. Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy new traffic flow and traffic light control concepts with respect to emissions and fuel economy. Some

  13. Measuring the Value of Time in Highway Freight Transportation 

    E-Print Network [OSTI]

    Miao, Qing

    2014-01-13

    was examined in relationship to inventory management by assuming prolonged transportation time or freight delay. Delay of chemical products was ranked as the highest VOT at $13.89/truckload/hour, followed by food products at $7.24/truckload/hour. Finally, a...

  14. Figliozzi and Tufte 1 CHALLENGES AND OPPORTUNITIES FOR ONLINE FREIGHT

    E-Print Network [OSTI]

    Bertini, Robert L.

    as well as enhance our understanding of freight issues. We argue that institutional barriers An internet-based mapping system is utilized to provide geographic context and user friendly information from many public and private sources. However, the data may significantly vary in terms of collection

  15. The Gravity of Annual Freight and Logistics Symposium

    E-Print Network [OSTI]

    Minnesota, University of

    The Gravity of Logistics 17th Annual Freight and Logistics Symposium A Summary Report | December 6 to those who want them --the "gravity" of logistics--depends on infrastructure that can support and sustainth Annual State of Logistics Report--IsThis the New Normal? Rosalyn Wilson, Senior Business Analyst

  16. Cummins Light Truck Clean Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Truck Clean Diesel Cummins Light Truck Clean Diesel 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation 2004deerstang2.pdf More Documents & Publications...

  17. Heavy-Truck Clean Diesel (HTCD) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Truck Clean Diesel (HTCD) Program Heavy-Truck Clean Diesel (HTCD) Program 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar...

  18. Diesel Trucks - Then and Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks - Then and Now Diesel Trucks - Then and Now 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deersantini.pdf More Documents &...

  19. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers -...

  20. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and...

  1. NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorbers for Heavy Duty Truck Engines - Testing and Simulation NOx Adsorbers for Heavy Duty Truck Engines - Testing and Simulation This report provides the results of an...

  2. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  3. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt...

  4. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and System Level Demonstration of Highly...

  5. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8...

  6. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

  7. Emissions from Idling Trucks for Extended Time Periods | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Trucks for Extended Time Periods Emissions from Idling Trucks for Extended Time Periods 2002 DEER Conference Presentation: Oak Ridge National Laboratory 2002deerlewis.pdf...

  8. Volvo Truck Headquarters in North Carolina to Host Event With...

    Energy Savers [EERE]

    Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under...

  9. SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in 2005 SCR Systems for Heavy Duty Trucks: Progress Towards Meeting Euro 4 Emission Standards in...

  10. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  11. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Renault Trucks-Volvo Group Thermoelectric Generator Development at Renault Trucks-Volvo Group Reviews project to study the potential of thermoelectricity for diesel engines of...

  12. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and...

  13. Trucking | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to: navigation,PowerNetworksEnergiaTrucking Home

  14. International Truck | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian CentreHoldingsFundTruck Jump to:

  15. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  16. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    SciTech Connect (OSTI)

    Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J; Siekmann, Adam; Thomas, Neil; LaClair, Tim J; Barker, Alan M; Knee, Helmut E

    2012-11-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

  17. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  18. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  19. Design and Development of a Continuous Precast Prestressed Concrete Bridge System for the Multimodal Freight Shuttle Project 

    E-Print Network [OSTI]

    Parkar, Anagha 1984-

    2011-04-27

    the safety and serviceability of the existing transportation system. The proposed Multimodal Freight Shuttle (MFS) system offers a cost-effective and environmentally friendly method to transport containerized, intercity or port-to-terminal freight...

  20. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  1. Emission Controls for Heavy-Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  2. Water by truck in Mexico City

    E-Print Network [OSTI]

    Pike, Jill (Jill Susan)

    2005-01-01

    Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

  3. KEYNOTE SPEAKER: Gary Petersen, Director of Transportation, General Mills 8th Annual Freight and Logistics Symposium

    E-Print Network [OSTI]

    Minnesota, University of

    and Logistics Symposium Rising costs and low capacity mean major changes for the transportation industry. Freight and logistics professionals, researchers, and policymakers examined forces of change affecting Freight and Logistics Symposium. CTS director Robert Johns and Council of Supply Chain Management

  4. Fact #672: April 25, 2011 Freight Gateways in the U.S.

    Broader source: Energy.gov [DOE]

    The top 25 places (in terms of freight value) that freight is shipped into and out of the U.S. are listed on the map below. Import values are shown by the gray bar, while export values are shown by...

  5. Mechanical properties of radial truck tires 

    E-Print Network [OSTI]

    Wasti, Mansoor-ul-Hassan

    1992-01-01

    MECHANICAL PROPERTIES OF RADIAL TRUCK TIRES A Thesis by MANSOOR-UL-HASSAN WASTI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992... Major Subject: Mechanical Engineering MECHANICAL PROPERTIES OF RADIAL TRUCK TIRES A Thesis by Mansoor-ul-Hassan Wasti Approved as to style and content by: R. . Alexander (Chair of Committee) C. . Hough (Member) Donal ayl (M mber) W. L. radley...

  6. High-alpha space trucks

    SciTech Connect (OSTI)

    Cook, L.M. [Ball Aerospace and Technology Corp. 1600 Commerce St. MS CO-9 Boulder, Colorado80301 (United States); Ball, J. [McDonnel Douglas Aerospace 5301 Bolsa Ave. MS 13-3 Huntington Beach, California92647 (United States)

    1997-01-01

    Vertically-landing Reusable Launch Vehicles (RLVs) are the best hope of building a true {open_quotes}Space Truck{close_quotes} with current technology. Because they do not require a low angle-of-attack (AOA, or alpha) horizontal landing, they can be designed to operate exclusively at very high angles-of-attack. This offers savings in vehicle dry weight and complexity, which can be traded for significantly heavier payload, more ascent velocity, or extra design margin. The price for abandoning low angle-of-attack flight is reduced crossrange. To quantify the potential weight reduction, a trade study was performed to determine the relationship between a vehicle{close_quote}s maximum crossrange (angle-of-attack) and it{close_quote}s dry weight (payload margin). At the study conclusion, three vertically-landing (VL) vehicles provided multiple points on a payload weight vs. maximum crossrange curve, showing significant payload increases as crossrange is sacrificed. This is primarily the result of being able to simplify the structure, fly a cooler entry trajectory, and be aerodynamically stable through the entire flight. This reduces subsystem requirements and complexity, enhancing reliability. Further benefits are realized in reduced landing propellant requirements and simplifying or eliminating the {open_quotes}rotation{close_quotes} maneuver. This paper also suggests unique operability solutions that adapt high-alpha vehicles to traditional high-crossrange missions such as the polar {open_quotes}once-around{close_quotes} flight, and proposes a small scale drop-test program to prove the subsonic and landing portion of the flight envelope. {copyright} {ital 1997 American Institute of Physics.}

  7. Caterpillar Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

    1999-04-26

    In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

  8. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    t=freight, r=road, j=light truck t=pass, r=air t =freight, rbus, heavy truck, and light truck), = fuel type (motorPJ. Rail Water Air Light Truck Heavy Truck Bus 3 Wheelers

  9. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  10. Fact #707: December 26, 2011 Illustration of Truck Classes

    Broader source: Energy.gov [DOE]

    There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

  11. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

  12. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks...

    Broader source: Energy.gov (indexed) [DOE]

    of reports (part of the medium and heavy-duty truck data) describes data collected from Smith Newton all-electric delivery trucks in a variety of fleets. This research was...

  13. High Efficient Clean Combustion for SuperTruck | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Clean Combustion for SuperTruck High Efficient Clean Combustion for SuperTruck Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research...

  14. World's First Fuel Cell Cargo Trucks Deployed at Memphis International...

    Office of Environmental Management (EM)

    World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm...

  15. Vehicle Technologies Office: 21st Century Truck Partners

    Broader source: Energy.gov [DOE]

    The 21st Century Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

  16. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Energy Savers [EERE]

    Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  17. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  18. California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Describes system for fueling truck fleet with biomethane generated from anaerobic digestion of organic waste it collects

  19. NREL: Transportation Research - Truck Stop Electrification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccessTransportationTruckTruck

  20. Towards understanding the impacts of congestion pricing on urban trucking

    E-Print Network [OSTI]

    Waliszewski, Janine M

    2005-01-01

    Understanding policy impacts on freight is essential for planners who have overlooked this transport group in the past and must evaluate new congestion alleviation policies with respect to regional economic and social ...

  1. THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 THE POTENTIAL FOR CO2 EMISSIONS TRADING IN TRANSPORT: THE CASE OF PERSONAL VEHICLES AND FREIGHT, it is of some interest to explore the inclusion of road transport in emission trading schemes. Starting from

  2. Estimation of economic impact of freight distribution due to highway closure

    E-Print Network [OSTI]

    Hu, Shiyin

    2008-01-01

    The main aim of this study is to provide a theoretical framework and methodology to estimate and analyze the economic impact of freight disruption due to highway closure. The costs in this study will be classified into ...

  3. UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2002-08-01

    This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  4. Fire Department Gets New Trucks, Saves Money

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

  5. Vehicle Manufacturing Futures in Transportation Life-cycle Assessment

    E-Print Network [OSTI]

    Chester, Mikhail; Horvath, Arpad

    2011-01-01

    vehicles, aircraft, high- speed rail) and freight (trucks,midsize aircraft, high-speed rail, freight trucks, andmodes such as high- speed rail. Chester and Horvath (2010)

  6. FUEL ASSEMBLY SHAKER AND TRUCK TEST SIMULATION

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Jensen, Philip J.; Sanborn, Scott E.; Hanson, Brady D.

    2014-09-25

    This study continues the modeling support of the SNL shaker table task from 2013 and includes analysis of the SNL 2014 truck test campaign. Detailed finite element models of the fuel assembly surrogate used by SNL during testing form the basis of the modeling effort. Additional analysis was performed to characterize and filter the accelerometer data collected during the SNL testing. The detailed fuel assembly finite element model was modified to improve the performance and accuracy of the original surrogate fuel assembly model in an attempt to achieve a closer agreement with the low strains measured during testing. The revised model was used to recalculate the shaker table load response from the 2013 test campaign. As it happened, the results remained comparable to the values calculated with the original fuel assembly model. From this it is concluded that the original model was suitable for the task and the improvements to the model were not able to bring the calculated strain values down to the extremely low level recorded during testing. The model needs more precision to calculate strains that are so close to zero. The truck test load case had an even lower magnitude than the shaker table case. Strain gage data from the test was compared directly to locations on the model. Truck test strains were lower than the shaker table case, but the model achieved a better relative agreement of 100-200 microstrains (or 0.0001-0.0002 mm/mm). The truck test data included a number of accelerometers at various locations on the truck bed, surrogate basket, and surrogate fuel assembly. This set of accelerometers allowed an evaluation of the dynamics of the conveyance system used in testing. It was discovered that the dynamic load transference through the conveyance has a strong frequency-range dependency. This suggests that different conveyance configurations could behave differently and transmit different magnitudes of loads to the fuel even when travelling down the same road at the same speed. It is recommended that the SNL conveyance system used in testing be characterized through modal analysis and frequency response analysis to provide context and assist in the interpretation of the strain data that was collected during the truck test campaign.

  7. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  8. Cummins/DOE Light Truck Diesel Engine Progress Report | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Progress Report CumminsDOE Light Truck Diesel Engine Progress Report 2002 DEER Conference Presentation: Cummins 2002deerstang.pdf More Documents & Publications...

  9. Cummins/DOE Light Truck Clean Diesel Engine Progress Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Diesel Engine Progress Report CumminsDOE Light Truck Clean Diesel Engine Progress Report 2003 DEER Conference Presentation: Cummins Inc. 2003deerstang.pdf More Documents &...

  10. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  11. DOE Seeks Trucking Services for Transuranic Waste Shipments ...

