Powered by Deep Web Technologies
Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

2

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

U.S. Energy Information Administration (EIA) Indexed Site

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

3

Price of Freeport, TX Natural Gas LNG Imports from Other Countries...  

Annual Energy Outlook 2012 (EIA)

Price of Freeport, TX Natural Gas LNG Imports from Other Countries (Nominal Dollars per Thousand Cubic Feet) Price of Freeport, TX Natural Gas LNG Imports from Other Countries...

4

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

Gasoline and Diesel Fuel Update (EIA)

to Brazil (Million Cubic Feet) Freeport, TX Liquefied Natural Gas Exports to Brazil (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,581 2014 2,664...

5

Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt...  

Annual Energy Outlook 2012 (EIA)

Egypt (Million Cubic Feet) Freeport, TX Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,969 -...

6

Price Liquefied Freeport, TX Natural Gas Exports Price to Japan...  

Gasoline and Diesel Fuel Update (EIA)

Japan (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to Japan (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

7

Freeport, TX Exports to japan Liquefied Natural Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

japan Liquefied Natural Gas (Million Cubic Feet) Freeport, TX Exports to japan Liquefied Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

8

Freeport, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Freeport, TX) Freeport, TX) Jump to: navigation, search Equivalent URI DBpedia Coordinates 28.9541368°, -95.3596617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.9541368,"lon":-95.3596617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Freeport Begins Offshore Sulfur Plant  

Science Journals Connector (OSTI)

Freeport Begins Offshore Sulfur Plant ... Discovered by Humble Oil & Refining, the sulfur deposit off Grand Isle is believed by industry observers to be one of the largest discovered in recent years. ...

1958-07-07T23:59:59.000Z

10

Energy Department Authorizes Additional Volume at Proposed Freeport...  

Office of Environmental Management (EM)

Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export...

11

Energy Department Authorizes Freeport LNG to Export Liquefied...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Freeport LNG to Export Liquefied Natural Gas Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas November 14, 2014 - 2:00pm Addthis News Media Contact...

12

Freeport, TX Liquefied Natural Gas Exports Price to Brazil (Dollars...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.74 11.19 --...

13

Freeport, TX Liquefied Natural Gas Exports to Brazil (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 2,581 8,142 0...

14

Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 10.30...

15

Energy Department Authorizes Additional Volume at Proposed Freeport LNG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Volume at Proposed Freeport Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 15, 2013 - 3:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export additional volumes of domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Freeport LNG Terminal in Quintana Island, Texas. Freeport previously received approval to export 1.4 billion cubic feet of natural gas a day (Bcf/d) of LNG from this facility to non-FTA countries on May 17, 2013. The Freeport Expansion

16

Energy Department Authorizes Additional Volume at Proposed Freeport LNG  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Authorizes Additional Volume at Proposed Freeport Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas November 15, 2013 - 3:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department announced today that it has conditionally authorized Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export additional volumes of domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States from the Freeport LNG Terminal in Quintana Island, Texas. Freeport previously received approval to export 1.4 billion cubic feet of natural gas a day (Bcf/d) of LNG from this

17

EIS-0487: Freeport LNG Liquefaction Project, Brazoria County...  

Energy Savers (EERE)

environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal...

18

EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87: Freeport LNG Liquefaction Project, Brazoria County, Texas 87: Freeport LNG Liquefaction Project, Brazoria County, Texas EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas SUMMARY Federal Energy Regulatory Commission (FERC) is preparing an EIS, with DOE as a cooperating agency, to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal on Quintana Island in Brazoria County, Texas, to enable the terminal to liquefy and export the LNG. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 25, 2012 EIS-0487: Notice of Intent to Prepare an Environmental Impact Statement Freeport LNG Liquefaction Project, Brazoria County, Texas

19

Glossary Term - Neptune  

NLE Websites -- All DOE Office Websites (Extended Search)

Mole Mole Previous Term (Mole) Glossary Main Index Next Term (Neutrino) Neutrino Neptune Neptune as seen by the Voyager II spacecraft on August 14, 1989. Neptune is the eighth planet from the sun and takes 165 years to orbit the sun once. Neptune is about 4 times larger than the Earth and is about 17 times as massive. Neptune was discovered on September 23, 1846 based on calculations done by the French astronomer Urbain LeVerrier and the English astronomer John Adams. Neptune is also the Roman name for Poseidon, the god of the sea and earthquakes. Neptune was the son of Chronus and Rhea and carries the trident, a three pronged spear. Planetary Data Distance from Sun Length of Day Length of Year Radius Mass 30.069 AU 16.1 hours 164.79 years 24,764 km 1.02*1026 kg Known Satellites

20

ORDER NO. 3357: Freeport LNG | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ORDER NO. 3357: Freeport LNG ORDER NO. 3357: Freeport LNG ORDER NO. 3357: Freeport LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the FLEX Application have not demonstrated that the requested authorization will be inconsistent with the public interest and finds that the exports proposed in this Application are likely to yield net economic benefits to the United States. DOE/FE further finds that FLEX's proposed exports on behalf of other entities should be conditionally authorized at a volumetric rate not to exceed the

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG...

22

SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT....

23

SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE...

24

Final External Peer Review Report for Freeport Harbor, Texas  

E-Print Network (OSTI)

Final External Peer Review Report for Freeport Harbor, Texas Draft Feasibility Report. W911NF-07-D-0001 Task Control Number: 08192 August 20, 2008 #12;FINAL EXTERNAL PEER REVIEW REPORT Battelle Final External Peer Review Report August 20, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY

US Army Corps of Engineers

25

Price of Freeport, TX Natural Gas LNG Imports from Egypt (Nominal...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 4.24 2010's -- 12.23 -- --...

26

Distillation and Dehydro Reactors Advanced Process Conrol Freeport Texas PLant  

E-Print Network (OSTI)

Distillation and Dehydro Reactors Advanced Process Control Freeport Texas Plant ESL-IE-14-05-16 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 G-KTI, Polyamide and Intermediates Distillation... APC 6/2/2014 INTERNAL; CONFIDENTIAL 2 APC is a collection of two different control and automation technologies Multivariable Predictive Control (MPC). In this approach, an empirical, dynamic, plant model is used in combination with both a steady...

Eisele, D.

2014-01-01T23:59:59.000Z

27

SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

McMoran - FE DKT. NO. 13-26-LNG - ORDER 3290 SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26-LNG - ORDER 3290 April 2014 More Documents & Publications SEMI-ANNUAL...

28

SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER...

29

SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO....

30

Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...  

NLE Websites -- All DOE Office Websites (Extended Search)

0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued...

31

Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...  

NLE Websites -- All DOE Office Websites (Extended Search)

1-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE)...

32

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network (OSTI)

B Near-Infrared Radiative Transfer Model B.15 Near-Infrared Observations of Neptunes Clouds with the133 6.2 Near-infrared spectroscopy . . . . . .

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

33

Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC- FE Dkt. No. 11-161-LNG  

Energy.gov (U.S. Department of Energy (DOE))

On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOE/FE) issued Order No. 3357 (FLEX II Conditional Order) to Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC,...

34

Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC- FE Dkt. No. 10-161-LNG  

Energy.gov (U.S. Department of Energy (DOE))

On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOE/FE) issued Order No. 3282 (FLEX I Conditional Order) to Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC,...

35

Category:Amarillo, TX | Open Energy Information  

Open Energy Info (EERE)

Amarillo, TX Amarillo, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Amarillo, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Amarillo TX CPS Energy.png SVFullServiceRestauran... 62 KB SVHospital Amarillo TX CPS Energy.png SVHospital Amarillo TX... 66 KB SVLargeHotel Amarillo TX CPS Energy.png SVLargeHotel Amarillo ... 61 KB SVLargeOffice Amarillo TX CPS Energy.png SVLargeOffice Amarillo... 59 KB SVMediumOffice Amarillo TX CPS Energy.png SVMediumOffice Amarill... 62 KB SVMidriseApartment Amarillo TX CPS Energy.png SVMidriseApartment Ama... 61 KB SVOutPatient Amarillo TX CPS Energy.png SVOutPatient Amarillo ... 60 KB SVPrimarySchool Amarillo TX CPS Energy.png SVPrimarySchool Amaril... 61 KB SVQuickServiceRestaurant Amarillo TX CPS Energy.png

36

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

37

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

38

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

39

Category:Houston, TX | Open Energy Information  

Open Energy Info (EERE)

TX TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "Houston, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Houston TX Entergy Texas Inc..png SVFullServiceRestauran... 73 KB SVHospital Houston TX Entergy Texas Inc..png SVHospital Houston TX ... 74 KB SVLargeHotel Houston TX Entergy Texas Inc..png SVLargeHotel Houston T... 74 KB SVLargeOffice Houston TX Entergy Texas Inc..png SVLargeOffice Houston ... 74 KB SVMediumOffice Houston TX Entergy Texas Inc..png SVMediumOffice Houston... 78 KB SVMidriseApartment Houston TX Entergy Texas Inc..png SVMidriseApartment Hou... 77 KB SVOutPatient Houston TX Entergy Texas Inc..png SVOutPatient Houston T... 75 KB SVPrimarySchool Houston TX Entergy Texas Inc..png

40

First Plasma Wave Observations at Neptune  

Science Journals Connector (OSTI)

...revealed that Neptune has a large and complex magnetosphere...first observations of plasma waves and low-frequency...from lightning. Such large dispersions would require path lengths and plasma densities that are much larger than anything plausible...

D. A. Gurnett; W. S. Kurth; R. L. Poynter; L. J. Granroth; I. H. Cairns; W. M. Macek; S. L. Moses; F. V. Coroniti; C. F. Kennel; D. D. Barbosa

1989-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

D&TX  

Office of Legacy Management (LM)

*. *. ( ARGONNE RATIONAL 1-Ci3ORATORY . 1 D&TX 7. my 19, 1349 70 t. Z. ROse at L, Em &=i*p~~4 DVur;uM hLl%L ?bvs -Lcs . FReti c. c. Fqpr an2 2. E. sulu+rr fis2 S*crep t & fbQ s-e: of the ?atagel DrFAm%un !! 1 0 * the >rt &Fz=z d t& &men of ScieJce & >&7*-z 4-q 2s'; %rZion 0C the ZLLS~~~ of Science a2 31~52-37 fo2 T&imcyyg c.=A+=< he-< - ,,a uas c:cgetes ALL 12, 1SL9. Z 0 sor;~~,-~-lioi! c.jme s 'm&-go& ~WC& c ",& d*cg&A c&.6 be ciS',&Ctti 03 2.q ZLS CC the 5iiUdi; 0~ eqt&-p*t ~-3 niq b the &-CT iq95, - < less Se&,-0~22 3 wels off tze b.ckm5n' ,e ueze t& 233 &,/zip fe pe*-se a?& coL&cs El5 less t&3 c. 5z/z fo- pcxabi beta-g+iis couxezs.

42

DOE/EA-1650: Freeport LNG Export Project and BOG/Truck Project Environmental Assessment (May 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Freeport LNG Development, L.P. Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004, CP05-361-001, and CP05-361-002 FREEPORT LNG EXPORT PROJECT and BOG/TRUCK PROJECT Environmental Assessment Cooperating Agency: U.S. Department of Energy DOE/EA - 1650 DOE Docket No. FE-08-70-LNG MARCH 2009 FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 OFFICE OF ENERGY PROJECTS In Reply Refer To: OEP/DG2E/Gas 2 Freeport LNG Development, L.P. Docket Nos. CP03-75-003, CP03-75-004 CP05-361-001 and CP05-361-002 §375.308(x) TO THE PARTY ADDRESSED: The staff of the Federal Energy Regulatory Commission (FERC or Commission) and the Department of Energy (DOE), Office of Fossil Fuels, have prepared an environmental assessment (EA) on the liquefied natural gas (LNG) facilities proposed by

43

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC- 14-005-CIC  

Energy.gov (U.S. Department of Energy (DOE))

Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade...

44

The structural alignment of coal and the analogous case of Argonne Upper Freeport coal  

Science Journals Connector (OSTI)

It has long been recognized that coal is somewhat aligned. Multiple techniques imply a structural alignment but its quantification has been challenging. Moreover, discrepancies exist among techniques as to whether low-rank coals are aligned. The extent of structural alignment for the rank range was quantified directly via image analysis of high-resolution transmission electron micrograph lattice fringes. Alignment was quantified, for each coal, by the contribution to the total fringe length within the prominent 45 of orientation over random orientation (1/4 of the possible orientations). It was evident that there is structural alignment across the rank range. Thus it is time for the community to desist from making the erroneous statement that: low-rank coals are randomly oriented. The slight orientation was similar for low-rank Beulah-Zap lignite and Illinois No. 6 bituminous coals (24% and 22%) with Pocahontas (lvb) coal showing slightly greater (39%) alignment with extensive alignment (65%) in the case of an anthracite coal. The degree of ordering is illustrated with the aid of false-color lattice fringe images and Rose diagrams. The fringe contribution 90 opposed to the maximum length contribution had the minimum or near minimum percentage length contribution for all coals except Upper Freeport and to a lesser degree Illinois No. 6. For the Upper Freeport coal the alignment is lower than expected given its mvb rank (14% over random) and is attributed to a variant of T-stacking for the small aromatic moieties sited perpendicular and between horizontal displaced fringes.

Jonathan P. Mathews; Atul Sharma

2012-01-01T23:59:59.000Z

45

Neptun Light: Proposed Penalty (2012-SE-3504) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) May 2, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Neptun Light, Inc. failed to certify a variety of medium base compact fluorescent lamps as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Neptun Light: Proposed Penalty (2012-SE-3504) More Documents & Publications Neptun Light: Order (2012-SE-3504) Excellence Opto: Proposed Penalty (2013-CE-49002)

46

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

47

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

48

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

49

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

50

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

51

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

52

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

53

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

54

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

55

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

56

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

57

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

58

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

59

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

60

U.S. Natural Gas Imports by Pipeline from Mexico  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Microsoft Word - FOR WEB - Neptun CE-3504 NPCP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light, Inc. Neptun Light, Inc. (medium base compact fluorescent lamps) ) ) ) ) ) Case Number: 2013-CE-3504 NOTICE OF PROPOSED CIVIL PENALTY Date issued: May 2, 2013 Number of alleged violations: 6,570 (18 basic models; 365 days) Maximum possible assessment: $1,314,000 Proposed civil penalty: $131,400 The U.S. Department of Energy ("DOE") Office of the General Counsel, Office of Enforcement, alleges that Neptun Light, Inc. ("Neptun") has violated certain provisions of the Energy Policy and Conservation Act, 42 U.S.C. § 6291 et seq. ("the Act"), and 10 C.F.R. § 429.12. Specifically, DOE alleges: 1. Neptun has manufactured 1 a variety of medium base compact fluorescent lamps, including basic models 62520, 62516, 62514, 62016, 62014, 62009, 62123, 61920,

62

RAPID/Roadmap/19-TX-e | Open Energy Information  

Open Energy Info (EERE)

Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us 19-TX-e Temporary Surface Water Permit 19-TX-e Temporary...

