National Library of Energy BETA

Sample records for free-air carbon dioxide

  1. Comparison of Global Model Results from the Carbon-Land Model Intercomparison Project (C-LAMP) with Free-Air Carbon Dioxide Enrichment (FACE) Manipulation Experiments

    SciTech Connect (OSTI)

    Hoffman, Forrest M; Randerson, Jim; Fung, Inez; Thornton, Peter E; Covey, Curtis; Bonan, Gordon; Running, Steven; Norby, Richard J

    2008-01-01

    Free-Air CO{sub 2} Enrichment (FACE) manipulation experiments have been carried out at a handful of sites to gauge the response of the biosphere to significant increases in atmospheric [CO{sub 2}]. Early synthesis results from four temperate forest sites suggest that the response of net primary productivity (NPP) is conserved across a broad range of productivity with a stimulation at the median of 23 {+-} 2% when the surrounding air [CO{sub 2}] was raised to 550{approx}ppm. As a part of the Carbon-Land Model Intercomparison Project (C-LAMP), a community-based model-data comparison activity, the authors have performed a global FACE modeling experiment using two terrestrial biogeochemistry modules, CLM3-CASA and CLM3-CN, coupled to the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). The two models were forced with an improved NCEP/NCAR reanalysis data set and reconstructed atmospheric [CO{sub 2}] and N deposition data through 1997. At the beginning of 1997 in the transient simulations, global atmospheric [CO{sub 2}] was abruptly raised to 550{approx}ppm, the target value used at the FACE sites. In the control runs, [CO{sub 2}] continued to rise following observations until 2004, after which it was held constant out to year 2100. In both simulations, the last 25 years of reanalysis forcing and a constant N deposition were applied after year 2004. Across all forest biomes, the NPP responses from both models are weaker than those reported for the four FACE sites. Moreover, model responses vary widely geographically with a decreasing trend of NPP increases from 40{sup o}N to 70{sup o}N. For CLM3-CASA, the largest responses occur in arid regions of western North America and central Asia, suggesting that responses are most strongly influenced by increased water use efficiency for this model. CLM3-CN exhibits consistently weaker responses than CLM3-CASA' with the strongest responses in central Asia, but significantly constrained by N

  2. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  3. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  4. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  5. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: ...

  6. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  7. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  8. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  9. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of ...

  10. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate ...

  11. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  12. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  13. ARM - Measurement - Carbon dioxide (CO2) concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Carbon dioxide (CO2) concentration The amount of carbon dioxide, a heavy, colorless...

  14. Process for sequestering carbon dioxide and sulfur dioxide

    DOE Patents [OSTI]

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  15. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  16. ARM - Measurement - Carbon dioxide (CO2) flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  17. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  18. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  19. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  20. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  1. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon ...

  2. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined...

    Office of Scientific and Technical Information (OSTI)

    the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer Citation Details In-Document Search Title: Modeling the Impact of Carbon Dioxide Leakage ...

  3. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  4. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields while simultaneously maximizing oil production. January 8, 2014 Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery. Schematic of a water-alternating-with-gas flood for CO2 sequestration and enhanced oil recovery.

  5. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrosynthesis with Synthetic Electromicrobiology and System Design | Department of Energy Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Presentation by Derek Lovley, UMass Amherst, during the "Targeting High-Value Challenges" panel at the Hydrogen, Hydrocarbons,

  6. Nuclear Hydrogen and Captured Carbon Dioxide for Alternative...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear Hydrogen and Captured Carbon Dioxide for Alternative Liquid Fuels. Citation Details In-Document Search Title: Nuclear Hydrogen and Captured Carbon Dioxide for ...

  7. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay ...

  8. NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE FOR ALTERNATIVE LIQUID FUELS. Citation Details In-Document Search Title: NUCLEAR HYDROGEN AND CAPTURED CARBON DIOXIDE ...

  9. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide ...

  10. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The ...

  11. Electrochemical Membrane for Carbon Dioxide Separation and Power...

    Office of Scientific and Technical Information (OSTI)

    for Carbon Dioxide Separation and Power Generation Citation Details In-Document Search Title: Electrochemical Membrane for Carbon Dioxide Separation and Power Generation ...

  12. ARM - Lesson Plans: Plant Growth and Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant Growth and Carbon Dioxide Outreach Home Room News Publications Traditional Knowledge ... Teachers' Toolbox Lesson Plans Lesson Plans: Plant Growth and Carbon Dioxide Objective The ...

  13. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  14. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  15. Beneficial Use of Carbon Dioxide in Precast Concrete Production (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Beneficial Use of Carbon Dioxide in Precast Concrete Production Citation Details In-Document Search Title: Beneficial Use of Carbon Dioxide in Precast Concrete Production The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during

  16. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  17. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus; Yanagihara, Naohisa; Dyke, James T.; Vemulapalli, Krishna

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  18. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  19. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  20. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  1. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  2. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo

    2003-04-30

    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing directly to the DOE projects listed above, also

  3. Polymers for metal extractions in carbon dioxide

    DOE Patents [OSTI]

    DeSimone, Joseph M.; Tumas, William; Powell, Kimberly R.; McCleskey, T. Mark; Romack, Timothy J.; McClain, James B.; Birnbaum, Eva R.

    2001-01-01

    A composition useful for the extraction of metals and metalloids comprises (a) carbon dioxide fluid (preferably liquid or supercritical carbon dioxide); and (b) a polymer in the carbon dioxide, the polymer having bound thereto a ligand that binds the metal or metalloid; with the ligand bound to the polymer at a plurality of locations along the chain length thereof (i.e., a plurality of ligands are bound at a plurality of locations along the chain length of the polymer). The polymer is preferably a copolymer, and the polymer is preferably a fluoropolymer such as a fluoroacrylate polymer. The extraction method comprises the steps of contacting a first composition containing a metal or metalloid to be extracted with a second composition, the second composition being as described above; and then extracting the metal or metalloid from the first composition into the second composition.

  4. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon dioxide instead of steam allows higher...

  5. Geothermal Startup Will Put Carbon Dioxide to Good Use

    Broader source: Energy.gov [DOE]

    Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2).

  6. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  7. Project Profile: Direct Supercritical Carbon Dioxide Receiver Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL), under the National Laboratory R&D competitive funding opportunity, is working to develop, characterize, and experimentally demonstrate a novel high-temperature receiver technology using supercritical carbon dioxide

  8. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  9. OSTIblog Articles in the carbon dioxide Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    regions and seasons, increasing intensity and frequency of storm events, flooding and... Related Topics: carbon dioxide, carbon sequestration, climate change, greenhouse gases

  10. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical...

    Office of Scientific and Technical Information (OSTI)

    Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from ... The unique chemistry of carbonate fuel cells offers an innovative approach for separation ...

  11. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strontium Carbonate | Department of Energy Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate University of Florida Logo -- This project is inactive -- The University of Florida (UF), through the Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage (CSP: ELEMENTS) funding program, is working on making

  12. Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

  13. Extraction of furfural with carbon dioxide

    SciTech Connect (OSTI)

    Gamse, T.; Marr, R.; Froeschl, F.; Siebenhofer, M.

    1997-01-01

    A new approach to separate furfural from aqueous waste has been investigated. Recovery of furfural and acetic acid from aqueous effluents of a paper mill has successfully been applied on an industrial scale since 1981. The process is based on the extraction of furfural and acetic acid by the solvent trooctylphosphineoxide (TOPO). Common extraction of both substances may cause the formation of resin residues. Improvement was expected by selective extraction of furfural with chlorinated hydrocarbons, but ecological reasons stopped further development of this project. The current investigation is centered in the evaluation of extraction of furfural by supercritical carbon dioxide. The influence of temperature and pressure on the extraction properties has been worked out. The investigation has considered the multi-component system furfural-acetic acid-water-carbon dioxide. Solubility of furfural in liquid and supercritical carbon dioxide has been measured, and equilibrium data for the ternary system furfural-water-CO{sub 2} as well as for the quaternary system furfural-acetic acid-water-CO{sub 2} have been determined. A high-pressure extraction column has been used for evaluation of mass transfer rates.

  14. Haverford College Researchers Create Carbon Dioxide-Separating Polymer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon

  15. Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine Project Profile: 10-Megawatt Supercritical Carbon Dioxide Turbine NREL logo -- This project is inactive -- The National Renewable Energy Laboratory (NREL) and its partners, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), aim to demonstrate a multi-megawatt power cycle using supercritical carbon dioxide (s-CO2) as the working fluid. The use of carbon

  16. Method of immobilizing carbon dioxide from gas streams

    DOE Patents [OSTI]

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  17. Free Air CO2 Enrichment (FACE) Research Data from the Aspen FACE Experiment (FACTS II)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOE’s Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. FACTS II, the Aspen FACE Experiment is a multidisciplinary study to assess the effects of increasing tropospheric ozone and carbon dioxide levels on the structure and function of northern forest ecosystems. The Aspen FACE facility is located at the Harshaw Experimental Forest near Rhinelander, Wisconsin. It consists of twelve 30m rings in which the concentrations of carbon dioxide and tropospheric ozone can be controlled. The design provides the ability to assess the effects of these gasses alone, and in combination, on many ecosystem attributes, including growth, leaf development, root characteristics, and soil carbon. Each ring consists of a series of vertical ventpipes which disperse carbon dioxide, ozone or normal air into the center of the ring. This computer controlled system uses signal feedback technology to adjust gas release each second in order to maintain a stable, elevated concentration of carbon dioxide and/or ozone throughout the experimental plot. Because there is no confinement, there is no significant change in the natural, ambient environment other than elevating these trace gas concentrations. [copied from http://aspenface.mtu.edu/index.html] Ring maps, lists of publications, data from the experiments, newsletters, protocol and performance

  18. The CNG process: Acid gas removal with liquid carbon dioxide

    SciTech Connect (OSTI)

    Liu, Y.C.; Auyang, L.; Brown, W.R.

    1987-01-01

    The CNG acid gas removal process has two unique features: the absorption of sulfur-containing compounds and other trace contaminants with liquid carbon dioxide, and the regeneration of pure liquid carbon dioxide by triple-point crystallization. The process is especially suitable for treating gases which contain large amounts of carbon dioxide and much smaller amounts (relative to carbon dioxide) of hydrogen sulfide. Capital and energy costs are lower than conventional solvent processes. Further, products of the CNG process meet stringent purity specifications without undue cost penalties. A process demonstration unit has been constructed and operated to demonstrate the two key steps of the CNG process. Hydrogen sulfide and carbonyl sulfide removal from gas streams with liquid carbon dioxide absorbent to sub-ppm concentrations has been demonstrated. The production of highly purified liquid carbon dioxide (less than 0.1 ppm total contaminant) by triple-point crystallization also has been demonstrated.

  19. Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycles | Department of Energy Receivers for Supercritical Carbon Dioxide Cycles Project Profile: High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles Brayton logo --This project is inactive -- Brayton Energy, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is building and testing a new solar receiver that uses supercritical carbon dioxide (s-CO2) as the heat-transfer fluid. The research team is designing the receiver to withstand higher operating temperatures

  20. Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers | Department of Energy Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers SWRI Logo The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing a supercritical carbon dioxide (s-CO2) power cycle that combines high efficiencies and low costs for modular CSP applications.

  1. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one year of operating experience with a transcritical carbon dioxide (TC CO2) booster refrigeration system at Delhaize America's Hannaford supermarket location in Turner, Maine. This supermarket, which began operation in June 2013, is the first supermarket installation in the U.S. of a TC CO2 booster

  2. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  3. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton Energy's supercritical carbon dioxide (s-CO 2 ) solar receiver has the potential to significantly improve reliability, increase efficiency, and reduce costs of CSP systems. ...

  4. Comprehensive study of carbon dioxide adsorption in the metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M ... physisorptive interaction with the framework surface and sheds more light on the ...

  5. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  6. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  7. Beneficial Use of Carbon Dioxide in Precast Concrete Production...

    Office of Scientific and Technical Information (OSTI)

    of Carbon Dioxide in Precast Concrete Production Shao, Yixin 36 MATERIALS SCIENCE Clean Coal Technology Coal - Environmental Processes Clean Coal Technology Coal - Environmental...

  8. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  9. U.S. Energy-Related Carbon Dioxide Emissions, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Related Carbon Dioxide Emissions, 2014 November 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 1 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 2 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 3 November 2015 U.S. Energy

  10. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: ...

  11. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces...

    Office of Scientific and Technical Information (OSTI)

    Surfaces in Deep Saline Aquifers. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in Deep Saline Aquifers. Authors: ...

  12. Carbon Dioxide Capture and Storage Demonstration in Developing...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers...

  13. Method for carbon dioxide sequestration (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of ...

  14. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  15. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  16. Elevated Carbon Dioxide Suppresses Dominant Plant Species in...

    Office of Science (SC) Website

    depend on interannual variation in precipitation and (2) the effects of elevated carbon dioxide are not limited to water saving because they differ from those of irrigation. ...

  17. CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting...

    Open Energy Info (EERE)

    Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov...

  18. Project Profile: Supercritical Carbon Dioxide Turbo-Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Project Profile: ... Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are ...

  19. Synthesis, Structure, and Carbon Dioxide Capture Properties of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks Previous Next List Anh Phan, Christian J. Doonan, Fernando J. Uribe-Romo, Carolyn B....

  20. Innovative Concepts for Beneficial Reuse of Carbon Dioxide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovative Concepts for Beneficial Reuse of Carbon Dioxide Innovative Concepts for Beneficial Reuse of Carbon Dioxide Funding for 12 projects to test innovative concepts for the beneficial use of carbon dioxide (CO2) was announced by the U.S. Department of Energy. The awards are part of $1.4 billion in funding from the American Recovery and Reinvestment Act (ARRA) for projects that will capture carbon dioxide from industrial sources. These 12 projects will engage in a first phase

  1. Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast, Efficient Isothermal Redox to Split Water or Carbon Dioxide using Solar Energy ... the hercynite cycle allows faster, more efficient cycling and less wear on the equipment ...

  2. Capture of carbon dioxide by hybrid sorption

    DOE Patents [OSTI]

    Srinivasachar, Srivats

    2014-09-23

    A composition, process and system for capturing carbon dioxide from a combustion gas stream. The composition has a particulate porous support medium that has a high volume of pores, an alkaline component distributed within the pores and on the surface of the support medium, and water adsorbed on the alkaline component, wherein the proportion of water in the composition is between about 5% and about 35% by weight of the composition. The process and system contemplates contacting the sorbent and the flowing gas stream together at a temperature and for a time such that some water remains adsorbed in the alkaline component when the contact of the sorbent with the flowing gas ceases.

  3. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  4. Carbon dioxide absorbent and method of using the same

    DOE Patents [OSTI]

    Perry, Robert James; Lewis, Larry Neil; O'Brien, Michael Joseph; Soloveichik, Grigorii Lev; Kniajanski, Sergei; Lam, Tunchiao Hubert; Lee, Julia Lam; Rubinsztajn, Malgorzata Iwona

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  5. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  6. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  7. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  8. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  9. Table 11.2a Carbon Dioxide Emissions From Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 ...

  10. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  11. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  12. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Thomas Nelson; Raghubir P. Gupta

    2005-01-01

    This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.

  13. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  14. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  15. Free Air CO2 Enrichment (FACE) Data from the Duke Forest FACE Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The Duke University FACE website actually presents information on several FACE experiments. The Forest-Atmosphere Carbon Transfer and Storage (FACTS-I) facility is located in the Blackwood Division of the Duke Forest. It consists of four free-air CO2 enrichment (FACE) plots that provide elevated atmospheric CO2 concentration and four plots that provide ambient CO2 control. The system has been in operation since June, 1994 in the prototype plot, and since August, 1996 in the three additional plots. The prototype plot and its reference were halved with a barrier inserted in the soil in 1998 to conduct, together with five additional plot pairs, CO2 X soil nutrient enrichment experiments. The rest of the plots were partitioned in early 2005 and incorporated into the CO2 X nutrient experiment. To increase statistical power, four additional ambient plots were established in January, 2005, halved, and one half of each fertilized. [copied from http://face.env.duke.edu/description.cfm] The Duke FACE home page makes information available from both completed and ongoing projects, provides a searchable database of publications and presentations, and data, images, and links to related websites.

  16. Free Air CO2 Enrichment (FACE) Data from the Duke Forest FACE Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEÆs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The Duke University FACE website actually presents information on several FACE experiments. The Forest-Atmosphere Carbon Transfer and Storage (FACTS-I) facility is located in the Blackwood Division of the Duke Forest. It consists of four free-air CO2 enrichment (FACE) plots that provide elevated atmospheric CO2 concentration and four plots that provide ambient CO2 control. The system has been in operation since June, 1994 in the prototype plot, and since August, 1996 in the three additional plots. The prototype plot and its reference were halved with a barrier inserted in the soil in 1998 to conduct, together with five additional plot pairs, CO2 X soil nutrient enrichment experiments. The rest of the plots were partitioned in early 2005 and incorporated into the CO2 X nutrient experiment. To increase statistical power, four additional ambient plots were established in January, 2005, halved, and one half of each fertilized. [copied from http://face.env.duke.edu/description.cfm] The Duke FACE home page makes information available from both completed and ongoing projects, provides a searchable database of publications and presentations, and data, images, and links to related websites.

  17. Membranes for separation of carbon dioxide

    DOE Patents [OSTI]

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Ramaswamy, Vidya; Willson, Patrick Daniel; Gao, Yan

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  1. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  2. A versatile metal-organic framework for carbon dioxide capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    versatile metal-organic framework for carbon dioxide capture and cooperative catalysis Previous Next List Jinhee Park, Jian-Rong Li, Ying-Pin Chen, Jiamei Yu, Andrey A. Yakovenko, ...

  3. Recent advances in carbon dioxide capture with metal-organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent advances in carbon dioxide capture with metal-organic frameworks Previous Next List ... Great progress in MOF materials for CO2 capture has been made in the past and reviewed ...

  4. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  5. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990...

    Broader source: Energy.gov (indexed) [DOE]

    World Carbon Dioxide Emissions, 1990-2012 Year United States Rest of North America Central & South America Europe Eurasia Middle East Africa India China Rest of Asia & Oceania 1990 ...

  6. U.S. Energy-Related Carbon Dioxide Emissions, 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-Related Carbon Dioxide Emissions, 2013 October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2014 U.S. Energy...

  7. Carbon Dioxide Capture: Prospects for New Materials | Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture: Prospects for New Materials Previous Next List D. M. D'Alessandro, B. Smit, and J. R. Long, Angew. Chem.-Int. Edit. 49 (35), 6058 (2010) DOI: 10.1002...

  8. Carbon Dioxide Capture in Metal-Organic Frameworks | Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture in Metal-Organic Frameworks Previous Next List Kenji Sumida , David L. Rogow , Jarad A. Mason , Thomas M. McDonald , Eric D. Bloch , Zoey R. Herm , Tae-Hyun...

  9. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  10. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200...