    Energy Savers [EERE]

    The TRU waste must be transported in Nuclear Regulatory Commission approved, Type-B packaging. The truck drivers must meet and maintain stringent safety and hazardous materials...

  12. Carlsbad Field Office (CBFO) Corrective Action Plan - Truck Fire...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues identified in the March 2014, accident investigation report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014 (hereafter...

  13. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Efficiency Improvement Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  14. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Efficiency Improvement Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  15. Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2014: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells...

  16. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect (OSTI)

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  17. The 21st Century Truck Partnership | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2002deerhowden.pdf More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Roadmap and Technical...

  18. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  19. Vehicle Technologies Office Merit Review 2015: SuperTruck Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2015: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office...

  20. Vehicle Technologies Office Merit Review 2014: Class 8 Truck...

    Office of Environmental Management (EM)

    Project Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  1. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Energy Savers [EERE]

    Diesel Powered Class 8 Trucks Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  2. Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffery Birkel

    2007-12-31

    With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

  3. Roadmap and Technical White Papers for 21st Century Truck Partnership...

    Energy Savers [EERE]

    Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

  4. Fact #714: February 13, 2012 Light Truck Sales on the Rise |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gained market share in relation to car sales from 1970. In 2001, light trucks outsold cars for the first time. Light truck sales reached a peak in 2004. By 2008, truck sales had...

  5. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine Development of a new light truck, in-line...

  6. Assessing the impact of regulation and deregulation on the rail and trucking industries

    E-Print Network [OSTI]

    Lowtan, Donavan M. (Donavan Mahees), 1975-

    2004-01-01

    (cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

  7. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Energy Savers [EERE]

    Trucks Fact 899: November 16, 2015 World Production of Cars and Trucks SUBSCRIBE to the Fact of the Week The top countries producing the world's cars and trucks have changed over...

  8. Fact #899: November 16, 2015 World Production of Cars and Trucks...

    Energy Savers [EERE]

    Trucks - Dataset Fact 899: November 16, 2015 World Production of Cars and Trucks - Dataset Excel file and dataset for World Production of Cars and Trucks fotw899web.xlsx More...

  9. UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Walkowicz, K.

    2001-08-14

    UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

  10. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER)...

  11. State-of-the-Art and Emergin Truck Engine Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State-of-the-Art and Emergin Truck Engine Technologies State-of-the-Art and Emergin Truck Engine Technologies 2003 DEER Conference Presentation: DaimlerChrysler Powersystems...

  12. Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives

    E-Print Network [OSTI]

    Nowakowski, Christopher; Shladover, Steven E; Lu, Xiao-Yun; Thompson, Deborah; Kailas, Aravind

    2015-01-01

    truck attributes of engine performance, weight and braking performance, or aerodynamics.trucks within the CACC string to be ordered by weight and braking performance, engine performance, aerodynamics,

  13. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy Downspeeding a Heavy-Duty Pickup Truck with a Combined...

  14. NREL: Transportation Research - Truck Platooning Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking WithSuccessTransportationTruck

  15. Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report

    SciTech Connect (OSTI)

    Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

    2011-01-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

  16. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified element could be exhausted quickly for demanding truck operations. The recently announced emission rule for the US 2007 model year trucks makes it very clear that exhaust emission is also an important performance

  17. Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami

    E-Print Network [OSTI]

    Levinson, David M.

    Operating Costs for Trucks David Levinson*, Michael Corbett, Maryam Hashami David Levinson Author Abstract This study estimates the operating costs for commercial vehicle operators in Minnesota. A survey of firms that undertake commercial truck road movements was performed. The average operating cost

  18. Project Information Form Project Title Eco-Friendly Intelligent Transportation System Technology for Freight

    E-Print Network [OSTI]

    California at Davis, University of

    has been applied to light-duty vehicles. This project will develop and apply new ECO-ITS technologies) to evaluate different scenarios that utilize different forms of ECO-ITS technology. These truck-based ECO management systems to better monitor truck traffic speed, density, and flow and then communicate information

  19. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  20. Greenhouse gas emissions and the surface transport of freight in Canada

    E-Print Network [OSTI]

    Greenhouse gas emissions and the surface transport of freight in Canada Paul Steenhof a,*, Clarence annual reduction of greenhouse gases of 6% below 1990 levels between 2008 and 2012. The transportation committed to reducing its greenhouse gas (GHG) emissions to 6% below 1990 levels between 2008 and 2012

  1. A Geographical Informa on System-Based Decision Support Tool: GeoFreight

    E-Print Network [OSTI]

    of Energy Airport Operation Statistics map. A series of choices are provided allowing the user to obtainFreight was developed by ORNL with funding provided by the Bureau of Transportation Statistics (BTS), USDOT, under vulnerabilities in the transportation systems. The Port Statistics menu, accessed from the Major Ports map, allows

  2. Costs and benefits of logistics pooling for urban freight distribution: scenario

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Costs and benefits of logistics pooling for urban freight distribution: scenario simulation Collaborative transportation and logistics pooling are relatively new concepts in research, but are very popular in practice. In the last years, collaborative transportation seems a good city logistics alternative

  3. Freight & Logistics Success of Supply Chain in the Public and Private

    E-Print Network [OSTI]

    Minnesota, University of

    Freight & Logistics Symposium Success of Supply Chain in the Public and Private Sector #12;Tim Thoma International Logistics + Compliance Manager at Northern Tool + Equipment 25 years experience in Intl Logistics BA International Business / German from UST Lifelong resident of the area #12;Northern

  4. Freight logistics services for rural economies: User needs and future challenges Angela Cristina Marqui

    E-Print Network [OSTI]

    Edwards, Pete

    Freight logistics services for rural economies: User needs and future challenges Angela Cristina requirements for logistics and transport services of small and micro rural businesses. This paper explores for the logistics requirements of rural businesses calls for intelligent software platforms that provide solutions

  5. The Potential of Using Transit Infrastructure for Air Freight Movement: A Case Study in the Bay Area

    E-Print Network [OSTI]

    Wang, Rui; Lu, Xiao-Yun; Sivakumaran, Karthik

    2010-01-01

    BART car and the truck; (a) without a platform in between; (b) with a platform in between truck and BART car Solution 1.platform needs to be built to link the BART car and the

  6. REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS

    E-Print Network [OSTI]

    Frey, H. Christopher

    REAL-WORLD EFFICACY OF HEAVY DUTY DIESEL TRUCK NOX AND PM EMISSIONS CONTROLS Gurdas Sandhu H 0121 NOx(g/gal) Truck Number Highway Arterial Comparison of Trucks: Fuel-Based NO Emission Rates NOx emissions are substantially lower than Truck 5715. 1999 2005 2007 2009 2010 Fuel-Based Emission

  7. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program

  8. Progress in Thermoelectrical Energy Recovery from a Light Truck Exhaust

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  9. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Bethesda, Maryland. merit08proc.pdf More Documents & Publications CoolCab Truck Thermal Load Reduction CoolCab Test and Evaluation and CoolCalc HVAC Tool Development CoolCab...

  10. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  11. Design of a stair-climbing hand truck

    E-Print Network [OSTI]

    Jacovich, Marissa L

    2005-01-01

    Every year, both at home and in the workplace, thousands of adults injure themselves while attempting to move heavy objects. Devices such as hand trucks are used to relieve the stress of lifting while on flat ground; ...

  12. The Increasing Role of Diesel Trucks in National Petroleum Use...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks in National Petroleum Use Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  13. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. vss002knee2010o.pdf More Documents & Publications Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Truck Duty Cycle and Performance Data...

  14. Modeling the interaction between passenger cars and trucks 

    E-Print Network [OSTI]

    Jenkins, Jacqueline Marie

    2004-11-15

    The topic of this dissertation was the use of distributed computing to improve the modeling of the interaction between passenger cars and trucks. The two main focus areas were the development of a methodology to combine microscopic traffic...

  15. Progress in Thermoelectrical Energy Recovery from a Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerthacher.pdf More Documents & Publications The Effects...

  16. Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  17. Shorepower Truck Electrification Project (STEP) - Cumulative through June 2014

    SciTech Connect (OSTI)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  18. Computer controlled feed delivery system for feed trucks 

    E-Print Network [OSTI]

    Holt, Gregory Alan

    1989-01-01

    COMPUTER CONTROLLED FEED DELIVERY SYSTEM FOR FEED TRUCKS A Thesis by GREGORY ALAN HOLT Submitted to the Office of Graduate Studies of Texas ABM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1989 Major Subject: Agricultural Engineering COMPIJIER CONTROLLED FEED DELIVERY SYSTEM FOR FEED TRUCKS A Thesis by GREGORY ALAN HOLT Approved as to style and content by: Calvin B. Parnell (Chair of Committee) ayne LePori (Member) Charlie G...

  19. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

  20. Liquefied Natural Gas for Trucks and Buses

    SciTech Connect (OSTI)

    James Wegrzyn; Michael Gurevich

    2000-06-19

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

  1. Acceptance test report for core sample trucks 3 and 4

    SciTech Connect (OSTI)

    Corbett, J.E.

    1996-04-10

    The purpose of this Acceptance Test Report is to provide documentation for the acceptance testing of the rotary mode core sample trucks 3 and 4, designated as HO-68K-4600 and HO-68K-4647, respectively. This report conforms to the guidelines established in WHC-IP-1026, ``Engineering Practice Guidelines,`` Appendix M, ``Acceptance Test Procedures and Reports.`` Rotary mode core sample trucks 3 and 4 were based upon the design of the second core sample truck (HO-68K-4345) which was constructed to implement rotary mode sampling of the waste tanks at Hanford. Successful completion of acceptance testing on June 30, 1995 verified that all design requirements were met. This report is divided into four sections, beginning with general information. Acceptance testing was performed on trucks 3 and 4 during the months of March through June, 1995. All testing was performed at the ``Rock Slinger`` test site in the 200 West area. The sequence of testing was determined by equipment availability, and the initial revision of the Acceptance Test Procedure (ATP) was used for both trucks. Testing was directed by ICF-KH, with the support of WHC Characterization Equipment Engineering and Characterization Project Operations. Testing was completed per the ATP without discrepancies or deviations, except as noted.

  2. Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go? As with light vehicles, heavy trucks also have significant energy losses. The losses shown below...

  3. Roadmap and technical white papers for the 21st century truck partnership

    SciTech Connect (OSTI)

    None, None

    2006-12-01

    21st Century Truck Partnership will support the development and implementation of technologies that will cut fuel use and emissions and enhance safety, affordability, and performance of trucks and buses.

  4. Examining factors affecting the safety performance and design of exclusive truck facilities 

    E-Print Network [OSTI]

    Iragavarapu, Vichika

    2008-10-10

    Many state agencies consider exclusive truck facilities to be an alternative to handle the safety and operational issues due to the increasing truck volumes. No such facilities exist, and there are no standard tools or procedures for measuring...

  5. SuperTruck ? Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer...

  6. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across...

  7. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine Discusses plan, baselining, and modeling, for new...

  8. A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power...

  9. Fact #620: April 26, 2010 Class 8 Truck Tractor Weight by Component

    Broader source: Energy.gov [DOE]

    A typical class 8 truck tractor weighs about 17,000 lbs. The powertrain is nearly a quarter of the weight (24%) while the truck body structure is 19%.

  10. Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs

  11. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy 2002deereberhardt.pdf More Documents &...

  12. Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series...

  13. Design and Development of e-Turbo for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of e-Turbo for SUV and Light Truck Applications Design and Development of e-Turbo for SUV and Light Truck Applications 2004 Diesel Engine Emissions Reduction (DEER)...

  14. Design & Development of e-TurboTM for SUV and Light Truck Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Development of e-TurboTM for SUV and Light Truck Applications Design & Development of e-TurboTM for SUV and Light Truck Applications 2003 DEER Conference Presentation: Garrett...

  15. Fact #720: March 26, 2012 Eleven Percent of New Light Trucks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection Fact 720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct...