63

MHK Technologies/Neptune Proteus NP1000 | Open Energy Information  

Open Energy Info (EERE)

Neptune Proteus NP1000 Neptune Proteus NP1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Proteus NP1000.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Neptune Proteus Tidal Power Pontoon consists of a 6m x 6m vertical axis crossflow turbine mounted within a patented, symmetrical diffuser duct and beneath a very simple steel deck and buoyancy packages. The Neptune Proteus is designed for estuarine sites, which can exhibit powerful currents yet have lower access, cabling and maintenance costs than offshore environments. The vertical shaft connects to the gearbox and generator/alternator, located on the top of the pontoon with associated valves and electrical processing and control machinery. The power pontoon is easily moored in the free stream, thus minimizing environmental impact and operates just as efficiently in both flood and ebb currents. The rotor is maintained at optimal power outputs by sets of computer-controlled shutters within the duct. Theoretical work on 1/10th, 1/40th and 1/100th scale laboratory experiments suggest an overall efficiency of greater than 45%.

64

TX-100 manufacturing final project report.  

SciTech Connect

This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

2007-11-01T23:59:59.000Z

65

Category:El Paso, TX | Open Energy Information  

Open Energy Info (EERE)

El Paso, TX El Paso, TX Jump to: navigation, search Go Back to PV Economics By Location Media in category "El Paso, TX" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant El Paso TX CPS Energy.png SVFullServiceRestauran... 60 KB SVHospital El Paso TX CPS Energy.png SVHospital El Paso TX ... 65 KB SVLargeHotel El Paso TX CPS Energy.png SVLargeHotel El Paso T... 60 KB SVLargeOffice El Paso TX CPS Energy.png SVLargeOffice El Paso ... 59 KB SVMediumOffice El Paso TX CPS Energy.png SVMediumOffice El Paso... 62 KB SVMidriseApartment El Paso TX CPS Energy.png SVMidriseApartment El ... 60 KB SVOutPatient El Paso TX CPS Energy.png SVOutPatient El Paso T... 60 KB SVPrimarySchool El Paso TX CPS Energy.png SVPrimarySchool El Pas... 61 KB SVQuickServiceRestaurant El Paso TX CPS Energy.png

66

Results of the radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania (ANK001)  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally [sup 238]U, as a result of work done for the Manhattan Engineer District in 1944. The survey included measurement of direct alpha and beta-gamma levels in the northeast comer of the basement of Building 29, and the collection of a debris sample from a floor drain for radionuclide analysis. The survey area was used for experimental canning of uranium slugs prior to production activities at the former New Kensington Works nearby.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

67

Tank 241-TX-105 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

68

RAPID/Roadmap/3-TX-a | Open Energy Information  

Open Energy Info (EERE)

has not identified geothermal resources on the land, then they must initiate the State Exploration Process. 3-TX-a.2 - Initiate State Exploration Process Green arrow.PNG 4-TX-a:...

69

RAPID/Roadmap/19-TX-b | Open Energy Information  

Open Energy Info (EERE)

while, groundwater rights belong to the surface owner and are dictated by the rule-of-capture. 19-TX-b.2 to 19-TX-b.4 - Is the Surface Water Use Temporary? Texas allows developers...

70

Formation and Structure of Low-Density Exo-Neptunes  

E-Print Network (OSTI)

Kepler has found hundreds of Neptune-size (2-6 R [subscript ?]) planet candidates within 0.5 AU of their stars. The nature of the vast majority of these planets is not known because their masses have not been measured. ...

Bodenheimer, Peter

71

CleanTX Foundation | Open Energy Information  

Open Energy Info (EERE)

CleanTX Foundation CleanTX Foundation Address 3925 W Braker Lane Place Austin, Texas Zip 78759 Region Texas Area Notes Promotes entrepreneurship in the field of clean technology, by providing educational forums, content, awareness and networking opportunities Website http://cleantx.org/ Coordinates 30.396989°, -97.735768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.396989,"lon":-97.735768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

DOE - Office of Legacy Management -- Sutton Steele and Steele Co - TX 09  

Office of Legacy Management (LM)

Sutton Steele and Steele Co - TX 09 Sutton Steele and Steele Co - TX 09 FUSRAP Considered Sites Site: SUTTON, STEELE & STEELE CO. (TX.09) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sutton, Steele & Steele, Inc. TX.09-1 Location: Dallas , Texas TX.09-1 Evaluation Year: 1993 TX.09-2 Site Operations: Conducted operations to separate Uranium shot by means of air float tables and conducted research to air classify C-Liner and C-Special materials. TX.09-1 TX.09-3 TX.09-4 TX.09-5 Site Disposition: Eliminated - Potential for contamination considered remote TX.09-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium TX.09-4 TX.09-5 Radiological Survey(s): Health and Safety Monitoring TX.09-4 TX.09-5 Site Status: Eliminated from consideration under FUSRAP

73

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

74

RAPID/Roadmap/3-TX-d | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-d Lease of Permanent...

75

RAPID/Roadmap/3-TX-g | Open Energy Information  

Open Energy Info (EERE)

RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Tools Contribute Contact Us 3-TX-g Lease of...

76

RAPID/Roadmap/3-TX-i | Open Energy Information  

Open Energy Info (EERE)

construction plans on the leased asset; Permission for the representatives of TxDOT to enter the area for inspection, maintenance, or reconstruction of highway facilities as...

77

Strategic Petroleum Reserve | Department of Energy  

Office of Environmental Management (EM)

Strategic Petroleum Reserve Strategic Petroleum Reserve Crude oil pipes at SPR Bryan Mound site near Freeport, TX. Crude oil pipes at SPR Bryan Mound site near Freeport, TX. The...

78

U.S.  

Gasoline and Diesel Fuel Update (EIA)

to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico...

79

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA...

80

U.S.  

Gasoline and Diesel Fuel Update (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA...

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA...

82

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine...

83

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine...

84

U.S.  

Annual Energy Outlook 2012 (EIA)

TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine...

85

Hanford Single Shell Tank Leak Causes and Locations - 241-TX Farm  

SciTech Connect

This document identifies 241-TX Tank Farm (TX Farm) leak causes and locations for the 100 series leaking tanks (241-TX-107 and 241-TX-114) identified in RPP-RPT-50870, Rev. 0, Hanford 241-TX Farm Leak Inventory Assessment Report. This document satisfies the TX Farm portion of the target (T04) in the Hanford Federal Facility Agreement and Consent Order milestone M-045-91F.

Girardot, C. L.; Harlow, D> G.

2014-07-22T23:59:59.000Z

86

DESTRUCTION OF BINARY MINOR PLANETS DURING NEPTUNE SCATTERING  

SciTech Connect

The existence of extremely wide binaries in the low-inclination component of the Kuiper Belt provides a unique handle on the dynamical history of this population. Some popular frameworks of the formation of the Kuiper Belt suggest that planetesimals were moved there from lower semimajor axis orbits by scattering encounters with Neptune. We test the effects such events would have on binary systems and find that wide binaries are efficiently destroyed by the kinds of scattering events required to create the Kuiper Belt with this mechanism. This indicates that a binary-bearing component of the cold Kuiper Belt was emplaced through a gentler mechanism or was formed in situ.

Parker, Alex H. [Department of Astronomy, University of Victoria, BC (Canada); Kavelaars, J. J., E-mail: alexhp@uvic.c [Herzberg Institute of Astrophysics, National Research Council of Canada (Canada)

2010-10-20T23:59:59.000Z

87

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

88

RAPID/Roadmap/4-TX-a | Open Energy Information  

Open Energy Info (EERE)

4-TX-a State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Permit Overview In Texas, geothermal exploration on state lands or lands with state...

89

RAPID/Roadmap/11-TX-c | Open Energy Information  

Open Energy Info (EERE)

of the terms of the contract or permit. (NRC Sec. 191.053 and Sec. 191.054). 11-TX-c.20 - Conduct Survey All scientific investigations or recovery operations conducted under the...

90

RAPID/Roadmap/3-TX-b | Open Energy Information  

Open Energy Info (EERE)

and forfeiture of the application fee. 3-TX-b.7 - LeaseEasement The developer may not conduct any operations on the land prior to receiving a completed contract from the GLO....

91

,"TX, RRC District 4 Onshore Dry Natural Gas Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12292014 1:55:39 AM" "Back to Contents","Data 1: TX, RRC...

92

RAPID/Roadmap/19-TX-c | Open Energy Information  

Open Energy Info (EERE)

9-TX-c Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Permit Overview In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water...

93

Results of the radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania (ANK001). Environmental Restoration and Waste Management Non-Defense Programs  

SciTech Connect

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at the ALCOA Research Laboratory, 600 Freeport Road, New Kensington, Pennsylvania. The survey was performed on November 12, 1991. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, as a result of work done for the Manhattan Engineer District in 1944. The survey included measurement of direct alpha and beta-gamma levels in the northeast comer of the basement of Building 29, and the collection of a debris sample from a floor drain for radionuclide analysis. The survey area was used for experimental canning of uranium slugs prior to production activities at the former New Kensington Works nearby.

Foley, R.D.; Brown, K.S.

1992-10-01T23:59:59.000Z

94

THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS  

SciTech Connect

We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington, DC 20015 (United States); Trujillo, Chadwick A., E-mail: sheppard@dtm.ciw.ed [Gemini Observatory, 670 North A'ohoku Place, Hilo, HI 96720 (United States)

2010-11-10T23:59:59.000Z

95

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

96

txH2O: Volume 1, Number 1 (Complete)  

E-Print Network (OSTI)

OF DESALINATION ? SEDIMENT SETBACK ? PHOSPHORUS LOSS ? CLOUD SEEDING ? RAINWATER HARVESTING ? AND MUCH MORE! tx H 2 O Published by Texas Water Resources Institute Clint Wolfe Managing Editor Texas Water Resources Institute Steven Keating Art Director... Student Research Assessing Phosphorus Loss to Protect Surface Water The Sky is Falling Using cloud-seeding technology to produce rain Communicating Outcomes Collaboration leads to water conservation Live, Learn and Thrive RGBI team award presented at NMSU...

Texas Water Resources Institute

2005-01-01T23:59:59.000Z

97

GRR/Section 8-TX-b - ERCOT Interconnection | Open Energy Information  

Open Energy Info (EERE)

8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-b - ERCOT Interconnection 8-TX-b - ERCOT Interconnection Process.pdf Click to View Fullscreen Regulations & Policies PUCT Substantive Rule 25.198 Triggers None specified Click "Edit With Form" above to add content 8-TX-b - ERCOT Interconnection Process.pdf 8-TX-b - ERCOT Interconnection Process.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedures for interconnection with Electricity Reliability Council of Texas (ERCOT) in Texas. According to PUCT Substantive Rule 25.198, the responsibility for

98

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

99

GRR/Section 3-TX-g - Lease of Relinquishment Act Lands | Open Energy  

Open Energy Info (EERE)

3-TX-g - Lease of Relinquishment Act Lands 3-TX-g - Lease of Relinquishment Act Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-g - Lease of Relinquishment Act Lands 03-TX-g - Lease of Relinquishment Act Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-g - Lease of Relinquishment Act Lands.pdf 03-TX-g - Lease of Relinquishment Act Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a geothermal lease on Relinquishment Act Lands in Texas. The Texas General Land Office (GLO) of Texas handles the leasing process on Relinquishment Act Lands through Title

100

Staubli TX-90XL robot qualification at the LLIHE.  

SciTech Connect

The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.

Covert, Timothy Todd

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

txH20: Volume 8, Number 2 (Complete)  

E-Print Network (OSTI)

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Summer 2013 TECHNOLOGY & WATER Computer models, electron beams, irrigation efficiencies and more Kevin Wagner... Message from the Director Welcome to the Summer #31;#30;#29;#28; edition of txH#31;O. #27;is issue highlights technologies developed and enhanced by #27;e Texas A&M University System researchers to help the state meet its growing water and food needs...

Wythe, Kathy

2013-01-01T23:59:59.000Z

102

E-Print Network 3.0 - austin tx usa Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Austin Collection: Engineering 9 Updated 050411 First Name Last Name City State Country Cell Phone Home Phone Summary: Acosta Austin TX United States (512) 6574215 (512) 8262678...

103

Potential value extraction from TxDOTs right of way and other property assets.  

E-Print Network (OSTI)

??Many Departments of Transportation (DOTs), including Texas Department of Transportation (TxDOT), have been challenged by inadequate funding from traditional federal and state fuel taxes, increasing (more)

Paes, Thiago Mesquita

2012-01-01T23:59:59.000Z

104

TX Cnc as a Member of the Praesepe Open Cluster  

Science Journals Connector (OSTI)

We present B-, V-, and I-band CCD photometry of the W UMa-type binary system TX Cnc, which is a member star of the Praesepe open cluster. Based on the observations, new ephemeris and a revised photometric solution of the binary system were derived. Combined with the results of the radial velocity solution contributed by Pribulla etal., the absolute parameters of the system were determined. The mass, radius, and luminosity of the primary component are derived to be 1.35 0.02 M ?, 1.27 0.04 R ?, and 2.13 0.11 L ?. Those for the secondary star are computed as 0.61 0.01 M ?, 0.89 0.03 R ?, and 1.26 0.07 L ?, respectively. Based on these results, a distance modulus of (m M) V = 6.34 0.05 is determined for the star. It confirms the membership of TX Cnc to the Praesepe open cluster. The evolutionary status and the physical nature of the binary system are discussed compared with the theoretical model.

X. B. Zhang; L. Deng; P. Lu

2009-01-01T23:59:59.000Z

105

CX-100 and TX-100 blade field tests.  

SciTech Connect

In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

2005-12-01T23:59:59.000Z

106

GRR/Section 13-TX-a - State Land Use Assessment | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 13-TX-a - State Land Use Assessment GRR/Section 13-TX-a - State Land Use Assessment < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 13-TX-a - State Land Use Assessment 13-TX-a - State Land Use Assessment.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Open Beaches Act Dune Protection Act Beach Dune Rules Triggers None specified Click "Edit With Form" above to add content 13-TX-a - State Land Use Assessment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas General Land Office (GLO) is in charge of making sure construction on the Texas coast that affects the beach and dunes is

107

GRR/Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land | Open  

Open Energy Info (EERE)

TX-e - Lease of Texas Parks & Wildlife Department Land TX-e - Lease of Texas Parks & Wildlife Department Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-e - Lease of Texas Parks & Wildlife Department Land 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Texas Parks & Wildlife Department (TPWD) land in Texas. The Texas General Land Office manages

108

GRR/Section 3-TX-d - Lease of Permanent School Fund Land | Open Energy  

Open Energy Info (EERE)

3-TX-d - Lease of Permanent School Fund Land 3-TX-d - Lease of Permanent School Fund Land < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-d - Lease of Permanent School Fund Land 03-TX-d - Lease of Public School Fund Land (1).pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-d - Lease of Public School Fund Land (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Public School Fund (PSF) lands in Texas. The Texas General Land Office (GLO) oversees the leasing process for PSF lands through Title 31 of the Texas Administrative Code

109

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

110

GRR/Section 3-TX-f - Lease of Land Trade Lands | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-TX-f - Lease of Land Trade Lands GRR/Section 3-TX-f - Lease of Land Trade Lands < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-f - Lease of Land Trade Lands 03-TX-f - Lease of Land Trade Lands.pdf Click to View Fullscreen Triggers None specified Click "Edit With Form" above to add content 03-TX-f - Lease of Land Trade Lands.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of leasing Land Trade Lands in Texas. The Texas General Land Office (GLO) administers leases on Land Trade Lands through Title 31 of the Texas Administrative Code Section 155.42.