  11. Carbon dioxide capture-related gas adsorption and separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks Previous Next List Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yu,...

  12. DOE to Provide $36 Million to Advance Carbon Dioxide Capture...

    Broader source: Energy.gov (indexed) [DOE]

    of carbon dioxide (CO2) from the existing fleet of coal-fired power plants. "Currently, the ... and laboratory methods to identify and ... an additive for reducing the stripping ...

  13. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  14. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  15. New Texas Oil Project Will Help Keep Carbon Dioxide Underground |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities.

  16. First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface First Direct Observation of Carbon Dioxide's Increasing Greenhouse Effect at Earth's Surface Researchers Link Rising CO₂ Levels from Fossil Fuels to Radiative Forcing February 25, 2015 Contact: Dan Krotz, dakrotz@lbl.gov, 510-486-4019 ARM Alaska Caption: The scientists used incredibly precise spectroscopic instruments at two sites operated by the Department of Energy's

  17. Tethered catalysts for the hydration of carbon dioxide

    DOE Patents [OSTI]

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  18. Recycling Carbon Dioxide to Make Plastics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Carbon Dioxide to Make Plastics Recycling Carbon Dioxide to Make Plastics May 20, 2013 - 1:31pm Addthis Novomer’s thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Novomer's thermoplastic pellets incorporate waste CO2 into a variety of consumer products. Why is this important? By using CO2 that would otherwise be emitted to the atmosphere, the process has the potential to cut greenhouse gas emissions while simultaneously reducing petroleum

  19. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print Friday, 19 February 2016 13:11 The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric

  20. Geologic Carbon Dioxide Storage Field Projects Supported by DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sequestration Program | Department of Energy Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2

  1. Using supercritical carbon dioxide as a fracturing fluid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using supercritical carbon dioxide as a fracturing fluid Using supercritical carbon dioxide as a fracturing fluid The Laboratory team used a combination of experiments and modeling for the investigation. June 25, 2015 Simulation of a selection of the particle trajectories toward the well. Simulation of a selection of the particle trajectories toward the well. Communications Office (505) 667-7000 The Laboratory research is part of an ongoing project to make the necessary measurements and develop

  2. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    SciTech Connect (OSTI)

    Shao, Yixin

    2014-06-26

    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  3. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  4. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOE Patents [OSTI]

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  5. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  6. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmount, IL)

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  7. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  8. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  9. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect (OSTI)

    Hale, S.J.

    1991-12-31

    Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

  10. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box Raghubir P. Gupta

    2006-09-30

    This report describes research conducted between July 1, 2006 and September 30, 2006 on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. Modifications to the integrated absorber/ sorbent regenerator/ sorbent cooler system were made to improve sorbent flow consistency and measurement reliability. Operation of the screw conveyor regenerator to achieve a sorbent temperature of at least 120 C at the regenerator outlet is necessary for satisfactory carbon dioxide capture efficiencies in succeeding absorption cycles. Carbon dioxide capture economics in new power plants can be improved by incorporating increased capacity boilers, efficient flue gas desulfurization systems and provisions for withdrawal of sorbent regeneration steam in the design.

  11. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles This fact sheet describes a project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Brayton Energy, aims to develop and demonstrate a low-cost, high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle

  12. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined

  13. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized into carbon dioxide when the fuel is burned. The Environmental Protection Agency (EPA) has published information on carbon dioxide emissions from

  14. Effect of carbon dioxide and nitrogen on the diffusivity of methane...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: ORNL LDRD Director's R&D; SC USDOE - Office of Science (SC) Country of Publication: United States Language: English Subject: 03 NATURAL GAS; CARBON; CARBON DIOXIDE; ...

  15. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  16. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect (OSTI)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  17. Carbon dioxide effects research and assessment program

    SciTech Connect (OSTI)

    Jacoby, G.

    1980-12-01

    Information about the past and present concentrations of CO/sub 2/ in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis.

  18. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  19. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Tyler Moore; Douglas P. Harrison

    2003-08-01

    This report describes research conducted between April 1, 2003 and June 30, 2003 on the use of dry regenerable sorbents for concentration of carbon dioxide from flue gas. Grade 1 sodium bicarbonate performed similarly to grade 5 sodium bicarbonate in fixed bed testing in that activity improved after the first carbonation cycle and did not decline over the course of 5 cycles. Thermogravimetric analysis indicated that sodium bicarbonate sorbents produced by calcination of sodium bicarbonate are superior to either soda ash or calcined trona. Energy requirements for regeneration of carbon dioxide sorbents (either wet or dry) is of primary importance in establishing the economic feasibility of carbon dioxide capture processes. Recent studies of liquid amine sorption processes were reviewed and found to incorporate conflicting assumptions of energy requirements. Dry sodium based processes have the potential to be less energy intensive and thus less expensive than oxygen inhibited amine based systems. For dry supported sorbents, maximizing the active fraction of the sorbent is of primary importance in developing an economically feasible process.

  20. Regenerable immobilized aminosilane sorbents for carbon dioxide capture applications

    DOE Patents [OSTI]

    Gay, McMahan; Choi, Sunho; Jones, Christopher W

    2014-09-16

    A method for the separation of carbon dioxide from ambient air and flue gases is provided wherein a phase separating moiety with a second moiety are simultaneously coupled and bonded onto an inert substrate to create a mixture which is subsequently contacted with flue gases or ambient air. The phase-separating moiety is an amine whereas the second moiety is an aminosilane, or a Group 4 propoxide such as titanium (IV) propoxide (tetrapropyl orthotitanate, C.sub.12H.sub.28O.sub.4Ti). The second moiety makes the phase-separating moiety insoluble in the pores of the inert substrate. The new sorbents have a high carbon dioxide loading capacity and considerable stability over hundreds of cycles. The synthesis method is readily scalable for commercial and industrial production.

  1. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  2. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  3. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  4. Sandia's Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Important MOU with Industry Partners Supercritical Carbon-Dioxide/Brayton-Cycle Laboratory Signs Important MOU with Industry Partners - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  5. Titanium dioxide, single-walled carbon nanotube composites

    DOE Patents [OSTI]

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  6. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  7. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  8. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  9. Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Framework Electrocatalysts Are Key to Carbon Dioxide Conversion Print The burning of fossil fuels and the consequent rising levels of atmospheric CO-2 has led to a number of negative environmental consequences, including global warming and ocean acidification. Converting CO2 to fuels or chemical feedstock, ideally through the use of renewable energy, can simultaneously reduce atmospheric CO2 and decrease fossil fuel consumption. The principal difficulty in this process is that

  10. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  11. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  12. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOE Patents [OSTI]

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  13. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions through forestry, agriculture, and use of biomass-based fuels to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  14. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect (OSTI)

    Trabalka, J R

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  15. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect (OSTI)

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  16. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  17. A new leaf: Scientists turn carbon dioxide back into fuel | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. Argonne postdoctoral researcher Cong Liu and chemists Larry Curtiss and Peter Zapol discuss their recent research results on converting carbon dioxide into usable fuel. Photo by Wes Agresta. A new leaf: Scientists turn carbon dioxide back into fuel July 29, 2016 Tweet EmailPrint As

  18. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 8: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Excel file and dataset for 2015 World Carbon Dioxide Emissions, 1990-2012 fotw#898_web.xlsx (25.25 KB) More Documents & Publications ESPC Project Performance: Supplemental Data Natural Gas Imports and Exports Third Quarter Report 2015 Financial and Activity Report - December 31, 2009

  19. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  20. Strong and Reversible Binding of Carbon Dioxide in a Green Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework Previous Next List Jeremiah J. Gassensmith, Hiroyasu Furukawa, Ronald A. Smaldone, Ross S. ...

  1. Table 4. 2011 State energy-related carbon dioxide emission shares...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation"...

  2. Projects Selected for Safe and Permanent Geologic Storage of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy announced the selection of 13 projects to develop technologies and methodologies for geologic storage of carbon dioxide.

  3. Synchrotron X-ray Studies of Super-critical Carbon Dioxide /...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synchrotron X-ray Studies of Super-critical Carbon Dioxide Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic ...

  4. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers

    Broader source: Energy.gov [DOE]

    This fact sheet describes a supercritical carbon dioxide turbo-expander and heat exchangers project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Southwest Research Institute, is working to develop a megawatt-scale s-CO2 hot-gas turbo-expander optimized for the highly transient solar power plant profile. The team is also working to optimize novel printed circuit heat exchangers for s-CO2 applications to drastically reduce their manufacturing costs.

  5. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  6. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  7. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  8. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect (OSTI)

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  9. Interfacial tension in high-pressure carbon dioxide mixtures

    SciTech Connect (OSTI)

    Chun, B.S.; Wilkinson, G.T.

    1995-12-01

    High-pressure interfacial- and surface-tension phenomena govern the migration and recovery of oil and gas from hydrocarbon reservoirs. The phenomena are of particular relevance to phase separation and mass transfer in light hydrocarbon fractionation plants and in propane deasphalting in lubricating oil refining. Interfacial tensions of carbon dioxide-water-alcohol mixtures were measured at temperatures in the range 5--71 C and pressures 0.1--18.6 MPa, using the capillary rise method. The alcohols were methanol (0.136 mf), ethanol (to 0.523 mf), and isopropyl alcohol (to 0.226 mf). Interfacial tension (IFT) decreased linearly with both temperature and pressure din the low-pressure range (gaseous CO{sub 2}) but was largely independent of pressure at high pressure (liquid or supercritical CO{sub 2}). There was a zone in the vicinity of the critical pressure of CO{sub 2}-as much as 20 C below and 10 C above the carbon dioxide critical temperature--where IFT became small. This is attributed to the formation of a second CO{sub 2}-rich phase. The isotherms exhibited a crossover pressure near 3 MPa for all systems examined.

  10. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  11. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

  12. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    SciTech Connect (OSTI)

    Garcia, Julio Enrique

    2003-12-18

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous

  13. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  14. Chapter 4: Advancing Clean Electric Power Technologies | Crosscutting Technologies in Carbon Dioxide Capture and Storage Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  15. Fabric compatibility and cleaning effectiveness of drycleaning with carbon dioxide

    SciTech Connect (OSTI)

    Williams, S.B.; Laintz, K.E.; Spall, W.D.; bustos, L.; Taylor, C.

    1996-04-01

    Liquid carbon dioxide (CO{sub 2}) offers an environmentally sound replacement solvent to the currently used drycleaning solvent, perchloroethylene (PERC). In addition to the health and safety benefits of a CO{sub 2} based cleaning system, large savings in solvent costs provide an incentive for conversion to the new system. Lower operating costs for the new technology provide further incentive. Experimental studies were conducted using CO{sub 2} in both small scale and pilot scale test systems in order to address fabric compatibility with this alternative cleaning method. Results from these tests show that fabric shrinkage using CO{sub 2} is controlled to the same level as current drycleaning methods. In addition, tests to evaluate the cleaning performance of liquid CO{sub 2} drycleaning were also conducted. These results show the prototype liquid CO{sub 2} cleaning system to be better than PERC at soil removal, and worse than PERC at inorganic salt removal.

  16. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co

  17. Statistically designed study of the variables and parameters of carbon dioxide equations of state

    SciTech Connect (OSTI)

    Donohue, M.D.; Naiman, D.Q.; Jin, Gang; Loehe, J.R.

    1991-05-01

    Carbon dioxide is used widely in enhanced oil recovery (EOR) processes to maximize the production of crude oil from aging and nearly depleted oil wells. Carbon dioxide also is encountered in many processes related to oil recovery. Accurate representations of the properties of carbon dioxide, and its mixtures with hydrocarbons, play a critical role in a number of enhanced oil recovery operations. One of the first tasks of this project was to select an equation of state to calculate the properties of carbon dioxide and its mixtures. The equations simplicity, accuracy, and reliability in representing phase behavior and thermodynamic properties of mixtures containing carbon dioxide with hydrocarbons at conditions relevant to enhanced oil recovery were taken into account. We also have determined the thermodynamic properties that are important to enhanced oil recovery and the ranges of temperature, pressure and composition that are important. We chose twelve equations of state for preliminary studies to be evaluated against these criteria. All of these equations were tested for pure carbon dioxide and eleven were tested for pure alkanes and their mixtures with carbon dioxide. Two equations, the ALS equation and the ESD equation, were selected for detailed statistical analysis. 54 refs., 41 figs., 36 tabs.

  18. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques

  19. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect (OSTI)

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  20. Method of determining pH by the alkaline absorption of carbon dioxide

    DOE Patents [OSTI]

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  1. Carbon Cycle Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to carbon cycle includes: • Terrestrial Carbon Sequestration Data Sets • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2002) (Trends Online) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) • Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 (Trends Online) • Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1999 (updated 2002) • Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (1997) • Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (1998) • AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995) • Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) (2003) • Global

  2. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines

    SciTech Connect (OSTI)

    Graeme Puxty; Robert Rowland; Andrew Allport; Qi Yang; Mark Bown; Robert Burns; Marcel Maeder; Moetaz Attalla

    2009-08-15

    The significant and rapid reduction of greenhouse gas emissions is recognized as necessary to mitigate the potential climate effects from global warming. The postcombustion capture (PCC) and storage of carbon dioxide (CO{sub 2}) produced from the use of fossil fuels for electricity generation is a key technology needed to achieve these reductions. The most mature technology for CO{sub 2} capture is reversible chemical absorption into an aqueous amine solution. In this study the results from measurements of the CO{sub 2} absorption capacity of aqueous amine solutions for 76 different amines are presented. Measurements were made using both a novel isothermal gravimetric analysis (IGA) method and a traditional absorption apparatus. Seven amines, consisting of one primary, three secondary, and three tertiary amines, were identified as exhibiting outstanding absorption capacities. Most have a number of structural features in common including steric hindrance and hydroxyl functionality 2 or 3 carbons from the nitrogen. Initial CO{sub 2} absorption rate data from the IGA measurements was also used to indicate relative absorption rates. Most of the outstanding performers in terms of capacity also showed initial absorption rates comparable to the industry standard monoethanolamine (MEA). This indicates, in terms of both absorption capacity and kinetics, that they are promising candidates for further investigation. 30 refs., 8 figs.

  3. Carbon Dioxide Separation with Novel Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    Richard Willis; Annabelle Benin; John Low; Ganesh Venimadhavan; Syed Faheem; David Lesch; Adam Matzger; Randy Snurr

    2008-02-04

    The goal of this program was to develop a low cost novel sorbent to remove carbon dioxide from flue gas and gasification streams in electric utilities. Porous materials named metal-organic frameworks (MOFs) were found to have good capacity and selectivity for the capture of carbon dioxide. Several materials from the initial set of reference MOFs showed extremely high CO{sub 2} adsorption capacities and very desirable linear isotherm shapes. Sample preparation occurred at a high level, with a new family of materials suitable for intellectual property protection prepared and characterized. Raman spectroscopy was shown to be useful for the facile characterization of MOF materials during adsorption and especially, desorption. Further, the development of a Raman spectroscopic-based method of determining binary adsorption isotherms was initiated. It was discovered that a stronger base functionality will need to be added to MOF linkers in order to enhance CO{sub 2} selectivity over other gases via a chemisorption mechanism. A concentrated effort was expended on being able to accurately predict CO{sub 2} selectivities and on the calculation of predicted MOF surface area values from first principles. A method of modeling hydrolysis on MOF materials that correlates with experimental data was developed and refined. Complimentary experimental data were recorded via utilization of a combinatorial chemistry heat treatment unit and high-throughput X-ray diffractometer. The three main Deliverables for the project, namely (a) a MOF for pre-combustion (e.g., IGCC) CO{sub 2} capture, (b) a MOF for post-combustion (flue gas) CO{sub 2} capture, and (c) an assessment of commercial potential for a MOF in the IGCC application, were completed. The key properties for MOFs to work in this application - high CO{sub 2} capacity, good adsorption/desorption rates, high adsorption selectivity for CO{sub 2} over other gases such as methane and nitrogen, high stability to contaminants, namely

  4. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE

    SciTech Connect (OSTI)

    Weiss, R.F.

    1998-10-15

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0{sub 2}) and nitrous oxide (N{sub 2}O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in the global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO{sub 2} and N{sub 2}O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N{sub 2}O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO{sub 2}, roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N{sub 2}O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone. (B204)

  5. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    SciTech Connect (OSTI)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  6. Enhanced carbon dioxide capture upon incorporation ofN,N'-dimethyleth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri Previous Next List Thomas M. McDonald, Deanna M. ...

  7. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc) Previous Next List Thomas M. McDonald, Woo Ram Lee, Jarad A. ...

  8. The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal-Organic Framework Previous Next List N. Planas, A. L. Dzubak, R. Poloni, L.-C. Lin, A. McManus, T. M. ...

  9. Hydrogen storage and carbon dioxide capture in an iron-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods Previous Next List Kenji Sumida, ...

  10. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title:...

  11. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2- H20) Interactions in Shale Nanopores under ReservoirSAND2o 1T-20" if4pe Yifeng Wang, Yongliang Xiong & Louise ...

  12. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4...

    Office of Scientific and Technical Information (OSTI)

    ...Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Citation Details In-Document Search Title: Fundamental Understanding of Methane-Carbon Dioxide-Water ...

  13. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    SciTech Connect (OSTI)

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  14. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  15. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L.; Yonker, Clement R.; Hallen, Richard R.; Baker, Eddie G.; Bowman, Lawrence E.; Silva, Laura J.

    1999-01-01

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  16. Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion

    SciTech Connect (OSTI)

    Vidhi, Rachana; Goswami, Yogi D.; Chen, Huijuan; Stefanakos, Elias; Kuravi, Sarada; Sabau, Adrian S

    2011-01-01

    Research on supercritical carbon dioxide power cycles has been mainly focused on high temperature applications, such as Brayton cycle in a nuclear power plant. This paper conducts a comprehensive study on the feasibility of a CO2-based supercritical power cycle for low-grade heat conversion. Energy and exergy analyses of the cycle were conducted to discuss the obstacles as well as the potentials of using supercritical carbon dioxide as the working fluid for supercritical Rankine cycle, Carbon dioxide has desirable qualities such as low critical temperature, stability, little environmental impact and low cost. However, the low critical temperature might be a disadvantage for the condensation process. Comparison between a carbon dioxide-based supercritical Rankine cycle and an organic fluid-based supercritical Rankine cycle showed that the former needs higher pressure to achieve the same efficiency and a heat recovery system is necessary to desuperheat the turbine exhaust and pre-heat the pressure charged liquid.

  17. Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks Previous Next List Weigang Lu, Julian P. Sculley, Daqiang Yuan, Rajamani Krishna, and Hong-Cai Zhou, J....

  18. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  19. Underground Storage of Carbon Dioxide-as a Solid | U.S. DOE Office...

    Office of Science (SC) Website

    Underground Storage of Carbon Dioxide-as a Solid Basic Energy Sciences (BES) BES Home About Research ... rock formations will affect the short and long-term behavior of the system. ...