  16. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts...

  17. Freight/Shipping Charges on the Requisition Some suppliers' pricing includes shipping (look for the little cardboard box icon next to the

    E-Print Network [OSTI]

    Bigelow, Stephen

    Freight/Shipping Charges on the Requisition Some suppliers' pricing includes shipping (look for the little cardboard box icon next to the supplier name); for these suppliers, you do not need to enter a Freight/Shipping estimate on your requisition

  18. Appendix of Supporting Information for the 21st Century Truck Technology Partnership

    SciTech Connect (OSTI)

    2009-01-18

    Appendix contains supporting information to the 21st Century Truck Partnership's Roadmap and Technical White Papers (21CTP-003)

  19. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

  20. Shorepower Truck Electrification Project (STEP) - 1Q - 2Q 2013

    SciTech Connect (OSTI)

    2014-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved. the ARRA. A total of 5,000 rebates will be approved.

  1. BEHAVIORAL DISTINCTIONS: THE USE OF LIGHT-DUTY TRUCKS AND PASSENGER CARS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    BEHAVIORAL DISTINCTIONS: THE USE OF LIGHT-DUTY TRUCKS AND PASSENGER CARS by Kara Maria Kockelman as light-duty trucks (LDTs), resulting in a variety of regulatory protections. Production and purchase as light-duty trucks (LDTs), and they currently capture 51% of new U.S. passenger vehicle sales1 ­ much

  2. Unintended Impacts of Increased Truck Loads on Pavement Supply-chain Emissions

    E-Print Network [OSTI]

    Sathaye, Nakul; Horvath, Arpad; Madanat, Samer M

    2009-01-01

    Cycle Assessment (EIO-LCA) Model. Green Design Institute,life-cycle assessment (LCA) has also come to the forefrontfor indirect effects. A LCA of freight transportation in the

  3. FedEx Freight Delivers on Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartment of5! ASSISTANT09FedEx Freight

  4. RESULTSRESULTS Assisted in selection of APU mounting configuration on truck

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Motion Fuel Cell Auxiliary Power Unit (APU): Dynamic ModelingFuel Cell Auxiliary Power Unit (APU@coe.eng.ua.edu OBJECTIVESOBJECTIVES ·Develop a computer model to predict the vibratory response of the fuel cell APU components ·Use MOTIVATIONMOTIVATION Guide the development of a method to isolate the truck-mounted Fuel Cell APU from potentially

  5. Optimal Power Management for a Hydraulic Hybrid Delivery Truck

    E-Print Network [OSTI]

    Peng, Huei

    demonstrate characteristics that are very different fromtheir electric counterparts, thus requiring unique characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced faster rate than that of passenger cars. This is a consequence of increased proportion of light trucks

  6. DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program

    SciTech Connect (OSTI)

    Eric Fluga

    2004-09-30

    The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

  7. Personal revised version of: Howitt et al. (2011), Carbon dioxide emissions from international air freight. Paper to appear in

    E-Print Network [OSTI]

    Otago, University of

    2011-01-01

    Personal revised version of: Howitt et al. (2011), Carbon dioxide emissions from international air the Digital Object Identifier (DOI) listed here: doi:10.1016/j.atmosenv.2011.09.051 1 Carbon dioxide emissions and 0.53 Mt. Keywords International air freight, carbon dioxide emissions, greenhouse gas emissions, New

  8. Experimental Measurement of the Flow Field of Heavy Trucks

    SciTech Connect (OSTI)

    Fred Browand; Charles Radovich

    2005-05-31

    Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performed at the same Crows Landing testsite. In the tests, two identical trucks are ope

  9. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  10. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.

  11. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  12. Ferrocarriles nacionales de Mexico: the existing rate structure for grain/soybean shipments and likely effect on freight rates as a result of railroad privatization in Mexico 

    E-Print Network [OSTI]

    Neyer, David McAlister

    1994-01-01

    The government owned railway monopoly in Mexico, Ferrocarriles Nacionales de Mexico (FNM), is undergoing a series of reforms designed to create a market orientated railroad company. Railroad freight rates are being deregulated ...

  13. Freight pipelines

    SciTech Connect (OSTI)

    Liu, H. (University of Missouri, Columbia, MO (US)); Round, G.F. (McMaster University (CA))

    1989-01-01

    This book presents papers on slurry pipelines, pneumatic pipelines, capsule pipelines, pipeline education, and pipeline research.

  14. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  15. Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams

    Broader source: Energy.gov [DOE]

    Fuel efficiency in heavy trucks depends on a number of factors associated with the truck and its components. The top figure shows the power use inventory for a basic Class 8 tractor-trailer combination, listing its balance of fuel input, engine output, and tractive power (losses from aerodynamics, rolling resistance, and inertia). The power use inventory in this diagram highlights areas in which research efforts can lead to major benefits in truck fuel efficiency, including engine efficiency, aerodynamics, and rolling resistance.

  16. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  17. Cummins Improving Pick-Up Truck Engine Efficiency with DOE and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    truck buyers, saving them money, reducing petroleum consumption, and minimizing carbon pollution. The Vehicle Technologies Office (VTO) develops and deploys efficient and...

  18. Fact #571: May 18, 2009 Light Truck CAFE Standards – 2006 Reformation

    Broader source: Energy.gov [DOE]

    In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are...

  19. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vss14salari.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies...

  20. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss006salari2012o.pdf More Documents & Publications DOEs Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations Vehicle Technologies...

  1. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Energy Savers [EERE]

    Truck Aerodynamic Drag through Joint Experiments and Computations 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Thermal management for heavy vehicles (Class 7-8 trucks)

    SciTech Connect (OSTI)

    Wambsganss, M.W.

    2000-04-03

    Thermal management is a crosscutting technology that has an important effect on fuel economy and emissions, as well as on reliability and safety, of heavy-duty trucks. Trends toward higher-horsepower engines, along with new technologies for reducing emissions, are substantially increasing heat-rejection requirements. For example, exhaust gas recirculation (EGR), which is probably the most popular near-term strategy for reducing NO{sub x} emissions, is expected to add 20 to 50% to coolant heat-rejection requirements. There is also a need to package more cooling in a smaller space without increasing costs. These new demands have created a need for new and innovative technologies and concepts that will require research and development, which, due to its long-term and high-risk nature, would benefit from government funding. This document outlines a research program that was recommended by representatives of truck manufacturers, engine manufacturers, equipment suppliers, universities, and national laboratories. Their input was obtained through personal interviews and a plenary workshop that was sponsored by the DOE Office of Heavy Vehicle Technologies and held at Argonne National Laboratory on October 19--20, 1999. Major research areas that received a strong endorsement by industry and that are appropriate for government funding were identified and included in the following six tasks: (1) Program management/coordination and benefits/cost analyses; (2) Advanced-concept development; (3) Advanced heat exchangers and heat-transfer fluids; (4) Simulation-code development; (5) Sensors and control components development; and (6) Concept/demonstration truck sponsorship.

  3. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    diesel engine truck, diesel hybrid-electric, conventionalfor conventional diesel and diesel hybrid trucks; dual 150The economics of the hybrid-electric diesel and LNG Class 8

  4. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland Conserves Fuel With Hybrid Trucks to

  5. Boondocks Truck Stop Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass RidgeBonnevilleBoondocks Truck

  6. Truck fire Corrective Action Plan submitted to Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: April 15, 2014 Truck fire Corrective Action Plan

  7. Super Truck Program: Engine Project Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdateBowl City Leads onTruck

  8. SuperTruck Program: Engine Project Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdateBowl City LeadsSuperTruck

  9. Manhattan Project truck unearthed at landfill cleanup site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudget | NationalManhattan project truck

  10. Vehicle Technologies Office: 21st Century Truck Partnership | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICESEnergy 21st Century Truck

  11. Analysis of Mandatory and Discretionary Lane Change Behaviors for Heavy Trucks

    E-Print Network [OSTI]

    Peng, Huei

    AVEC '14 Analysis of Mandatory and Discretionary Lane Change Behaviors for Heavy Trucks Ding Zhao1 about lane change for light vehicles, limited attention was paid to lane change behaviors for heavy-related deaths[9], [10]. Truck drivers are five times more likely to die than the average worker on their duty [9

  12. The Effects of Altitude on Heavy-Duty Diesel Truck On-Road

    E-Print Network [OSTI]

    Denver, University of

    The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions G A R Y A . B I S H O P , * J oxide from 5772 heavy-duty diesel trucks at five locations in the United States and Europe show slightly emissions has largely been focused on the regulation and control of exhaust emissions from light

  13. A Game-Theoretic Framework for Studying Truck Platooning Incentives Farhad Farokhi and Karl H. Johansson

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    congestion tax that they are paying to use the road. The trucks have platooning capabilities and therefore, and the congestion tax that they pay for using the road at that time interval. The second type of agents are trucks the traffic flow on a road over certain time intervals. In this game, the drivers make a trade-off between

  14. On-Road Remote Sensing of Heavy-duty Diesel Truck

    E-Print Network [OSTI]

    Denver, University of

    measure the concentrations of CO, HC, NO, and CO2 in automobile and truck emissions while in route, HC, and NO to CO2 and to get percent opacity readings for heavy-duty diesel trucks with elevated the source. The data show, on average, a correlation between high CO emissions and reported opacity

  15. "Leveraging University Expertise to Inform Better Policy" Session Two: Advanced Rail and Truck Technology Development and

    E-Print Network [OSTI]

    California at Davis, University of

    administered by CALSTART. The CalHEAT Truck Research Center has developed a Technology and Market Transformation Roadmap which results in California meeting the emissions and environmental policies as they relate to medium and heavy duty trucks. Fred has a background in power electronics including a Bachelor

  16. ESTIMATING TEXAS-MEXICO NORTH AMERICAN FREE TRADE AGREEMENT TRUCK VOLUMES

    E-Print Network [OSTI]

    ESTIMATING TEXAS-MEXICO NORTH AMERICAN FREE TRADE AGREEMENT TRUCK VOLUMES Paper Number: 01 San Antonio, Texas 78249 Tel (210) 458-5384 FAX (210) 458-5783 ABSTRACT North American Free Trade Free Trade Agreement (NAFTA) truck traffic along that corridor segment. Yet the accurate measurement

  17. Fuel-Optimal Centralized Coordination of Truck Platooning Based on Shortest Paths

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    Fuel-Optimal Centralized Coordination of Truck Platooning Based on Shortest Paths Sebastian van de fuel consumption of trucks. Vehicles that drive at close inter- vehicle distance assisted by automatic the formation and the breakup of platoons in a fuel-optimal way. We formulate an optimization problem which

  18. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

  19. A stochastic optimization approach to mine truck C. H. TA{, J. V. KRESTA{, J. F. FORBES*{ and H. J. MARQUEZ

    E-Print Network [OSTI]

    Marquez, Horacio J.

    ; Chance-constrained; Oilsand mining 1. Introduction In the open-pit mining industry, trucks and shovels

  20. Testimony to the U.S. House of Representatives Science Committee IMPROVING THE NATION'S ENERGY SECURITY: CAN CARS AND TRUCKS

    E-Print Network [OSTI]

    SECURITY: CAN CARS AND TRUCKS BE MADE MORE FUEL EFFICIENT? 2:00 pm, Wednesday, February 9, 2005 Rayburn standards were effective in raising passenger car and light truck fuel economy and curbing the growth, regardless of its product mix. Manufacturers emphasizing larger light trucks and passenger cars will clearly

  1. Analysis of major trends in U.S. commercial trucking, 1977-2002.

    SciTech Connect (OSTI)

    Bertram, K. M.; Santini, D .J.; Vyas, A. D.