111

ProjectRanking(Economic) USACE District  

E-Print Network (OSTI)

WATERWAY (0081253) TX X 94 Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY SHIP CHANNEL, TX (0018130) TX X 101 Galveston SWD MATAGORDA SHIP CHANNEL (0010810) TX X 115 Galveston SWD TEXAS 2 Galveston SWD HOUSTON SHIP CHANNEL (0007780) TX X 13 Galveston SWD GALVESTON HARBOR AND CHANNEL

US Army Corps of Engineers

112

Dow Freeport PMDI MRU Optimization  

E-Print Network (OSTI)

Resources ? Improvement Engineer ? Process Engineer ? Mechanical Design Lead ? Technology Consultant ? Rotating Equipment Specialist ? Refrigeration Consultant ? Mechanical Engineer ? Reliability Engineer ? Plant Operations Staff ? Vendor Input 12... Resources ? Improvement Engineer ? Process Engineer ? Mechanical Design Lead ? Technology Consultant ? Rotating Equipment Specialist ? Refrigeration Consultant ? Mechanical Engineer ? Reliability Engineer ? Plant Operations Staff ? Vendor Input 12...

Litzinger, J.

113

Microsoft Word - FOR WEB - VERSION 4.2 - NO-IMPORT, WONT SELL - Neptun CE-3504 CA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neptun Light, Inc., Neptun Light, Inc., Respondent ) ) ) ) ) ) Case Number: 2012-SE-3504 ORDER By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Neptun Light, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.F.R. Part 429. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolves this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts before me,

114

GRR/Section 3-TX-c - Highway Right of Way Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-c - Highway Right of Way Lease 3-TX-c - Highway Right of Way Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-c - Highway Right of Way Lease 03TXCEncroachmentIssues.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Texas Department of Transportation Regulations & Policies 43 TAC 21.600 43 TAC 21.603 43 TAC 21.606 Triggers None specified Click "Edit With Form" above to add content 03TXCEncroachmentIssues.pdf 03TXCEncroachmentIssues.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure for obtaining a state highway asset lease in Texas. The Texas Department of Transportation (TxDOT) may lease any highway asset.

115

GRR/Section 11-TX-a - State Cultural Considerations Overview | Open Energy  

Open Energy Info (EERE)

GRR/Section 11-TX-a - State Cultural Considerations Overview GRR/Section 11-TX-a - State Cultural Considerations Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-a - State Cultural Considerations Overview 11TXAStateCulturalConsiderationsOverview.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies NRC Ch. 191: Antiquities Code CCP Ch. 49: Inquests Upon Dead Bodies Triggers None specified Click "Edit With Form" above to add content 11TXAStateCulturalConsiderationsOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-a.1 - Have Potential Human Remains Been Discovered?

116

DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a...

117

Verification of the WRF model during a high ozone event over Houston, TX  

E-Print Network (OSTI)

High ozone values were observed in Houston, TX during August 25 - September 1, 2000. A comparison of WRF data with observations and MM5 data was conducted to determine the WRF model's performance in simulating the meteorological conditions...

Ames, Douglas Seeley

2012-06-07T23:59:59.000Z

118

GRR/Section 11-TX-c - Cultural Resource Discovery Process | Open Energy  

Open Energy Info (EERE)

-TX-c - Cultural Resource Discovery Process -TX-c - Cultural Resource Discovery Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-c - Cultural Resource Discovery Process 11TXCCulturalResourceDiscoveryProcess.pdf Click to View Fullscreen Contact Agencies Texas Historical Commission Regulations & Policies Sec. 191: Antiquities Code Triggers None specified Click "Edit With Form" above to add content 11TXCCulturalResourceDiscoveryProcess.pdf 11TXCCulturalResourceDiscoveryProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 11-TX-c.1 - Is the Project Located on State or Local Public Land? Before breaking ground at a project location on state or local public land,

119

EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12: Federal Loan Guarantee to Support Construction of the TX 12: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas Overview The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas. TXE is a subsidiary of Eastman Chemical Company (Eastman) and proposes to develop the Facility on a 417-acre parcel of land. The Facility would

120

Farmers and ranchers in Calhoun County, TX: their land ethic and their interest in nature tourism  

E-Print Network (OSTI)

FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND THEIR INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2000 Major Subject: Recreation, Park and Tourism Sciences FARMERS AND RANCHERS IN CALHOUN COUNTY, TX: THEIR LAND ETHIC AND INTEREST IN NATURE TOURISM A Thesis by KIMBERLY LYN WILLIAMS Submitted to Texas ASM...

Williams, Kimberly Lyn

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2011-2014 Freeport, TX 2013-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 2007-2011 To South Korea 2009-2011 Freeport, TX 2011-2011 Sabine Pass, LA 2011-2011 To...

122

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

8 2011-2014 Freeport, TX 2013-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 2007-2011 To South Korea 2009-2011 Freeport, TX 2011-2011 Sabine Pass, LA 2011-2011 To...

123

ProjectRanking(Economic) Division Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

94 Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY SHIP CHANNEL, TX (0018130 Galveston SWD TEXAS CITY CHANNEL (50-FOOT PROJECT), TX - 010183 (CG) (0010183) TX X 126 New Orleans MVD RIVER, FL (0002480) FL X 338 Galveston SWD CHANNEL TO PORT MANSFIELD, TEXAS (0074847) TX X 350 Mobile

US Army Corps of Engineers

124

ProjectRanking(Economic) Division Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY SHIP CHANNEL, TX (0018130) TX X 101 Galveston SWD MATAGORDA SHIP CHANNEL (0010810) TX X 115 Galveston SWD TEXAS CITY CHANNEL (50-FOOT PROJECT PASCAGOULA HARBOR (0013680) MS X 2 Galveston SWD HOUSTON SHIP CHANNEL (0007780) TX X 8 Galveston SWD GULF

US Army Corps of Engineers

125

RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY  

SciTech Connect

WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modified in 40 CFR Part 265, Subpart F and Washington States Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

Horton, Duane G.

2007-03-26T23:59:59.000Z

126

GRR/Section 19-TX-b - New Water Right Process For Surface Water and Ground  

Open Energy Info (EERE)

TX-b - New Water Right Process For Surface Water and Ground TX-b - New Water Right Process For Surface Water and Ground Water < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-b - New Water Right Process For Surface Water and Ground Water 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Texas Water Development Board Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXBNewWaterRightProcessForSurfaceWaterAndGroundWater.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

127

GRR/Section 11-TX-b - Human Remains Process | Open Energy Information  

Open Energy Info (EERE)

1-TX-b - Human Remains Process 1-TX-b - Human Remains Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 11-TX-b - Human Remains Process 11TXBHumanRemainsProcess.pdf Click to View Fullscreen Regulations & Policies CCP Art. 49 Triggers None specified Click "Edit With Form" above to add content 11TXBHumanRemainsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the procedure a developer must follow when human remains are discovered on or near the project site. Local law enforcement must conduct an investigation into the death of the person, and is the

128

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

129

GRR/Section 7-TX-b - REC Generator | Open Energy Information  

Open Energy Info (EERE)

TX-b - REC Generator TX-b - REC Generator < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-b - REC Generator 07TXBRECGeneratorCertification.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies Goal for Renewable Energy, PUCT Substantive Rule 25.173 Triggers None specified Click "Edit With Form" above to add content 07TXBRECGeneratorCertification.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the application and approval process for participating in the Renewable Energy Credit program in Texas.

130

GRR/Section 19-TX-c - Surface Water Permit | Open Energy Information  

Open Energy Info (EERE)

19-TX-c - Surface Water Permit 19-TX-c - Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-c - Surface Water Permit 19TXCSurfaceWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 295 30 TAC 297 Triggers None specified Click "Edit With Form" above to add content 19TXCSurfaceWaterPermit.pdf 19TXCSurfaceWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ) issues surface water permits. Under, Tex. Water Code § 11, surface water permits

131

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

132

GRR/Section 14-TX-b - Texas NPDES Permitting Process | Open Energy  

Open Energy Info (EERE)

14-TX-b - Texas NPDES Permitting Process 14-TX-b - Texas NPDES Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-b - Texas NPDES Permitting Process 14TXBTexasNPDESPermittingProcess (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies Tex. Water Code § 26.131(b) 16 TAC 3.8 Memorandum of Understanding between the RRC and the TCEQ 16 TAC 3.30 Triggers None specified Click "Edit With Form" above to add content 14TXBTexasNPDESPermittingProcess (4).pdf 14TXBTexasNPDESPermittingProcess (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

133

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

134

GRR/Section 8-TX-a - Transmission Siting | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 8-TX-a - Transmission Siting GRR/Section 8-TX-a - Transmission Siting < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-a - Transmission Siting 08TXATransmissionSiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive 25.83: Transmission Construction Reports PUCT Substantive Rule 25.101: Certification Criteria Triggers None specified Click "Edit With Form" above to add content 08TXATransmissionSiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Transmission siting is handled by the Public Utility Commission of Texas

135

GRR/Section 6-TX-a - Extra-Legal Vehicle Permitting Process | Open Energy  

Open Energy Info (EERE)

6-TX-a - Extra-Legal Vehicle Permitting Process 6-TX-a - Extra-Legal Vehicle Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-a - Extra-Legal Vehicle Permitting Process 06TXAExtraLegalVehiclePermittingProcess.pdf Click to View Fullscreen Contact Agencies Texas Department of Motor Vehicles Texas Department of Transportation Regulations & Policies Tex. Transportation Code § 621 Tex. Transportation Code § 622 Tex. Transportation Code § 623 43 TAC 219 Triggers None specified Click "Edit With Form" above to add content 06TXAExtraLegalVehiclePermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

136

GRR/Section 19-TX-d - Transfer of Surface Water Right | Open Energy  

Open Energy Info (EERE)

19-TX-d - Transfer of Surface Water Right 19-TX-d - Transfer of Surface Water Right < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-d - Transfer of Surface Water Right 19TXDTransferOfWaterRight.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 30 TAC 297.81 30 TAC 297.82 30 TAC 297.83 Triggers None specified Click "Edit With Form" above to add content 19TXDTransferOfWaterRight.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Texas water law allows surface water rights to be transferred from one party to another. (Tex. Water Code § 11)

137

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

138

GRR/Section 3-TX-a - State Geothermal Lease | Open Energy Information  

Open Energy Info (EERE)

3-TX-a - State Geothermal Lease 3-TX-a - State Geothermal Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-a - State Geothermal Lease 03TXAStateGeothermalLease.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Regulations & Policies Texas Natural Resources Code 31 TAC 9.22 31 TAC 13.33 31 TAC 13.62 31 TAC 155.42 Triggers None specified Click "Edit With Form" above to add content 03TXAStateGeothermalLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of obtaining a state geothermal lease from the state of Texas. The Texas General Land Office manages

139

GRR/Section 19-TX-a - Water Access and Water Issues Overview | Open Energy  

Open Energy Info (EERE)

9-TX-a - Water Access and Water Issues Overview 9-TX-a - Water Access and Water Issues Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-a - Water Access and Water Issues Overview 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11 Triggers None specified Click "Edit With Form" above to add content 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf 19TXAWaterAccessAndWaterRightsIssuesOverview.pdf Flowchart Narrative In the late 1960's Texas transitioned its water law system, switching

140

GRR/Section 12-TX-a - Flora and Fauna Considerations | Open Energy  

Open Energy Info (EERE)

TX-a - Flora and Fauna Considerations TX-a - Flora and Fauna Considerations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 12-TX-a - Flora and Fauna Considerations 12TXAFloraAndFaunaConsiderations.pdf Click to View Fullscreen Contact Agencies Texas Parks and Wildlife Department Regulations & Policies Texas Parks and Wildlife Code § 68 31 TAC 65.175 31 TAC 65.176 31 TAC 65.173 Triggers None specified Click "Edit With Form" above to add content 12TXAFloraAndFaunaConsiderations.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, no person may capture, trap, take, or kill, or attempt to

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GRR/Section 14-TX-a - Nonpoint Source Pollution | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 14-TX-a - Nonpoint Source Pollution GRR/Section 14-TX-a - Nonpoint Source Pollution < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-a - Nonpoint Source Pollution 14TXANonpointSourcePollution.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Clean Water Act CWA §319(b) Triggers None specified Click "Edit With Form" above to add content 14TXANonpointSourcePollution.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Texas Nonpoint Source Management Program (Management Program) is required under the Clean Water Act(CWA), specifically CWA §319(b). The

142

GRR/Section 6-TX-b - Construction Storm Water Permitting Process | Open  

Open Energy Info (EERE)

6-TX-b - Construction Storm Water Permitting Process 6-TX-b - Construction Storm Water Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-TX-b - Construction Storm Water Permitting Process 06TXBConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality EPA Regulations & Policies TPDES Construction General Permit (TXR150000) 30 Texas Administrative Code 205 General Permits for Waste Discharges Texas Water Code 26.040 General Permits Clean Water Act Triggers None specified Click "Edit With Form" above to add content 06TXBConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

143

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

144

GRR/Section 14-TX-d - Section 401 Water Quality Certification | Open Energy  

Open Energy Info (EERE)

4-TX-d - Section 401 Water Quality Certification 4-TX-d - Section 401 Water Quality Certification < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-d - Section 401 Water Quality Certification 14TXDSection401WaterQualityCertification (2).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Regulations & Policies 16 TAC 3.93 - RRC Water Quality Certification 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content 14TXDSection401WaterQualityCertification (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Section 401 of the Clean Water Act (CWA) requires a Water Quality

145

GRR/Section 3-TX-b - Land Access | Open Energy Information  

Open Energy Info (EERE)

3-TX-b - Land Access 3-TX-b - Land Access < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-TX-b - Land Access 03TXBLandAccess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Regulations & Policies Tex. Nat. Rec. Code Sec. 51.291(a) Tex. Nat. Rec. Code Sec. 33.111 Triggers None specified Click "Edit With Form" above to add content 03TXBLandAccess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process of gaining access to certain types of land in Texas apart from the geothermal resource lease process.