  20. Regression analysis study on the carbon dioxide capture process

    SciTech Connect (OSTI)

    Zhou, Q.; Chan, C.W.; Tontiwachiwuthikul, P.

    2008-07-15

    Research on amine-based carbon dioxide (CO{sub 2}) capture has mainly focused on improving the effectiveness and efficiency of the CO{sub 2} capture process. The objective of our work is to explore relationships among key parameters that affect the CO{sub 2} production rate. From a survey of relevant literature, we observed that the significant parameters influencing the CO{sub 2} production rate include the reboiler heat duty, solvent concentration, solvent circulation rate, and CO{sub 2} lean loading. While it is widely recognized that these parameters are related, the exact nature of the relationships are unknown. This paper presents a regression study conducted with data collected at the International Test Center for CO{sub 2} capture (ITC) located at University of Regina, Saskatchewan, Canada. The regression technique was applied to a data set consisting of data on 113 days of operation of the CO{sub 2} capture plant, and four mathematical models of the key parameters have been developed. The models can be used for predicting the performance of the plant when changes occur in the process. By manipulation of the parameter values, the efficiency of the CO{sub 2} capture process can be improved.

  1. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  2. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  3. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  4. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  5. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  6. Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures - Energy Innovation Portal Organoclay Sorbent for Removal of Carbon Dioxide from Gas Streams at Low Temperatures National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication S-126827 (Organoclay Sorbent).pdf (292 KB) Technology Marketing Summary By incorporating amines inside clay containing quaternary ammonium salts (organoclay) minerals, this invention has created a way to prepare sorbents that capture carbon dioxide (CO2)

  7. Methods and compositions for removing carbon dioxide from a gaseous mixture

    DOE Patents [OSTI]

    Li, Jing; Wu, Haohan

    2014-06-24

    Provided is a method for adsorbing or separating carbon dioxide from a mixture of gases by passing the gas mixture through a porous three-dimensional polymeric coordination compound having a plurality of layers of two-dimensional arrays of repeating structural units, which results in a lower carbon dioxide content in the gas mixture. Thus, this invention provides useful compositions and methods for removal of greenhouse gases, in particular CO.sub.2, from industrial flue gases or from the atmosphere.

  8. Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interfaces | Department of Energy Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS. chemistry_you_synchrotron_studies.pdf (1.84

  9. Chapter 4: Advancing Clean Electric Power Technologies | Supercritical Carbon Dioxide Brayton Cycle Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments Introduction The

  10. Haverford College Researchers Create Carbon Dioxide-Separating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon...

  11. Carbon dioxide and global climate change: The birth and arrested development of an idea

    SciTech Connect (OSTI)

    Mudge, F.B.

    1996-12-31

    G.S. Callendar (1897--1964) is regarded the originator of the modern theory of carbon dioxide and global climate change. However, this paper shows that the theory was developed and became well accepted during the nineteenth century. Carbon dioxide was discovered by Black in 1752. From 1820 to 1890 a steadily growing number of measurements of its atmospheric concentration were made using steadily improving techniques; the average results fell from around 500 ppm in 1820 to about 300 ppm in 1890. By the end of the following decade the greenhouse theory of global climate change seemed widely accepted. However in 1900 and 1901 Aangstroem appeared to demolish the theory when he reported that changes in the carbon dioxide level can have little effect because of the overlap of the water and carbon dioxide spectral bands. At a stroke, all interest in the measurement of atmospheric carbon dioxide levels seemed to disappear, although during the 1920s and 1930s a few workers resumed the work but for reasons unconnected to climate change. Over the next thirty years the writers of authoritative textbooks dismissed the theory of carbon dioxide and climate change as an example of misguided speculation. Then in 1938 Callendar`s first paper appeared, reviving the theory which had lain forgotten for nearly forty years.

  12. Electrochemical Membrane for Carbon Dioxide Separation and Power Generation

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Hunt, Jennifer; Patel, Dilip; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2012-12-28

    uelCell Energy, Inc. (FCE) has developed a novel system concept for separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane (ECM). The salient feature of the ECM is its capability to produce electric power while capturing CO2 from flue gas, such as from an existing pulverized coal (PC) plant. Laboratory scale testing of the ECM has verified the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Recently, FCE was awarded a contract (DE-FE0007634) from the U.S. Department of Energy to evaluate the use of ECM to efficiently and cost effectively separate CO2 from the emissions of existing coal fired power plants. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from flue gas of an existing PC plant with no more than 35% increase in the cost of electricity (COE) produced by the plant. The specific objectives and related activities planned for the project include: 1) conduct bench scale tests of a planar membrane assembly consisting of ten or more cells of about 0.8 m2 area each, 2) develop the detailed design for an ECM-based CO2 capture system applied to an existing PC plant, and 3) evaluate the effects of impurities (pollutants such as SO2, NOx, Hg) present in the coal plant flue gas by conducting laboratory scale performance tests of the membrane. The results of this project are anticipated to demonstrate that the ECM is an advanced technology, fabricated from inexpensive materials, based on proven operational track records, modular, scalable to large sizes, and a viable candidate for >90% carbon capture from existing PC plants. In this paper, the fundamentals of ECM technology including: material of construction, principal mechanisms of operation, carbon capture test results and the benefits of applications to PC plants will be presented.

  13. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  14. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  15. LOW-PRESSURE MEMBRANE CONTACTORS FOR CARBON DIOXIDE CAPTURE

    SciTech Connect (OSTI)

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2014-09-30

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  16. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    SciTech Connect (OSTI)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identify and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an understanding

  17. Carbonate fuel cell system with integrated carbon dioxide/thermal management

    SciTech Connect (OSTI)

    Paetsch, L.; Ding, J.; Hunt, J.

    1995-12-31

    Upon successful completion of Phase 1, the Phase 2 activities were initiated in July 1994 to define the stack design and system requirements for a commercial-scale burnerless carbonate fuel cell stack with an integrated carbon dioxide management system. The major goals of this program are to define the stack design and the system requirements of the integrated design. The approach taken was to maximize the similarities of this stack with ERC`s proven baseline stack design and power plant system. Recent accomplishments include a detailed stack design which retains all the essential elements of the baseline stack as well as the power plant system designs. All the auxiliary hardware and external flow patterns remain unchanged, only the internal flow configurations are modified.

  18. DOE Study Monitors Carbon Dioxide Storage in Norway's Offshore Sleipner Gas Field

    Broader source: Energy.gov [DOE]

    In a newly awarded project, researchers funded by the U.S. Department of Energy are partnering with European scientists to track injected carbon dioxide in the world's first and longest running carbon storage operation located at the Sleipner gas field in the North Sea.

  19. DOE Report Assesses Potential for Carbon Dioxide Storage Beneath Federal Lands

    Broader source: Energy.gov [DOE]

    As a complementary document to the U.S. Department of Energy's Carbon Sequestration Atlas of the United States and Canada issued in November 2008, the Office of Fossil Energy's National Energy Technology Laboratory has now released a report that provides an initial estimate of the potential to store carbon dioxide underneath millions of acres of Federal lands.

  20. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  1. Transporting carbon dioxide recovered from fossil-energy cycles

    SciTech Connect (OSTI)

    Doctor, R. D.; Molburg, J. C.; Brockmeier, J. F.

    2000-07-24

    Transportation of carbon dioxide (CO{sub 2}) for enhanced oil recovery is a mature technology, with operating experience dating from the mid-1980s. Because of this maturity, recent sequestration studies for the US Department of Energy's National Energy Technology Laboratory have been able to incorporate transportation into overall energy-cycle economics with reasonable certainty. For these studies, two different coal-fueled plants are considered; the first collects CO{sub 2} from a 456-MW integrated coal gasification combined-cycle plant, while the second employs a 353-MW pulverized-coal boiler plant retrofitted for flue-gas recycling (Doctor et al. 1999; MacDonald and Palkes 1999). The pulverized-coal plant fires a mixture of coal in a 33% O{sub 2} atmosphere, the bulk of the inert gas being made up to CO{sub 2} to the greatest extent practical. If one power plant with one pipe feeds one sequestration reservoir, projected costs for a 500-km delivery pipeline are problematic, because when supplying one reservoir both plant availability issues and useful pipeline life heavily influence capital recovery costs. The transportation system proposed here refines the sequestration scheme into a network of three distinctive pipelines: (1) 80-km collection pipelines for a 330-MW pulverized-coal power plant with 100% CO{sub 2} recovery; (2) a main CO{sub 2} transportation trunk of 320 km that aggregates the CO{sub 2} from four such plants; and (3) an 80-km distribution network. A 25-year life is assumed for the first two segments, but only half that for the distribution to the reservoir. Projected costs for a 500-km delivery pipeline, assuming an infrastructure, are $7.82/tonne ($17.22/10{sup 3} Nm{sub 3} CO{sub 2} or $0.49/10{sup 3} scf CO{sub 2}), a savings of nearly 60% with respect to base-case estimates with no infrastructure. These costs are consistent only with conditioned CO{sub 2} having low oxygen and sulfur content; they do not include CO{sub 2} recovery, drying

  2. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  3. Master index for the carbon dioxide research state-of-the-art report series

    SciTech Connect (OSTI)

    Farrell, M P

    1987-03-01

    Four State of the Art (SOA) reports, ''Atmospheric Carbon Dioxide and the Global Carbon Cycle,'' ''Direct Effects of Increasing Carbon Dioxide on Vegetation,'' ''Detecting the Climatic Effects of Increasing Carbon Dioxide,'' and ''Projecting the Climatic Effects of Increasing Carbon Dioxide,'' and two companion reports, ''Characterization of Information Requirements for Studies of CO/sub 2/ Effects: Water Resources, Agriculture, Fisheries, Forests and Human Health'' and ''Glaciers, Ice Sheets, and Sea Level: Effect of a CO/sub 2/-Induced Climatic Change,'' were published by the US Department of Energy's Carbon Dioxide Research Division. Considerable information on atmospheric carbon dioxide and its possible effects on world climate is summarized in these six volumes. Each volume has its own index, but to make the information that is distributed throughout the six volumes more accessible and usable, comprehensive citation and subject indexes have been compiled. The subject indexes of the individual volumes have been edited to provide a uniformity from volume to volume and also to draw distinctions not needed in the separate volumes' indexes. Also, the comprehensive subject index has been formatted in a matrix arrangement to graphically show the distribution of subject treatment from volume to volume. Other aids include cross references between the scientific and common names of the animals and plants referred to, a glossary of special terms used, tables of data and conversion factors related to the data, and explanations of the acronyms and initialisms used in the texts of the six volumes. The executive summaries of the six volumes are collected and reproduced to allow the readers interested in the contents of one volume to rapidly gain information on the contents of the other volumes.

  4. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOE Patents [OSTI]

    Bamberger, C.E.; Robinson, P.R.

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  5. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOE Patents [OSTI]

    Bamberger, Carlos E.; Robinson, Paul R.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  6. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  7. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integrated XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore

  8. Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Conboy, Thomas M.

    2012-02-01

    A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

  9. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 081103) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) Global Ocean Data Analysis Project GLODAP: Results and Data Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 120596) and A24, A20, and A22 (053097 090397) Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 012296) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) Global Distribution of Total Inorganic Carbon and Total

  10. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  11. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  12. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 October 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  13. Copper clusters capture and convert carbon dioxide to make fuel | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Copper clusters capture and convert carbon dioxide to make fuel By Payal Marathe * August 6, 2015 Tweet EmailPrint Capture and convert-this is the motto of carbon dioxide reduction, a process that stops the greenhouse gas before it escapes from chimneys and power plants into the atmosphere and instead turns it into a useful product. One possible end product is methanol, a liquid fuel and the focus of a recent study conducted at the U.S. Department of Energy's (DOE)

  14. Carbon Dioxide Capture and Transportation Options in the Illinois Basin

    SciTech Connect (OSTI)

    M. Rostam-Abadi; S. S. Chen; Y. Lu

    2004-09-30

    This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems

  15. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating

  16. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used

  17. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOE Patents [OSTI]

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  18. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect (OSTI)

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  19. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson (Castro Valley, CA)

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  20. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

  1. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect (OSTI)

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  2. Catalytic oxidation of hydrocarbons and alcohols by carbon dioxide on oxide catalysts

    SciTech Connect (OSTI)

    Krylov, O.V. . N.N. Semenov Inst. of Chemical Physics); Mamedov, A.Kh.; Mirzabekova, S.R. . Yu.G. Mamedaliev Inst. of Petrochemical Processes)

    1995-02-01

    The great interest displayed lately in heterogeneous catalytic reactions of carbon dioxide is caused by two reasons: (1) the necessity to fight the greenhouse effect and (2) the exhaust of carbon raw material sources. Reactions of oxidative transformation of organic compounds of different classes (alkanes, alkenes, and alcohols) with a nontraditional oxidant, carbon dioxide, were studied on oxide catalysts Fe-O, Cr-O, Mn-O and on multicomponent systems based on manganese oxide. The supported manganese oxide catalysts are active, selective, and stable in conversion of the CH[sub 4] + CO[sub 2] mixture into synthesis gas and in oxidative dehydrogenation of C[sub 2] [minus] C[sub 7] hydrocarbons and the lower alcohols. Unlike metal catalysts manganese oxide based catalysts do not form a carbon layer during the reaction.

  3. Investigation of the carbon dioxide sorption capacity and structural deformation of coal

    SciTech Connect (OSTI)

    Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav; Harbert, William

    2010-01-01

    Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organic matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.

  4. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect (OSTI)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  5. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    Reports and Publications (EIA)

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  6. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect (OSTI)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  7. DOE Seeks Projects to Advance Carbon Dioxide Utilization from Coal-Fired Power Plants

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has announced approximately $6.7 million in federal funding for cost-shared projects that will develop technologies that utilize carbon dioxide (CO2) from coal-fired power plants to produce useful products.

  8. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect (OSTI)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  9. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    Reports and Publications (EIA)

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  10. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Reports and Publications (EIA)

    2015-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  11. Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal

    SciTech Connect (OSTI)

    Smith, D.H.; Jikich, S.; Seshadri, K.

    2007-05-01

    For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a

  12. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical

  13. Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream

    DOE Patents [OSTI]

    Chang, Shih-Ger; Li, Yang; Zhao, Xinglei

    2014-07-08

    The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.

  14. Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams

    SciTech Connect (OSTI)

    Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl; Patel, Dilip; DiNitto, M.; Marina, Olga A.; Pederson, Larry R.; Steen, William A.

    2015-09-30

    To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of the project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.

  15. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  16. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly

  17. An Evaluation of the Feasibility of Combining Carbon Dioxide Flooding Technologies with Microbial Enhanced Oil Recovery Technologies in Order To Sequester Carbon Dioxide

    SciTech Connect (OSTI)

    Todd French; Lew Brown; Rafael Hernandez; Magan Green; Lynn Prewitt; Terry Coggins

    2009-08-19

    The need for more energy as our population grows results in an increase in the amount of CO2 introduced into the atmosphere. The effect of this introduction is currently debated intensely as to the severity of the effect of this. The bjective of this investigation was to determine if the production of more energy (i.e. petroleum) and the sequestration of CO2 could be coupled into one process. Carbon dioxide flooding is a well-established technique that introduces Compressed CO2 into a subsurface oil-bearing formation to aide in liquefying harder to extract petroleum and enhancing its mobility towards the production wells.

  18. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  19. (Use of carbon dioxide in inorganic, organic, and bioorganic reactions, Ginosa, Italy, June 17--28, 1989): Foreign trip report

    SciTech Connect (OSTI)

    Smith, H.B.

    1989-07-14

    The traveler attended the NATO Advanced Study Institute in Ginosa, Italy, and presented an oral summary of his research entitled ''Subtle Structural Perturbations at the Active Site of Rubisco by Concerted Site-Directed Mutagenesis and Chemical Modification.'' Topics of the Institute included the chemical fixation, electrochemical and chemical reduction of carbon dioxide, and enzymatic reactions of carbon dioxide. Discussion of ribulose bisphosphate carboxylase/oxygenase, the enzyme that catalyzes by far most of the earth's yearly carbon dioxide fixation, highlighted ongoing investigations of the enzyme within the Protein Engineering Program of ORNL's Biology Division.

  20. Solubility of carbon dioxide in acetone and propionic acid at temperatures between 298 K and 333 K

    SciTech Connect (OSTI)

    Adrian, T.; Maurer, G.

    1997-07-01

    The solubility of carbon dioxide in organic solvents acetone and propionic acid has been measured with an analytical method. The composition and the density of the liquid phase in the binary vapor-liquid equilibrium have been investigated at (313 and 333) K (for the system carbon dioxide + acetone) and at (298, 313, and 333) K (for the system carbon dioxide + propionic acid) at pressures up the binary critical pressure. The experimental results for the phase equilibrium have been correlated with the Peng-Robinson EOS applying several mixing rules.

  1. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  2. Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreenFire Energy began work to demonstrate a process that would use CO2 to harness geothermal energy to make electricity. What is more, the technology has the potential to add carbon sequestration – not to mention reduced water consumption – to the benefits already associated with geothermal power.

  3. Converting Carbon Dioxide to Butyrate with an Engineered Strain of Clostridium ljungdahlii

    SciTech Connect (OSTI)

    Ueki, T; Nevin, KP; Woodard, TL; Lovley, DR

    2014-08-26

    Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions. This possibility was evaluated by engineering a strain to produce butyrate, a valuable commodity that is not a natural product of C. ljungdahlii metabolism. Heterologous genes required for butyrate production from acetyl-coenzyme A (CoA) were identified and introduced initially on plasmids and in subsequent strain designs integrated into the C. ljungdahlii chromosome. Iterative strain designs involved increasing translation of a key enzyme by modifying a ribosome binding site, inactivating the gene encoding the first step in the conversion of acetyl-CoA to acetate, disrupting the gene which encodes the primary bifunctional aldehyde/alcohol dehydrogenase for ethanol production, and interrupting the gene for a CoA transferase that potentially represented an alternative route for the production of acetate. These modifications yielded a strain in which ca. 50 or 70% of the carbon and electron flow was diverted to the production of butyrate with H-2 or CO as the electron donor, respectively. These results demonstrate the possibility of producing high-value commodities from carbon dioxide with C. ljungdahlii as the catalyst. IMPORTANCE The development of a microbial chassis for efficient conversion of carbon dioxide directly to desired organic products would greatly advance the environmentally sustainable production of biofuels and other commodities. Clostridium ljungdahlii is an effective catalyst for microbial electrosynthesis, a technology in which electricity generated with renewable technologies, such as solar or wind, powers the conversion of carbon dioxide and water to organic products. Other electron donors

  4. Carbon dioxide transport and sorption behavior in confined coal cores for carbon sequestration

    SciTech Connect (OSTI)

    Jikich, S.A.; McLendon, R.; Seshadri, K.; Irdi, G.; Smith, D.H.