    2009-06-10

    This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

  2. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    Applications of Natural Gas as Transportation Engine Fuel,duty vehicle transportation sector, but current natural gasnatural gas to displace fossil diesel fuel in the freight transportation

  3. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  4. Interim Results from Alternative Fuel Truck Evaluation Project

    SciTech Connect (OSTI)

    Kevin L. Chandler; Paul Norton; Nigel Clark

    1999-05-03

    The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

  5. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    SciTech Connect (OSTI)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  6. Technical documentation for the 1990 Nationwide Truck Activity and Commodity Survey Public Use File

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Nationwide Truck Activity and Commodity Survey (NTACS) provides detailed activity data for a sample of trucks covered in the 1987 Truck Inventory and Use Survey (TIUS) for days selected at random over a 12-month period ending in 1990. The NTACS was conducted by the US Bureau of the Census for the US Department of Transportation (DOT). A Public Use File for the NTACS was developed by Oak Ridge National Laboratory (ORNL) under a reimbursable agreement with the DOT. The content of the Public Use File and the design of the NTACS are described in this document.

  7. Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine

    Broader source: Energy.gov [DOE]

    Development of a new light truck, in-line 4-cylinder turbocharged diesel engine that will meet Tier 2, Bin 2 emissions and at least a 40% fuel economy benefit over the V-8 gasoline engine it could replace

  8. Fact #710: January 16, 2012 Engine Energy Use for Heavy Trucks: Where Does the Energy Go?

    Broader source: Energy.gov [DOE]

    As with light vehicles, heavy trucks also have significant energy losses. The losses shown below are for a typical combination tractor-trailer, but these losses will vary depending on the weight,...

  9. Cummins Next Generation Tier 2, Bin 2 Light Truck Diesel engine

    Broader source: Energy.gov [DOE]

    Discusses plan, baselining, and modeling, for new light truck 4-cylinder turbocharged diesel meeting Tier 2, Bin 2 emissions and 40 percent better fuel economy than the V-8 gasoline engine it will replace

  10. Secretary of Energy Bodman Remarks for 21st Century Truck Event...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    over 10 years in tax credits that will encourage consumers to buy energy-efficient hybrid cars and trucks, and we need to expand these incentives to include clean diesel...

  11. Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

  12. Examining factors affecting the safety performance and design of exclusive truck facilities 

    E-Print Network [OSTI]

    Iragavarapu, Vichika

    2009-05-15

    on freeway facilities. Based on conclusions derived from the literature review and statistical analyses, straight segments with wider shoulders and uniform grades are recommended for exclusive truck facilities. It is also recommended to provide ramps...

  13. Fact #726: May 7, 2012 SUVs: Are They Cars or Trucks?

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) Standards set for model years (MY) 2011 through 2016 include small, 2-wheel drive sport utility vehicles (SUVs) with cars instead of light trucks. Until...

  14. Assessment of the Emissions Behavior of Higher Mileage Class-8 Trucks and Engines

    Broader source: Energy.gov [DOE]

    Study of in-use emission levels of trucks near the mid-point of their regulatory useful life, including PEMS (on-road) testing as well as engine dynamometer testing

  15. Productivity and competition in the U.S. trucking industry since deregulation

    E-Print Network [OSTI]

    Parming, Veiko Paul

    2013-01-01

    In 1980 Congress passed the Motor Carrier Act, substantially liberating trucking carriers from a federal regulatory structure that had exercised broad economic control over the industry for over four decades. Changes in ...

  16. Study of the asphalt pavement damage through nondestructive testing on overweight truck routes 

    E-Print Network [OSTI]

    Ramos-Aparicio, Sonia Ines

    2004-09-30

    Many highway facilities experience deterioration due to high traffic volumes and a service life that has been extended beyond facility design life. The 75th and 76th Texas Legislatures passed bills allowing trucks of gross ...

  17. Development of an ORC system to improve HD truck fuel efficiency

    Broader source: Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  18. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore »current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  19. Trucking country : food politics and the transformation of rural life in Postwar America

    E-Print Network [OSTI]

    Hamilton, Shane, 1976-

    2005-01-01

    Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

  20. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  1. NREL Collaborates with Trucking Industry to Prioritize R&D Opportuniti...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prioritize R&D Opportunities September 15, 2015 Photo of a UPS heavy-duty truck by the NREL entrance sign. NREL's fleet test and evaluation team collaborates with industry...

  2. Goodyear Testing Self-Inflating Tire Systems in U.S. Trucking...

    Office of Environmental Management (EM)

    in U.S. Trucking Fleets April 7, 2015 - 4:52pm Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic...

  3. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  4. Urea SCR and DPF System for Tier 2 Diesel Light-Duty Trucks ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tier 2 Diesel Light-Duty Trucks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  5. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  6. Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions

    E-Print Network [OSTI]

    California at Berkeley, University of

    Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions Nakul Sathaye, Arpad emissions, raising the question of whether increased vehicle weights may cause unintended environmental consequences. This paper presents scenarios with estimated emissions resulting from load consolidation

  7. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  8. Fact #553: January 12, 2009 Market Share of New Cars vs. Light Trucks

    Broader source: Energy.gov [DOE]

    The market share of new light trucks climbed steadily through the 1980's and most of the 1990's, much of it due to the rising popularity of the minivan and the sport utility vehicle. In 2004, light...

  9. Fact #647: November 1, 2010 Sales Shifting from Light Trucks to Cars

    Broader source: Energy.gov [DOE]

    From 2005 to 2009 light vehicle sales have gradually shifted toward cars over light trucks. The graph below shows this trend broken down by the major manufacturers. This trend is more evident among...

  10. Fact #641: September 20, 2010 Top States for the Production of Cars and Trucks

    Broader source: Energy.gov [DOE]

    For the 2009 calendar year, Michigan retained its lead position as the top producing state for both cars and trucks. Ohio and Kentucky were the only other states to place in the top 5 for both cars...

  11. Fact #597: November 16, 2009 Median Age of Cars and Trucks Rising in 2008

    Broader source: Energy.gov [DOE]

    The median age of cars and trucks in the U.S. continued to grow in 2008. Due to the economic climate and high gasoline prices that summer, consumers held onto their vehicles longer and delayed new...

  12. The impacts of congestion on time-definitive urban freight distribution networks CO2 emission levels: Results from a case study in Portland,

    E-Print Network [OSTI]

    Bertini, Robert L.

    in urban areas such as London, Prague, and Tokyo (OECD, 2003; Crainic et al., 2009). The fast rate for transportation agencies is to improve the efficiency of urban freight and commercial vehicle move- ments while.1016/j.trc.2010.11.002 E-mail address: figliozzi@pdx.edu Transportation Research Part C 19 (2011) 766

  13. Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling

    E-Print Network [OSTI]

    2001-01-01

    truck fuel and lubricant consumption through elimination offuel consumption, lubricant consumption, and engine wear,fuel consumption, lubricant consumption, and maintenance

  14. Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report

    SciTech Connect (OSTI)

    Gambrell, KP

    2002-01-11

    In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

  15. The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation

    E-Print Network [OSTI]

    Abeles, Ethan

    2004-01-01

    of Passenger Cars and Light Trucks Sold in the U.S. (1987-passenger cars and 1999 for light trucks. By 2003, over 117than 216 million cars and light trucks on U.S. roads were

  16. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    SciTech Connect (OSTI)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

  17. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR? System for Retrofit of In-Use? Trucks

    Broader source: Energy.gov [DOE]

    Reports on truck fleet emission test results obtained from retrofitting in-use? old class-8 trucks with IMETs GreenPower? DPF-Hydrated-EGR system

  18. The 1998 NGV lineup: Cars and trucks and vans, oh my!

    SciTech Connect (OSTI)

    NONE

    1997-09-01

    As the 1998 model cars roll off the assembly line, environmentalists and the natural gas industry can take pride in the fact that more new natural gas vehicles (NGVs) have joined the lineup. And more will join the fleet by the beginning of the 1999 model year. Two new 1998 NGVs are bi-fuel versions of Ford Motor Co.`s F-Series pickup truck and Econoline van. With two separate fuel systems, the vehicles can be switched between unleaded gasoline and natural gas while in motion. In addition, Mack Trucks Inc. introduced two refuse truck models in late May. American Gas looks at the lineup for this fall and sees a greater variety of vehicles than ever before, with still more promised before the 1999 season begins.

  19. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    SciTech Connect (OSTI)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  20. Economic Feasibility of Converting Landfill Gas to Natural Gas for Use as a Transportation Fuel in Refuse Trucks 

    E-Print Network [OSTI]

    Sprague, Stephen M.

    2011-02-22

    Approximately 136,000 refuse trucks were in operation in the United States in 2007. These trucks burn approximately 1.2 billion gallons of diesel fuel a year, releasing almost 27 billion pounds of greenhouse gases. In addition to contributing...

  1. The test result of diesel truck on road with use of soot removal equipment

    SciTech Connect (OSTI)

    Yoshikawa, Hideo; Kowada, Minoru [Chiba Inst. of Tech. (Japan); Yamaguchi, Tateo [Chiba Truck Corp. (Japan); Ikeda, Takashi

    1996-09-01

    In this study, the test results of commercialized 2 ton cargo truck on road for 6 months, are reported using the soot removal equipment at low voltage and with a short regeneration time. The equipment consists of using commercial truck battery, changing electrically neutral soot to negative charged soot. It adsorbs charged soot electrically with the metal mesh connected to positive pole and washes the soot with liquid detergent, during the cutting off of electric source. The removal of the accumulated soot was completed within two minutes, with 100% regeneration.

  2. Measurement of Truck Cab Flow in Support of Wind Turbine Testing

    SciTech Connect (OSTI)

    Larwood, S. M. (National Renewable Energy Laboratory); Acker, B.; Sencenbaugh, J. (Windlite Corporation)

    1998-12-17

    This report describes an experiment to measure the airflow over a truck cab that can be used to conduct steady-state tests on an 8-kW wind turbine. The cab airflow measurements were made to document the turbine inflow for analytical models. The airflow measurements were made with an array of anemometers positioned to represent the turbine rotor disk. The data showed that the influence of the truck cab was primarily in the lower sector of the rotor disk. The influence was negligible in the rest of the rotor disk.

  3. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil. The 21st Century Truck program in the US, spearheaded by two government agencies, Department of Energy

  4. Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and

    E-Print Network [OSTI]

    Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

  5. CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint

    SciTech Connect (OSTI)

    Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

    2011-05-01

    In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

  6. Energy Management Strategy for a Parallel Hybrid Electric Truck Chan-Chiao Lin1

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    methods. Generally speaking, electric energy is translated into an equivalent amount of fuel to calculate the energy cost ([3],[4]). The optimization scheme then figures out proper energy and/or power split betweenEnergy Management Strategy for a Parallel Hybrid Electric Truck Chan-Chiao Lin1 , Jun-Mo Kang2 , J

  7. Fact #653: December 13, 2010 Import Cars and Trucks Gaining Ground

    Broader source: Energy.gov [DOE]

    The market share for import cars and light trucks has been growing nearly every year since the mid-1990's. Import car market share more than doubled in that time -- from 14.9% in 1996 to 33.7% in...

  8. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  9. Deterministic and Probabilistic Simple Model for Single Pile Behavior under Lateral Truck Impact 

    E-Print Network [OSTI]

    Mirdamadi, Alireza

    2014-06-03

    In this study a simple and fast method and computational code to analyze the behavior of a single post under a vehicle impact for any soil type, any vehicle mass, any truck velocity and any post size is developed. The final ...

  10. Remote Sensing of In-Use Heavy-Duty Diesel Trucks

    E-Print Network [OSTI]

    Denver, University of

    -road measurements in 2005 of carbon monoxide (CO), hydrocarbons, nitric oxide, nitrogen dioxide, and sulfur dioxideRemote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I. Carbon monoxide and nitric oxide show increasing emissions with increased altitude. Oxides of nitrogen

  11. Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

  12. TRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based

    E-Print Network [OSTI]

    Frey, H. Christopher

    for approximately 46% of NOx and 54% of PM10 of the nationwide on-road vehicle emission inventory (2). ThereforeTRB 08-1311 Link-Based Emission Factors for Heavy-Duty Diesel Trucks Based on Real-World Data H and particulate matter to on-road vehicle emission inventory. The objectives of this study are to estimate roadway

  13. See More Jobs From Agrium Wholesale Truck Analyst (175535-001) -(Calgary, Alberta, Western Canada, Canada)

    E-Print Network [OSTI]

    Behmer, Spencer T.