146

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

147

GRR/Section 7-TX-a - Energy Facility Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 7-TX-a - Energy Facility Registration GRR/Section 7-TX-a - Energy Facility Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-a - Energy Facility Registration 07TXAEnergyFacilitySiting.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUC Substantive Rule 25.109: Registration of Power Generation Companies and Self-Generators Triggers None specified Click "Edit With Form" above to add content 07TXAEnergyFacilitySiting.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the necessary process for registering as an

148

GRR/Section 7-TX-c - Certificate of Convenience and Necessity | Open Energy  

Open Energy Info (EERE)

GRR/Section 7-TX-c - Certificate of Convenience and Necessity GRR/Section 7-TX-c - Certificate of Convenience and Necessity < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-TX-c - Certificate of Convenience and Necessity 07TXCCertificateOfConvenienceAndNecessity.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 22 PUCT Substantive Rule 25.5 PUCT Substantive Rule 25.83 PUCT Substantive Rule 25.101 Public Utility Regulatory Act Triggers None specified Click "Edit With Form" above to add content 07TXCCertificateOfConvenienceAndNecessity.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

149

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

150

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

151

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

152

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

153

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

154

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

155

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

156

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

157

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

158

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

159

Habitable Evaporated Cores: Transforming Mini-Neptunes into Super-Earths in the Habitable Zones of M Dwarfs  

E-Print Network (OSTI)

We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with $\\sim 1 M_\\oplus$ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

Luger, Rodrigo; Lopez, Eric; Fortney, Jonathan; Jackson, Brian; Meadows, Victoria

2015-01-01T23:59:59.000Z

160

1996 National Heat Trans/er Conference Houston, TX August 3-6, J996  

E-Print Network (OSTI)

and diffusive transport associated with fluid dynamics. radiative heat transfer often plays a large role in governing combustion dynamics. Radiative heat transfer is the dominant mode of heat transfer in many1996 National Heat Trans/er Conference Houston, TX August 3-6, J996 AN ADAPTIVE MESH REFINEMENT

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation...

162

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom Homes, Double Oak, TX  

Energy.gov (U.S. Department of Energy (DOE))

Case study of a DOE Zero Energy Ready home in Double Oak, TX, north of Dallas, that scored a HERS 44 without PV. The 3,752-ft2 two-story home served as an energy-efficient model home for the custom...

163

CCD Photometric Study of the Contact Binary TX Cnc in the Young Open Cluster NGC 2632  

E-Print Network (OSTI)

TX Cnc is a member of the young open cluster NGC 2632. In the present paper, four CCD epochs of light minimum and a complete V light curve of TX Cnc are presented. A period investigation based on all available photoelectric or CCD data showed that it is found to be superimposed on a long-term increase ($dP/dt=+3.97\\times{10^{-8}}$\\,days/year), and a weak evidence suggests that it includes a small-amplitude period oscillation ($A_3=0.^{d}0028$; $T_3=26.6\\,years$). The light curves in the V band obtained in 2004 were analyzed with the 2003 version of the W-D code. It was shown that TX Cnc is an overcontact binary system with a degree of contact factor $f=24.8%(\\pm0.9%)$. The absolute parameters of the system were calculated: $M_1=1.319\\pm0.007M_{\\odot}$, $M_2=0.600\\pm0.01M_{\\odot}$; $R_1=1.28\\pm0.19R_{\\odot}$, $R_2=0.91\\pm0.13R_{\\odot}$. TX Cnc may be on the TRO-controlled stage of the evolutionary scheme proposed by Qian (2001a, b; 2003a), and may contains an invisible tertiary component ($m_3\\approx0.097M_{\\o...

Liang, Liu; Soonthornthum, BOONRUCKSAR; Liying, Zhu; Jiajia, He; Yuan, J -Z

2011-01-01T23:59:59.000Z

164

Long?Range Sound?Propagation Study in the Southern OceanProject Neptune  

Science Journals Connector (OSTI)

An experiment to determine some characteristics of long?range underwater sound propagation was undertaken by the U.S. Naval Ordnance Laboratory in April 1964. In this experiment Project Neptune sound signals were dropped at various ranges from a listening station in Bermuda. To supplement this and other stations one was established by the New Zealand Naval Research Laboratory off southern New Zealand to record the sound signals dropped on the final phase between Cape Town South Africa and Perth Australia. The recorded energy was analyzed in 1 3 ?oct bands to determine the transmission?path characteristics for low frequencies. The signal envelopes were found to differ in shape from the usual solar case and the attenuations were much larger than previously obtained for either RSR (refracted?surface reflected) or sofar propagation. These differences may be explained in terms of the different velocity structure of the Southern Ocean from that sound in the Atlantic or Pacific Oceans. In particular the thermocline is not as pronounced as in temperate or tropical regions and is absent south of the Antarctic convergence. Thus the energy was transmitted by a mixture of RSR and sofar modes little sofar energy arriving from those shots whose tracks crossed the Antarctic convergence.

A. C. Kibblewhite; R. N. Denham; P. H. Barker

1965-01-01T23:59:59.000Z

165

File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Jump to: navigation, search File File history File usage Metadata File:15-TX-a- Fact Sheet - Tips for a Speedy Administrative Review.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 16 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:17, 12 June 2013 Thumbnail for version as of 14:17, 12 June 2013 1,275 × 1,650 (16 KB) Apalazzo (Talk | contribs)

166

File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf |  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-e - Lease of Texas Parks & Wildlife Department Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 46 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:50, 26 July 2013 Thumbnail for version as of 12:50, 26 July 2013 1,275 × 1,650 (46 KB) Apalazzo (Talk | contribs)

167

File:USDA-CE-Production-GIFmaps-TX.pdf | Open Energy Information  

Open Energy Info (EERE)

TX.pdf TX.pdf Jump to: navigation, search File File history File usage Texas Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 442 KB, MIME type: application/pdf) Description Texas Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Texas External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:21, 27 December 2010 Thumbnail for version as of 16:21, 27 December 2010 1,650 × 1,275 (442 KB) MapBot (Talk | contribs) Automated bot upload

168

GRR/Section 15-TX-a - Air Permit - Permit to Construct | Open Energy  

Open Energy Info (EERE)

GRR/Section 15-TX-a - Air Permit - Permit to Construct GRR/Section 15-TX-a - Air Permit - Permit to Construct < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-TX-a - Air Permit - Permit to Construct 15TXAAirPermitPermitToConstruct (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Title 30 of the Texas Administrative Code 30 TAC 116.114 30 TAC 39.418 30 TAC 39.604 30 TAC 39.605 30 TAC 39.409 30 TAC 116.136 30 TAC 55.254 30 TAC 116.136 30 TAC 116.137 Triggers None specified Click "Edit With Form" above to add content 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf 15TXAAirPermitPermitToConstruct (1).pdf Error creating thumbnail: Page number not in range.

169

File:03-TX-g - Lease of Relinquishment Act Lands.pdf | Open Energy  

Open Energy Info (EERE)

-TX-g - Lease of Relinquishment Act Lands.pdf -TX-g - Lease of Relinquishment Act Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-g - Lease of Relinquishment Act Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 82 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:49, 29 July 2013 Thumbnail for version as of 11:49, 29 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs) 14:43, 26 July 2013 Thumbnail for version as of 14:43, 26 July 2013 1,275 × 1,650, 2 pages (82 KB) Apalazzo (Talk | contribs)

170

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

171

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

172

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

173

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

174

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

175

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

176

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

177

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

178

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

179

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

NSTec Environmental Restoration

2011-08-31T23:59:59.000Z

180

Photochemistry in Terrestrial Exoplanet Atmospheres III: Photochemistry and Thermochemistry in Thick Atmospheres on Super Earths and Mini Neptunes  

E-Print Network (OSTI)

Some super Earths and mini Neptunes will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO2 rather than CH4 or CO in a H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons (C2H2 and C2H4). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1...

Hu, Renyu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ON THE FORMATION LOCATION OF URANUS AND NEPTUNE AS CONSTRAINED BY DYNAMICAL AND CHEMICAL MODELS OF COMETS  

SciTech Connect

The D/H enrichment observed in Saturn's satellite Enceladus is remarkably similar to the values observed in the nearly-isotropic comets. Given the predicted strong variation of D/H with heliocentric distance in the solar nebula, this observation links the primordial source region of the nearly-isotropic comets with the formation location of Enceladus. That is, comets from the nearly-isotropic class were most likely fed into their current reservoir, the Oort cloud, from a source region near the formation location of Enceladus. Dynamical simulations of the formation of the Oort cloud indicate that Uranus and Neptune are, primarily, responsible for the delivery of material into the Oort cloud. In addition, Enceladus formed from material that condensed from the solar nebula near the location at which Saturn captured its gas envelope, most likely at or near Saturn's current location in the solar system. The coupling of these lines of evidence appears to require that Uranus and Neptune were, during the epoch of the formation of the Oort cloud, much closer to the current location of Saturn than they are currently. Such a configuration is consistent with the Nice model of the evolution of the outer solar system. Further measurements of the D/H enrichment in comets, particularly in ecliptic comets, will provide an excellent discriminator among various models of the formation of the outer solar system.

Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Mousis, Olivier; Petit, Jean-Marc [Institut UTINAM, CNRS-UMR 6213, Observatoire de Besancon, BP 1615, 25010 Besancon Cedex (France); Weaver, Harold A., E-mail: JJ.Kavelaars@nrc.gc.ca [Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099 (United States)

2011-06-20T23:59:59.000Z

182

ProjectRanking(Economic) District Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

FREEPORT HARBOR (0006170) TX 6 X X X X X X 95 Galveston TEXAS CITY SHIP CHANNEL, TX (0018130) TX 6 X X X X X X 101 Galveston MATAGORDA SHIP CHANNEL (0010810) TX 6 X X X X X X 115 Galveston TEXAS CITY CHANNEL (0076085) TX 1 X 338 Galveston CHANNEL TO PORT MANSFIELD, TEXAS (0074847) TX 6 X X X X X X 340 Galveston

US Army Corps of Engineers

183

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

184

Tank 241-TX-104, cores 230 and 231 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-104 push mode core segments collected between February 18, 1998 and February 23, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-104 Push Mode Core Sampling and Analysis Plan (TSAP) (McCain, 1997), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al., 1995) and the Safety Screening Data Quality Objective (DQO) (Dukelow, et.al., 1995). The analytical results are included in the data summary table. None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Alpha Activity (AT) exceeded notification limits as stated in the TSAP. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report. Appearance and Sample Handling Attachment 1 is a cross reference to relate the tank farm identification numbers to the 222-S Laboratory LabCore/LIMS sample numbers. The subsamples generated in the laboratory for analyses are identified in these diagrams with their sources shown. Core 230: Three push mode core segments were removed from tank 241-TX-104 riser 9A on February 18, 1998. Segments were received by the 222-S Laboratory on February 19, 1998. Two segments were expected for this core. However, due to poor sample recovery, an additional segment was taken and identified as 2A. Core 231: Four push mode core segments were removed from tank 241-TX-104 riser 13A between February 19, 1998 and February 23, 1998. Segments were received by the 222-S Laboratory on February 24, 1998. Two segments were expected for this core. However, due to poor sample recovery, additional segments were taken and identified as 2A and 2B. The TSAP states the core samples should be transported to the laboratory within three calendar days from the time each segment is removed from the tank; this requirement was not met for the segments from Core 231.

Diaz, L.A.

1998-07-07T23:59:59.000Z

185

The influence of littoral zone structural complexity on fish assemblages in Lake Conroe, TX  

E-Print Network (OSTI)

1999 Major Subject: Wildlife and Fisheries Science ABSTRACT The Influence of Littoral Zone Structural Complexity on Fish Assemblages in Lake Conroe, TX. (May 1999) Perry Felix Trial, B. A. , Austin College Chair of Advisory Committee: Dr. Frances... 6. 3626 6. 1100 5, 24 0. 0047 1. 61 0. 1551 1. 04 0, 4095 Season Habitat Error x Season 3 9 32 879. 134 15. 7056 3. 8325 229. 38 4. 10 0. 0001 0. 001 012 0. 1 E 0. 06 E 006 u 0. 04 IP ru 0. 02 012 01 E o. os E 0. 06 a 0...

Trial, Perry Felix

2012-06-07T23:59:59.000Z

186

Tank 241-TX-118, core 236 analytical results for the final report  

SciTech Connect

This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.

ESCH, R.A.

1998-11-19T23:59:59.000Z

187

File:03-TX-f - Lease of Land Trade Lands.pdf | Open Energy Information  

Open Energy Info (EERE)

f - Lease of Land Trade Lands.pdf f - Lease of Land Trade Lands.pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-f - Lease of Land Trade Lands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 42 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:54, 26 July 2013 Thumbnail for version as of 13:54, 26 July 2013 1,275 × 1,650 (42 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: GRR/Section 3-TX-f - Lease of Land Trade Lands

188

Freeport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

570242°, -70.1031057° 570242°, -70.1031057° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8570242,"lon":-70.1031057,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Cyclohexanone 1 Steam Optimization, Freeport Texas  

E-Print Network (OSTI)

Question temperature setpoints optimize supply/return delta T Temperature setback during unoccupied hours Thermal Energy Storage Question humidity setpoints Increase chilled water setpoint Shut systems off during non-production Investigate Free Cooling... Compressed Air Operate minimum number of compressors Cool air intake Reduce system pressure Use a booster compressor for small, high pressure needs Eliminate air leakage Install central compressor controls system Repair air/water separators Recover heat...

Morales, J. R.

190

FREEPORT HARBOR, TEXAS CHANNEL IMPROVEMENT PROJECT  

E-Print Network (OSTI)

the Gulf of Mexico; a main channel 45 feet deep and 400 feet wide; a Brazos Harbor channel 36 feet deep-loaded to traverse the waterway. The current channel depth requires that large crude carriers remain offshore and transfer their cargo into smaller crude tankers for the remainder of the voyage. This lightering operation

US Army Corps of Engineers

191

FREEPORT HARBOR, TEXAS CHANNEL IMPROVEMENT PROJECT  

E-Print Network (OSTI)

the Gulf of Mexico; a main channel 45 feet deep and 400 feet wide; a Brazos Harbor channel 36 feet deep requires that large crude carriers remain offshore and transfer their cargo into smaller crude tankers for the remainder of the voyage. This lightering operation takes place in the Gulf of Mexico where the two ships

US Army Corps of Engineers

192

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

193

U.S. LNG Imports from Other Countries  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

194

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

195

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

196

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

197

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

198

U.S. LNG Imports from Trinidad/Tobago  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

199

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

200

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

202

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

203

U.S. LNG Imports from Oman  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

204

U.S. LNG Imports from Peru  

Annual Energy Outlook 2012 (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

205

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Charles, LA LNG Imports from Canada Highgate Springs, VT Champlain, NY LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

206

U.S. LNG Imports from Qatar  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

207

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial...