    2009-02-15

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO{sub 2}) in coal cores are important for designing enhanced coalbed-methane/CO{sub 2}-sequestration field projects. Many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh no. 8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO{sub 2}. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core and that diffusion and sorption progressed slowly. The amounts of CO{sub 2} sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh no. 8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO{sub 2} source. Also, the calculated isotherms showed that less CO{sub 2} was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution, suggesting hysteresis and a possible rearrangement of coal structure because of CO{sub 2} sorption.

  5. Carbon dioxide recovery from cogeneration and energy projects: A technically, environmentally, and economically feasible option

    SciTech Connect (OSTI)

    Rushing, S.A.

    1997-12-31

    In this paper, the topics of carbon dioxide recovery from cogeneration projects and related industrial usage of carbon dioxide will be covered from North American and international perspectives. The CO{sub 2} recovery discussion will largely focus on one particular technology, namely the application of proprietary monoethanolamine (MEA) solvents, which have a very satisfactory record of performance in the cogeneration and power production industries. The US Federal Energy Act, the impetus behind the development of such projects, will be discussed along with its impacts on the feasibility of U.S. projects. This subject would be reviewed for other developed countries and developing economies as well. Moreover, capital and operating costs and requirements will be summarized for such plants, plus existing CO{sub 2} recovery (from cogeneration) projects will be identified.

  6. An option making for nuclear fuel reprocessing by using supercritical carbon dioxide

    SciTech Connect (OSTI)

    Enokida, Youichi; Sawada, Kayo; Shimada, Takashi; Yamamoto, Ichiro

    2007-07-01

    A four-year-research has been completed as a collaborative work by Nagoya University Mitsubishi Heavy Industries Corporation and Japan Atomic Energy Agency (JAEA) in order to develop a super critical carbon dioxide (SF-CO{sub 2}) based technology, 'SUPER-DIREX process', for nuclear fuel reprocessing. As a result obtained in Phase II of the Japan's feasibility Studies on Commercialized Fast Reactor Cycle Systems, this technology was evaluated as one of the alternatives for the advanced Purex process for he future FBR fuel cycle. Although further investigation is required for a scaled-up demonstration of processing spent fuels by SUPER-DIREX process, we could conclude that an option has been made for nuclear fuel reprocessing by using supercritical carbon dioxide. (authors)

  7. CO2 Injection in Kansas Oilfield Could Greatly Increase Production, Permanently Store Carbon Dioxide, DOE Study Says

    Broader source: Energy.gov [DOE]

    The feasibility of using carbon dioxide injection for recovering between 250 million and 500 million additional barrels of oil from Kansas oilfields has been established in a study funded by the U.S. Department of Energy.

  8. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oily surfaces can be cleaned if a solvent is used that is completely miscible with the oil. 5 Untapped Domestic Energy Supply and Long Term Carbon Storage Solution oil/CO 2 miscibility increases. For this reason, oil field operators must consider the pressure of a depleted oil reservoir when evaluating its suitability for CO 2 enhanced oil recovery. Low pressured reservoirs may need to be re-pressurized by injecting water (see page 6 sidebar on waterflooding). When the injected CO 2 and

  9. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and water form separate Oily surfaces can be cleaned if a solvent is used that is completely miscible with the oil. Oily surfaces can be cleaned if a solvent is used 5 Untapped Domestic Energy Supply and Long Term Carbon Storage Solution oil/CO 2 miscibility increases. For this reason, oil field operators must consider the pressure of a depleted oil reservoir when evaluating its suitability for CO 2 enhanced oil recovery. Low pressured reservoirs may need to be re-pressurized by injecting

  10. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  11. Two for the Price of One: Water and Carbon Dioxide Splitting via a Single

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalyst | U.S. DOE Office of Science (SC) 2 » Two for the Price of One: Water and Carbon Dioxide Splitting via a Single Catalyst Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301)

  12. Increased Atmospheric Carbon Dioxide Limits Soil Storage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Increased Atmospheric Carbon Dioxide Limits Soil Storage Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington,

  13. In Situ Infrared Spectroscopic Study of Brucite Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Loring, John S.; Thompson, Christopher J.; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T.; Rosso, Kevin M.

    2012-04-25

    In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 C was nesquehonite (MgCO3 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  14. Geochemical detection of carbon dioxide in dilute aquifers

    SciTech Connect (OSTI)

    Carroll, S; Hao, Y; Aines, R

    2009-03-27

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO{sub 2} emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO{sub 2} gas leak into dilute groundwater are important measures for the potential release of CO{sub 2} to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO{sub 2} storage reservoir. Specifically, we address the relationships between CO{sub 2} flux, groundwater flow, detection time and distance. The CO{sub 2} flux ranges from 10{sup 3} to 2 x 10{sup 6} t/yr (0.63 to 1250 t/m{sup 2}/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure.

  15. CARINA (Carbon dioxide in the Atlantic Ocean) Data from CDIAC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The idea for CARINA developed at a workshop (CO2 in the northern North Atlantic) that was held at the HANSE-Wissenschaftskolleg (HANSE Institute for Advanced Study) in Delmenhorst, Germany from June 9 to 11, 1999. While the main scientific focus is the North Atlantic, some data from the South Atlantic have been included in the project, along with data from the Arctic Ocean. Data sets go back to 1972, and more than 100 are currently available. The data are also being used in conjunction with other projects and research groups, such as the Atlantic Ocean Carbon Synthesis Group. See the inventory of data at http://store.pangaea.de/Projects/CARBOOCEAN/carina/data_inventory.htm See a detailed table of information on the cruises at http://cdiac.ornl.gov/oceans/CARINA/Carina_table.html and also provides access to data files. The CARBOOCEAN data portal provides a specialized interface for CARINA data, a reference list for historic carbon data, and password protected access to the "Data Underway Warehouse.".

  16. Identification and Selection of Major Carbon Dioxide Stream Compositions

    SciTech Connect (OSTI)

    Last, George V.; Schmick, Mary T.

    2011-06-30

    A critical component in the assessment of long-term risk from geologic sequestration of CO2 is the ability to predict mineralogical and geochemical changes within storage reservoirs due to rock-brine-CO2 reactions. Impurities and/or other constituents selected for co-sequestration can affect both the chemical and physical (e.g. density, viscosity, interfacial tension) behavior of CO2 in the deep subsurface. These impurities and concentrations are a function of both the industrial source(s) of the CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for geologic sequestration. This report summarizes the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy related industrial sources of CO2. Assuming that carbon-capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, we selected four test fluid compositions for use in geochemical experiments. These included: 1) a pure CO2 stream representative of food grade CO2 used in most enhanced oil recovery projects: 2) a test fluid composition containing low concentrations (0.5 mole %) SO2 and NOx (representative of that generated from cement production), 3) a test fluid composition with higher concentrations (2.5 mole %) of SO2, and 4) and test fluid composition containing 3 mole % H2S.

  17. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.; Zegkinoglou, Ioannis; Sinev, Ilya; Choi, Yong-Wook; Kisslinger, Kim; Stach, Eric A.; Yang, Judith C.; Strasser, Peter; et al

    2016-06-30

    There is an urgent need to develop technologies that use renewable energy to convert waste products such as carbon dioxide into hydrocarbon fuels. Carbon dioxide can be electrochemically reduced to hydrocarbons over copper catalysts, although higher efficiency is required. We have developed oxidized copper catalysts displaying lower overpotentials for carbon dioxide electroreduction and record selectivity towards ethylene (60%) through facile and tunable plasma treatments. Herein we provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. Operando X-ray absorption spectroscopy and cross-sectional scanning transmission electron microscopy show that copper oxides aremore » surprisingly resistant to reduction and copper+ species remain on the surface during the reaction. Furthermore, our results demonstrate that the roughness of oxide-derived copper catalysts plays only a partial role in determining the catalytic performance, while the presence of copper+ is key for lowering the onset potential and enhancing ethylene selectivity.« less

  18. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  19. Guidelines for carbon dioxide capture, transport and storage

    SciTech Connect (OSTI)

    Hanson, S.

    2008-07-01

    The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

  20. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect (OSTI)

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  1. Transient kinetics study of catalytic char gasification in carbon dioxide

    SciTech Connect (OSTI)

    Lizzio, A.A.; Radovic, L.R. . Dept. of Materials Science and Engineering)

    1991-08-01

    In this paper, the deactivation behavior of K, Ca, and Ni catalysts during carbon (char) gasification in CO{sub 2} is investigated. Correlations were sought between gasification rates and reactive surface areas (RSA) of the chars. In addition, the results allowed some speculation on recently proposed mechanisms of catalysis. An excellent correlation was found in the case of K catalysis, suggesting the rate-determining step in the overall mechanism to be the same as in the uncatalyzed reaction, i.e., desorption of the reactive C(O) intermediate. For the Ca-catalyzed reaction, the quality of the correlation depended on catalyst dispersion, suggesting that an additional process, besides the direct decomposition of the reactive C(O) intermediate, contributed to the transient evolution of CO (e.g., oxygen spillover). No correlation was found for Ni-catalyzed gasification; an oxygen-transfer mechanism is proposed to explain these findings. Mixed catalyst systems (Ca/K, K/Ni, Ca/Ni) were also studied. An excellent correlation between reactivity and RSA was observed in cases where the K-catalyzed reaction was dominant.

  2. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Carbon Sequestration

    SciTech Connect (OSTI)

    Jikich, Sinisha; McLendon, Robert; Seshadri, Kal; Irdi, Gino; Smith, Duane

    2009-01-01

    Measurements of sorption isotherms and transport properties of carbon dioxide (CO2) in coal cores are important for designing enhanced coalbed-methane/CO2-sequestration field projects. Sorption isotherms measured in the laboratory can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may reduce the sorption capacities and/or transport rates significantly. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, 3D effective stress; the sample was scanned by X-ray computer tomography (CT) before, then while, it sorbed CO2. Increases in sample density because of sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the CT showed that gas sorption advanced at different rates in different regions of the core. and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated

  3. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  4. Decarb/Desal: Separation of Carbon Dioxide from Flue Gas with Simultaneous Fresh Water Production

    SciTech Connect (OSTI)

    Aines, R; Bourcier, W

    2009-10-21

    If fossil fuels continue to be a major part of the world's energy supply, effective means must be developed to deal with the carbon emissions. Geologic sequestration of supercritical CO{sub 2} is expected to play a major role in mitigating this problem. Separating carbon dioxide from other gases is the most costly aspect of schemes for geologic sequestration. That cost is driven by the complexity and energy intensity of current chemical-stripping methods for separating carbon dioxide. Our experience in water treatment technology indicated that an entirely new approach could be developed, taking advantage of water's propensity to separate gases that ionize in water (like CO{sub 2}) from those that do not (like N{sub 2}). Even though water-based systems might not have the extreme selectivity of chemicals like substituted amines used in industrial systems today, they have the potential to tolerate NO{sub x}, SO{sub x}, and particulates while also producing clean drinking water as a valuable byproduct. Lower capital cost, broader range of applicability, environmental friendliness, and revenue from a second product stream give this approach the potential to significantly expand the worldwide application of carbon separation for geologic sequestration. Here we report results for separation of CO{sub 2} from flue gas by two methods that simultaneously separate carbon dioxide and fresh water: ionic pumping of carbonate ions dissolved in water, and thermal distillation. The ion pumping method dramatically increases dissolved carbonate ion in solution and hence the overlying vapor pressure of CO{sub 2} gas, allowing its removal as a pure gas. We have used two common water treatment methods to drive the ion pumping approach, reverse osmosis and electrodialysis to produce pure CO{sub 2}. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas, because the slightly basic water used as the extraction medium is

  5. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOE Patents [OSTI]

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  6. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  7. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOE Patents [OSTI]

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  8. New analytical reagents for the determination of sulfur dioxide and carbon monoxide

    SciTech Connect (OSTI)

    Trump, E.L.

    1987-01-01

    Four solid reagent methods were developed for the determination of sulfur dioxide in air, and one method was developed to measure carbon monoxide. When applied to filter paper with acetamide as the humectant and 4-phenylcyclohexanone as a bisulfite absorbent, oxohydroxybis(8-hydroxyquinolinyl-) vanadium (V) changes from yellow to black in the presence of sulfur dioxide. The three other methods, also on a filter paper support, utilized the reduction of bromate to bromine which then changed 3-,3'-, 5-,5'-tetramethylbenzidine from yellow to blue, phenothiazine from white to green, and 4-dimethylamino-4'-,4/double prime/-dimethoxytriphenylmethanol from colorless to red-purple. Quantitative measurements were made by reflectance spectroscopy. The method for carbon monoxide involved the use of tetrakis (acetamide-) Pd(II) ditetrafluoroborate, sodium iodate, and leuco crystal violet all together on a filter paper support. Carbon monoxide reduced the Pd(II)-acetamide complex to metallic palladium. The metallic palladium then reduced iodate to hypoiodous acid, HOI, which, in turn, oxidized leuco crystal violet to crystal violet. The crystal violet color was then measured by reflectance.

  9. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    SciTech Connect (OSTI)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  10. Cleaning of diamond nanoindentation probes with oxygen plasma and carbon dioxide snow

    SciTech Connect (OSTI)

    Morris, Dylan J. [National Institute of Standards and Technology, Materials Science and Engineering Laboratory, 100 Bureau Drive, Mail Stop 8520, Gaithersburg, Maryland 20899-8520 (United States)

    2009-12-15

    Diamond nanoindentation probes may perform thousands of indentations over years of service life. There is a broad agreement that the probes need frequent cleaning, but techniques for doing so are mostly anecdotes shared between experimentalists. In preparation for the measurement of the shape of a nanoindentation probe by a scanning probe microscope, cleaning by carbon dioxide snow jets and oxygen plasma was investigated. Repeated indentation on a thumbprint-contaminated surface formed a compound that was very resistant to removal by solvents, CO{sub 2} snow, and plasma. CO{sub 2} snow cleaning is found to be a generally effective cleaning procedure.

  11. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  12. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcys law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  13. Efficiencies of free-air gas fumigation devices

    SciTech Connect (OSTI)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called fertilization'' effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  14. Efficiencies of free-air gas fumigation devices

    SciTech Connect (OSTI)

    Lipfert, F.W.; Hendrey, G.R.; Lewin, K.F.; Nagy, J.

    1992-03-01

    One of the key uncertainties relative to future increases in atmospheric CO{sub 2} is the extent to which growth in future emissions will be accommodated by increased uptake by terrestrial vegetation, the so-called ``fertilization`` effect. Research on this issue is currently pursued by many research groups around the world, using various experimental protocols and devices. These range from leaf cuvettes to various types of enclosures and glass-houses to various types of open-field gas enrichment or fumigation systems. As research priorities move from crops to forests and natural ecosystems, these experimental devices tend to become large and enrichment gas (i.e., CO{sub 2}) requirements and costs become a major factor in experimental design. This paper considers the relative efficiencies of gas usage for different types of systems currently in use. One of these is the Free Air CO{sub 2} Enrichment System (FACE) designed and developed at Brookhaven National Laboratory (BNL). In this paper, we develop some nondimensional groups of parameters for the purpose of characterizing performance, i.e., enrichment gas usage. These nondimensional groups are then used as figures of merit and basically allow the required flow rates of CO{sub 2} to be predicted based on the geometry of the device, wind speed, and the incremental gas concentration desired. The parameters chosen to comprise a useful nondimensional group must not only have the correct dimensions, they must also represent an appropriate physical relationship.

  15. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  16. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  17. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    20 Table 8. Carbon intensity of the economy by state (2000-2013) metric tons of energy-related carbon dioxide per million chained 2009 dollars of GDP Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 947.5 881.6 889.4 873.7 839.2 825.8 827.1 833.3 791.5 704.6 759.5 734.5 691.6 661.8 -30.2% -285.7 Alaska 1,220.0 1,145.3 1,118.1 1,127.8 1,158.5 1,161.3 1,038.3 949.7 847.3 758.4 793.2 770.3 735.6 730.8 -40.1% -489.2 Arizona 424.8

  18. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  19. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  20. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect (OSTI)

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  1. Chromium-bearing UOE line pipe for service in wet carbon dioxide environment

    SciTech Connect (OSTI)

    Ishikawa, H.; Terada, Y.; Ogata, Y.; Denpo, K.; Tamehiro, H.; Ogawa, H.; Shinada, K.

    1995-12-31

    In order to prevent preferential corrosion in pipeline welds by means of chromium addition, a study was made on the effect of chromium content on the corrosion resistance of line pipe in a wet carbon dioxide environment. It was found that the addition of 0.6% chromium to the base material reduces the corrosion rate to half that of chromium-free steels without sacrificing field weldability and low-temperature toughness, and that the addition of 0.3% more chromium to the seam weld metal than in the base material prevents the preferential corrosion of the weld. The galvanic current between the base material and the weld metal was proved to be responsible for the preferential corrosion of the weld. The chromium addition prevents the preferential corrosion though the formation of spinel-type corrosion products composed of (Fe,Cr){sub 3}O{sub 4} with high impedance. The UOE pipe manufactured on the basis of the above findings showed excellent low-temperature toughness and field weldability as well as good corrosion resistance in a wet carbon dioxide environment.

  2. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  3. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    SciTech Connect (OSTI)

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-12-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

  4. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 1. State energy-related carbon dioxide emissions by year (2000-2013) million metric tons carbon dioxide Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 142.1 133.5 138.3 139.1 141.3 142.9 145.1 146.5 138.9 119.4 131.8 128.9 122.2 119.8 -15.7% -22.3 Alaska 44.3 43.4 43.5 43.6 46.7 48.0 45.7 43.9 39.3 37.7 38.5 38.4 37.8 36.1 -18.5% -8.2 Arizona 86.0 88.3 87.6 89.4 96.2 96.3 99.2 100.9 101.2 92.2 93.9 91.9 89.9 93.8

  5. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 2. 2013 state energy-related carbon dioxide emissions by fuel million metric tons of carbon dioxide Shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Alabama 53.3 33.2 33.4 119.8 44.5% 27.7% 27.8% Alaska 1.4 17.1 17.7 36.1 3.9% 47.2% 48.9% Arizona 43.0 32.8 18.1 93.8 45.8% 34.9% 19.3% Arkansas 30.9 21.6 15.3 67.8 45.5% 31.9% 22.5% California 3.6 217.7 131.8 353.1 1.0% 61.7% 37.3% Colorado 34.3 30.6 25.6 90.5 37.9% 33.8% 28.2% Connecticut 0.7 20.8 12.7 34.3 2.1%

  6. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  7. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Table 5. Per capita energy-related carbon dioxide emissions by state (2000-2013) metric tons carbon dioxide per person Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 31.9 29.9 30.9 30.9 31.2 31.3 31.3 31.4 29.4 25.1 27.5 26.9 25.4 24.8 -22.4% -7.1 Alaska 70.6 68.4 67.8 67.3 70.9 72.0 67.7 64.6 57.2 53.9 53.9 53.1 51.8 49.0 -30.6% -21.6 Arizona 16.7 16.7 16.2 16.2 17.0 16.5 16.5 16.4 16.1 14.5 14.6 14.2 13.7 14.1 -15.2%

  8. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R. A.; Wofsy, S. C.