    See More Jobs From Agrium Wholesale Truck Analyst (175535-001) - (Calgary, Alberta, Western Canada in Calgary, Alberta, Agrium is one of the world's largest nutrient and fertilizer producers with net sales of being named one of Canada's Top 100 Employers and one of Alberta's Top 50 Employers. Come grow your

  14. VP 100: Producing Electric Truck Vehicles with a Little Something Extra

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) – is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used.

  15. 2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES OF IMPORTANCE TO

    E-Print Network [OSTI]

    2005 International Truck & Bus Safety & Security Symposium 447 SAFETY AND SECURITY TECHNOLOGIES Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee USA 37932 E-mail: TruettLF@ORNL.gov ABSTRACT All travelers have concerns about safety and security

  16. ORNL/TM-2012/240 Medium Truck Duty Cycle Data from

    E-Print Network [OSTI]

    Thomas, Tim LaClair, Alan Barker, Helmut Knee #12;DOCUMENT AVAILABILITY Reports produced after January 1 Lascurain Oscar Franzese Gary Capps Adam Siekmann Neil Thomas Tim LaClair Alan Barker Helmut Knee DateORNL/TM-2012/240 Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Final

  17. Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program

    SciTech Connect (OSTI)

    Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

    2012-01-03

    Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

  18. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect (OSTI)

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  19. 36702 Federal Register / Vol. 61, No. 135 / Friday, July 12, 1996 / Proposed Rules TABLE 2.--PERCENTAGE OF LIGHT TRUCKS SOLD IN THE U.S., EQUIPPED WITH ABS 1--Continued

    E-Print Network [OSTI]

    .--PERCENTAGE OF LIGHT TRUCKS SOLD IN THE U.S., EQUIPPED WITH ABS 1--Continued Model year Import truck % ABS vehicles would increase to $1.75 billion. The cost estimate also projected that all light trucks would, an additional 25 percent of new light trucks or about 1.5 million vehicles, would be involuntarily equipped

  20. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect (OSTI)

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

  1. Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses 

    E-Print Network [OSTI]

    Titus-Glover, Cyril James

    1996-01-01

    This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup...

  2. Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire

    Office of Energy Efficiency and Renewable Energy (EERE)

    A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

  3. A Quantum Leap for Heavy-Duty Truck Engine Efficiency- Hybrid Power System of Diesel and WHR-ORC Engines

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners?

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  5. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  6. ANALYZING HIGHWAY DAMAGE COSTS ATTRIBUTED TO TRUCK TRAFFIC OF PROCESSED MEAT AND RELATED INDUSTRIES IN SOUTHWEST KANSAS

    E-Print Network [OSTI]

    Liu, Chunxiao

    2007-12-03

    .................................................................................... 10 2.1 Processed Meat Industries in Southwest Kansas ............................................ 11 2.1.1 Various Stages in the Movement of Cattle.............................................. 12 2.1.2 Cattle Feeding Industry... ................................................................................................................ 57 4.1 Truck VMT for Transporting Feeder Cattle to Feed Yards............................ 62 4.1.1 Truck Travel Paths for Transporting Feeder Cattle to Feed Yards ....... 62 4.1.2 Truckloads for Transporting Feeder Cattle to Feed Yards...

  7. BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.

    E-Print Network [OSTI]

    BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits of Cary. Wake $121,779 $40,799 $162,578 Waste Industries Fifty-two CNG up fits on refuse trucks in Raleigh

  8. Engineering tasl plan for the development, fabrication and installation of rotary mode core sample truck bellows

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-06-24

    The Rotary Mode Core Sampling Trucks (RMSCTs) currently use a multi-sectioned bellows between the grapple box and the quill rod to compensate for drill head motion and to provide a path for purge gas. The current bellows, which is detailed on drawing H-2-690059, is expensive to procure, has a lengthy procurement cycle, and is prone to failure. Therefore, a task has been identified to design, fabricate, and install a replacement bellows. This Engineering Task Plan (ETP) is the management plan document for accomplishing the identified tasks. Any changes in scope of the ETP shall require formal direction by the Characterization Engineering manager. This document shall also be considered the work planning document for developmental control per Development Control Requirements (HNF 1999a). This Engineering Task Plan (ETP) is the management plan document for accomplishing the design, fabrication, and installation of a replacement bellows assembly for the Rotary Mode Core Sampling Trucks 3 and 4 (RMCST).

  9. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  10. Home Away from Home: The Evolution and Meaning of American Truck Stops

    E-Print Network [OSTI]

    Day, Stephanie L.

    2009-12-03

    vices: drinking, gambling, whoring, and fighting. As a result, conflicting images of morality emerged1 1 Di Salvatore also has pointed out that this iconic image is largely fiction (1995). Cowboys came.... . 19 The traits associated with the cowboy are the same ones later assumed by the truck driver. Bryan Di Salvatore, for example, uses the term “the Last American Cowboy” when speaking about general perceptions of these drivers: The phrase...

  11. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    SciTech Connect (OSTI)

    Yaste, David M (NASA Ames Research Center, Moffet Field, CA); Salari, Kambiz (Lawrence Livermore National Laboratory, Livermore, CA); Hammache, Mustapha (University of Southern California, Los Angeles, CA); Browand, Fred (University of Southern California, Los Angeles, CA); Pointer, W. David (Argonne National Laboratory, Argonne, IL); Ortega, Jason M. (Lawrence Livermore National Laboratory, Livermore, CA); McCallen, Rose (Lawrence Livermore National Laboratory, Livermore, CA); Walker, Stephen M (NASA Ames Research Center, Moffet Field, CA); Heineck, James T (NASA Ames Research Center, Moffet Field, CA); Hassan, Basil; Roy, Christopher John (Auburn University, Auburn, AL); Storms, B. (NASA Ames Research Center, Moffet Field, CA); Satran, D. (NASA Ames Research Center, Moffet Field, CA); Ross, James (NASA Ames Research Center, Moffet Field, CA); Englar, Robert (Georgia Tech Research Institute, Atlanta, GA); Chatalain, Philippe (Caltech, Pasadena, CA); Rubel, Mike (Caltech, Pasadena, CA); Leonard, Anthony (Caltech, Pasadena, CA); Hsu, Tsu-Ya (University of Southern California, Los Angeles, CA); DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  12. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    SciTech Connect (OSTI)

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  13. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

    2005-08-15

    This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

  14. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    SciTech Connect (OSTI)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

  15. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    renewable-natural-gas Go Freighttonsthumbnail Daily Truck Freight Tons Freighttonsthumbnail Last update February 2013 View Image Graph Generatedthumb20141119-26268-c434t6...

  16. Design and Commissioning of a Wind Tunnel for Integrated Physical and Chemical Measurements of PM Dispersing Plume of Heavy Duty Diesel Truck

    Broader source: Energy.gov [DOE]

    Presents plume characterization of three vehicles with different aftertreatment configuration, representative of legacy, current and future heavy-duty truck fleets

  17. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    produced from natural gas via Gas-To-Liquid (GTL) processes,Liquid Heavy Heavy-Duty Diesel Truck Internal Combustion Engine Lower Heating Value Liquefied Natural Gas

  18. Assessing the Value of Delay to Truckers and Carriers 

    E-Print Network [OSTI]

    Miao, Qing

    2011-02-22

    /tractor trailer trucks, and 31 percent are light/delivery truck drivers. This number will keep increasing in the future since the number of truck drivers is below actual demand. Regardless of the type of truck services are being used, the freight delay... trucks climbed 56 percent. In 2007, the light trucks accounted for about 36% of highway vehicles miles traveled, and the commercial trucks contributed to an additional 8%. 5 Apart from the imbalance between growth rate of all road facilities...

  19. Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines

    SciTech Connect (OSTI)

    Chen, Rong

    2000-08-20

    Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

  20. Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests

    SciTech Connect (OSTI)

    Zhang, Houshun

    2000-08-20

    An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

  1. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    SciTech Connect (OSTI)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

  2. CNG Exports by Truck out of the U.S. Form | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86)ContractorsCNG Exports by Truck out of the

  3. LNG Imports by Truck into the U.S. Form | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED ADOPTION REPORT LED8-14 LM 28-14Trade |ofTruck into

  4. SuperTruck Making Leaps in Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22, 2014Department ofSuperTruck Making

  5. Norcal Waste Systems, Inc. Advanced Technology Vehicles in Service, LNG Heavy-Duty Trucks Fact Sheet.

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKS ARE EQUIPPED

  6. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    SciTech Connect (OSTI)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  7. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima, Japan, September 2002 Control of a Hybrid Electric Truck Based on Driving

    E-Print Network [OSTI]

    Peng, Huei

    initiated, aiming to duplicate the success of hybrid powertrain on passenger cars to light and heavy trucks demonstrated by several prototype hybrid passenger cars, produced by the PNGV program, will be an unrealistic Control of a Hybrid Electric Truck Based on Driving Pattern Recognition Chan-Chiao Lin, Huei Peng Soonil

  8. A Vision-based Method for On-Road Truck Height Measurement in Proactive Prevention of 2 Collision with Overpasses and Tunnels

    E-Print Network [OSTI]

    Dai, Fei; Park, Man-Woo; Sandidge, Matthew; Brilakis, Ioannis

    2014-11-26

    Television, 2012 490 (http://www.metro.us/philadelphia/news/local/2012/08/14/large-truck-strikes-signs-in-tip-oneill-491 tunnel/). 492 [6] J. Brooks, Stuck truck in Burnley Tunnel cost Victorians $1 million, 3AW, 2013 493 (http://www.3aw.com.au/blogs/neil...

  9. Powertrain Controls Optimization for HD Hybrid Line Haul Trucks - FY2014 Annual Report

    SciTech Connect (OSTI)

    Smith, David E.

    2014-12-01

    This is a vehicle system level project, encompassing analytical modeling and supervisory controls development as well as experimental verification/validation testing at the component, powertrain, and full vehicle system level. This project supports the goal of petroleum consumption reduction for medium and heavy trucks through the development of advanced hybrid technologies and control systems. VSST has invested previously in R&D to support hybrid energy storage systems (Li-ion plus ultra-caps) for light duty, passenger car applications. This research will be extended to the MD and HD sector where current battery technology is not mature enough to handle the substantial regenerative braking power levels these trucks are capable of producing. With this hybrid energy storage system, substantial gains in overall vehicle efficiency are possible. In addition, advanced combustion technologies, such as RCCI, will be implemented into an advanced hybrid powertrain for a Class 8 line haul application. This powertrain, leveraged from other VSST work (Meritor, a current ORNL/VSST partner), is ideal for taking advantage of the benefits of RCCI operation due to its series hybrid mode of operation. Emissions control is also a focus of this project, especially due to the fact that RCCI creates a low temperature exhaust stream that must addressed.