208

U.S. LNG Imports from Equatorial Guinea  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

209

U.S. LNG Imports from Other Countries  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

210

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial...

211

U.S. Natural Gas Exports to Mexico  

Annual Energy Outlook 2012 (EIA)

LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial...

212

U.S. LNG Imports from Norway  

Annual Energy Outlook 2012 (EIA)

Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

213

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas (Million Cubic Feet)","Liquefied U.S. Natural Gas Exports to Russia (MMcf)","Liquefied U.S. Natural Gas Exports to South Korea (MMcf)","Freeport, TX...

214

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby...

215

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments  

E-Print Network (OSTI)

Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 1 MPI-Video Infrastructure for Dynamic Environments Je#11;rey E. Boyd #3; Edward Hunter Patrick H. Kelly Li-Cheng Tai Clifton. #12; Boyd et al., IEEE International Conference on Multimedia Systems 98, Austin, TX, June 1998 2

Boyd, Jeffrey E.

216

ProjectRanking(Economic) Division Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

X 94 Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY SHIP CHANNEL, TX (0017960) FL X 110 New Orleans MVD FRESHWATER BAYOU, LA (0006200) LA X 115 Galveston SWD TEXAS CITY CHANNEL Projects Project State(s) Opossumpipefish 2 Galveston SWD HOUSTON SHIP CHANNEL (0007780) TX X 8 Galveston

US Army Corps of Engineers

217

ProjectRanking(Economic) Division Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

) MS X 94 Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY SHIP CHANNEL, TX (0017960) FL X 110 New Orleans MVD FRESHWATER BAYOU, LA (0006200) LA X 115 Galveston SWD TEXAS CITY CHANNEL Projects Project State(s) Dwarfseahorse(PE) 2 Galveston SWD HOUSTON SHIP CHANNEL (0007780) TX X 8 Galveston

US Army Corps of Engineers

218

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

219

Catching the fish - Constraining stellar parameters for TX Psc using spectro-interferometric observations  

E-Print Network (OSTI)

Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. We analyse archive spectra obtained with the Short-Wavelength-Spectrometer (SWS) onboard of ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the 'classic' interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fit...

Klotz, D; Hron, J; Aringer, B; Sacuto, S; Marigo, P; Verhoelst, T

2013-01-01T23:59:59.000Z

220

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network (OSTI)

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450  

E-Print Network (OSTI)

What: UHV Degree Information Session Where: UH System Cinco Ranch, 4242 S Mason Rd. Katy TX 77450 with times to suit most schedules, as well as online options. Admission to UHV is straightforward and free! Stop by to learn more about the programs UHV offers at the UHS Cinco Ranch (Katy) campus: Business

Azevedo, Ricardo

222

File:03-TX-d - Lease of Public School Fund Land (1).pdf | Open Energy  

Open Energy Info (EERE)

Land (1).pdf Land (1).pdf Jump to: navigation, search File File history File usage Metadata File:03-TX-d - Lease of Public School Fund Land (1).pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 41 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:26, 29 July 2013 Thumbnail for version as of 11:26, 29 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) 13:47, 26 July 2013 Thumbnail for version as of 13:47, 26 July 2013 1,275 × 1,650 (41 KB) Apalazzo (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

223

To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration  

E-Print Network (OSTI)

efficient than ASHRAE 90.1- 1999. The utility data from the first year's operation match well the analysisLBNL-60978 To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX

224

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

225

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

226

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

227

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

228

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

229

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

230

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

231

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

232

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

233

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

234

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

235

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

236

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

237

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

238

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

239

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

240

U.S. Price of Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 7.07 10.03 4.59 4.94 5.63 4.27 1985-2012 Cameron, LA -- -- 4.78 5.78 8.13 10.54 2007-2012 Cove Point, MD 7.26 9.07 4.05 5.37 5.30 13.82 2003-2012 Elba Island, GA 6.79 9.71 3.73 4.39 4.20 2.78 2003-2012 Everett, MA 7.32 10.33 5.87 4.79 4.77 3.70 2003-2012 Freeport, TX -- 13.83 4.51 6.96 9.27 10.53 2007-2012 Golden Pass, TX -- -- -- 7.90 5.36 -- 2007-2012 Gulf Gateway, LA 8.36 -- -- -- 2004-2010 Gulf LNG, MS -- -- -- -- 12.93 -- 2007-2012 Lake Charles, LA 6.88 7.63 3.32 4.05 4.18 2.10 2003-2012 Neptune Deepwater Port -- -- -- 6.41 -- -- 2007-2012 Northeast Gateway -- 12.54 6.71 5.41 -- -- 2007-2012 Sabine Pass, LA -- 11.82 4.21 5.39 7.58 7.99 2007-2012

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ProjectRanking(Economic) District Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

FREEPORT HARBOR (0006170) TX 6 X X X X X X 95 Galveston TEXAS CITY SHIP CHANNEL, TX (0018130) TX 6 X X X X X X 101 Galveston MATAGORDA SHIP CHANNEL (0010810) TX 6 X X X X X X 115 Galveston TEXAS CITY CHANNEL(PE) Opossumpipefish(SoC) Queenconch(C) Rabbitsfoot(T) Alabamashad(SoC) 17 12 12 17 17 17 2 1 2 Galveston HOUSTON SHIP

US Army Corps of Engineers

242

Analysis of Seven NEPTUN-III (Tight-Lattice) Bottom-Flooding Experiments with RELAP5/MOD3.3/BETA  

SciTech Connect

Seven tight-lattice NEPTUN-III bottom-flooding experiments are analyzed by using the frozen version of RELAP5, RELAP5/MOD3.3/BETA. This work is part of the Paul Scherrer Institute (PSI) contribution to the High Performance Light Water Reactor (HPLWR) European Union project and aims at assessing the capabilities of the code to model the reflooding phenomena in a tight hexagonal lattice (which was one of the core geometries considered at the time for an HPLWR) following a hypothetical loss-of-coolant accident scenario. Even though the latest version of the code has as a default the new PSI reflood model developed by the author, which was tested and assessed against reflooding data obtained at standard light water reactor lattices, this work shows that for tight lattices, the code underpredicts the peak clad temperatures measured during a series of reflooding experiments performed at the NEPTUN-III tight-lattice heater rod bundle facility. The reasons for these differences are discussed, and the (possible) changes needed in the framework of RELAP5/MOD3.3 for improving the modeling of reflooding in tight lattices are investigated.

Analytis, G.Th. [Paul Scherrer Institute (Switzerland)

2004-05-15T23:59:59.000Z

243

ProjectRanking(Economic) Division Potentially Impacted USACE Navigation Projects  

E-Print Network (OSTI)

NEWTOWN CREEK (0012590) NY X 94 Galveston SWD FREEPORT HARBOR (0006170) TX X 95 Galveston SWD TEXAS CITY Projects Project State(s) Redknot(PT) 1 New Orleans MVD MISS RIVER - BR TO GULF (0000068) LA X 2 Galveston SWD HOUSTON SHIP CHANNEL (0007780) TX X 4 New York NAD NEW YORK HARBOR (0012490) NY X 8 Galveston SWD

US Army Corps of Engineers

244

Magnetic Fields at Neptune  

Science Journals Connector (OSTI)

...LOWENSTEIN, R.F., ASTROPHYS J 218 : L145 ( 1977 ). LUNDIN, R, ON THE MAGNETOSPHERIC BOUNDARY-LAYER AND SOLAR-WIND ENERGY-TRANSFER INTO THE MAGNETOSPHERE, SPACE SCIENCE REVIEWS 48 : 263 ( 1988 ). NELLIS, W.J., THE NATURE OF THE...

Norman F. Ness; Mario H. Acua; Leonard F. Burlaga; John E. P. Connerney; Ronald P. Lepping; Fritz M. Neubauer

1989-12-15T23:59:59.000Z

245

Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 John Everitt, Alan Brashears, Wayne Keeling, and Danny Carmichael, Research Associate,  

E-Print Network (OSTI)

TITLE: Cotton Yield Mapping at AG-CARES, Lamesa, TX, 2003 AUTHORS: John Everitt, Alan Brashears, and Research Associate RESULTS AND DISCUSSION: A John Deere 7445 cotton stripper equipped with a MICRO-TRAK ® yield monitor was used to harvest cotton at AG-CARES in 2003. The MICRO-TRAK ® yield monitor system used

Mukhtar, Saqib

246

Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater.

Hodges, F.N.

1998-01-01T23:59:59.000Z

247

~tx421.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

FRIDAY APRIL 3, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., Edward Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG JOHN PAUL DELEY, OIT

248

~tx410.ptx  

U.S. Energy Information Administration (EIA) Indexed Site

THURSDAY, APRIL 2, 2009 The meeting convened at 9:00 a.m. in Room 8E-089 of the James Forrestal Building, 1000 Independence Avenue, SW, Washington, D.C., Ed Blair, Chair, presiding. COMMITTEE MEMBERS PRESENT: EDWARD BLAIR, Chair STEVE BROWN MICHAEL COHEN BARBARA FORSYTH WALTER HILL VINCENT IANNACCHIONE NANCY KIRKENDALL EDWARD KOKKELENBERG ISRAEL MELENDEZ MICHAEL TOMAN JOHN WEYANT (202) 234-4433 Neal R. Gross & Co., Inc. Page 2 EIA STAFF PRESENT: STEPHANIE BROWN, Designated Federal Official, Director, Statistics and Methods Group (SMG) JAMES BERRY CAROL JOYCE BLUMBERG TINA BOWERS JAKE BOURNAZIAN, SMG EUGENE BURNS MICHAEL COLE, Office of Integrated Analysis and Forecasting (OIAF) JOHN CONTI BRENDA COX, SRA RAMESH DANDEKAR, SMG

249

Alkali/TX sub 2 catalysts for CO/H sub 2 conversion to C sub 1 -C sub 4 alcohols  

SciTech Connect

The objective of this research is to investigate and develop novel catalysts for the conversion of coal-derived synthesis gas into C{sub 1}--C{sub 4} alcohols by a highly selective process. Therefore, the variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO {le}1 synthesis gas for a series of A/TX{sub 2} compounds, where A is a surface alkali dopant, T is a transition metal, and X is a S, Se, or Te, will be determined. The alkali component A, which is essential for C-O and C-C bond forming reactions leading to alcohols, will be highly dispersed on the TX{sub 2} surfaces by using chemical vapor deposition (CVD) and chemical complexation/anchoring (CCA) methods. Catalysts that have been prepared during this quarter include RuS{sub 2}, NbS{sub 2}, K/MoS{sub 2}, and K/Crown either/MoS{sub 2}. Catalysts tested include KOH/MoS{sub 2} and K/Crown ether/MoS{sub 2}. 9 refs., 10 figs., 2 tabs.

Klier, K.; Herman, R.G.; Brimer, A.; Richards, M.; Kieke, M.; Bastian, R.D.

1990-09-01T23:59:59.000Z

250

The feeding biomechanics of juvenile red snapper (Lutjanus campechanus) from the northwestern Gulf of Mexico  

E-Print Network (OSTI)

profile shell ridge (on-ridge) and adjacent mud areas (off-ridge) on Freeport Rocks, TX, and divided into three size classes (?3.9 cm SL, 4.0-5.9 cm SL, ?6 cm SL). Feeding morphology and kinematics were characterized and compared among size classes...

Case, Janelle Elaine

2009-05-15T23:59:59.000Z

251

Neptune Systems | Open Energy Information  

Open Energy Info (EERE)

Address: PO Box 8719 Place: Breda Zip: 4820 BA Region: Netherlands Sector: Marine and Hydrokinetic Phone Number: +31 (0) 652000097 Website: http:ftp:ftp.cordis.europa This...

252

Table 2 -Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN MO NE NY NC ND OH PA SD TX WI Area  

E-Print Network (OSTI)

Table 2 - Lime use and practices on Corn, major producing states, 2001 CO GA IL IN IA KS KY MI MN.7 Table 2 - Lime use and practices on Corn, major producing states, 2000 CO IL IN IA KS KY MI MN MO NE NY use and practices on Corn, major producing states, 1999 CO IL IN IA KS KY MI MN MO NE NC OH SD TX WI

Kammen, Daniel M.

253

~txF74.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEDNESDAY WEDNESDAY OCTOBER 19, 2011 + + + + + The Electricity Advisory Committee met in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 2:00 p.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings RALPH MASIELLO, KEMA RICH MEYER, National Rural Electric

254

~tx22C0.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

+ + + + + STUDYING THE COMMUNICATIONS REQUIREMENTS OF ELECTRIC UTILITIES TO INFORM FEDERAL SMART GRID POLICIES + + + + + PUBLIC MEETING + + + + + THURSDAY, JUNE 17, 2010 + + + + + The Public Meeting was held in Room 8E069 at the Department of Energy, Forrestal Building, 1000 Independence Avenue, S.W., Washington, D.C., at 10:00 a.m., Scott Blake Harris, Chair, presiding. PRESENT: BECKY BLALOCK SHERMAN J. ELLIOTT LYNNE ELLYN SCOTT BLAKE HARRIS JIM INGRAHAM JIM L. JONES MICHAEL LANMAN KYLE McSLARROW ROY PERRY 202-234-4433 Neal R. Gross & Co., Inc. Page 2

255

College TX 71843-25000  

E-Print Network (OSTI)

C L S F A 5 P F E m. N .n. m m w. F u .H II. A, m m mu" ..... 59. (1973) 5003. [ll] BACRI, J. C. et RAJAONARISON, R., A paraitre. [12] KAWASAKI, K., Ann. Phys.

256

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

21 15 12 8 9 12 1997-2013 21 15 12 8 9 12 1997-2013 To Brazil 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 6 9 8 5 8 7 2007-2013 Sweetgrass, MT 6 9 8 5 8 7 2012-2013 To Chile 0 0 0 0 0 0 2011-2013 Sabine Pass, LA 2011-2011 To China 0 0 0 0 0 0 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India 0 0 0 0 0 0 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan 0 0 0 0 0 0 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 15 6 3 3 2 4 1997-2013 Nogales, AZ 10 6 3 3 2 4 2012-2013 Otay Mesa, CA 5 2011-2013 To Portugal 2012-2012 Sabine Pass, LA 2012-2012 To Russia 0 0 0 0 0 0 2007-2013 To South Korea 0 0 0 0 0 0 2009-2013 Freeport, TX

257

For questions, contact the Rice Alliance at 713.348.3443 Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship Rice University MS-531 P.O. Box 2932 Houston, TX 77252-2932  

E-Print Network (OSTI)

For questions, contact the Rice Alliance at 713.348.3443 · Submit form with payment details via fax at 713.348.3110 or mail to: Rice Alliance for Technology and Entrepreneurship · Rice University · MS-531 · P.O. Box 2932 · Houston, TX · 77252-2932 Rice Alliance Annual Corporate Underwriter Program 2012

258

First Plasma Wave Observations at Neptune  

Science Journals Connector (OSTI)

...the electric field of plasma waves and radio emissions...range from 10 Hz to 56.2 kHz. Further information...high frequencies (>100 kHz) as much as 30 days before...closest approach (2), the plasma wave in-strument did...low frequencies (kHz) until only a few days...