    2014-12-15

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 μmol mol-1, or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of themore » optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.« less

  9. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R.; Wofsy, S. C.

    2014-08-05

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and moremore » accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.« less

  10. Equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride

    SciTech Connect (OSTI)

    Majumdar, A.; Mahmoodaghdam, E.; Bishnoi, P.R.

    2000-02-01

    Natural gas components such as hydrogen sulfide, carbon dioxide, and ethane form gas hydrates of structure I under suitable temperature and pressure conditions. Information on such conditions is vital to the oil and gas industry in order to design and operate processing equipment and pipelines so that hydrate formation is avoided. Incipient equilibrium hydrate formation conditions for hydrogen sulfide, carbon dioxide, and ethane in aqueous solutions of ethylene glycol and sodium chloride were experimentally obtained in the temperature range 264--290 K and the pressure range 0.23--3.18 MPa. A variable-volume sapphire cell was used for the measurements.

  11. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    SciTech Connect (OSTI)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  12. The costs of different energy taxes for stabilizing U. S. carbon dioxide emissions: An application of the Gemini model

    SciTech Connect (OSTI)

    Leary, N.A.; Scheraga, J.D. . Climate Change Div.)

    1993-09-01

    In the absence of policies to mitigate emissions of carbon dioxide, US emissions will grow substantially over the period 1990 to 2030. One option for mitigation of carbon dioxide emissions is to tax energy use. For example, fossil energy might be taxed according to its carbon content, heating value, or market value. Using a partial equilibrium model of US energy markets that combines detailed representation of technological processes with optimizing behavior by energy users and suppliers, the authors compare the costs of using carbon, Btu, and ad valorem taxes as instruments to implement a policy of emission stabilization. The authors also examine the differential impacts of these taxes on the mix of primary energy consumed in the US. The carbon tax induces the substitution of renewables and natural gas for coal and stabilizes carbon dioxide emissions at an estimated annual cost of $125 billion. The Btu tax induces the substitution of renewables for coal, but does not encourage the use of natural gas. The estimated cost of stabilization with the Btu tax is $210 billion per year. The ad valorem tax, like the Btu tax, does not encourage the substitution of natural gas for coal. It also causes a significant shift away from oil in comparison to the carbon tax. The cost of stabilizing emissions with the ad valorem tax is estimated at $450 billion per year.

  13. Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97

    SciTech Connect (OSTI)

    Blake, D.M.; Bryant, D.L.; Reinsch, V.

    1997-09-30

    'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal

  14. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  15. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  16. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  17. Free Air C02 Enrichment (FACE) Research Data from the Oak Ridge FACE Site and Experiment on CO2 Enrichment of Sweetgum

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOE’s Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. The goal of the Oak Ridge FACE Experiment on C02 Enrichment of Sweetgum is to understand how the eastern deciduous forest will be affected by C02 enrichment of the atmosphere, and what are the feedbacks from the forest to the atmosphere. This goal is being approached by measuring the integrated response of an intact forest ecosystem, with a focus on stand-level mechanisms. The facility, comprising five 25-m plots was constructed in a deciduous forest on the Oak Ridge National Environmental Research Park. The study site is a sweetgum (Liquidambar styraciflua) monoculture planted in 1988. This closed-canopy, 18-m tall stand offers the opportunity for rigorous tests of hypotheses that address the essential features of a forest stand and how they could influence the responses to CO2. The facility was established with support from the ORNL Director's R&D Fund and the Biological and Environmental Research program of the U. S. Department of Energy Office of Science. Additional support was provided by the Terrestrial Ecology and Global Change (TECO) program through the National Science Foundation. This project was part of the CO2 research network fostered by the Global Change and Terrestrial Ecosystems core project of the International Geosphere-Biosphere Programme

  18. Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30

    To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{sub 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

  19. A Review of Major Non-Power-Related Carbon Dioxide Stream Compositions

    SciTech Connect (OSTI)

    Last, George V.; Schmick, Mary T.

    2015-07-01

    A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurface injection and geologic sequestration. This article reviews the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors then summarize the relative proportions of the remaining impurities assumed to be present in CO2 source streams that could be targeted for geologic sequestration. The summary is presented relative to five potential sources of CO2: 1) Flue Gas with Flue Gas Desulfurization, 2) Combustion Stack from Coke Production, 3) Portland Cement Kilns, 4) Natural Gas Combustion, and 5) Lime Production.

  20. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms

    SciTech Connect (OSTI)

    Nevin, KP; Hensley, SA; Franks, AE; Summers, ZM; Ou, JH; Woodard, TL; Snoeyenbos-West, OL; Lovley, DR

    2011-04-20

    Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

  1. Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters

    SciTech Connect (OSTI)

    Wang, Zan; Small, Mitchell J.; Karamalidis, Athanasios K.

    2013-02-05

    The prediction of carbon dioxide solubility in brine at conditions relevant to carbon sequestration (i.e., high temperature, pressure, and salt concentration (T-P-X)) is crucial when this technology is applied. Eleven mathematical models for predicting CO{sub 2} solubility in brine are compared and considered for inclusion in a multimodel predictive system. Model goodness of fit is evaluated over the temperature range 304433 K, pressure range 74500 bar, and salt concentration range 07 m (NaCl equivalent), using 173 published CO{sub 2} solubility measurements, particularly selected for those conditions. The performance of each model is assessed using various statistical methods, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as best fits for different subranges of the input conditions. A classification tree is generated using machine learning methods to predict the best-performing model under different T-P-X subranges, allowing development of a multimodel predictive system (MMoPS) that selects and applies the model expected to yield the most accurate CO{sub 2} solubility prediction. Statistical analysis of the MMoPS predictions, including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and increases the overall accuracy of CO{sub 2} solubility prediction across the range of T-P-X conditions likely to be encountered in carbon sequestration applications.

  2. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect (OSTI)

    Burtis, M.D.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W.

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  3. A Brief Technical Critique of Economides and Ehlig-Economides 2010 "Sequestering Carbon Dioxide in a Closed Underground Volume"

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.

    2010-04-07

    In their 2010 paper, Sequestering Carbon Dioxide in a Close Underground Volume, authors Ehlig-Economides and Economides assert that underground carbon dioxide sequestration via bulk CO2 injection is not feasible at any cost. The authors base this conclusion on a number of assumptions that the peer reviewed technical literature and decades of carbon dioxide (CO2) injection experience have proven invalid. In particular, the paper is built upon two flawed premises: first, that effective CO2 storage requires the presence of complete structural closure bounded on all sides by impermeable media, and second, that any other storage system is guaranteed to leak. These two assumptions inform every aspect of the authors analyses, and without them, the paper fails to prove its conclusions. The assertion put forward by Ehlig-Economides and Economides that anthropogenic CO2 cannot be stored in deep geologic formations is refuted by even the most cursory examination of the more than 25 years of accumulated commercial carbon dioxide capture and storage experience.

  4. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    The Vulcan Project is a NASA/DOE funded effort under the North American Carbon Program (NACP) to quantify North American fossil fuel carbon dioxide (CO2) emissions at space and time scales much finer than has been achieved in the past. The purpose is to aid in quantification of the North American carbon budget, to support inverse estimation of carbon sources and sinks, and to support the demands posed by higher resolution CO2 observations (in situ and remotely sensed). The detail and scope of the Vulcan CO2 inventory has also made it a valuable tool for policymakers, demographers, social scientists and the public at large. The Vulcan project has achieved the quantification of the 2002 U.S. fossil fuel CO2 emissions at the scale of individual factories, powerplants, roadways and neighborhoods on an hourly basis. The entire inventory was built on a common 10 km x 10 km grid to facilitate atmospheric modeling. In addition to improvement in space and time resolution, Vulcan is quantified at the level of fuel type, economic sub-sector, and county/state identification. Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  5. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; et al

    2015-01-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilationmore » lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.« less

  6. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    SciTech Connect (OSTI)

    Resnick, A.M.

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  7. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    SciTech Connect (OSTI)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of the cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.

  8. Comparison of Caprock Mineral Characteristics at Field Demonstration Sites for Saline Aquifer Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Griffith, C.A.; Lowry, G. (Carnegie Mellon University); Dzombak, D. (Carnegie Mellon University); Soong, Yee; Hedges, S.W.

    2008-10-01

    In 2003 the U.S Department of Energy initiated regional partnership programs to address the concern for rising atmospheric CO2. These partnerships were formed to explore regional and economical means for geologically sequestering CO2 across the United States and to set the stage for future commercial applications. Several options exist for geological sequestration and among these sequestering CO2 into deep saline aquifers is one of the most promising. This is due, in part, to the possibility of stabilized permanent storage through mineral precipitation from chemical interactions of the injected carbon dioxide with the brine and reservoir rock. There are nine field demonstration sites for saline sequestration among the regional partnerships in Phase II development to validate the overall commercial feasibility for CO2 geological sequestration. Of the nine sites considered for Phase II saline sequestration demonstration, seven are profiled in this study for their caprock lithologic and mineral characteristics.

  9. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 4. 2013 state energy-related carbon dioxide emission shares by sector percent of total Shares State Commercial Electric Power Residential Industrial Transportation Alabama 1.5% 53.6% 1.8% 17.8% 25.3% Alaska 6.6% 7.3% 4.3% 48.4% 33.3% Arizona 2.5% 58.3% 2.6% 4.8% 31.8% Arkansas 4.2% 52.4% 3.3% 13.6% 26.5% California 4.5% 12.9% 7.9% 20.7% 54.0% Colorado 4.1% 42.6% 9.0% 15.3% 29.0% Connecticut 10.4% 19.8% 21.0% 6.8% 42.1% Delaware 5.7% 30.2% 7.0% 27.8% 29.3% District of Columbia 35.5% 0.0%

  10. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Palo, Daniel; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-01

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, an Environmental Health and Safety (EH&S) Assessment was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment addressed air and particulate emissions as well as solid and liquid waste streams. The magnitude of the emissions and waste streams was estimated for evaluation purposes. EH&S characteristics of materials used in the system are also described. This document contains data based on the mass balances from both the 40 kJ/mol CO2 and 80 kJ/mol CO2 desorption energy cases evaluated in the Final Technical and Economic Feasibility study also conducted by Barr Engineering.

  11. Electrochemical energy storage device based on carbon dioxide as electroactive species

    DOE Patents [OSTI]

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  12. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcys law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Greens function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  13. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  14. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is

  15. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2

    SciTech Connect (OSTI)

    Dickson, A.G.; Goyet, C.

    1994-09-01

    The collection of extensive, reliable, oceanic carbon data is a key component of the Joint Global Ocean Flux Study (JGOFS). A portion of the US JGOFS oceanic carbon dioxide measurements will be made during the World Ocean Circulation Experiment Hydrographic Program. A science team has been formed to plan and coordinate the various activities needed to produce high quality oceanic carbon dioxide measurements under this program. This handbook was prepared at the request of, and with the active participation of, that science team. The procedures have been agreed on by the members of the science team and describe well tested methods. They are intended to provide standard operating procedures, together with an appropriate quality control plan, for measurements made as part of this survey. These are not the only measurement techniques in use for the parameters of the oceanic carbon system; however, they do represent the current state-of-the-art for ship-board measurements. In the end, the editors hope that this handbook can serve widely as a clear and unambiguous guide to other investigators who are setting up to analyze the various parameters of the carbon dioxide system in sea water.

  16. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments [OSTI]

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  17. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect (OSTI)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  18. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  19. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Carbon intensity by state (2000-2013) kilograms of energy-related carbon dioxide per million Btu Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 58.6 58.2 58.0 57.7 57.0 57.8 58.0 58.3 56.1 51.4 53.7 52.1 50.2 49.0 -16.5% -9.6 Alaska 59.7 59.0 59.4 59.4 60.3 60.2 61.2 60.8 60.4 59.8 60.1 60.0 59.5 59.3 -0.7% -0.4 Arizona 55.0 56.0 54.8 55.8 56.1 56.9 57.5 56.3 55.3 54.1 54.7 53.8 52.9 53.9 -2.0% -1.1 Arkansas 57.2

  20. Low-Cost, High-Accuracy, Whole-Building Carbon Dioxide Monitoring for Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Lead Performer: Dioxide Materials™ – Boca Raton, FL Partner: I-SENSE at Florida Atlantic University – Boca Raton, FL

  1. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The following Ocean Carbon Cycle models and modeling results are available from CDIAC: • CSIRO/Matear Data [Model simulation of climate change from 1880 till 2100 (Matear and Hirst 2003, GBC) • Lequere Data, Model Results • McKinley MITgcm offline biogeochemical model - posted May 2004 • McKinley MITgcm offline biogeochemical model - posted December 2004 • NCOM-Pacific-Biogeochemical Modeling Results from Fei Chai • ROMS-Pacific-Biogeochemical Modeling Results from Fei CHai • WHOI/NCAR/Irvine Eco-BGC (Doney, Moore, Lindsay, and Lima) - Posted May 2005 • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results - Posted March 2005 • Jim Christian model output for (a) Climatologies of T, S, PO4 at 50 m depth intervals; (b) SST, SSS, MLD, pCO2, CO2 flux from 1990-2003, and (c) climatological surface horizontal velocity • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Deutsch (UW) model output results for Oxygen variability in the North Pacific • Pacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  2. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer

    SciTech Connect (OSTI)

    Bacon, Diana H.; Qafoku, Nikolla; Dai, Zhenxue; Keating, Elizabeth; Brown, Christopher F.

    2016-01-01

    Multiphase, reactive transport modeling was used to identify the mechanisms controlling trace metal release under elevated CO2 conditions from a well-characterized carbonate aquifer. Modeling was conducted for two experimental scenarios: batch experiments to simulate sudden, fast, and short-lived release of CO2 as would occur in the case of well failure during injection, and column experiments to simulate more gradual leaks such as those occurring along undetected faults, fractures, or well linings. Observed and predicted trace metal concentrations are compared to groundwater concentrations from this aquifer to determine the potential for leaking CO2 to adversely impact drinking water quality. Finally, a three-dimensional multiphase flow and reactive-transport simulation of CO2 leakage from an abandoned wellbore into a generalized model of the shallow, unconfined portion of the aquifer is used to determine potential impacts on groundwater quality. As a measure of adverse impacts on groundwater quality, both the EPAs MCL limits and the maximum trace metal concentration observed in the aquifer were used as threshold values.

  3. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  4. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  5. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    SciTech Connect (OSTI)

    Kisholoy Goswami

    2005-10-11

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

  6. Carbon dioxide for the recovery of crude oil: a literature search to June 30, 1979. Final report

    SciTech Connect (OSTI)

    Doscher, T.

    1980-05-01

    Individual summaries and pertinent commentaries on each of the groups of references into which the literature on carbon dioxide for the recovery of crude oil has been classified are presented in this report. The major classifications are: physical models, laboratory studies, field tests, modelling, patents, and miscellaneous. A special summary that reviews and comments on field operations, fluid handling, and corrosion problems is also included. User's guide and subject categories for the CO/sub 2/ literature survey are given, followed by abstracts of the citations. It is concluded from this survey that the most significant deficiency in research on carbon dioxide flooding for the recovery of crude oil is the paucity of well controlled and interpreted field tests.

  7. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  8. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Bandy, A.R.; Thornton, D.C.; Driedger, A.R. III [Drexel Univ., Philadelphia, PA (United States)

    1993-12-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  9. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system

  10. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  11. Low Cost Open-Path Instrument for Monitoring Surface Carbon Dioxide at Sequestration Sites Phase I SBIR Final Report

    SciTech Connect (OSTI)

    Sheng Wu

    2012-10-02

    Public confidence in safety is a prerequisite to the success of carbon dioxide (CO2) capture and storage for any program that intends to mitigate greenhouse gas emissions. In that regard, this project addresses the security of CO2 containment by undertaking development of what is called ?¢????an open path device?¢??? to measure CO2 concentrations near the ground above a CO2 storage area.

  12. Microsoft Word - NETL-TRS-1-2013_Geologic Storage Estimates for Carbon Dioxide_20130312.electronic.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Publicly Available Methods for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations 12 March 2013 Office of Fossil Energy NETL-TRS-1-2013 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  13. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  14. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  15. Sub-Seafloor Carbon Dioxide Storage Potential on the Juan de Fuca Plate, Western North America

    SciTech Connect (OSTI)

    Jerry Fairley; Robert Podgorney

    2012-11-01

    The Juan de Fuca plate, off the western coast of North America, has been suggested as a site for geological sequestration of waste carbon dioxide because of its many attractive characteristics (high permeability, large storage capacity, reactive rock types). Here we model CO2 injection into fractured basalts comprising the upper several hundred meters of the sub-seafloor basalt reservoir, overlain with low-permeability sediments and a large saline water column, to examine the feasibility of this reservoir for CO2 storage. Our simulations indicate that the sub-seafloor basalts of the Juan de Fuca plate may be an excellent CO2 storage candidate, as multiple trapping mechanisms (hydrodynamic, density inversions, and mineralization) act to keep the CO2 isolated from terrestrial environments. Questions remain about the lateral extent and connectivity of the high permeability basalts; however, the lack of wells or boreholes and thick sediment cover maximize storage potential while minimizing potential leakage pathways. Although promising, more study is needed to determine the economic viability of this option.

  16. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  17. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  18. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  19. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): A Minimally Invasive Method

    SciTech Connect (OSTI)

    Newmark, R L; Ramirez, A L; Daily, W D

    2002-08-05

    Successful geologic sequestration of carbon dioxide (CO{sub 2}), will require monitoring the CO{sub 2} injection to confirm the performance of the caprock/reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now used for site characterization and to monitor subsurface migration of fluids (i.e., leaking underground tanks, infiltration events, steam floods, contaminant movement, and to assess the integrity of engineered barriers). When electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, the method is nearly transparent to reservoir operators, and reduces the need for additional drilling. Using numerical simulations and laboratory experiments, we have conducted sensitivity studies to determine the potential of ERT methods to detect and monitor the migration of CO{sub 2} in the subsurface. These studies have in turn been applied to the design and implementation of the first field casing surveys conducted in an oil field undergoing a CO{sub 2} flood.

  20. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E.

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  1. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    SciTech Connect (OSTI)

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu; Machmudah, Siti; Okubayashi, Satoko; Fukuzato, Ryuichi

    2014-02-24

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO{sub 2}) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO{sub 2}, PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  2. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 9. Net electricity trade index and primary electricity source for states with least and most energy-related carbon dioxide emissions per capita (2000-2013) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Primary 2011 2012 2013 Source Least CO2 per capita New York 0.9 1.0 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 Natural Gas Vermont 1.6 1.4 1.3 1.3 1.2 1.2 1.5 1.3 1.5 1.7 1.5 1.6 3.0 3.2 Nuclear California 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Natural Gas

  3. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects

    SciTech Connect (OSTI)

    Zavala, J.; Casteel, C.; DeLucia, E.; Berenbaum, M.