  10. Heavy-Duty Truck Emissions in the South Coast Air Basin of Gary A. Bishop,* Brent G. Schuchmann,

    E-Print Network [OSTI]

    Denver, University of

    Heavy-Duty Truck Emissions in the South Coast Air Basin of California Gary A. Bishop,* Brent G, Colorado 80208, United States ABSTRACT: California and Federal emissions regulations for 2007 and newer of nitrogen spurring the introduction of new aftertreatment systems. Since 2008, four emission measurement

  11. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  12. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  13. Int. J. of Heavy Vehicle Systems, Vol. 11, Nos 3/4, 2004 372 Combined optimisation of design and power

    E-Print Network [OSTI]

    Papalambros, Panos

    there is a significant body of work related to hybrid passenger cars and light commercial trucks, there are many open of increased freight volume and commercial truck mileage, as well as an increased number of light trucks due and power management of the hydraulic hybrid propulsion system for the 6 × 6 medium truck Z. Filipi*, L

  14. UF{sub 6} tiedowns for truck transport - right way/wrong way

    SciTech Connect (OSTI)

    Stout, F.W. Jr. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Tiedown systems for truck transport of UF{sub 6} must be defined and controlled to assure the least risk for hauling the material over the highways. This paper and an associated poster display will present the current status of regulatory criteria for tiedowns, analyze the structural stresses involved in tiedowns for two major UF{sub 6} packaging systems, the 21PF series of overpacks and the 48 in. diameter shipping cylinders, and will present photographs showing some {open_quote}right ways{close_quotes} and some {open_quotes}wrong (or risky) ways{close_quotes} currently used for tiedown systems. Risky tiedown methods must be replaced with safer less risky methods to insure the safe transport of UF{sub 6}.

  15. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  16. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  17. Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power

    SciTech Connect (OSTI)

    Vesely, Charles John-Paul; Fuchs, Benjamin S.; Booten, Chuck W.

    2010-03-31

    The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

  18. DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS

    SciTech Connect (OSTI)

    Balis, C; Middlemass, C; Shahed, SM

    2003-08-24

    The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

  19. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    be propelled by the engine, the electric machine, or both atwith SI and CI engines, battery electric trucks, and fuelCI combustion engines, hybrid-electric vehicles with diesel

  20. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given by Navistar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck – development and...

  1. Vehicle Technologies Office Merit Review 2015: SuperTruck – Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer, Engine Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Navistar International Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SuperTruck –...

  2. Downspeeding a Heavy-Duty Pickup Truck with a Combined Supercharger and Turbocharger Boosting System to Improve Drive Cycle Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses forward looking dynamic models developed for 6.6L diesel engine and a ¾ ton pickup truck with 8500 lb. curb weight, and validation against in-house engine and vehicle data library

  3. Cost-Effective Fabrication Routes for the Production of Quantum Well Type Structures and Recovery of Waste Heat from Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  4. An Investigation of Natural Gas as a Substitute for Diesel in Heavy Duty Trucks and Associated Considerations

    E-Print Network [OSTI]

    Mohammad, Muneer

    2015-01-01

    In this paper, applicability of natural gas fuel for transportation as compared to diesel is investigated. This study investigates a promising technology for the heavy duty truck sector of transportation as a target for conversion from diesel to natural gas. The supply of natural gas is limited so we also verify the available domestic supply quantities both before and after a fleet conversion. This paper concludes with an economic discussion regarding Javon's paradox and the fungibility of natural gas as compared to that of oil. In order to determine if natural gas can replace diesel for the country's heavy duty truck transportation needs, the energy equivalent and efficiency of natural gas alternatives should be compared to diesel. There are two alternatives for using natural gas as a replacement for diesel; compressed natural gas and liquefied natural gas.

  5. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  6. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  7. The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update

    SciTech Connect (OSTI)

    Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

    2000-06-19

    Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

  8. "Dedicated To The Continued Education, Training and Demonstration of PEM Fuel Cell Powered Lift Trucks In Real-World Applications."

    SciTech Connect (OSTI)

    Dever, Thomas J.

    2011-11-29

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and the market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessi

  9. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    SciTech Connect (OSTI)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  10. Analysis of the efficiency of urban commercial vehicle tours: Data collection, methodology, and policy implications

    E-Print Network [OSTI]

    Bertini, Robert L.

    vehicle tours; Truck trip distribution; Freight data collection; Empty trips; Trip length distribution 1 of equivalency factors for light and heavy vehi- cles. A commercial vehicle impact on congestion can.elsevier.com/locate/trb #12;the truck dimensions, engine power and truck weight, geometric design, and prevalent traffic

  11. M.A. Figliozzi Page 2 ANALYSIS OF URBAN COMMERCIAL VEHICLE TOURS: EFFICIENCY,

    E-Print Network [OSTI]

    Tours, Truck Trip Distribution, Freight Data Collection, Empty Trips, Trip Length Distribution #12;M with the use of equivalency factors for light and heavy vehicles. A commercial vehicle impact on congestion can be equivalent to the impact of several cars depending on the truck dimensions, engine power and truck weight

  12. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect (OSTI)

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  13. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect (OSTI)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  14. Bulletin of the Seismological Society of America, Vol. 92, No. 2, pp. 527542, March 2002 Empirical Scaling Laws for Truck Bomb Explosions Based

    E-Print Network [OSTI]

    Koper, Keith D.

    Empirical Scaling Laws for Truck Bomb Explosions Based on Seismic and Acoustic Data by Keith D. Koper,* Terry C. Wallace, Robert E. Reinke, and John A. Leverette Abstract We analyze seismic and acoustic data trinitrotoluene (TNT), and the receivers were placed at distances of 1­16 km, so the data mimic the data

  15. Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,

    E-Print Network [OSTI]

    Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

  16. Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL

    E-Print Network [OSTI]

    TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

  17. Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks

    SciTech Connect (OSTI)

    Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

    1999-11-02

    Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

  18. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  19. Development of the Ford QVM CNG bi-fuel 4.9L F-Series pickup truck

    SciTech Connect (OSTI)

    Lapetz, J.; McCarthy, D.; Greenfield, N. [Ford Motor Co., Dearborn, MI (United States)] [and others

    1996-09-01

    A bi-fuel (Compressed Natural Gas [CNG] and gasoline) pickup truck has been developed using the Ford Alternative Fuel Qualified Vehicle Modifier (QVM) process. The base vehicle`s 4.9L engine has been specially modified for improved durability on gaseous fuels. The base vehicle`s configuration has been designed for conversion to bi-fuel CNG operation. A complete CNG fuel system has been designed and qualified, including fuel tanks, fuel system, and electrical interface. The completed vehicle has been safety and emission certified, demonstrating CARB Low Emission Vehicle (LEV) emissions in MY95. This paper details the design objectives, development process, CNG components, and integration of the two fuel systems.

  20. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  1. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  2. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  3. Strategic Freight Transportation Contract Procurement

    E-Print Network [OSTI]

    Nandiraju, Srinivas

    2006-01-01

    the necessary data for every bid. Again the probabilities5.3.5 Input Data Generation The test bid generationnum _ generated _ bids +1 Other input data for each problem

  4. TTP220 Transportation Policy and Planning Assignment 3: Research Brief on Strategies

    E-Print Network [OSTI]

    Handy, Susan L.

    strategies Light-Rail Transit Commuter Rail Bus-Rapid Transit Paratransit Car-sharing programs Uber et al. ITS applications Freeway management systems Signal timing strategies Truck-lanes, other freight

  5. On-Road Development of the C-Gas Plus Engine in Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    Fact sheet details on-road development of C-Gas Plus natural gas engine in Viking Freight heavy-duty trucks, including emissions, fuel costs, and petroleum displacement.

  6. Supply Chain Logistics Post Recovery Landscape

    E-Print Network [OSTI]

    Minnesota, University of

    1 Supply Chain Logistics ­ Post Recovery Landscape Freight and Logistics Symposium Center.... · Logistics Perspective · Transportation · Trucking, Rail, Ocean, River, Fuel · Global Sourcing & U.S. Logistics · Land Bridges, Inland ports, Import Warehouses, Plant Locations · Domestic Logistics · Retail

  7. Engineering task plan for the development, fabrication and installation of rotary mode core sample truck grapple hoist box level wind system

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-05-12

    This Engineering Task Plan is to design, generate fabrication drawings, fabricate, test, and install the grapple hoist level wind system for Rotary Mode Core Sample Trucks (RMCST) 3 and 4. Deliverables will include generating fabrication drawings, fabrication of one level wind system, updating fabrication drawings as required, and installation of level wind systems on RMCST 3 or 4. The installation of the level wind systems will be done during a preventive maintenance outage.

  8. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  9. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  10. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect (OSTI)

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  11. A vision-based method for on-road truck height measurement in proactive prevention of collision with overpasses and tunnels

    E-Print Network [OSTI]

    Dai, Fei; Park, Man-Woo; Sandidge, Matthew; Brilakis, Ioannis

    2014-11-26

    of being hit or a small damage becomes a disadvantage of 89 this approach. Moreover, chains and metal strips may not provide an alarm loud enough to be heard inside 90 trucks [15]. A more preventive way is having a warning system that can detect an over... a vertical line (in z-axis 261 direction). It should be noted that the top boundary in Fig. 6(b) is a straight line in the same direction of 262 the principal axis (in vector image format) while the bottom one in Fig. 7(b) is winding (in raster...

  12. The effect of light truck design variables on top speed, performance, and fuel economy, 1981. Final report Oct 80-Sep 81

    SciTech Connect (OSTI)

    Zub, R.W.; Meisner, R.P.

    1981-11-01

    The effect of vehicle weight, rolling resistance, aerodynamic drag, and drive-line configuration on fuel economy and performance for light duty trucks is examined. The effect of lockup and extended gear ratio range is also investigated. The assessment of these vehicle variables on fuel economy and performance is determined by using the Transportation Systems Center's vehicle simulation program, VEHSIM, which predicts fuel economy and performance for vehicle parameter changes. The results indicate fuel economy and performance trends which can be used to project future improvements.

  13. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect (OSTI)

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  14. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.; Calcagno, Jimmy; Yun, Jeongran

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

  15. Occult Trucking and Storage

    E-Print Network [OSTI]

    Eyres, Jeffrey Paul

    2011-01-01

    job. In the packed dirt parking lot stands the OTS van. INT.Mike and Todd in the parking lot watching visitors exitingand freezes. OUT IN THE PARKING LOT A MINIVAN and out steps

  16. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  17. Occult Trucking and Storage

    E-Print Network [OSTI]

    Eyres, Jeffrey Paul

    2011-01-01

    up the Witchfinder General Doll and puts it in the box. JOSHand lots of fucking clown dolls. A LARGE, OLD HAND BOUNDitem in her hand - A CLOWN DOLL TODD (V.O. ) (CONT'D) That's

  18. Occult Trucking and Storage

    E-Print Network [OSTI]

    Eyres, Jeffrey Paul

    2011-01-01

    wondering about the strap-on porn. Well, so what? I likeone. I like two kinds of porn. Asian Milf and Teachers withWATSON What is it, kiddie porn? Acid? The Sheriff unfolds it

  19. Barge Truck Total

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724per ThousandLease0 0 20 0 0Year Jan Feb0Barge

  20. Empty WIPP truck overturns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.EmilioDave KellerEmployees

  1. Taking Care Sick Kids' Mary Jo Haddad / Smarter Traffic Easing gridlock / Education for Africa MasterCard's fellowships Bon Appetit, Paris A food truck with flair / Search and Discovery U of T's changing libraries / Writing Contest Winners

    E-Print Network [OSTI]

    Sokolowski, Marla

    required. Get an online quote for Alumni Term Life Insurance to enter! Get an online quote for Life MasterCard's fellowships Bon Appetit, Paris A food truck with flair / Search and Discovery U of T's changing libraries / Writing Contest Winners 2013 #12;It's comforting to know you're covered. ALUMNI TERM

  2. A truck has a fuel tank which is a 20 inch diameter cylinder resting on its rounded side. The driver notices that his fuel gauge is no longer giving the correct readings, so he has to improvise. He places a

    E-Print Network [OSTI]

    Lega, Joceline

    A truck has a fuel tank which is a 20 inch diameter cylinder resting on its rounded side. The driver notices that his fuel gauge is no longer giving the correct readings, so he has to improvise. He to the bottom. He pulls the measuring stick out and finds that the height of the fuel is 6 inches. What fraction

  3. Transportation Energy Futures Series: Freight Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,...

  4. Freight Wing & Aerodynamic Fairings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Reduces fuel consumption by 7% with use of second-generation belly fairing alone. Emission Reduction Reduces emissions of combustion products, including particulates, SOx,...