D. A. Gurnett; W. S. Kurth; R. L. Poynter; L. J. Granroth; I. H. Cairns; W. M. Macek; S. L. Moses; F. V. Coroniti; C. F. Kennel; D. D. Barbosa

1989-12-15T23:59:59.000Z

259

EVIDENCE FOR A COMET BELT BEYOND NEPTUNE  

Science Journals Connector (OSTI)

...OBSERVATORY, CAMBRIDGE, MASSACHUSETTS HARVARD COLLEGE OBSERVATORY, CAMBRIDGE, MASSACHUSETTS EVIDENCE FOR A COMET...OBSERVATORY, CAMBRIDGE, MASSACHUSETTS. | Journal Article Proceedings...the outskirts of the solar system." I concur with...

Fred L. Whipple

1964-01-01T23:59:59.000Z

260

An internship with San Tomas hunting camp Freeport-McMoRan, Inc.  

E-Print Network (OSTI)

Guests . Personal Research Project . . . . . . Quail Nanagament Halfmutting Hutch building . . . . . . . . . . . ~ Prescribed burning Discing . ~ . Food habits Banding . Deer Nsnsgement . . . . . . . ~ . . ~ Censusing Fall burning Fawn... & N University . . . . . . . . . . . San Tomas Hunting Camp . . . . . . . . . . . 22 23 LITERATURE CITED APPENDIX A ? Resear ch Pro ject APPENDIX B ? Progress Report - Freeze tailed Deer Branding of White- 25 26 52 LIST OF FIGURES, TABLES...

Huggins, J. Grant

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America LNG Import Terminals America LNG Import Terminals Status: Existing Source: Various Public Sources Everett Cove Point Lake Charles Elba Island Gulf Gateway (*Decommissioning) Altamira Existing Terminals - U.S. Existing Terminals - non U.S. Northeast Gateway Freeport LNG Sabine Pass Energia Costa Azul Cameron Canaport Neptune LNG Golden Pass Gulf LNG Energy Manzanillo North America LNG Import Terminals Status: Approved, Under Construction* Source: Various Public Sources Approved Terminals, Under Construction - non U.S. Approved Terminals, Under Construction - U.S. *FE-30 defines "under construction" as having undergone continuous construction activities beyond initial site preparation North America LNG Import Terminals Status: Approved, Not Under Construction

262

Field demonstration of aviation turbine fuel MIL-T-83133C, grade JP-8 (NATO code F-34) at Fort Bliss, TX. Interim report 1 Feb 89-31 Jul 90  

SciTech Connect

A JP-8 fuel demonstration was initiated at Ft. Bliss, TX, to demonstrate the impact of using aviation turbine fuel MIL-T-83133C, grade JP-8 in all military diesel fuel-consuming ground vehicles and equipment. Three major organizations, one ordnance battalion and two activities with a total of 2807 vehicles/equipment (V/E), were identified as participants in the demonstration program, which is authorized to continue through 30 September 1991. No fuel storage tank or V/E fuel cells were drained and flushed prior to introduction of JP-8 fuel. This procedure resulted in a commingling of JP-8 fuel with existing diesel fuel. As of 31 July 1990 approximately 4,700,000 gallons of JP-8 fuel had been dispensed to user units at Ft. Bliss and at Ft. Irwin National Training Center (NTC) in California. Three areas of concern arose from the beginning of the program: (1) plugging of fuel filters, (2) loss of power, and (3) overheating. The use of JP-8 fuel did not cause or exacerbate any V/E fuel filter plugging. Where power loss was apparent, generally it was commensurate with the difference in heating values between JP-8 and diesel fuel. The V/E at Ft. Bliss operated satisfactorily with the JP-8 fuel with no alterations, mechanical or otherwise, having to be made to any engines or fuel systems. There were no major differences in fuel procurement costs, V/E fuel consumption, AOAP-directed oil changes, and fuel-wetted component replacements.

Butler, W.E.; Alvarez, R.A.; Yost, D.M.; Westbrook, S.R.; Buckingham, J.P.

1990-12-01T23:59:59.000Z

263

~txF7D.ptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THURSDAY THURSDAY OCTOBER 20, 2011 + + + + + The Electricity Advisory Committee met, in the Conference Center of the National Rural Electric Cooperative Association Headquarters, 4301 Wilson Boulevard, Arlington, Virginia, at 8:00 a.m., Richard Cowart, Chair, presiding. MEMBERS PRESENT RICHARD COWART, Regulatory Assistance Project, Chair RICK BOWEN, Alcoa RALPH CAVANAGH, Natural Resources Defense Council THE HONORABLE ROBERT CURRY, New York State Public Service Commission JOSE DELGADO, American Transmission Company (Ret.) ROGER DUNCAN, Austin Energy (Ret.) ROBERT GRAMLICH, American Wind Energy Association MICHAEL HEYECK, American Electric Power JOSEPH KELLIHER, NextEra Energy, Inc. EDWARD KRAPELS, Anbaric Holdings

264

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...reported here were obtained assuming an average radiation factor of G.6. Characteristic frequencies (boatwTIght, 1981) were usec to calculate relative estimates of fault size. All three moment estimates resulted in approximate linear increases of log...

265

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

266

Micro-Grids for Colonias (TX)  

SciTech Connect

This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

2012-07-31T23:59:59.000Z

267

SSA annual Meeting Announcement - Austin, TX  

Science Journals Connector (OSTI)

...Murphy, Earth Sciences Branch, Office of Nuclear Regulatory Research, U. S. Nuclear Regu- latory Commision, Mail Stop 113055, Washington, D...P-coda and LG waves from underground nuclear explosions in Eurasia W. Mitronovas...

268

University of Texas, Austin Austin, TX 78712  

E-Print Network (OSTI)

to this problem including; toxic materials, waste and wastewater, emissions and greenhouse gases, energy usage industrial activities in the US, the contribution of manu- facturing to various environmental impacts waste, 3 energy, and 4 carbon emissions. Manufacturing is also a heavy user of water, and there have

Gutowski, Timothy

269

Microsoft Word - 564M_Biomass_Project Descriptions FINAL 120409  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Grant Amount Non-Fed Amount Project Location (City) Project Location (State) Description 1) Pilot and Demonstration Scale FOA - Pilot Scale Algenol Biofuels Inc. $25,000,000 $33,915,478 Freeport TX This project will make ethanol directly from carbon dioxide and seawater using algae. The facility will have the capacity to produce 100,000 gallons of fuel- grade ethanol per year. American Process Inc. $17,944,902 $10,148,508 Alpena MI This project will produce fuel and potassium acetate, a compound with many industrial applications, using processed wood generated by Decorative Panels International, an existing hardboard manufacturing facility in Alpena. The pilot plant will

270

Koch Filter and DOW Teaming Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

Koch Filter Corporation Dow Chemical Koch Filter Corporation Dow Chemical 4411-A Darien Street 2301 Brazosport Boulevard Houston, TX 77028 Freeport, TX 77541 Business: HVAC Filter Manufacturer Business: Chemical Manufacturer Bob Sheppard John Theile Regional Sales Manager Reliability Engineer Phone: 713-672-6550 Phone: 979-238-1894 Email: bobs@kochfilter.com Email: jptheile@dow.com Koch Filter saves Dow $156,000 by improving air flow to turbines Project Scope Koch Filter Corporation evaluated the turbine operation at a Dow Chemical facility. They determined that the gas turbine's air intake system was undersized and pre-filters had an initial resistance that was too high, causing the turbine to be "starved" for air. Koch replaced these filters with a better filter that

271

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 6.23 7.69 8.40 9.53 10.54 12.82 1985-2012 To Brazil -- -- -- 7.50 11.40 11.19 2007-2012 Freeport, TX -- -- -- -- 12.74 11.19 2007-2012 Sabine Pass, LA -- -- -- 7.50 11.00 -- 2007-2012 To Canada 12.07 -- -- -- -- 13.29 2007-2012 Buffalo, NY 12.07 -- -- -- 2006-2010 Sweetgrass, MT -- 13.29 2011-2012 To Chile -- -- -- -- 13.91 -- 2007-2012 Sabine Pass, LA -- -- -- -- 13.91 -- 2007-2012 To China -- -- -- -- 12.25 -- 2007-2012 Kenai, AK -- -- -- -- 10.61 -- 2007-2012 Sabine Pass, LA -- -- -- -- 12.25 -- 2007-2012 To India -- -- -- 7.56 8.23 11.10 2007-2012 Freeport, TX -- -- -- 7.56 8.66 11.10 2007-2012 Sabine Pass, LA -- -- -- -- 7.85 -- 2007-2012

272

U.S. Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. Total 48,485 39,217 33,355 64,793 70,001 28,298 1985-2012 To Brazil 0 0 0 3,279 11,049 8,142 2007-2012 Freeport, TX 0 0 0 0 2,581 8,142 2007-2012 Sabine Pass, LA 0 0 0 3,279 8,468 0 2007-2012 To Canada 2 0 0 0 0 2 2007-2012 Buffalo, NY 2 0 0 0 2006-2010 Sweetgrass, MT 0 2 2011-2012 To Chile 0 0 0 0 2,910 0 2007-2012 Sabine Pass, LA 0 0 0 0 2,910 0 2007-2012 To China 0 0 0 0 6,201 0 2007-2012 Kenai, AK 0 0 0 0 1,127 0 2007-2012 Sabine Pass, LA 0 0 0 0 6,201 0 2007-2012 To India 0 0 0 2,873 12,542 3,004 2007-2012 Freeport, TX 0 0 0 2,873 5,993 3,004 2007-2012 Sabine Pass, LA 0 0 0 0 6,549 0 2007-2012 To Japan 2,822 2,741 5,037 2010-2012

273

U.S. Price of Liquefied Natural Gas Exports by Point of Exit  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. Total 11.36 12.84 13.38 12.89 13.25 13.53 1997-2013 To Brazil -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Canada 14.55 14.55 14.60 15.01 14.01 13.94 2007-2013 Sweetgrass, MT 14.55 14.55 14.60 15.01 14.01 13.94 2012-2013 To Chile -- -- -- -- -- -- 2011-2013 Sabine Pass, LA 2011-2011 To China -- -- -- -- -- -- 2011-2013 Kenai, AK 2011-2011 Sabine Pass, LA 2011-2011 To India -- -- -- -- -- -- 2010-2013 Freeport, TX 2011-2012 Sabine Pass, LA 2011-2011 To Japan -- -- -- -- -- -- 2010-2013 Cameron, LA 2011-2011 Kenai, AK 2011-2012 Sabine Pass, LA 2012-2012 To Mexico 10.13 10.36 10.40 9.91 9.77 12.81 1992-2013 Nogales, AZ 10.43 10.36 10.40 9.91 9.77 12.81 2012-2013

274

U.S. Liquefied Natural Gas Imports by Point of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 5,171 5,626 8,046 8,111 8,809 16,950 1997-2013 From Canada 0 0 0 88 139 139 2013-2013 Highgate Springs, VT 88 139 139 2013-2013 From Algeria 0 0 0 0 0 0 1973-2013 From Australia 0 0 0 0 0 0 1973-2013 From Brunei 0 0 0 0 0 0 2001-2013 From Egypt 0 0 0 0 0 0 2005-2013 Cameron, LA 2011-2011 Elba Island, GA 2011-2012 Freeport, TX 2011-2011 Gulf LNG, MS 2011-2011 From Equatorial Guinea 0 0 0 0 0 0 2007-2013 From Indonesia 0 0 0 0 0 0 1997-2013 From Malaysia 0 0 0 0 0 0 1999-2013 From Nigeria 0 0 0 0 0 2,590 1997-2013 Cove Point, MD 2,590 2011-2013 From Norway 0 0 0 0 2,709 2,918 2007-2013 Cove Point, MD 2011-2011 Freeport, TX 2,709 2,918 2013-2013 Sabine Pass, LA 2011-2012 From Oman 0 0 0 0 0 0 2000-2013 From Peru

275

Neptune Beach, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

30.311908°, -81.3964734° 30.311908°, -81.3964734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.311908,"lon":-81.3964734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Millimeter and Near-Infrared Observations of Neptune's Atmospheric Dynamics  

E-Print Network (OSTI)

Steffes 1996) and a solar abundance or less of NH 3 (RomaniSteffes 1996) and using a solar abundance of nitrogen in NHof 0.1 times the solar abundance, from observations of the

Cook, Statia Honora Luszcz

2012-01-01T23:59:59.000Z

277

Possibility of detecting magnetospheric radio bursts from Uranus and Neptune  

Science Journals Connector (OSTI)

... see from Fig. 1 that Jupiter and Saturn may radiate 1?5% of the solar wind energy input into the magnetosphere while Earth may radiate only 0.1%. These percentages must ...

C. F. KENNEL; J. E. MAGGS

1976-05-27T23:59:59.000Z

278

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

279

RAPID/Roadmap/3-TX-e | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

280

RAPID/Roadmap/13-TX-a | Open Energy Information  

Open Energy Info (EERE)

Dune Rules Sec. 15.3(d)). Note: Under the Beach Dune Rules Sec. 15.3(s)(2)(a) the exploration for and production of oil and gas is exempted from the Dune Protection permit...

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RAPID/Roadmap/3-TX-f | Open Energy Information  

Open Energy Info (EERE)

session of the legislature, the commissioner must report on the status of the exploration, development, and production of geothermal energy and associated resources under...

282

txH20; Volume 6, Number 1 (Complete)  

E-Print Network (OSTI)

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Wythe, Kathy

2010-01-01T23:59:59.000Z

283

txH2O: Volume 6, Number 1 (Complete)  

E-Print Network (OSTI)

impaired water bodies with stakeholder-driven WPPs 18 I A watershed blueprint Partners work together to restore Arroyo Colorado?s health 20 I The battle of bacteria Agencies, stakeholders focusing on restoring water quality 22 I Lone Star Healthy... contami- nation of water and the presence of pathogens. These E. coli sources can be from sewage overflows, polluted stormwater runoff, or malfunctioning septic systems. Toxic golden algae blooms have killed fish in Lake Granbury and Lake Whitney...

Texas Water Resources Institute

2010-01-01T23:59:59.000Z

284

T>x Qoooo&>9 m Ris-M-2733  

E-Print Network (OSTI)

at the Desy synchroton in Hamburg. This report describes a new instrumentation based on a personal computer

285

RAPID/Roadmap/12-TX-a | Open Energy Information  

Open Energy Info (EERE)

take, or kill, or attempt to capture, trap, take, or kill, endangered or threatened fish or wildlife. (Texas Parks and Wildlife Code 68). "Take" means collect, hook, hunt,...