    2008-04-01

    Elevated levels of atmospheric carbon dioxide (CO{sub 2}), a consequence of anthropogenic global change, can profoundly affect the interactions between crop plants and insect pests and may promote yet another form of global change: the rapid establishment of invasive species. Elevated CO{sub 2} increased the susceptibility of soybean plants grown under field conditions to the invasive Japanese beetle (Popillia japonica) and to a variant of western corn rootworm (Diabrotica virgifera virgifera) resistant to crop rotation by down-regulating gene expression related to defense signaling [lipoxygenase 7 (lox7), lipoxygenase 8 (lox8), and 1-aminocyclopropane-1-carboxylate synthase (acc-s)]. The down-regulation of these genes, in turn, reduced the production of cysteine proteinase inhibitors (CystPIs), which are specific deterrents to coleopteran herbivores. Beetle herbivory increased CystPI activity to a greater degree in plants grown under ambient than under elevated CO{sub 2}. Gut cysteine proteinase activity was higher in beetles consuming foliage of soybeans grown under elevated CO{sub 2} than in beetles consuming soybeans grown in ambient CO{sub 2}, consistent with enhanced growth and development of these beetles on plants grown in elevated CO{sub 2}. These findings suggest that predicted increases in soybean productivity under projected elevated CO{sub 2} levels may be reduced by increased susceptibility to invasive crop pests.

  4. Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components

    SciTech Connect (OSTI)

    Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

    1998-05-01

    Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

  5. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  6. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accuratelyeven for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  7. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    SciTech Connect (OSTI)

    Hendrickson, D.W.; Biyani, R.K.; Brown, C.M.; Teter, W.L.

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  8. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    SciTech Connect (OSTI)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety of oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 0.6 10{sup 17} cm{sup 2} molecule{sup 1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.

  9. EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II

    SciTech Connect (OSTI)

    Neeraj Gupta; Bruce Sass; Jennifer Ickes

    2000-11-28

    In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as

  10. FACE: Free-Air CO[sub 2] Enrichment for plant research in the field

    SciTech Connect (OSTI)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO)[sub 2] on cotton plants are described. Biological responses studied include foliage response to CO[sub 2] fluctuations; yield of cotton exposed to CO[sub 2] enrichment; responses of photosynthesis and stomatal conductance to elevated CO[sub 2] in field-grown cotton; cotton leaf and boll temperatures; root response to CO[sub 2] enrichment; and evaluations of cotton response to CO[sub 2] enrichment with canopy reflectance observations.

  11. FACE: Free-Air CO{sub 2} Enrichment for plant research in the field

    SciTech Connect (OSTI)

    Hendrey, G.R.

    1992-08-01

    Research programs concerning the effects of Carbon Dioxide(CO){sub 2} on cotton plants are described. Biological responses studied include foliage response to CO{sub 2} fluctuations; yield of cotton exposed to CO{sub 2} enrichment; responses of photosynthesis and stomatal conductance to elevated CO{sub 2} in field-grown cotton; cotton leaf and boll temperatures; root response to CO{sub 2} enrichment; and evaluations of cotton response to CO{sub 2} enrichment with canopy reflectance observations.

  12. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved

  13. The combined effects of elevated carbon dioxide and ozone on crop systems

    SciTech Connect (OSTI)

    Miller, J.E.; Heagle, A.S.; Shafer, S.R.; Heck, W.W.

    1994-12-31

    Concentrations of carbon dioxide (CO{sub 2}) and ozone (O{sub 3}) in the troposphere have risen in the last century due to industrialization. Current levels of tropospheric O{sub 3} suppress growth of crops and other plants, and O{sub 3} concentrations may continue to rise with changes in global climate. On the other hand, projected increases in atmospheric concentrations of CO{sub 2} in the next 50 to 100 years are expected to cause significant increases in growth of most species. Since elevated concentrations of these gases will co-occur, it is important to understand their joint action. Until recently, however, the combined effects of O{sub 3} and CO{sub 2} have received little attention. Most publications on combined CO{sub 2} and O{sub 3} effects have described experiments conducted in greenhouse or controlled-environment facilities. To date, data on responses of agricultural species to the combined gases have come from experiments with radish, tomato, white clover, tobacco, or wheat. In most cases, CO{sub 2} stimulated and O{sub 3} suppressed growth of the plant tissues studied, and CO{sub 2} usually attenuated development of O{sub 3}-induced visible injury. Some data have indicated a tendency for CO{sub 2}, in concentrations up to double the current ambient level, to attenuate effects of O{sub 3} on growth, but statistical analyses of such data often have not supported such a conclusion. In this paper, the results of a recent field experiment with soybean are reported, and the results are compared to other similar research with elevated atmospheric concentrations of both O{sub 3} and CO{sub 2}.

  14. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  15. NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES

    SciTech Connect (OSTI)

    Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

    2012-04-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

  16. PERFORMANCE IMPROVEMENTS IN COMMERCIAL HEAT PUMP WATER HEATERS USING CARBON DIOXIDE

    SciTech Connect (OSTI)

    BOWERS C.D.; ELBEL S.; PETERSEN M.; HRNJAK P.S.

    2011-07-01

    Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC (180?ºF), as required by sanitary codes in the U.S.(Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20%.

  17. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-03-31

    Progress is reported for the period from January 1, 2002 to March 31, 2002. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. In addition, evaluation of the economics of commercial application in the surrounding area was performed. In a meeting on January 14, 2002 the possibility of staging the demonstration, starting with a 10-acre sub-pattern flood was raised and the decision made to investigate this plan in detail. The influence of carbon dioxide on oil properties and the influence of binary interaction parameters (BIP) used in the VIP simulator were investigated. VIP calculated swelling factors are in good agreement with published values up to 65% mole-fraction CO2. Swelling factor and saturated liquid density are relatively independent of the BIP over the range of BIPs used (0.08-0.15) up to 65% mole-fraction CO2. Assuming a CO2 EOR recovery rate projected as being most likely by current modeling, commercial scale CO2 flooding at $20/BO is possible in the leases in Hall-Gurney field. Relatively small floods (240-320 acres, 4-6 patterns) are economically viable at $20/BO in areas of very high primary and secondary productivity (>14 MBO/net acre recovery). Leases with moderately high primary and secondary productivity (> 10 MBO/net acre recovery) can be economic when combined with high productivity leases to form larger floods (>640 acres, 9 or more patterns).

  18. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide

    SciTech Connect (OSTI)

    Nils Johnson; Joan Ogden

    2010-12-31

    In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the

  19. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect (OSTI)

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  20. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies

    SciTech Connect (OSTI)

    Newmark, R L; Ramierz, A L; Daily, W D

    2001-02-28

    If geologic formations are used to sequester carbon dioxide (CO{sub 2}), monitoring the CO{sub 2} injection will be required to confirm the performance of the reservoir system, assess leaks and flow paths, and understand the geophysical and geochemical interactions between the CO{sub 2} and the geologic minerals and fluids. Electrical methods are well suited for monitoring processes involving fluids, as electrical properties are sensitive to the presence and nature of the formation fluids. High resolution tomographs of electrical properties are now possible using it 3D technique called electrical resistance tomography (ERT). Surveys are commonly conducted utilizing vertical arrays of point electrodes in a cross-well configuration. Recent field results obtained using steel well casings as electrodes are promising. When 3D ERT imaging can be performed using existing well casings as long electrodes, the need for additional drilling of observation wells is minimized. Using a model patterned after an oil field undergoing CO{sub 2} flood, forward and inverse simulations of ERT surveys have been run to test the sensitivity of the method to changes resulting from CO{sub 2} migration. Factors considered include resistivity contrast, anomaly proximity to electrodes, anomaly size and shape, measurement noise, and the electrode configuration used to perform the measurements. Field data suggest that CO{sub 2} migration changes the resistivity of a layer, producing an anomalous region. In our numerical study, the anomalous region s resistivity ranges from 0.2 to 10 times that of the initial value. Its geometry ranges from a thin, horizontal finger to a planar, horizontal mass having vertical protrusions simulating leakage of CO{sub 2} through caprock. Results of simulations run assuming that well casings are used as long electrodes or with arrays of point electrodes (simulating high resolution surveys) show useful information for even the narrowest simulated CO{sub 2} fingers.

  1. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Farnum, Rachel; Perry, Robert; Wood, Benjamin

    2014-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO 2) from the flue gas of coal-fired powerplants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO2-capture solvent. GE Global Research was contracted by the Department of Energy to test a pilot-scale continuous CO2 absorption/desorption system using a GAP-1m/TEG mixture as the solvent. As part of that effort, an Environmental, Health, and Safety (EH&S) assessment for a CO2-capture system for a 550 MW coal-fired powerplant was conducted. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP- 1m/SOX salt, and dodecylbenzenesulfonicacid (DDBSA) were also identified foranalysis. An EH&S assessment was also completed for the manufacturing process for the GAP-1m solvent. The chemicals associated with the manufacturing process include methanol, xylene, allyl chloride, potassium cyanate, sodium hydroxide (NaOH), tetramethyldisiloxane (TMDSO), tetramethyl ammonium hydroxide, Karstedt catalyst, octamethylcyclotetrasiloxane (D4), Aliquat 336, methyl carbamate, potassium chloride, trimethylamine, and (3-aminopropyl) dimethyl silanol. The toxicological effects of each component of both the CO2 capture system and the manufacturing process were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. Engineering and control systems, including environmental abatement, are described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  2. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X

    SciTech Connect (OSTI)

    Konduru, N.; Lindner, P.; Assaf-Anad, N.M.

    2007-12-15

    The removal of carbon dioxide (CO{sub 2}) from industrial emissions has become essential in the fight against climate change. In this study, we employed Zeolite 13X for the capture and recovery of CO{sub 2} in a flow through system where the adsorbent was subjected to five adsorption-desorption cycles. The influent stream contained 1.5% CO{sub 2} at standard conditions. The adsorbent bed was 1 in. in length and 1 in.3/8 in dia., and was packed with 10 g of the zeolite. Temperature swing adsorption (TSA) was employed as the regeneration method through heating to approximately 135{sup o}C with helium as the purge gas. The adsorbent capacity at 90% saturation was found to decrease from 78 to 60g CO{sub 2}/kg{sub Zeolite13X} after the fifth cycle. The CO{sub 2} capture ratio or the mass of CO{sub 2} adsorbed to the total mass that entered the system decreased from 63% to only 61% after the fifth cycle. The CO{sub 2} recovery efficiency ranged from 82 to 93% during desorption, and the CO{sub 2} relative recovery, i.e., CO{sub 2} desorbed for the nth cycle to CO{sub 2} adsorbed for the first cycle, ranged from 88 to 68%. The service life of the adsorbent was determined to be equal to eleven cycles at a useful capacity of 40g CO{sub 2}/kg{sub Zeolite13X}.

  3. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect (OSTI)

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.

  4. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  5. Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influences of the Boundary Layer Flow on Vegeta8on-Air Exchanges of Energy, Water and Carbon Dioxide Xuhui Lee (Yale University) and Edward Pa:on (NCAR) * Summarize your projects and its scienFfic objecFves for the next 3-5 years The objecFve of this project is to establish a mechanisFc understanding of the interplay between flow heterogeneity in the atmospheric boundary layer (ABL), land surface heterogeneity, and vegetaFon-air exchange of energy, water and CO 2 . The project will invesFgate

  6. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  7. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79

  8. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal

  9. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    SciTech Connect (OSTI)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature

  10. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Glaser, Paul; Bhandari, Dhaval; Narang, Kristi; McCloskey, Pat; Singh, Surinder; Ananthasayanam, Balajee; Howson, Paul; Lee, Julia; Wroczynski, Ron; Stewart, Frederick; Orme, Christopher; Klaehn, John; McNally, Joshua; Rownaghi, Ali; Lu, Liu; Koros, William; Goizueta, Roberto; Sethi, Vijay

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  11. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  12. FY-05 First Quarter Report on Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-01-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  13. FY-05 Second Quarter Report On Development of a Supercritical Carbon Dioxide Brayton Cycle: Improving PBR Efficiency and Testing Material Compatibility

    SciTech Connect (OSTI)

    Chang Oh

    2005-04-01

    The objective of this research is to improve a helium Brayton cycle and to develop a supercritical carbon dioxide Brayton cycle for the Pebble Bed Reactor (PBR) that can also be applied to the Fast Gas-Cooled Reactor (FGR) and the Very-High-Temperature Gas- Cooled Reactor (VHTR). The proposed supercritical carbon dioxide Brayton cycle will be used to improve the PBR, FGR, and VHTR net plant efficiency. Another objective of this research is to test materials to be used in the power conversion side at supercritical carbon dioxide conditions. Generally, the optimized Brayton cycle and balance of plant (BOP) to be developed from this study can be applied to Generation-IV reactor concepts. Particularly, we are interested in VHTR because it has a good chance of being built in the near future.

  14. Carbon dioxide power plant for total emission control and enhanced oil recovery. [Removal, storage, and use of CO/sub 2/

    SciTech Connect (OSTI)

    Horn, F L; Steinberg, M

    1981-08-01

    The design of a compact environmentally acceptable carbon dioxide diluted coal-oxygen fired power plant is described. The plant releases no combustion products to the atmosphere. The oxygen for combustion is separated in an air liquefaction plant and the effluent nitrogen is available for use in oil well production. Recycle carbon dioxide mixed with oxygen replaces the nitrogen for the combustion of coal in the burners. The carbon dioxide produced is used in enhanced oil recovery operations and injected into spent wells and excavated salt cavities for long-term storage. The recovery of CO/sub 2/ from a coal-burning power plant by this method appears to have the lowest energy expenditure and the lowest byproduct cost compared to alternative removal and recovery processes.

  15. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  16. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect (OSTI)

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  17. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production

    SciTech Connect (OSTI)

    Chen, Y.; Lundqvist, Per; Pridasawas, Wimolsiri

    2010-07-15

    Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

  18. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate–nitric acid adducts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; Sinclair, Laura K.; Schmidt, Alex B.; McIlwain, Patrick R.; Mincher, Bruce J.; Wai, Chien M.

    2016-06-14

    A new tri-n-butylphosphate–nitric acid (TBP–HNO3) adduct was prepared by combining TBP and fuming (90%) HNO3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO2) was modified with this new adduct [TBP(HNO3)5.2(H2O)1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO3 and TBP [TBP(HNO3)1.7(H2O)0.6]. All rare earth oxides tested with both adduct species could be extracted with the exception of cerium oxide. Furthermore, the water and acidmore » concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  19. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  20. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect (OSTI)

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity

  1. Fiscal Year 1998 Annual Report, Carbon Dioxide Information Analysis Center, World Data Center -- A for Atmospheric Trace Gases

    SciTech Connect (OSTI)

    Cushman, R.M.; Boden, T.A.; Hook, L.A.; Jones, S.B.; Kaiser, D.P.; Nelson, T.R.

    1999-03-01

    Once again, the most recent fiscal year was a productive one for the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), as well as a year for change. The FY 1998 in Review section in this report summarizes quite a few new and updated data and information products, and the ''What's Coming in FY 1999'' section describes our plans for this new fiscal year. During FY 1998, CDIAC began a data-management system for AmeriFlux, a long-term study of carbon fluxes between the terrestrial biosphere of the Western Hemisphere and the atmosphere. The specific objectives of AmeriFlux are to establish an infrastructure for guiding, collecting, synthesizing, and disseminating long-term measurements of CO{sub 2}, water, and energy exchange from a variety of ecosystems; collect critical new information to help define the current global CO{sub 2} budget; enable improved predictions of future concentrations of atmospheric CO{sub 2}; and enhance understanding of carbon fluxes. Net Ecosystem Production (NEP), and carbon sequestration in the terrestrial biosphere. The data-management system, available from CDIAC'S AmeriFlux home page (http://cdiac.esd.ornl.gov/programs/ameriflux/ ) is intended to provide consistent, quality-assured, and documented data across all AmeriFlux sites in the US, Canada, Costa Rica, and Brazil. It is being developed by Antoinette Brenkert and Tom Boden, with assistance from Susan Holladay (who joined CDIAC specifically to support the AmeriFlux data-management effort).

  2. The Impact of Electric Passenger Transport Technology under an Economy-Wide Climate Policy in the United States: Carbon Dioxide Emissions, Coal Use, and Carbon Dioxide Capture and Storage

    SciTech Connect (OSTI)

    Wise, Marshall A.; Kyle, G. Page; Dooley, James J.; Kim, Son H.

    2010-03-01

    Plug-in hybrid electric vehicles (PHEVs) have the potential to be an economic means of reducing direct (or tailpipe) carbon dioxide (CO2) emissions from the transportation sector. However, without a climate policy that places a limit on CO2 emissions from the electric generation sector, the net impact of widespread deployment of PHEVs on overall U.S. CO2 emissions is not as clear. A comprehensive analysis must consider jointly the transportation and electricity sectors, along with feedbacks to the rest of the energy system. In this paper, we use the Pacific Northwest National Laboratory’s MiniCAM model to perform an integrated economic analysis of the penetration of PHEVs and the resulting impact on total U.S. CO2 emissions.

  3. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery in the United States. The quantitative estimates of...

  4. Toward a political analysis of the consequences of a world climate change produced by increasing atmospheric carbon dioxide

    SciTech Connect (OSTI)

    Schware, R.

    1980-01-01

    It was Hegel's extraordinarily deep and perceptive insight that mankind is caught up in a drama that cannot be fully understood until it has been played out. The owl of Minewa spreads its wings only with the falling of the dusk. On the more hopeful side is the fact that, although we cannot know the consequences of future interactions between climate and society, we can begin to work toward political solutions and gird ourselves for ominous trends that are now coming into view. The purpose of this paper is to identify one such trend, namely the increase of atmospheric temperatures due to increased carbon dioxide (CO/sub 2/) and lay some initial groundwork for political research related to climate-societal interactions.

  5. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  6. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levine, Z. H.; Pintar, A. L.; Dobler, J.; Blume, N.; Braun, M.; Zaccheo, T. S.; Pernini, T. G.

    2015-11-24

    Laser Absorption Spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from pointlike sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constantmorerate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and a preliminary measurement.less

  7. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    SciTech Connect (OSTI)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  8. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T.

    2007-07-01

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  9. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levine, Zachary H.; Pintar, Adam L.; Dobler, Jeremy T.; Blume, Nathan; Braun, Michael; Zaccheo, T. Scott; Pernini, Timothy G.

    2016-04-13

    Laser absorption spectroscopy (LAS) has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from point-like sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant ratemore » giving rise to a plume with a concentration and distribution that depend on the wind velocity. Lastly, we demonstrate the ability of our approach to detect a leak using numerical simulation and also present a preliminary measurement.« less

  10. Carbon dioxide effects research and assessment program: flux of organic carbon by rivers to the oceans. [Lead abstract

    SciTech Connect (OSTI)

    1981-04-01

    Separate abstracts were prepared for the 15 papers presented in this workshop report. The state of knowledge about the role of rivers in the transport, storage and oxidation of carbon is the subject of this report. (KRM)

  11. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, E. Y.; Wong, S. E.; Baker, S. E.; Bearinger, J. P.; Koziol, L.; Valdez, C. A.; Satcher, J. H.; Aines, R. D.; Lightstone, F. C.