  5. An analysis of international grain freight rates 

    E-Print Network [OSTI]

    Jonnala, Sneha Latha

    1999-01-01

    decreasing rate as shipment quantity increases. Highest rates were associated with the berth term followed by the free discharge and free-in-and-out terms. The ships with U.S. flags were found to charge higher rates when compared to ships with foreign flags...

  6. 16th Annual Freight and Logistics Symposium

    E-Print Network [OSTI]

    Minnesota, University of

    performance and results, prices and demand for oil, our ability to make acquisitions on economically-sufficiency and prices well below global levels by 2017 Source: RBN 2012 12/7/2012 10 #12;North Dakota Crude Oil. ("Dakota Plains" or the "Company") during the course of this presentation that are not historical facts

  7. California's Freight System Motivations for Transformational

    E-Print Network [OSTI]

    California at Davis, University of

    Board. 2008 #12;Source: Annual Energy Outlook 2013 Early Release 0 200 400 600 800 1000 1200 2010 2015

  8. NEMS Freight Transportation Module Improvement Study

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand Cubic Feet) DecadeYear2CubicfromCubicNEMS

  9. Freight Best Practice Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc FFC

  10. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  11. Applied Ocean Research 15 (1993) 137-154 Gust loading factors for tension leg platforms

    E-Print Network [OSTI]

    Kareem, Ahsan

    1993-01-01

    increases, the construction and maintenance of conventional jacket type oil platforms becomes less cost for deep water oil recovery has increased the importance of accurately predicting the effects of wind efficient. The tension leg platform (TLP) is a promising concept for deep water drilling. A TLP is a buoyant

  12. 168 / JOURNAL OF STRUCTURAL ENGINEERING / FEBRUARY 2001 GUST LOADING FACTOR: NEW MODEL

    E-Print Network [OSTI]

    Kareem, Ahsan

    )]. It should be pointed out that the Australian Standard (1989) and the ACI standard (1988) use the GLF and standards around the world. In this scheme, the equivalent static wind loading used for design is equal and standards. Currently, the ESWL in building codes is estimated based on the ``gust load- ing factor'' (GLF

  13. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  14. Agenda: Rail, Barge, Truck Transportation

    Broader source: Energy.gov [DOE]

    Members of the general public and interested stakeholders who wish to make a public comment for the Quadrennial Energy Review record may sign up to speak at the meeting on a first-come-first-served...

  15. Heavy Truck Engine Development & HECC

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  16. Private trucking costs and records 

    E-Print Network [OSTI]

    Haning, Charles R

    1959-01-01

    ?asc Oys?etiss? Ceeyetieoa af Iatot?tets asd Xettset?C? Laweaeato Xatsooity Ve?oo? Leeel Racy? Oecm?ehly of geeek ylsotjt Releties Deyeeteaas ?I INRRaale llsasycaeat CmykaQae R?DC?dfaO Coif y?cseided Remeyoc~iaa kdsoateyae ead Dkssdreac?D?o ef Osa... Xtaeho so Cited c?LCLc RL?sd Rteeeyoxtetise Oeb~tf?? Valse? of Self ycoefd?4 Teeaeyettetisa ieelyeie of Coif ytooidod geeeeyeetstisa Costs ead Ops?eti?O Itetietfso Netj?4 ?f Rceetdiat Reae fet da?LIai? yatyee? Ceeye?4?ea of Xatcgoity sad Losel R...

  17. Large Truck Crash Facts 2007

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. -71- Particulate: ColumnsLake Mead

  18. OpenEI Community - Trucking

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst, 2012

  19. LANL debuts hybrid garbage truck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask2 J.N. Shadid,1 SelectLANLLANLLANLHybrid

  20. Exchange Point Delay and Mode Shift Associated with Regional Deployment of Alternative Locomotive Technology

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    America and generate the potential for a modal shift to truck due to increased transit times. In order for shipments of various value. Keywords Freight Rail, Climate Change, Queuing Model, Modal Shift, 1 of these options introduces operational challenges including the logistics of distributing alternative after

  1. http://tti.tamu.edu Research. Service. Results.

    E-Print Network [OSTI]

    transportation > Public transit > Rural transportation > Rural transit > Freight and pipeline transpo Airport-3135 A PUBLICATION OF ON THE COVER: Keeping our communities safe is at the heart of many of the Texas Transportation-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural

  2. Fuel Cell Forklift Project Final Report

    SciTech Connect (OSTI)

    Cummings, Clifton C

    2013-10-23

    This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

  3. Reliability of Floating Structures: Extreme Response and Load Factor Steven R. Winterstein and Satyendra Kumar, Civil Eng. Dept., Stanford University

    E-Print Network [OSTI]

    Sweetman, Bert

    buoy. Design of the spar has been considered in two deep­water sites, one in the Gulf of Mexico structures are an attractive option to sup­ port oil and gas production in deep water. They promise effects are demonstrated by applying these methods to a specific floating structure: a deep­draft spar

  4. Minnesota Comprehensive Statewide Freight and Passenger Rail Plan

    E-Print Network [OSTI]

    Minnesota, University of

    in Iron Range; expanding to steel; new markets for taconite tailings #12;5 U.S. and Minnesota Modal Usage it attributes substantial growth to intermodal, anticipated growth in coal is questionable ! " Cross-border traffic with Canada is significant, accounting for 18% of all tonnage in 2007, and expected growth of 61

  5. CTS Freight and Logistics Symposium Minneapolis, MN November 30, 2007

    E-Print Network [OSTI]

    Minnesota, University of

    Supplies and Prices ­ makes ethanol economically viable ­ adds to farm costs, fuel & fertilizer #12;D-7 Key.) (Minnesota third largest producing state) · Non-Metallic Minerals ­ Silica, Kaolin Clay, Aggregate

  6. Unintended environmental impacts of nighttime freight logistics activities

    E-Print Network [OSTI]

    Sathaye, Nakul; Harley, Robert; Madanat, Samer

    2009-01-01

    the value used  for the car emission factor has no effect E2007 Passenger cars CO 2  emission factors for Alameda E2007 Passenger cars CO 2  emission factors for Alameda 

  7. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  8. Freight/logistics symposium .2 TRB conference ......................3

    E-Print Network [OSTI]

    Minnesota, University of

    these fuels' carbon intensity, measured across the full fuel cycle: feedstock extraction, production

  9. Sustainability in Ocean Freight Richard Cox, Branch Manager

    E-Print Network [OSTI]

    Minnesota, University of

    ­ Kuehne + Nagel New Presentation Format June 2007 p. 6 Sustainability - Scope of Certification Door compliance with ISO 9001 Quality and ISO 14001 Environmental Standards #12;16/12/2010Corporate Communications

  10. Unintended environmental impacts of nighttime freight logistics activities

    E-Print Network [OSTI]

    Sathaye, Nakul; Harley, Robert; Madanat, Samer

    2009-01-01

    comprehensive assessments of logistics policies, which Recent Advances in City Logistics  pp.  245?258 Elsevier.  Approaches in City Logistics:  Inner?City Night Delivery.  

  11. NEMS Freight Transportation Module Improvement Study - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan Feb Mar AprCubic

  12. The Potential for Using Transit Infrastructure for Air Freight Cargo Movement: Feasibility Analysis of Freight Train Operation Logistics, Phase II

    E-Print Network [OSTI]

    Lu, Xiao-Yun

    2015-01-01

    59 4.10 Connection with High Speed Rail in thea similar program with high-speed rail (HSR). Currently, all4.10 Connection with High Speed Rail in the Future Looking

  13. The Potential for Using Transit Infrastructure for Air Freight Cargo Movement: Feasibility Analysis of Freight Train Operation Logistics, Phase II

    E-Print Network [OSTI]

    Lu, Xiao-Yun

    2015-01-01

    years ago on the use of helicopters for shipments betweenthey wanted to use helicopters to transfer their products

  14. Pavement-Friendly Buses and Trucks

    E-Print Network [OSTI]

    Hedrick, J. Karl; Yi, Kyongsu; Wargelin, Margaret

    1992-01-01

    i or Htovy and Dimenìi ani. Kifcrwna. IrAUh Colum- bia,~f PMAttP "rigid pa vom ani" Although the semi aetivr sus-

  15. Super Duty Diesel Truck with NOx Aftertreatment

    Office of Energy Efficiency and Renewable Energy (EERE)

    A profile of a Ford-Energy Department program to develop a three-stage aftertreatment technology, which cleans the vehicle exhaust emissions.

  16. Solar Energy for Charging Fork Truck Batteries 

    E-Print Network [OSTI]

    Viljoen, T. A.; Turner, W. C.

    1980-01-01

    The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence...

  17. Zero Emission Heavy Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Thermoelectric Applications to Truck Essential Power

    SciTech Connect (OSTI)

    John C. Bass; Norbert B. Elsner

    2001-12-12

    The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

  19. POST 10/Truck Inspection Station (Map 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los ANot sure how to9GLENELG IN

  20. Volvo Trucks North America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairexVertVillageVitex Systems JumpGuyane Jump

  1. Hydrogen Fuel Cells and Electric Forklift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc., AEquipment CertificationHydrogen

  2. SuperTruck Program: Engine Project Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of EnergySummary: TheUpdateBowl City Leads

  3. Mobile Truck Stop Electrification Site Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on

  4. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat LetterPresidentEnergy isIRSI

  5. UPS CNG Truck Fleet Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean Cities Technical4® ® ®

  6. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect (OSTI)

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  7. Cummins SuperTruck Program- Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks

    Broader source: Energy.gov [DOE]

    Low temperature combustion at part load combined with diffusion controlled combustion at higher loads, and robust control system dynamically adjusting engine operation, maximize engine efficiency while meeting tailpipe emissions standards

  8. Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)

    E-Print Network [OSTI]

    , location/direction/speed/time-of-day, fuel consumption, real-time weight, precipitation/ road condition in studying the effects on fuel consumption of their New Generation Single Wide-Based Tires (NGSWBTs) compared to standard dual tires. Two east-west runs were conducted from Kalamazoo, Michigan to Portland, Oregon

  9. SuperTruck Initiative Partner Improves Class 8 Truck Efficiency by 115% |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 Meeting StateOctober 22, 2014Department of Energy

  10. Measurements of Diesel Truck Traffic Associated with Goods Movement

    E-Print Network [OSTI]

    Houston, Douglas; Krudysz, Margaret; Winer, Arthur

    2007-01-01

    Concentrations of PM2.5 and Diesel Exhaust Particles onPatterns of Measured Port Diesel Traffic. (a) Intersectionof particulate emissions from diesel engines: a review’, J.

  11. Vehicle Technologies Office: Propulsion Materials for Cars and Trucks

    Broader source: Energy.gov [DOE]

    Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine,...

  12. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Preventing the fuel cell from freezing is a more challengingProtecting the fuel cell from freezing requires activeproblem. Freezing can be a danger when the fuel cell is not

  13. Data Collection, Testing, and Analysis of Hybrid Electric Trucks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    timing and exhaust gas recirculation rates), examine the composition of the selective catalytic reduction (SCR) feed gas (NO 2 to NO x ratio), and look at tailpipe constituents...

  14. DOE Expands International Effort to Develop Fuel-Efficient Trucks...

    Broader source: Energy.gov (indexed) [DOE]

    change." The cooperative partnership's overall objective is to demonstrate heavy duty engine systems with at least 10 percent higher fuel-efficiency than conventional diesel...

  15. Driving Pattern Recognition for Control of Hybrid Electric Trucks

    E-Print Network [OSTI]

    Peng, Huei

    strategy is to minimize fuel consumption and engine-out NOx and PM emissions on a set of diversified is selected adaptively. This "multi-mode" control scheme was tested on several driving cycles and was found was initiated, aiming to duplicate the success of the hybrid powertrain on passenger cars to light and heavy

  16. Solid SCR Demonstration Truck Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbamate) Technology deer09tatur.pdf More Documents & Publications Safe and compact ammonia storagedelivery systems for SCR-DeNOX in automotive units Vehicle Technologies...