286

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

Office of Legacy Management (LM)

Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site. LMSS10631. March 2014 Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings...

287

txH2O: Volume 5, Number 2 (Complete)  

E-Print Network (OSTI)

water use in the land- scape, and capture and reuse water,? Harris said. ?We want families to learn how to use water wisely and efficiently.? For more information about water conserva- tion and rainwater harvesting, visit http://fcs. tamu... optional with drip irrigation), and 7) distribu- tion to plants, wildlife, birds, livestock, or in-home uses. Incentives such as no sales tax on supplies encourage rainwater harvesting. In January 2007, the Texas Commission on Environmental Quality...

Texas Water Resources Institute

2009-01-01T23:59:59.000Z

288

txH20: Volume 8, Number 3 (Complete)  

E-Print Network (OSTI)

in the Metroplex are looking at spending millions of dollars to build water and wastewater treatment plants because of population growth. ?If many people would harvest rainwater and use that for irrigation, that would be a huge savings, so cities might be able... tolerance, water reclamation and water e#23;ciency. ? Six new campus buildings are using harvested rainwater and air conditioner condensate to water their landscapes. I hope you enjoying reading this issue about a timely topic. As always, let?s continue...

Wythe, Kathy

2013-01-01T23:59:59.000Z

289

RAPID/Roadmap/18-TX-a | Open Energy Information  

Open Energy Info (EERE)

that could result from the release of harmful substances stored in underground storage tanks (USTs) and provides for the protection of human health and safety as well as...

290

txH2O: Volume 3, Number 1 (Complete)  

E-Print Network (OSTI)

deposits?remnants of the shallow Permian Sea that once covered the area?in soils and rocks. The reduced quality and quantity has also harmed the river basin?s biodiversity. These problems have per- sisted for many years and have only been intensified... be increased.? According to Dr. Charles Hart, project director, the project?s first objective is establishing a research baseline for the watershed by identifying and evaluating the river basin?s physical features, from both a historical view as well...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

291

txH2O: Volume 2, Number 2 (Complete)  

E-Print Network (OSTI)

Summerlin Message from the DirectorDr. C. Allan Jones A n important component of restoring and maintaining water quality is the Total Maximum Daily Load (TMDL) Program, authorized by and created to fulfill the requirements of Section 303(d) of the federal...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

292

txH2O: Volume 2, Number 1 (Complete)  

E-Print Network (OSTI)

help control nonpoint source pollution in Texas Got Manure? Technologies reducing phosphorus in dairy wastes West Texas Rain Rainwater harvesting demonstration sites save water and money Investing in the Future TWRI awards Mills Scholarships... loading, logging, and agricultural and residential development, the consen- sus of the workshop participants was that some restoration of the timing, magnitude and duration of flows in Big Cypress Creek is critical to the sustain- ability of the lake...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

293

txH20: Volume 6, Number 2 (Complete)  

E-Print Network (OSTI)

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Wythe, Kathy

2011-01-01T23:59:59.000Z

294

txH2O: Volume 6, Number 2 (Complete)  

E-Print Network (OSTI)

participation matters and stories from a few folks who?ve proved it 20 I Deep in the forests Program works to protect water quality through forestry practices 23 I Rainwater for the future Rainwater harvesting increases in popularity across the state... ecosystem there has adapted to it. Naturally occurring microbes thrive on those small amounts of crude, and acres of deep coral forests live o#15; of the seeps, McKinney said. However, massive amounts of oil released in a short amount of time...

Texas Water Resources Institute

2011-01-01T23:59:59.000Z

295

August 15, 2013 RX/TX BARGAINING UPDATE 11  

E-Print Network (OSTI)

years. In addition, UPTE has yet to meaningfully negotiate over UC's pension reforms that will protect reform designed to preserve the long-term viability of the retirement programs, so that UC can continue already agreed to these pension reforms, which also apply to non- represented faculty and staff. · Good

Leistikow, Bruce N.

296

txH2O: Volume 4, Number 3 (Complete)  

E-Print Network (OSTI)

. In this position, I will focus on improving urban and suburban water management. I have enjoyed my 20 years in administration positions with Texas AgriLife Research (Texas Agricultural Experiment Station). I am proud of the accomplishments of the institute..., the utility can reverse the process and withdraw the same water out of the Carrizo, into its water delivery system, and on to its customers. This type of water management system is called aquifer storage and recovery (ASR). Although definitions vary, ASR...

Texas Water Resources Institute

2008-01-01T23:59:59.000Z

297

RAPID/Roadmap/14-TX-d | Open Energy Information  

Open Energy Info (EERE)

Texas (RRC) or the Texas Commission on Environmental Quality (TCEQ) reviews and issues Water Quality Certificates. Under the Memorandum of Understanding between the Railroad...

298

txH20: Volume 7, Number 3 (Complete)  

E-Print Network (OSTI)

Texas A&M AgriLife Research Texas A&M AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences In this issue: ReLevant research: ensuring water supplies Vadose zone modeling, desalination technology...-based technology. In South Texas, scientists tested an innovative technology for desalinating brackish water, learning much about what worked and what didn?t. Technology transfer#24;that critical last step of ge#26;ing science out to the public#24;is...

Wythe, Kathy

2012-01-01T23:59:59.000Z

299

txH2O: Volume 3, Number 2 (Complete)  

E-Print Network (OSTI)

the state to become involved. Through other bills, the Legislature created seven new groundwater districts, addressed flooding and desalination, dealt with rainwater harvesting and irrigation and provided significant appropriations to implement various water... budgets, monitoring research and ensuring that deadlines are met. One of the project managers? primary functions is to align interested research scientists from the Texas Agricultural Experiment Station and other universi- ties and Texas Cooperative...

Texas Water Resources Institute

2007-01-01T23:59:59.000Z

300

RAPID/Roadmap/7-TX-c | Open Energy Information  

Open Energy Info (EERE)

utility and a "retail electric utility". A "retail electric utility" means a person, political subdivision, electric cooperative, or agency that operates, maintains, or controls...

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Depositional systems distribution of the lower Oligocene Vicksburg Formation, TX  

SciTech Connect

The lower Oligocene Vicksburg Formation of Texas is situated between the upper Eocene Jackson Group and the upper Oligocene Frio Formation. The paleogeography of the Texas Gulf coastal plain during the early Oligocene is typical of a progradational passive continental margin. However, a detailed regional depositional systems analysis of stratigraphic units, such as the Vicksburg, within a mature petroleum basin can yield results beneficial in both exploration and development. Stratigraphic plays are determined from the distribution of depositional systems, and reservoir characteristics are heavily influenced by conditions of sedimentation. Two primary depocenters (and exploration fairways) of the Texas Vicksburg were the Houston Embayment and the Rio Grande Embayment; they were separated by a deep-rooted structural nose in central Texas: the San Marcos arch. Within the embayments, deltaic depositional systems merged along strike with barrier/strand plain systems. Updip, fluvial systems traversed coastal plain units. On the seaward edge of the paralic systems, sand and mud deposits prograded across, and built up over, the relict Jackson shelf and shelf margin. Contemporaneous growth faulting controlled deltaic depositional patterns in the Rio Grande Embayment and, to a lesser degree, in the Houston Embayment. A barrier/strand plain system within an interdeltaic coastal bight extended across the northern flank of the San Marcos arch. Several minor wave-dominated delta complexes were interspersed within this regional setting. The southern flank of the arch was influenced by the fluvial systems of the Rio Grande Embayment that established another wave-dominated delta. Deposition of the Vicksburg progradational paralic sediments was initiated seaward of the Jackson coastal position. A brief, minor transgression interrupted the progradational pattern during middle Vicksburg deposition.

Coleman, J.; Galloway, W.E. (Univ. of Texas, Austin (USA))

1990-05-01T23:59:59.000Z

302

txH20: Volume 7, Number 2 (Complete)  

E-Print Network (OSTI)

to come from,? Mace said. According to Dr. Michael Hightower of Sandia National Laboratories in Albuquerque, NM, desalination use is growing by #23;#24; percent a year and water reuse by #23;#20; percent in the United States. #31;at diversi#28...;cation is important, he said, because the country is ?stressing its surface water and groundwater sources.? Although cost is a hindrance to desalination, he said, that cost is decreasing while the cost of fresh water production is increasing. Robert...

Wythe, Kathy

2012-01-01T23:59:59.000Z

303

txH2O: Volume 9, Number 1 (Complete)  

E-Print Network (OSTI)

Runoff Water Table Unsaturated Soil Lake Infiltration Kevin Wagner Message from the Director Groundwater is the largest source of water in Texas, comprising almost 60 percent of water use in the state. The Ogallala Aquifer alone supplies 40 percent... will provide additional drinking water for thirsty communities. Storage of water supplies underground where the water will not be subject to evaporation through aquifer storage and recovery is yet another important tool for helping Texans meet future water...

Wythe, Kathy

2014-01-01T23:59:59.000Z

304

RAPID/Roadmap/8-TX-f | Open Energy Information  

Open Energy Info (EERE)

to the utility system using pre-certified equipment, the protective settings and operations shall be those specified by the utility; Developer is responsible for...

305

RAPID/Roadmap/5-TX-a | Open Energy Information  

Open Energy Info (EERE)

Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Resources SET VARIABLES FOR USE WITH RESOURCE QUERY Well Field Texas...

306

Acoustic characteristics of bay bottom sediments in Lavaca Bay, TX  

E-Print Network (OSTI)

METHODS An Edgetech X-Star chirp sonar was used to gather subbottom acoustic profile data from Lavaca Bay. The sonar fish was towed on a short line next to the side of the boat, about 0.5 m below the water surface. The data were recorded onto 4 mm... middle Lavaca Bay (just above Chocolate Bay) and Keller bay, which have lines running southwest to northeast (Fig. 1). The subbottom data were plotted and examined on a computer using SonarWeb, a seismic processing program from Chesapeake...

Patch, Mary Catherine

2005-08-29T23:59:59.000Z

307

txH20: Volume 7, Number 1 (Complete)  

E-Print Network (OSTI)

companies and other interests. #31;e bill also required the TWDB to publish a compre- hensive state water plan every #30;ve years and base its projections on a #21;#24;-year planning horizon. Mace said the drought in #23;#22;#22;#19; served as a wake...Texas AgriLife Research Texas AgriLife Extension Service Texas A&M University College of Agriculture and Life Sciences Fall 2011 Texas drought: Now and then Also in this issue . . . A timeline of drought in Texas, Re-water, Drought detective...

Wythe, Kathy

2011-01-01T23:59:59.000Z

308

txH2O: Volume 2, Number 3 (Complete)  

E-Print Network (OSTI)

the Trinity River. This initiative will bring together the talents and knowledge of these organizations and others to improve rural and urban streams, reservoirs and watersheds; to enhance wildlife habitat; and to expand ecotourism opportu- nities...

Texas Water Resources Institute

2006-01-01T23:59:59.000Z

309

Houston-Galveston, TX Alternative Fuel Vehicle (AFV) Incentives  

Energy.gov (U.S. Department of Energy (DOE))

The Houston-Galveston Area Council provides Congestion Mitigation and Air Quality (CMAQ) program grants through the Greater Houston Clean Cities Coalition for 33% of the cost of a new original...

310

RAPID/Roadmap/8-TX-b | Open Energy Information  

Open Energy Info (EERE)

of its intention to pursue the project by proceeding to the Full Interconnection Study (FIS). After 180 days, the results of the Screening Study will expire, and the GINR will be...

311

TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

8 7 2005-2013 Adjustments 0 0 0 9 0 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

312

TX, RRC District 3 Onshore Coalbed Methane Proved Reserves, Reserves...  

Annual Energy Outlook 2012 (EIA)

71 47 2005-2013 Adjustments 0 0 0 81 -17 2009-2013 Revision Increases 0 0 0 0 0 2009-2013 Revision Decreases 0 0 0 0 0 2009-2013 Sales 0 0 0 0 0 2009-2013 Acquisitions 0 0 0 0 0...

313

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

314

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

315

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

316

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

317

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 252 1,324 824 1,017 871 770 354 155 916 331 57 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld...

318

Penitas, TX Natural Gas Pipeline Exports to Mexico (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

8,489 2,977 1,206 NA 2000's NA NA 5,100 3,036 718 0 0 0 18,923 4,262 2010's 1,371 6,871 0 0 - No Data Reported; -- Not Applicable; NA Not Available; W Withheld to...

319

txH20: Volume 6, Number 3 (Complete)  

E-Print Network (OSTI)

and drought. For example, angelonia, petunia, vinca, ornamental peppers, and blue plumbago are moderately tolerant to salt stress. #29;ey can be safely irrigated with municipal reclaimed water without any foliar damage, although plants would become a li... Dr. Genhua Niu of El Paso is identifying drought, salt, and heat-tolerant landscape plants more suitable for El Paso?s environment in her research. The hot, dry climate and saltier water of El Paso can be a landscaper?s nightmare...

Wythe, Kathy

2011-01-01T23:59:59.000Z

320

,"TX, RRC District 3 Onshore Associated-Dissolved Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Excel File Name:","ngenradngdcurtx03a.xls" ,"Available from Web Page:","http:www.eia.govdnavngngenradngdcurtx03a.htm" ,"Source:","Energy Information...

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

RAPID/Roadmap/7-TX-a | Open Energy Information  

Open Energy Info (EERE)

with the Federal Energy Regulatory Commission (FERC) after the effective date of this section, copies of any information, excluding responses to interrogatories, that was filed...

322

RAPID/Roadmap/15-TX-a | Open Energy Information  

Open Energy Info (EERE)

of such notice and any affidavit to the EPA regional administrator in Dallas, all local air pollution control agencies with jurisdiction in the county in which the construction...

323

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

The CRS Group, Inc. is pleased to submit this report on the Energy Engineering Analysis Program (EEAP) for Fort Bliss, Texas. This work summarizes the present completion of the increments of the Fort Bliss EEAP where: (1) Data gathering and field inspections; (2) Analysis, project identification, technical feasibility and economic evaluations; (3) Preparation of DD Forms 1391 and POB`s where applicable and final documentation of results and recommendations.

NONE

1983-01-01T23:59:59.000Z

324

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

This is a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM`s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1984-04-01T23:59:59.000Z

325

Dallas-Fort Worth, TX Clean Taxi Replacement Incentive  

Energy.gov (U.S. Department of Energy (DOE))

The North Central Texas Council of Governments has partnered with the U.S. Environmental Protection Agency and the City of Dallas to develop the North Texas Green & Go Clean Taxi Partnership as...