    2013-06-20

    In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO 2) to bicarbonate under physiological conditions. Efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn 2+ or the Co 2+ ion and studied their reaction coordinate for CO 2 hydration. These calculations demonstrated that the ability of the complexmore » to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Moreover, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.« less

  12. Comparison and analysis of zinc and cobalt-based systems as catalytic entities for the hydration of carbon dioxide

    SciTech Connect (OSTI)

    Lau, E. Y.; Wong, S. E.; Baker, S. E.; Bearinger, J. P.; Koziol, L.; Valdez, C. A.; Satcher, J. H.; Aines, R. D.; Lightstone, F. C.

    2013-06-20

    In nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO 2) to bicarbonate under physiological conditions. Efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn 2+ or the Co 2+ ion and studied their reaction coordinate for CO 2 hydration. These calculations demonstrated that the ability of the complex to maintain a tetrahedral geometry and bind bicarbonate in a unidentate manner were vital for the hydration reaction to proceed favorably. Moreover, these calculations show that the catalytic activity of the examined zinc complexes was insensitive to coordination states for zinc, while coordination states above four were found to have an unfavorable effect on product release for the cobalt counterparts.

  13. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  14. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    SciTech Connect (OSTI)

    Kazemi, Sayed Habib; Maghami, Mostafa Ghaem; Kiani, Mohammad Ali

    2014-12-15

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

  15. Land Use and Ecosystems Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Land Use and Ecosystems information includes Terrestrial Carbon Sequestration Data Sets, data sets from Africa and Asia, the Worldwide Organic Soil Carbon and Nitrogen Dataset, and much more.

  16. The microwave assisted synthesis of 1-alkyl-3-methylimidazolium bromide as potential corrosion inhibitor toward carbon steel in 1 M HCl solution saturated with carbon dioxide

    SciTech Connect (OSTI)

    Pasasa, Norman Vincent A. Bundjali, Bunbun; Wahyuningrum, Deana

    2015-09-30

    Injection of corrosion inhibitor into the fluid current of oil and gas pipelines is an effective way to mitigate corrosion rate on the inner-surface parts of pipelines, especially carbon steel pipelines. In this research, two alkylimidazolium ionic liquids, 1-decyl-3-methylimidazolium bromide (IL1) and 1-dodecyl-3-methylimidazolium bromide (IL2) have been synthesized and studied as a potential corrosion inhibitor towards carbon steel in 1 M HCl solution saturated with carbon dioxide. IL1 and IL2 were synthesized using microwave assisted organic synthesis (MAOS) method. Mass Spectrometry analysis of IL1 and IL2 showed molecular mass [M-H+] peak at 223.2166 and 251.2484, respectively. The FTIR,{sup 1}H-NMR and {sup 13}C-NMR spectra confirmed that IL1 and IL2 were successfully synthesized. Corrosion inhibition activity of IL1 and IL2 were determined using weight loss method. The results showed that IL1 and IL2 have the potential as good corrosion inhibitors with corrosion inhibition efficiency of IL1 and IL2 are 96.00% at 100 ppm (343 K) and 95.60% at 50 ppm (343 K), respectively. The increase in the concentration of IL1 and IL2 tends to improve their corrosion inhibition activities. Analysis of the data obtained from the weight loss method shows that the adsorption of IL1 and IL2 on carbon steel is classified into chemisorption which obeys Langmuir’s adsorption isotherm.

  17. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect (OSTI)

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ?}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (?{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ? 5) and long-chain Ph-C{sub n} (n ? 4) in scCO{sub 2} are different.

  18. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect (OSTI)

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  19. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    SciTech Connect (OSTI)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO? separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H? selective glassy polymer membranes are an attractive option for energy efficient H?/CO? separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO? separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H?/CO? separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commercially attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H?/CO? separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.

  20. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; Welch, Cynthia F.; Berchtold, Kathryn A.

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  1. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  2. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  3. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    SciTech Connect (OSTI)

    Brown, S.; Lugo, A. E.; Liegel, B.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  4. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  5. An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009

    SciTech Connect (OSTI)

    Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

    2009-06-26

    Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport

  6. Strong and Reversible Binding of Carbon Dioxide in a Green Metal–Organic Framework

    SciTech Connect (OSTI)

    Gassensmith, Jeremiah J.; Furukawa, Hiroyasu; Smaldone, Ronald A.; Forgan, Ross S.; Botros, Youssry Y.; Yaghi, Omar M.; Stoddart, J. Fraser

    2011-08-30

    The efficient capture and storage of gaseous CO₂ is a pressing environmental problem. Although porous metal–organic frameworks (MOFs) have been shown to be very effective at adsorbing CO₂ selectively by dint of dipole–quadruple interactions and/or ligation to open metal sites, the gas is not usually trapped covalently. Furthermore, the vast majority of these MOFs are fabricated from nonrenewable materials, often in the presence of harmful solvents, most of which are derived from petrochemical sources. Herein we report the highly selective adsorption of CO₂ by CD-MOF-2, a recently described green MOF consisting of the renewable cyclic oligosaccharide γ-cyclodextrin and RbOH, by what is believed to be reversible carbon fixation involving carbonate formation and decomposition at room temperature. The process was monitored by solid-state ¹³C NMR spectroscopy as well as colorimetrically after a pH indicator was incorporated into CD-MOF-2 to signal the formation of carbonic acid functions within the nanoporous extended framework.

  7. New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Hamilton, L.D.

    1992-12-31

    A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  8. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  9. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  10. GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation

    SciTech Connect (OSTI)

    Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

    2004-10-23

    The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

  11. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    SciTech Connect (OSTI)

    Tabita, Fred Robert

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  12. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  13. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in

  14. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect (OSTI)

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  15. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    SciTech Connect (OSTI)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  16. EOS7C Version 1.0 TOUGH2 Module for Carbon Dioxide or Nitrogen in Natural Gas

    Energy Science and Technology Software Center (OSTI)

    2008-01-11

    EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane-carbon dioxide (CH{sub 4}-CO{sub 2}) or methane-nitrogen (CH{sub 4}-N{sub 2}) with or without an aqueous phase and H{sub 2}O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy's Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestrationmore » sites and natural gas reservoirs. EOS7C models supercritical CO{sub 2{ and subcritical CO{sub 2} as a non-condensible gas, hence EOS7C does not model the transitions to liquid or solid CO{sub 2} conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO{sub 2} or N{sub 2}. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH{sub 4} between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. EOS7C is written in FORTAN77.« less

  17. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration

    SciTech Connect (OSTI)

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2006-04-21

    Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201 structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.

  18. Chemisorption, reaction and desorption studies of coal chars in steam, oxygen and carbon dioxide. Final report, January 1986-December 1989

    SciTech Connect (OSTI)

    Radovic, L.R.; Lizzio, A.A.; Jiang, H.

    1990-09-01

    The use of a transient kinetics (TK) technique allowed a direct measurement of reactive surface area (RSA) for chars gasified in both CO{sub 2} and O{sub 2}, i.e., gasification rates normalized with respect to RSA were essentially constant over the entire conversion range. A temperature-programmed desorption (TPD) technique was also used to determine the amount of reactive surface intermediate formed on the chars during gasification in CO{sub 2} and O{sub 2}; the results were in good agreement with those obtained by TK. In addition, TPD allowed an important distinction to be made between the stable C-O complexes and reactive C(O) intermediates residing on the char surface during gasification in CO{sub 2} and O{sub 2}. The application of the two independent but complementary techniques provided a satisfactory quantitative understanding of char reactivity variations with conversion in CO{sub 2} and O{sub 2}. Both techniques possess the unique capability of separately determining the reaction rate constant (site reactivity or turnover frequency) and the number of active sites participating in the reaction (RSA). A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification may be a structure sensitive reaction. The concept of reactive surface area was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in carbon dioxide.

  19. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-01-01

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  20. Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane

    SciTech Connect (OSTI)

    Deo, M.D.; Hwang, J.; Hanson, F.V.

    1991-12-31

    Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

  1. Input quality, trade liberalization, and abatement of carbon-dioxide emissions

    SciTech Connect (OSTI)

    Khanna, M.; Zilberman, D.

    1996-12-31

    This paper introduces a methodology to derive the incentives provided by two alternative policies--an emissions tax vs. liberalization of trade in higher quality coal--for increasing conversion-efficiency of electricity generation and for analyzing their impact on carbon emissions as well as on output of electricity. This methodology is applied empirically to examine the potential for abatement of carbon emissions from existing coal-based plants in the thermal power sector in India through the adoption of higher qualities of coal. The paper provides strong empirical support for achieving a complementarity between the goals of abatement and increased output, through policies which remove distortions in domestic and trade policies. It also demonstrates that abatement induced by an emissions-tax alone leads to a conflict between these goals. The authors examine a situation where the availability of higher quality coal is constrained by domestic and trade barriers. The role of coal quality in improving conversion-efficiency is analyzed when microunits are heterogeneous and have putty-clay technologies. The framework developed here juxtaposes engineering relationships governing plant performance and stylized features of electricity-generating technologies with a behavioral economic model.

  2. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa

    SciTech Connect (OSTI)

    Pushnik, J.C.; Demaree, R.S.; Flory, W.B.; Bauer, S.M.; Houpis, J.L.J.; Anderson, P.D.

    1995-01-01

    The impact of increasing atmospheric C0{sub 2} has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinusponderosa were grown in environmentally controlled chambers under increased C0{sub 2} conditions for 6 months. These trees exhibit morphological, physiological, and biochemical alterations when compared to our controls. Analysis of whole plant biomass distribution has shown no significant effect to the root to shoot ratios, however needles subjected to elevated C0{sub 2} exhibited an increased overall specific needle mass and a decreased total needle area. Morphological changes at the needle level included decreased mesophyll to vascular tissue 91 ratio and variations in starch storage in chloroplasts. The elevated CO{sub 2} increased internal CO{sub 2} concentrations and assimilation of carbon. Biochemical assays revealed that ribulose-bisphosphate carboxylase specific activities increased on per unit area basis with C0{sub 2} treatment levels. Sucrose phosphate synthase (SPS) activities exhibited an increase of 55% in the 700 uL L{sup {minus}1} treatment. These results indicate that the sink-source relationships of these trees have shifted carbon allocation toward above ground growth, possibly due to transport limitations.

  3. Potentials for reductions of carbon dioxide emissions of industrial sector in transitional economies -- A case study of implementation of absorption heat devices and co-generation

    SciTech Connect (OSTI)

    Remec, J.; Dolsak, N.

    1996-12-31

    World carbon dioxide emissions, caused by commercial energy-generation, contribute to about 57% of global warming potential. Central and East European (CEE) countries together with former USSR emitted about 25% of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. Energy efficiency improvements can reduce the high level of carbon dioxide emissions per unit of output, which significantly exceeds the levels of the industry in the European Union. CEE countries` most pressing environmental goal is a reduction of local air and water pollution. Therefore, when analyzing potentials for the reduction of greenhouse gases emissions in these countries, they need to concentrate on the activities which would also decrease local pollution. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. Process industries are very energy intensive. Structure changes of the products are carried out with operations which require input and output of heat. Heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption heat devices (AHD) and co-generation in process industry as well as their market penetration potentials are analyzed for Slovenia, one of the fastest transforming CEE economies.

  4. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors

    SciTech Connect (OSTI)

    Xiang Wenguo; Chen Yingying

    2007-08-15

    Concern about global climate change has led to research on low CO{sub 2} emission in the process of the energy conversion of fossil fuel. One of the solutions is the conversion of fossil fuel into carbon-free energy carriers, hydrogen, and electricity with CO{sub 2} capture and storage. In this paper, the main purpose is to investigate the thermodynamics performance of converting coal to a hydrogen and electricity system with chemical-looping reactors and to explore the influences of operating parameters on the system performance. Using FeO/Fe{sub 3}O{sub 4} as an oxygen carrier, we propose a carbon-free coproduction system of hydrogen and electricity with chemical-looping reactors. The performance of the new system is simulated using ASPEN PLUS software tool. The influences of the chemical-looping reactor's temperature, steam conversion rate, and O{sub 2}/coal quality ratio on the system performance, and the exergy performance are discussed. The results show that a high-purity of H{sub 2} (99.9%) is reached and that CO{sub 2} can be separated. The system efficiency is 57.85% assuming steam reactor at 815 C and the steam conversion rate 37%. The system efficiency is affected by the steam conversion rate, rising from 53.17 to 58.33% with the increase of the steam conversion rate from 28 to 41%. The exergy efficiency is 54.25% and the losses are mainly in the process of gasification and HRSG. 14 refs., 12 figs., 3 tabs.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  6. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  7. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  8. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect (OSTI)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  9. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    SciTech Connect (OSTI)

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  10. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, J.; Qi, X.; Souza, L.; Luo, Y.

    2015-10-20

    Nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive researches have been done to explore whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in plant and litter pools but not in soil pool. Thus, the basis of PNL occurrencemorepartially exists. However, CO2 enrichment also significantly increased the N influx via biological N fixation, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth over time was observed. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions. Moreover, our synthesis showed that CO2 enrichment increased soil ammonium (NH4+) but decreased nitrate (NO3-). The different responses of NH4+ and NO3-, and the consequent biological processes, may result in changes in soil microenvironment, community structures and above-belowground interactions, which could potentially affect the terrestrial biogeochemical cycles and the feedback to climate change.less

  11. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Junyi; Qi, Xuan; Souza, Lara; Luo, Yiqi

    2016-05-10

    The nitrogen (N) cycle has the potential to regulate climate change through its influence on carbon (C) sequestration. Although extensive research has explored whether or not progressive N limitation (PNL) occurs under CO2 enrichment, a comprehensive assessment of the processes that regulate PNL is still lacking. Here, we quantitatively synthesized the responses of all major processes and pools in the terrestrial N cycle with meta-analysis of CO2 experimental data available in the literature. The results showed that CO2 enrichment significantly increased N sequestration in the plant and litter pools but not in the soil pool, partially supporting one of themore » basic assumptions in the PNL hypothesis that elevated CO2 results in more N sequestered in organic pools. However, CO2 enrichment significantly increased the N influx via biological N fixation and the loss via N2O emission, but decreased the N efflux via leaching. In addition, no general diminished CO2 fertilization effect on plant growth was observed over time up to the longest experiment of 13 years. Overall, our analyses suggest that the extra N supply by the increased biological N fixation and decreased leaching may potentially alleviate PNL under elevated CO2 conditions in spite of the increases in plant N sequestration and N2O emission. Moreover, our syntheses indicate that CO2 enrichment increases soil ammonium (NH4+) to nitrate (NO3−) ratio. The changed NH4+/NO3− ratio and subsequent biological processes may result in changes in soil microenvironments, above-belowground community structures and associated interactions, which could potentially affect the terrestrial biogeochemical cycles. In addition, our data synthesis suggests that more long-term studies, especially in regions other than temperate ones, are needed for comprehensive assessments of the PNL hypothesis.« less

  12. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    SciTech Connect (OSTI)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-02-15

    Graphical abstract: Homogenous and dense spreading of TiO{sub 2} on surface modified CNTs and improved photocatalytic performance of TiO{sub 2} was achieved by coupling TiO{sub 2} with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO{sub 2} coated on modified CNTs was obtained. ► Improved activity of TiO{sub 2} is attributed to the intimate contact between TiO{sub 2} and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO{sub 2} nanocomposites were prepared by coupling of TiO{sub 2} with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO{sub 2} composites was obtained, which is mainly attributed to the high dispersion of TiO{sub 2} on ethanol-soluble CNTs and the intimate contact between TiO{sub 2} and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO{sub 2} and CNTs.

  13. Comparison of Preanode and Postanode Carbon Dioxide Separation for IGFC Systems

    SciTech Connect (OSTI)

    Eric Liese

    2010-01-01

    This paper examines the arrangement of a solid oxide fuel cell (SOFC) within a coal gasification cycle, this combination generally being called an integrated gasification fuel cell cycle. This work relies on a previous study performed by the National Energy Technology Laboratory (NETL) that details thermodynamic simulations of integrated gasification combined cycle (IGCC) systems and considers various gasifier types and includes cases for 90% CO2 capture (2007, Cost and Performance Baseline for Fossil Energy Plants, Vol. 1: Bituminous Coal and Natural Gas to Electricity, National Energy Technology Laboratory Report No. DOE/NETL-2007/1281). All systems in this study assume a Conoco Philips gasifier and cold-gas clean up conditions for the coal gasification system (Cases 3 and 4 in the NETL IGCC report). Four system arrangements, cases, are examined. Cases 1 and 2 remove the CO2 after the SOFC anode. Case 3 assumes steam addition, a water-gas-shift (WGS) catalyst, and a Selexol process to remove the CO2 in the gas cleanup section, sending a hydrogen-rich gas to the fuel cell anode. Case 4 assumes Selexol in the cold-gas cleanup section as in Case 3; however, there is no steam addition, and the WGS takes places in the SOFC and after the anode. Results demonstrate significant efficiency advantages compared with IGCC with CO2 capture. The hydrogen-rich case (Case 3) has better net electric efficiency compared with typical postanode CO2 capture cases (Cases 1 and 2), with a simpler arrangement but at a lower SOFC power density, or a lower efficiency at the same power density. Case 4 gives an efficiency similar to Case 3 but also at a lower SOFC power density. Carbon deposition concerns are also discussed

  14. Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations Final Project Report

    SciTech Connect (OSTI)

    Brady D. Lee; William A. Apel; Michelle R. Walton

    2006-03-01

    Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when

  15. The Water, Energy, and Carbon Dioxide Sequestration Simulation Model (WECSsim). A user's manual

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor; Heath, Jason E.; Dewers, Thomas A.; Gutierrez, Karen A.; Malczynski, Leonard A.; Borns, David James; McNemar, Andrea

    2014-01-01

    The Water, Energy, and Carbon Sequestration Simulation Model (WECSsim) is a national dynamic simulation model that calculates and assesses capturing, transporting, and storing CO2 in deep saline formations from all coal and natural gas-fired power plants in the U.S. An overarching capability of WECSsim is to also account for simultaneous CO2 injection and water extraction within the same geological saline formation. Extracting, treating, and using these saline waters to cool the power plant is one way to develop more value from using saline formations as CO2 storage locations. WECSsim allows for both one-to-one comparisons of a single power plant to a single saline formation along with the ability to develop a national CO2 storage supply curve and related national assessments for these formations. This report summarizes the scope, structure, and methodology of WECSsim along with a few key results. Developing WECSsim from a small scoping study to the full national-scale modeling effort took approximately 5 years. This report represents the culmination of that effort. The key findings from the WECSsim model indicate the U.S. has several decades' worth of storage for CO2 in saline formations when managed appropriately. Competition for subsurface storage capacity, intrastate flows of CO2 and water, and a supportive regulatory environment all play a key role as to the performance and cost profile across the range from a single power plant to all coal and natural gas-based plants' ability to store CO2. The overall system's cost to capture, transport, and store CO2 for the national assessment range from $74 to $208 / tonne stored ($96 to 272 / tonne avoided) for the first 25 to 50% of the 1126 power plants to between $1,585 to well beyond $2,000 / tonne stored ($2,040 to well beyond $2,000 / tonne avoided) for the remaining 75 to 100% of the plants. The latter range, while extremely

  16. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect (OSTI)

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  17. Carbon dioxide enrichment: Data on the response of cotton to varying CO{sub 2}, irrigation, and nitrogen

    SciTech Connect (OSTI)

    Sepanski, R.J.; Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J.; Lakatos, E.A.

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  18. Carbon dioxide enrichment: Data on the response of cotton to varying CO sub 2 , irrigation, and nitrogen

    SciTech Connect (OSTI)

    Sepanski, R.J. . Energy, Environment and Resources Center); Kimball, B.A.; Mauney, J.R.; La Morte, R.L.; Guinn, G.; Nakayama, F.S.; Radin, J.W.; Mitchell, S.T.; Parker, L.L.; Peresta, G.J.; Nixon, P.E. III; Savoy, B.; Harris, S.M.; MacDonald, R.; Pros, H.; Martinez, J. ); Lakatos, E.A. (Arizona Univ., Tucs

    1992-06-01

    This document presents results from field CO{sub 2}-enrichment experiments conducted over five consecutive growing seasons, 1983--1987. These results comprise data concerning the effects of continuous CO{sub 2} enrichment on the growth of cotton under optimal and limiting levels of water and nitrogen. Unlike many prior C0{sub 2} enrichment experiments in growth chambers or greenhouses, these studies were conducted on field-planted cotton at close to natural conditions using the open-top chamber approach. Measurements were made on a variety of crop response variables at intervals during the growing season and upon crop harvest. The initial experiment examined the effects of varying C0{sub 2} concentration only. In the following two seasons, the interactive effects of C0{sub 2} concentration and water availability were studied. In the final two seasons, the effects of the three-way interaction between C0{sub 2} concentration, water availability, and nitrogen fertility were investigated. The data comprise three types of information: identification variables (such as year, institution and situ codes, and treatment regimens), intermediate growth measurements (such as plant height, leaf area index, number of flowers, and dry weight of leaves) taken at various times during the growing season, and crop harvest results (such as lint yield, seed yield, and total aboveground dry biomass). They are available free of charge as a numeric data package (NAP) from the Carbon Dioxide Information Analysis Center. The NAP consists of this document and a magnetic tape (or a floppy diskette, upon request) containing machine-readable files. This document provides sample listings of the CO{sub 2} enrichment response data as they appear on the magnetic tape or floppy diskette and provides detailed descriptions of the design and methodology of these experiments, as well as a complete hard copy listing of all of the data in the form of a supplemental text provided as an appendix.

  19. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  20. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2014-09-12

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to physicochemical limnology and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included Direct Ebullition, Diffusion, Storage flux, and a newly identified Ice-Bubble Storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lake CH4more » emissions was two times higher than that of CO2. Ebullition and Diffusion were the dominant modes of CH4 and CO2 emissions respectively. IBS, ~ 10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, dystrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. Total CH4 emission was correlated with concentrations of phosphate and total nitrogen in lake water, Secchi depth and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from thawing permafrost and by enhancing nutrient availability to primary production, which can also fuel decomposition and methanogenesis.« less

  1. Copper- and silver-zirconia aerogels: Preparation, structural properties and catalytic behavior in methanol synthesis from carbon dioxide

    SciTech Connect (OSTI)

    Koeppel, R.A.; Stoecker, C.; Baiker, A. [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Technology, Zuerich (Switzerland). Lab. of Technical Chemistry

    1998-10-25

    Copper- and silver-zirconia aerogels containing 10 at% IB metal were prepared from tetra-n-butoxy zirconium(IV) and IB metal acetates using the solution sol-gel method and ensuring high-temperature (HT) and low-temperature (LT) supercritical drying, respectively. The influence of preparation parameters and calcination on the structural and catalytic properties of the aerogels for the synthesis of methanol from carbon dioxide and hydrogen was investigated. After calcination in air at 573 K, the catalysts had BET surface areas in the range of 100--143 m{sup 2}/g (Cu/ZrO{sub 2}) and 77--125 m{sup 2}/g (Ag/ZrO{sub 2}), respectively. Due to the reductive alcoholic atmosphere during high-temperature supercritical drying, metallic copper and silver existed in all raw HT-aerogels. The mean size of the copper crystallites wa/s 30 nm. The silver crystallite size for the HT-aerogel prepared with nitric acid was 10 nm, whereas for samples prepared with acetic acid it was 5--7 nm. Calcination in air at 573 K led to the formation of highly dispersed amorphous copper oxide and silver. Comparing the catalytic behavior of the calcined copper-zirconia aerogels with corresponding xerogels prepared by coprecipitation revealed highest activity for the LT-aerogel, whereas the HT-aerogels were least active. In contrast, similar catalytic behavior was observed for the differently dried silver-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia samples. Generally, CO{sub 2}-conversion of the copper-zirconia aerogels was markedly higher than that of the corresponding silver-zirconia aerogels, whereas methanol selectivity was similar.

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  3. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J.; Worden, Robert Mark; Brigham, Christopher; Lu, Jingnan; Quimby, John Westlake; Gai, Claudia; Speth, Daan; Elliott, Sean; Fei, John Qiang; Bernardi, Amanda; Li, Sophia; Grunwald, Stephan; Grousseau, Estelle; Maiti, Soumen; Liu, Chole

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  4. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect (OSTI)

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  5. Carbon Dioxide Information Analysis Center and World Data Center-A for atomspheric trace gases: Catalog of data bases and reports

    SciTech Connect (OSTI)

    Burtis, M.D.

    1995-04-01

    This document provides information about the many reports and other materials made available by the US Department of Energy`s Global Change Research Program (GCRP). Section A provides information about the activities, scope, and direction of the GCRP; Sections B,C, D, and E contain information about research that has been sponsered by GCRP; Sections F and G contains information about the numeric data packages and computer model pa kages the have been compiled by the GCRP; Section H describes reports about research dealing with the responses of vegetation to carbon dioxide; and Section I conatins reports from various workshops, symposia, and reviews.

  6. Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Martinez-Cruz, K.; Greene, S.; Thalasso, F.

    2015-06-02

    Uncertainties in the magnitude and seasonality of various gas emission modes, particularly among different lake types, limit our ability to estimate methane (CH4) and carbon dioxide (CO2) emissions from northern lakes. Here we assessed the relationship between CH4 and CO2 emission modes in 40 lakes along a latitudinal transect in Alaska to lakes' physicochemical properties and geographic characteristics, including permafrost soil type surrounding lakes. Emission modes included direct ebullition, diffusion, storage flux, and a newly identified ice-bubble storage (IBS) flux. We found that all lakes were net sources of atmospheric CH4 and CO2, but the climate warming impact of lakemore » CH4 emissions was 2 times higher than that of CO2. Ebullition and diffusion were the dominant modes of CH4 and CO2 emissions, respectively. IBS, ~10% of total annual CH4 emissions, is the release to the atmosphere of seasonally ice-trapped bubbles when lake ice confining bubbles begins to melt in spring. IBS, which has not been explicitly accounted for in regional studies, increased the estimate of springtime emissions from our study lakes by 320%. Geographically, CH4 emissions from stratified, mixotrophic interior Alaska thermokarst (thaw) lakes formed in icy, organic-rich yedoma permafrost soils were 6-fold higher than from non-yedoma lakes throughout the rest of Alaska. The relationship between CO2 emissions and geographic parameters was weak, suggesting high variability among sources and sinks that regulate CO2 emissions (e.g., catchment waters, pH equilibrium). Total CH4 emission was correlated with concentrations of soluble reactive phosphorus and total nitrogen in lake water, Secchi depth, and lake area, with yedoma lakes having higher nutrient concentrations, shallower Secchi depth, and smaller lake areas. Our findings suggest that permafrost type plays important roles in determining CH4 emissions from lakes by both supplying organic matter to methanogenesis directly from

  7. supercritical carbon dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid ... energy efficiency in small modular nuclear reactors. ...

  8. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  9. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR

  10. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much

  11. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming

  12. On the formation of carbonyl sulfide in the reduction of sulfur dioxide by carbon monoxide on lanthanum oxysulfide catalyst: A study by XPS and TPR/MS

    SciTech Connect (OSTI)

    Lau, N.T.; Fang, M. [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center] [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong). Applied Technology Center

    1998-10-25

    Both the X-ray photoelectron spectroscopy (XPS) and temperature-programmed reaction, coupled with mass spectrometry (TPR/MS), are used to study the formation of carbonyl sulfide in the reduction of sulfur dioxide on lanthanum oxysulfide catalyst. It was found that the lattice sulfur of the oxysulfide is released and reacts with carbon monoxide to form carbonyl sulfide when the oxysulfide is heated. The oxysulfide is postulated to form sulfur vacancies at a temperature lower than that for the formation of carbonyl sulfide and atomic sulfur is released in the process. The atomic sulfur can either enter the gas phase and leave the oxysulfide catalyst or react with carbon monoxide to form carbonyl sulfide.

  13. Future Sulfur Dioxide Emissions

    SciTech Connect (OSTI)

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  14. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  15. Bisphosphine dioxides

    DOE Patents [OSTI]

    Moloy, Kenneth G.

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  16. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    SciTech Connect (OSTI)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types

  17. Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties

    SciTech Connect (OSTI)

    Hokenek, Selma; Kuhn, John N. (USF)

    2012-10-23

    Monodisperse palladium particles of six distinct and controlled sizes between 4-16 nm were synthesized in a one-pot polyol process by varying the molar ratios of the two palladium precursors used, which contained palladium in different oxidation states. This difference permitted size control by regulation of the nucleation rate because low oxidation state metals ions nucleate quickly relative to high oxidation state ions. After immobilization of the Pd particles on silica by mild sonication, the catalysts were characterized by X-ray absorption spectroscopy and applied toward catalytic methanol decomposition. This reaction was determined as structure sensitive with the intrinsic activity (turnover frequency) increasing with increasing particle size. Moreover, observed catalytic deactivation was linked to product (carbon monoxide) poisoning. Co-feeding carbon dioxide caused the activity and the amount of deactivation to decrease substantially. A reaction mechanism based on the formation of the {pi}-bond between carbon and oxygen as the rate-limiting step is in agreement with antipathetic structure sensitivity and product poisoning by carbon monoxide.

  18. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    SciTech Connect (OSTI)

    Baldocchi, Dennis

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  19. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  20. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Warren, Jeffrey M.; Jensen, Anna M.; Medlyn, Belinda E.; Norby, Richard J.; Tissue, David T.

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO2. A was re-assessed a decade later to determine if initial enhancement of eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system.more » Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (Asat) for eCO2 treatments was 15.4 ± 0.8 μmol m-2 s-1, 22% higher than aCO2 treatments (P<0.01). By 2009, Asat declined to <50% of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 ± 0.7 μmol m-2 s-1 for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17% less than in aCO2 foliage. Photosynthetic N use efficiency (Asat:N) was greater in eCO2 in 1999 resulting in greater Asat despite similar N content, but the enhanced efficiency in eCO2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between Jmax or Vcmax with declining N, or in the ratio of Jmax:Vcmax through time. Results suggest that initial enhancement

  1. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 4 January - 21 March 1994)

    SciTech Connect (OSTI)

    Kozyr, Alex

    2005-06-30

    This documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and pH at hydrographic stations during the R/V Maurice Ewing cruise in the South Atlantic Ocean on the A17 WOCE section. Conducted as part of the World Ocean Circulation Experiment (WOCE), this cruise was also a part of the French WOCE program consisting of three expeditions (CITHER 1, 2, and 3) focused on the South Atlantic Ocean. The A17 section was occupied during the CITHER 2 expedition, which began in Montevideo, Uruguay, on January 4, 1994 and finished in Cayenne, French Guyana, on March 21, 1994. During this period the ship stopped in Salvador de Bahia and Recife, Brazil, to take on supplies and exchange personnel. Upon completion of the cruise the ship transited to Fort de France, Martinique. Instructions for accessing the data are provided.

  2. Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel: Cooperative Research and Development Final Report, CRADA Number: CRD-10-408

    SciTech Connect (OSTI)

    Maness, P. C.

    2014-06-01

    OPX Biotechnologies, Inc. (OPX), the National Renewable Energy Laboratory (NREL), and Johnson Matthey will develop and optimize a novel, engineered microorganism that directly produces biodiesel from renewable hydrogen (H2) and carbon dioxide (CO2). The proposed process will fix CO2 utilizing H2 to generate an infrastructure-compatible, energy-dense fuel at costs of less than $2.50 per gallon, with water being produced as the primary byproduct. NREL will perform metabolic engineering on the bacterium Cupriavidus necator (formerly Ralstonia eutropha) and a techno-economic analysis to guide future scale-up work. H2 and CO2 uptakes rates will be genetically increased, production of free fatty acids will be enhanced and their degradation pathway blocked in order to meet the ultimate program goals.

  3. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment

    SciTech Connect (OSTI)

    Warren, Jeffrey M.; Jensen, Anna M.; Medlyn, Belinda E.; Norby, Richard J.; Tissue, David T.

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species, although there is evidence that the increases may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following two years of ~40% enhancement of CO2. A was re-assessed a decade later to determine if initial enhancement of eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using consistent leaf photosynthesis model equations. We accessed relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax) chlorophyll content and foliar nitrogen (N) and chlorophyll content. In 1999, light-saturated photosynthesis (Asat) for eCO2 treatments was 15.4 ± 0.8 μmol m-2 s-1, 22% higher than aCO2 treatments (P<0.01). By 2009, Asat declined to <50% of 1999 values, and there was no longer a significant effect of eCO2 (Asat = 6.9 or 5.7 ± 0.7 μmol m-2 s-1 for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17% less than in aCO2 foliage. Photosynthetic N use efficiency (Asat:N) was greater in eCO2 in 1999 resulting in greater A

  4. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  5. Comprehensive ecosystem model-experiment synthesis using multiple datasets at two temperate forest free-air CO2 enrichment experiments: model performance and compensating biases

    SciTech Connect (OSTI)

    Walker, Anthony P; Hanson, Paul J; DeKauwe, Martin G; Medlyn, Belinda; Zaehle, S; Asao, Shinichi; Dietze, Michael; Hickler, Thomas; Huntinford, Chris; Iversen, Colleen M; Jain, Atul; Lomas, Mark; Luo, Yiqi; McCarthy, Heather R; Parton, William; Prentice, I. Collin; Thornton, Peter E; Wang, Shusen; Wang, Yingping; Warlind, David; Weng, Ensheng; Warren, Jeffrey; Woodward, F. Ian; Oren, Ram; Norby, Richard J

    2014-01-01

    Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data to test the sensitivities of terrestrial ecosystem models (TEMs). In this study, a broad set of 11 TEMs were compared to 22 years of data from two contrasting FACE experiments in temperate forests of the south eastern US the evergreen Duke Forest and the deciduous Oak Ridge forest. We evaluated the models' ability to reproduce observed net primary productivity (NPP), transpiration and Leaf Area index (LAI) in ambient CO2 treatments. Encouragingly, many models simulated annual NPP and transpiration within observed uncertainty. Daily transpiration model errors were often related to errors in leaf area phenology and peak LAI. Our analysis demonstrates that the simulation of LAI often drives the simulation of transpiration and hence there is a need to adopt the most appropriate of hypothesis driven methods to simulate and predict LAI. Of the three competing hypotheses determining peak LAI (1) optimisation to maximise carbon export, (2) increasing SLA with canopy depth and (3) the pipe model the pipe model produced LAI closest to the observations. Modelled phenology was either prescribed or based on broader empirical calibrations to climate. In some cases, simulation accuracy was achieved through compensating biases in component variables. For example, NPP accuracy was sometimes achieved with counter-balancing biases in nitrogen use efficiency and nitrogen uptake. Combined analysis of parallel measurements aides the identification of offsetting biases; without which over-confidence in model abilities to predict ecosystem function may emerge, potentially leading to erroneous predictions of change under future climates.

  6. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  7. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  8. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year

  9. Method of Making Uranium Dioxide Bodies

    DOE Patents [OSTI]

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  10. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  11. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  12. Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture

    SciTech Connect (OSTI)

    2010-07-01

    IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

  13. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect (OSTI)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  14. Investigation of carbon dioxide in the central South Pacific Ocean (WOCE Sections P-16C and P-17C) during the TUNES/2 expedition of the R/V Thomas Washington, July--August, 1991. Final technical report

    SciTech Connect (OSTI)

    Takahashi, T.; Goddard, J.G.; Rubin, S.; Chipman, D.W.; Sutherland, S.C.

    1993-12-01

    This report summarizes the results of carbon dioxide and associated hydrographic measurements made during the oceanographic expedition, TUNES/2, aboard the R/V Thomas Washington in the central South Pacific Ocean. During the 40 day expedition, the total carbon dioxide concentration in 1000 seawater samples were determined using a coulometer system and the pCO(sub 2) in 940 seawater samples were determined using an equilibrator/gas chromatograph system. The alkalinity values in 900 water samples were computed using these measurements. In addition, 156 coulometric measurements were made for the Certified Reference Solutions (Batch No. 6) and yielded a mean value of 2303.2 +or- 1.5umol/kg. The chemical characteristics for the major water masses have been determined.

  15. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect (OSTI)

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  16. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K.; Sepanski, R.J.

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO{sub 2} by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  17. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. ); Sepanski, R.J. . Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  18. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  19. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Yellowhair, Julius; Dutta, Pradip

    2016-05-30

    In single phase performance and appealing thermo-physical properties supercritical carbon dioxide (s-CO2) make a good heat transfer fluid candidate for concentrating solar power (CSP) technologies. The development of a solar receiver capable of delivering s-CO2 at outlet temperatures ~973 K is required in order to merge CSP and s-CO2 Brayton cycle technologies. A coupled optical and thermal-fluid modeling effort for a tubular receiver is undertaken to evaluate the direct tubular s-CO2 receiver’s thermal performance when exposed to a concentrated solar power input of ~0.3–0.5 MW. Ray tracing, using SolTrace, is performed to determine the heat flux profiles on the receivermore » and computational fluid dynamics (CFD) determines the thermal performance of the receiver under the specified heating conditions. Moreover, an in-house MATLAB code is developed to couple SolTrace and ANSYS Fluent. CFD modeling is performed using ANSYS Fluent to predict the thermal performance of the receiver by evaluating radiation and convection heat loss mechanisms. Understanding the effects of variation in heliostat aiming strategy and flow configurations on the thermal performance of the receiver was achieved through parametric analyses. Finally, a receiver thermal efficiency ~85% was predicted and the surface temperatures were observed to be within the allowable limit for the materials under consideration.« less

  20. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect (OSTI)

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.