  17. Electric Boosting System for Light Truck/SUV Application

    SciTech Connect (OSTI)

    Steve Arnold, Craig Balis, Pierre Barthelet, Etienne Poix, Tariq Samad, Greg Hampson, S.M. Shahed

    2005-06-22

    Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assisted turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.

  18. Preemptive Strike: Law in the Campaign for Clean Trucks

    E-Print Network [OSTI]

    Cummings, Scott

    2015-01-01

    burning fuels. 653 In addition, following the China Shippingfuels, 621 installing “low profile” cranes, 622 building facilities for “shoreside electrical power for ship hoteling,” retrofitting China Shipping

  19. Modeling of air brakes for onboard diagnostics of heavy trucks 

    E-Print Network [OSTI]

    Kankanala, Penchala N

    2000-01-01

    Accidents involving commercial vehicles have disastrous consequences; most of the times they result in human fatalities, environmental damage, traffic congestion leading to fuel wastage and associated productivity losses. Moreover, with the rapid...

  20. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2) * Innovative engine architectures * Alternative combustion cycles * Fueling Optimization * Demonstrate in Simulation and Single Cylinder Scoping 50% BTE Powertrain...

  2. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2012...

  3. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2013...

  4. Development of Diagnostic Algorithms for Air Brakes in Trucks 

    E-Print Network [OSTI]

    Dhar, Sandeep

    2011-10-21

    In this dissertation, we focus on development of algorithms for estimating the severity of air leakage and for predicting the out-of-adjustment of pushrod in an air brake system of heavy commercial vehicles. The leakage of air from the brake system...

  5. DOE's effort to reduce truck aerodynamic drag : joint experiments...

    Office of Scientific and Technical Information (OSTI)

    2004-06-01 OSTI Identifier: 957208 Report Number(s): SAND2004-3067C TRN: US201007%%510 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation:...

  6. Hydrogen Fuel Cells and Electric Forklift Trucks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fuel Cell-Powered Material Handling Equipment Development of Hydrogen Education Programs for Government Officials Full Fuel-Cycle Comparison of Forklift Propulsion Systems...

  7. Daimler's SuperTruck Program; 50% Brake Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presents highlights of engine and vehicle advances made, and progress towards achieving aggressive goals

  8. Evaluation of Bus and Truck Automation Operations Concepts

    E-Print Network [OSTI]

    Tsao, H. S. Jacob; Zhang, Lan; Lin, Lin; Batni, Deepa

    2004-01-01

    increments. The Promodel simulation model is used as a toolAn Event-Based Simulation Tool – ProModel Promodel Versioncan be defined with the Promodel Simulation Language, where:

  9. PHEV Parcel Delivery Truck Model - Development and Preliminary Results (Presentation)

    SciTech Connect (OSTI)

    Barnitt, R

    2009-10-28

    Describes results of a study to determine the impact of drive cycles on the energy- and cost-effectiveness of plug-in hybrid electric delivery vans.

  10. World's First Fuel Cell Cargo Trucks Deployed at Memphis International...

    Broader source: Energy.gov (indexed) [DOE]

    which are part of the world's first zero-emissions ground support fleet in the world. The successful project was funded through a 2.5 million grant from the Energy...

  11. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Office of Scientific and Technical Information (OSTI)

    Content: Close Send 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  12. Risk analysis for truck transportation of high consequence cargo.

    SciTech Connect (OSTI)

    Waters, Robert David

    2010-09-01

    The fixed facilities control everything they can to drive down risk. They control the environment, work processes, work pace and workers. The transportation sector drive the State and US highways with high kinetic energy and less-controllable risks such as: (1) other drivers (beginners, impaired, distracted, etc.); (2) other vehicles (tankers, hazmat, super-heavies); (3) road environments (bridges/tunnels/abutments/construction); and (4) degraded weather.

  13. Fact #628: June 21, 2010 Truck Stop Electrification Sites | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    television, and other appliances without running the engine, which saves fuel, reduces air pollution, and reduces engine wear. There are single system electrification systems...

  14. Design Considerations for a PEM Fuel Cell Powered Truck APU

    E-Print Network [OSTI]

    Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

    2004-01-01

    Evaluation of Fuel Cell Auxiliary Power Units for Heavy -Solid Oxide Fuel Cell Auxiliary Power Unit – A DevelopmentMarkets for Fuel Cell Auxiliary Power Units in Vehicles: A

  15. 21st Century Truck Partnership - Roadmap and Technical White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    confirmation that in vitro toxicity test systems accurately mirror relative response of lungs to different exposures, and the poor ability to separate different components from...

  16. Preemptive Strike: Law in the Campaign for Clean Trucks

    E-Print Network [OSTI]

    Cummings, Scott

    2015-01-01

    equipment, polluting the air and water and burdening thereductions in noise, air and water pollution at the Hugo

  17. WORKSHOP REPORT: Trucks and Heavy-Duty Vehicles Technical Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Research and development RPM Revolutions per minute SI Spark ignition SMC Sheet molding compound SUV Sport utility vehicle VIUS Vehicle Inventory and Use Survey VTO Vehicle...

  18. 21st Century Truck Partnership Roadmap Roadmap and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-volume manufacturing of low-friction, wear-resistant materials, surface treatments, and additives are lacking. * Integration of component designs with advanced...

  19. Policy Discussion- Heavy-Duty Truck Fuel Economy

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy

  20. Energy Department, Volvo Partnership Builds More Efficient Trucks...

    Energy Savers [EERE]

    of the U.S. auto and manufacturing industry, reduce our dependence on foreign oil, and create jobs for American workers. "Earlier this week in his State of the Union...

  1. Ten Years of Development Experience with Advanced Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program for Control of PM from Diesel Backup Generators Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles EPA Diesel Update...

  2. Short sea shipping : barriers, incentives and feasibility of truck ferry

    E-Print Network [OSTI]

    Darcy, Joseph

    2009-01-01

    Many problems plague the United States' transportation infrastructure: congestion, poor roadway conditions, obsolescence, and maintenance cost not the least among these. In recent years, the Department of Transportation, ...

  3. East Avenue Truck Inspection Patterson Pass Road Vasco Road

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office to be badged Sandia National Laboratories 7011 East Avenue Livermore, CA 94551 Tesla Road Interstate 580 - From OaklandSan Francisco Map Not to Scale Map Not to Scale To...

  4. Truck Duty Cycle and Performance Data Collection and Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Cycle and Performance Data Collection and Analysis Program Heavy Duty & Medium Duty Drive Cycle Data Collection for Modeling Expansion Roadmap and Technical White Papers for...

  5. Improved performance of railcar/rail truck interface components 

    E-Print Network [OSTI]

    Story, Brett Alan

    2009-05-15

    , and detrimental dynamic effects such as hunting. Axial-torsional tests determined friction coefficient estimates and wear properties for a matrix of various metallic protective coatings and steel. Tungsten carbide-cobalt-chrome has a favorable coefficient of 0...

  6. DOE's effort to reduce truck aerodynamic drag through joint experiment...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Proposed for presentation at the Society of Automotive Engineers; Commercial Vehicle held November 1-3, 2005 in Chicago, IL. Research Org:...

  7. Volvo Trucks Achieves Lofty Energy and Carbon Goals

    SciTech Connect (OSTI)

    2011-03-31

    Case study - Volvo's New River Valley facility leveraged company and ITP resources to achieve plant-wide targets that surpass both corporate and Save Energy Now goals.

  8. Volvo Trucks Achieves Lofty Energy and Carbon Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plant is ramping up the company's energy efficiency efforts. Volvo, a company that is world renowned for its environmental consciousness, recently established a corporate goal to...

  9. Preemptive Strike: Law in the Campaign for Clean Trucks

    E-Print Network [OSTI]

    Cummings, Scott

    2015-01-01

    to the approaching transcontinental railroad, which locala law directing the transcontinental railroad to run throughDetermined to bring transcontinental service to Los Angeles,

  10. Truck transport of RAM: Risk effects of avoiding metropolitan areas

    SciTech Connect (OSTI)

    Mills, G.S.; Neuhauser, K.S.

    1997-11-01

    In the transport of radioactive material (RAM), e.g., spent nuclear fuel (SNF), stakeholders are generally most concerned about risks in high population density areas along transportation routes because of the perceived high consequences of potential accidents. The most significant portions of a transcontinental route and an alternative examined previously were evaluated again using population density data derived from US Census Block data. This method of characterizing population that adjoins route segments offers improved resolution of population density variations, especially in high population density areas along typical transport routes. Calculated incident free doses and accident dose risks for these routes, and the rural, suburban and urban segments are presented for comparison of their relative magnitudes. The results indicate that modification of this route to avoid major metropolitan areas through use of non-Interstate highways increases total risk yet does not eliminate a relatively small urban component of the accident dose risk. This conclusion is not altered by improved resolution of route segments adjoining high density populations.

  11. DOE Selects Two Small Businesses to Truck Transuranic Waste to...

    Office of Environmental Management (EM)

    Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc....

  12. Satellite Detec*on of Truck & Rail NO2

    E-Print Network [OSTI]

    Jacob, Daniel J.

    for future VMT (2011 to 2035) were taken from the 2012 Annual Energy Outlook (AEO) table of Transportation

  13. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with...

    Broader source: Energy.gov (indexed) [DOE]

    is as clean and quiet as a gasoline engine, while delivering up to 30 percent better fuel economy. | Photo courtesy of Cummins. Pictured here is a clean diesel engine for light...

  14. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans The

  15. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans TheCountyCitiesDrivingElectrified Parking

  16. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDC Printable Version ShareE85EVSchools

  17. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDCHydrogeninReduceRefuse Collection

  18. Vehicle Technologies Office - AVTA: All Electric Delivery Trucks |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-Site Assembly BuildingDepartmentFY14

  19. Unemployed Truck Driver Trains for New Career in Weatherization |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVP of TransmissionIT ToolsDepartment 1n n d d

  20. California: SQAMD Replaces Drayage Trucks with CNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETU S DEPARTMENTJune 18, 2012ofAward |

  1. Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel Cell

  2. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative SolarSavings Performance ContractingTour withBuses |

  3. Environmental Management Headquarters Corrective Action Plan - Truck Fire |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing FacilityJanuary 20,membershipRelease Phase II

  4. SANBAG Natural Gas Truck Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About Us Rob RobertsSelectSAE StandardsSAE1

  5. Quantum Well Thermoelectric Truck Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOEAssurance forReviewDepartmentQuantum Well

  6. Maryland Hybrid Truck Goods Movement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarine & Hydrokinetic »Marketof

  7. Maryland Hybrid Truck Goods Movement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarine & Hydrokinetic »Marketof1 DOE Hydrogen

  8. Maryland Hybrid Truck Goods Movement Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarine & Hydrokinetic »Marketof1 DOE Hydrogen0

  9. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen Lichvar FEof Energy NEWNGV

  10. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen Lichvar FEof Energy NEWNGVDepartment of

  11. NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllen Lichvar FEof Energy NEWNGVDepartment

  12. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLakeDepartment ofof Energy Test and

  13. 21st Century Truck Partnership - Roadmap and Technical White Papers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery Large2015BETHEL,

  14. Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy ThisSites | Department of<<Energy

  15. DOE's effort to reduce truck aerodynamic drag : joint experiments and

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collidertransfer (Journal Article) |Programs ofReport

  16. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces.comparisonTrailers (Technical Report)

  17. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production atmeasurement forces.comparisonTrailers (Technical

  18. Vehicle Technologies Office: Lightweight Materials for Cars and Trucks |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A County road 39 CommunityDevelopment

  19. Heavy Truck Engine Development & HECC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £Space

  20. Heavy Truck Friction & Wear Reduction Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢ £SpaceFriction & Wear