326

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect

This summary provides a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results to date are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM1s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates, and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1983-09-01T23:59:59.000Z

327

Cultural resources survey and assessment of the proposed Department of Energy Freeport to Texas City pipeline, Brazoria and Galveston Counties, Texas. Final report  

SciTech Connect

An intensive survey and testing program of selected segments of a proposed Department of Energy pipeline were conducted by Coastal Environments, Inc., Baton Rouge, Louisiana, during December 1985 and January 1986. The proposed pipeline runs from Texas City, Galveston County to Bryan Mound, Brazoria County. The pedestrian survey was preceded by historical records survey to locate possible historic sites within the DOE righ-of-way. Four prehistoric sites within the ROW (41BO159, 160, 161, 162) and one outside the ROW (41BO163) were located. All are Rangia cuneata middens. The survey results are discussed with particular reference to the environmental settings of the sites and the effectiveness of the survey procedure. Two of the sites located within the ROW were subjected to additional testing. The results of the backhoe testing program are included in the site descriptions, and the scientific value of the sites are presented. 52 refs., 20 figs., 10 tabs.

Castille, G.J.; Whelan, J.P. Jr.

1986-01-01T23:59:59.000Z

328

Environmental Impact Statements; Notice of Availability (1/16/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Federal Register / Vol. 69, No. 11 / Friday, January 16, 2004 / Notices Liquefied Natural Gas to Shippers, Authorization of Site, Construction and Operation, Stratton Ridge Meter Station 2007, City of Freeport, Brazoria County, TX. Summary: EPA expressed environmental concern regarding wetland impacts/mitigation, Clean Water Act Section 402 permitting, vaporization water intake and discharge impacts, and conformity with the state's implementation plan for air quality. EPA requested additional information on these issues. ERP No. D-FRC-L05230-OR Rating LO, Pelton Round Butte Hydroelectric Project, (FERC No. 2030-036), Application for a New License for Existing 366.82-megawatt Project, Deschutes River, OR. Summary: EPA Region 10 used a screening tool to conduct a limited

329

EIS-0487: Final Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement EIS-0487: Final Environmental Impact Statement Freeport LNG Liquefaction Project, Brazoria County, Texas Federal Energy Regulatory Commission...

330

EIS-0487: Draft Environmental Impact Statement | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement EIS-0487: Draft Environmental Impact Statement Freeport LNG Liquefaction Project, Brazoria County, Texas Federal Energy Regulatory Commission...

331

Habitat use, growth, and mortality of post-settlement lane snapper (Lutjanus synagris) on natural banks in the northwestern Gulf of Mexico  

E-Print Network (OSTI)

, shell ridge, offshore mud), designated by side-scan sonar surveys, to determine patterns of distribution and abundance. Heald Bank and Sabine Bank were trawled in 2003 while Freeport Rocks was trawled in 2000 (Freeport A) and 2004 (Freeport B). Density...

Mikulas, Joseph John

2009-05-15T23:59:59.000Z

332

MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test |  

Open Energy Info (EERE)

Renewable Energy 1 10 Scale Prototype Pilot Test Renewable Energy 1 10 Scale Prototype Pilot Test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.7123,"lon":-0.38306,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

333

John Couch Adams's Asperger syndrome and the British non-discovery of Neptune  

Science Journals Connector (OSTI)

...Verrier's paper (in the French Academy's journal Comptes Rendus) the following June, which finally triggered the surreptitious British search for the planet. Related to it is the problem of explaining why, even after the search was launched, it...

2007-01-01T23:59:59.000Z

334

Formation, structure and habitability of super-Earth and sub-Neptune exoplanets  

E-Print Network (OSTI)

Insights into a distant exoplanet's interior are possible given a synergy between models and observations. Spectral observations of a star's radial velocity wobble induced by an orbiting planet's gravitational pull measure ...

Rogers, Leslie Anne

2012-01-01T23:59:59.000Z

335

Ultra-cold spin-polarized jet for the NEPTUN - A experiment at UNK  

SciTech Connect

A high-intensity jet of proton-spin-polarized atomic hydrogen is being designed for use as an internal target in the 400 GeV and 3 TeV UNK accelerator. An ultra-cold (300 mK) helium-film-coated cell located in the gradient of a 12 T solenoid will produce a beam of electron-spin-polarized hydrogen atoms. The beam transport components include a quasi-parabolic hydrogen-focusing mirror, an RF transition unit and a superconducting sextupole. The target thickness design goal is 10{sup 14} protons cm{sup {minus}2}.

Nurushev, T.S.; Bywater, J.A.; Court, G.R. [and others

1993-04-01T23:59:59.000Z

336

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

337

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

338

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

339

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

340

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

342

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

343

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

344

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

345

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

346

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

347

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

348

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

349

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

350

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

351

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

352

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

353

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

354

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

355

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

356

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

357

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

358

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

359

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

360

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

362

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

363

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

364

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

365

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

366

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

367

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

368

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

369

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

370

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

371

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

372

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

373

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

374

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

375

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

376

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

377

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

378

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

379

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

380

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

382

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

383

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

384

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

385

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

386

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

387

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

388

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

389

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

390

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

391

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

392

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

393

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

394

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

395

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

396

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

397

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

398

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

399

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

400

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

402

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

403

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

404

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

405

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

406

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

407

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

408

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

409

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

410

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

411

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

412

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

413

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

414

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

415

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

416

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

417

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

418

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

419

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

420

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

422

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

423

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

424

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

425

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

426

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

427

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

428

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

429

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

430

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

431

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

432

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

433

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

434

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

435

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

436

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

437

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

438

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

439

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

440

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

442

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

443

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

444

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

445

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

446

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

447

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

448

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

449

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

450

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

451

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

452

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

453

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

454

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

455

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

456

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

457

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

458

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

459

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

460

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

462

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

463

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

464

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

465

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

466

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

467

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

468

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

469

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

470

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

471

Interracial political coalitions: an analysis of justice for janitors campaigns in Houston, TX  

E-Print Network (OSTI)

interracial alliances but do not detail empirically supported solutions. This thesis fills the gap in the literature by analyzing two interracial political campaigns in Houston, Texas. In so doing, I use extended case method and grounded theory to define...

Bracey, Glenn Edward

2009-05-15T23:59:59.000Z

472

Design and Optimization of a Feeder Demand Responsive Transit System in El Cenizo,TX  

E-Print Network (OSTI)

time interval of a new demand responsive transit "feeder" service within one representative colonia, El Cenizo. A comprehensive analysis of the results of a survey conducted through a questionnaire is presented to explain the existing travel patterns...

Chandra, Shailesh

2010-10-12T23:59:59.000Z

473

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network (OSTI)

a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a medium-duty hybrid electric truck are reported in this paper. The design procedure adopted is a model

Peng, Huei

474

Proceedings of International Thermal Treatment Technologies (IT3), San Antonio, TX, October 2013  

E-Print Network (OSTI)

). This paper examines the emergence of the circulating fluidized bed (CFB) in China. This technology is less of the 21 st century, 47 CFB plants, of total capacity of over 14.6 million ton per year of MSW, have been

475

820 Gessner Rd. -Ste. 920 Houston, TX 77024 www.energytribune.com  

E-Print Network (OSTI)

the Orinoco AMERICA: BURNING FOOD AS AUTO FUEL Argentina's Looming Energy Crunch Argentina's Looming Energy on our global strengths and the changing dynamics of the global energy and food markets." As ADM, one Production By Lucas J. Patzek and Tad W. Patzek ET Focus PalmOilFruitphotobyM.J.Silvius #12;20 Energy Tribune

Patzek, Tadeusz W.

476

820 Gessner Rd. -Ste. 920 Houston, TX 77024 www.energytribune.com  

E-Print Network (OSTI)

the Orinoco AMERICA: BURNING FOOD AS AUTO FUEL Argentina's Looming Energy Crunch Argentina's Looming Energy it comes to energy. No matter how much politicians, pundits, and politicos wish it were so, Btus cannot Correspondent ­ Renatus Nji India Correspondent ­ Kumar Amitav Chaliha Copy Editor ­ Mimi Bardagjy Energy

Patzek, Tadeusz W.

477

2013 APS-MSA Joint Meeting August 10-14 Austin, Tx  

E-Print Network (OSTI)

in annual bedding plants. M. GRABOWSKI (1), D. Malvick (2) (1) University of Minnesota, Andover, MN, U.S.A.; (2) University of Minnesota, St. Paul, MN, U.S.A. Poster Session: Molecular Plant graminis pv. tritici. C. YIN (1), X. Chen (1), M. Pumphrey (1), L. Szabo (2), A. Kleinhofs (1), S. Hulbert

Blanchette, Robert A.

478

A Case Study - Hydraulic Fracturing Geography: The case of the Eagle Ford Shale, TX, USA.  

E-Print Network (OSTI)

??The use of horizontal drilling in conjunction with hydraulic fracturing has increased the ability of producers to extract natural gas and oil from previously non-viable (more)

Wenzel, Cortney

2012-01-01T23:59:59.000Z

479

The environment of deposition of the Dalton Coal (Upper Pennsylvanian), Palo Pinto Co., TX.  

E-Print Network (OSTI)

, dried them in an oven, and picked the fossils out of the residue under a binocular scope. Or. Thomas Yancey assisted in the identification. Coal balls and concretions - Coal balls are thought to preserve the original texture, detrital mineral... kane content. Three of the samples were sent to Core Lab to determine the B. T. U. , ash, and sulfur content of the coal. I analyzed the remaining twenty- one samples with the use of the Oceanography department's Leco Combustion Furnace...

Lowenstein, Glenn Robert

1986-01-01T23:59:59.000Z

480

A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data Seco Creek, Edwards Aquifer, TX  

E-Print Network (OSTI)

The Edwards aquifer lies in the structurally complex Balcones fault zone and supplies water to the growing city of San Antonio. To ensure that future demands for water are met, the hydrological and geophysical properties of the aquifer must be well...

Decker, Kathryn T.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "freeport tx neptune" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Characterization of atmospheric ammonia near Fort Worth, TX Part I. Dynamics of gaseous ammonia  

E-Print Network (OSTI)

May ­ 30 June) using a 10.4-µm external cavity4 quantum cascade laser-based sensor employing, biogenic (primarily vegetation and soil) emissions were major contributors to16 gas-phase NH3 levels-related activities) also was expected to be a potentially18 significant source of NH3 based on the nature

482

Sedimentary processes of the Red River between Denison Dam, TX and Alexandria, LA  

E-Print Network (OSTI)

base level. It was concluded that the suspended sediment concentration of the Red River between Index, AR and Shreveport, LA is caused by two processes: 1. ) the erosion of sediment accumulated behind the raft as the river grades to original base... Marine Regiment, Iwo Jima Col. A. F. Weirich, U. S. Army (ret. ) 1 909 - 1988 Executive Officer - Rocky Mountain Arsenal, Denver CO TABLE OF CONTENTS ABSTRACT. ACKNOWLEDGEMENTS DED ICATION . . TABLE OF CONTENTS LIST OF F IG U RES . . . . . LIST...

Weirich, Thomas Moody - Kenyon

2012-06-07T23:59:59.000Z

483

The Impact of Tropical Cyclones on the Geomorphic Evolution of Bolivar Peninsula, TX  

E-Print Network (OSTI)

Semivariogram Analysis ......................................................... 82 Fractal Scaling Range Analysis ............................................... 91 Shifting Window Analysis ...................................................... 96....25 Fractal analysis for Hurricane Ike ................................................. 92 Figure 3.26 Fractal analysis for Hurricane Rita. ............................................... 93 Figure 3.27 Fractal analysis for Tropical Storm Fay...

Hales, Billy

2012-07-16T23:59:59.000Z

484

Patrick Louchouarn, PhD 2513 Montclair Ct., League City TX, 77573  

E-Print Network (OSTI)

. Texas A&M University-Galveston. 2010-present Serve as chief academic and administrative officer of a department that offers the most service courses in sciences at Texas A&M University-Galveston. Monitor. of Marine Sciences. Texas A&M University-Galveston. 2009-2010 Coordinated the post-award research activities

Martin, Jeff

485

Visio-Tx_Comm_Proj_Integration_Roadmap_v14_102913.vsd  

NLE Websites -- All DOE Office Websites (Extended Search)

ST ATC Internal Automation development & Stakeholder Process ACSGen Inputs Stakeholder Process LEGEND Key MilestoneEvent Customer Mtg Conference Call PCM Hourly Assess...

486

Municipal Consortium LED Street Lighting Workshop Presentations and MaterialsDallas, TX  

Energy.gov (U.S. Department of Energy (DOE))

This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Dallas March 1516, 2012.

487

CARLOS ALBERTO PALACIOS TENREIRO 11905 SOUTHERN TRAILS CT, PEARLAND, TX, 77584  

E-Print Network (OSTI)

Venezuela and Petrozuata (Conoco-Philips/PDVSA joint venture); Ecopetrol­ Colombia; PEMEX, Mexico ­ Colombia, Pipeline System 4 for PEMEX ­ Mexico. Have experience and background of oil/gas fields

Botte, Gerardine G.

488

Diets of Three Sunfishes in Lake Conroe, TX Before and After Grass Carp Introduction.  

E-Print Network (OSTI)

- (0.12) to post-introduction (0.05). Results imply that vegetation control by grass carp influenced the diets and feeding strategies of three cohabitating sunfish species. These findings may help fisheries biologists to plan future management actions...

Sifuentes, Matthew L.

2010-07-14T23:59:59.000Z

489

Salinization of Irrigated Urban Soils: A Case Study of El Paso, TX  

E-Print Network (OSTI)

, the Northwest, and the Upper and Lower Valleys, covering 16 fairways at seven golf courses, 37 city parks, 30 school grounds, and 13 apartment landscapes on the Westside. The highest soil salinity (6 to 11 dS m-1) was found in the clayey soils of the Upper...

Miyamoto, S.

2012-10-25T23:59:59.000Z

490

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network (OSTI)

District Yoakum District Dallas District Fort Worth District Corpus Christi District 8 Therefore, the primary target pollutant in this study is NOx. Typical NOx reduction technologies are ? Selective catalytic reduction, ? Lean NOx catalysts... Repower and Rebuild Exhaust Gas Recirculation Crankcase Emission Control Fuel Technologies Low-Sulfur and Ultra Low-Sulfur Diesel Natural Gas Biodiesel Hydrogen Fuel Additive Hydrogen Enrichment 17 Exhaust Gas Aftertreatment Technologies...

Bari, Muhammad Ehsanul

2010-10-12T23:59:59.000Z

491

Application of CC at a Corporate Headquarters Facility in Dallas, TX  

E-Print Network (OSTI)

consisted of three components: traditional commissioning activities, CC measure implementation, and low cost retrofits. Various M&V strategies were also utilized to quantify the resulting energy savings in a building whose energy use is dominated...

Meline, K.; Kimla, J.

2011-01-01T23:59:59.000Z

492

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

493

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

494

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

495

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

496

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

497

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

498

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

499

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

500

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

NLE Websites -- All DOE Office Websites (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement