Powered by Deep Web Technologies
Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Franklin Heating Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung'sfor

2

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

earlier today (see details at: http:www.nersc.govRESTannouncementsmessagetext.php?id2070), Franklin will have a scheduled maintenance on next Wed, July 14, from 8am to...

3

Franklin File Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Files systems Files systems NERSC's global home and project file systems are available on Franklin. Additionally, Franklin has over 400 TB of locally attached high-performance...

4

Smith & Franklin Academic Publishing Corporation  

E-Print Network [OSTI]

Smith & Franklin Academic Publishing Corporation www.smithandfranklin.com Science, Religion | Pages 23 Smith & Franklin Academic Publishing Corporation www.smithandfranklin.com ic origin, meant

Tong, Liang

5

Franklin Completed Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Completed Jobs Franklin Completed Jobs Select a time period Show jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

6

Control system for, and a method of, heating an operator station of a work machine  

DOE Patents [OSTI]

There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.

Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad

2005-04-05T23:59:59.000Z

7

Franklin Matthias - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsCleanFranklin Matthias

8

Franklin Software and Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmailFiles Franklin

9

Assessment of district heating and cooling supply from Goudey Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the New York State Electric and Gas (NYSEG) Goudey Generating Station for district heating and cooling supply to the SUNY-Binghamton Campus. The project involved detailed analysis of the power plant retrofit, dispatch analysis of the retrofitted Goudey Station in the New York Power Pool, environmental and permitting assessment, retrofit analysis of the SUNY campus to low temperature hot water and economic analysis.

McIntire, M.E.; Hall, D.; Beal, D.J. [New York State Electric & Gas Corporation, Binghamton, NY (United States)] [and others

1995-06-01T23:59:59.000Z

10

The IDA Technology Stan Franklin  

E-Print Network [OSTI]

The IDA Technology Stan Franklin and the `Conscious' Software Research Group #12;FedEx Institute of Technology--The IDA Technology 2 Introducing IDA An intelligent software agent capable of entirely of Technology--The IDA Technology 3 IDA Negotiates IDA negotiates with clients in natural language

Memphis, University of

11

Getting started on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal HeatStarted GettingStarted Getting

12

NERSC Franklin Hours Used Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale SubsurfaceExascalePhase-1 ofSolicitingA NewFranklin

13

Dr. Franklin Orr Confirmed as Under Secretary for Science and...  

Office of Environmental Management (EM)

Franklin Orr Confirmed as Under Secretary for Science and Energy Dr. Franklin Orr Confirmed as Under Secretary for Science and Energy December 4, 2014 - 10:10am Addthis News Media...

14

A Statement from Under Secretary for Science and Energy Franklin...  

Energy Savers [EERE]

A Statement from Under Secretary for Science and Energy Franklin Orr on New Leadership at PNNL A Statement from Under Secretary for Science and Energy Franklin Orr on New...

15

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

16

Franklin, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklinis aFranklin,

17

ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

Cook, David

18

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

19

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

20

Franklin (Lynn) Orr | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financialof EnergyFranklin (Lynn) Orr About

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Franklin E. Coffman | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financialof EnergyFranklin (Lynn) Orr

22

Statement of Franklin M. Orr, Jr.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M. Orr, Jr. Nominee to be Under

23

Franklin, NERSC's Cray XT4 System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name:Announcements » Franklin

24

A Case Study of a Commissioning Process for Demand Side Energy Conservation of the Large Heat Source Plant in Kyoto Station Building-APCBC  

E-Print Network [OSTI]

5 Heat source plant ?Total capacity?26.3MW? Substation ? ? ? Total : 6 Substations Bleed-in Control Substation ? ? ? The chilled water delivery system Large heat source plant similar to a DHC plant ? Total refrigerator capacity 26.3 MW ? Chilled... water is supplied 6 substations - Department store - Hotel - Theater - Train station etc. ? Bleed-in Control ? Commonly equipped in the substations of DHC plants. ? This control maintains the return water temperature to the plant by controlling...

Matsushita, N.; Yoshida,H.

2014-01-01T23:59:59.000Z

25

Using Hybrid MPI and OpenMP on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Hybrid MPIOpenMP Using Hybrid MPIOpenMP Using OpenMP Franklin has 4 cores sharing the memory on each node. OpenMP is supported within the node. To use OpenMP, a specific...

26

TBA-0023- In the Matter of Franklin C. Tucker  

Broader source: Energy.gov [DOE]

This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on April 9, 2007, involving a Complaint of Retaliation filed by Franklin C. Tucker (also referred to as the employee or...

27

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4: Energy Station Grid electricity Cogen Heat Exhaust (CO2)Recycled Reformate Grid electricity Cogen Heat Electricity

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

28

PublishedbyManeyPublishing(c)IOMCommunicationsLtd Rosalind Franklin's work on coal,  

E-Print Network [OSTI]

PublishedbyManeyPublishing(c)IOMCommunicationsLtd Rosalind Franklin's work on coal, carbon research involved studies of coal, carbon, and graphite. She made a number of enduring contributions Franklin's published work on coal, carbon,Rosalind Franklin's role in unravelling the structure

Harris, Peter J F

29

Exploring Mbar shock conditions and isochorically heated aluminum at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (invited)  

SciTech Connect (OSTI)

Recent experiments performed at the Matter in Extreme Conditions end station of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using velocity interferometer system for any reflector have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

Fletcher, L. B. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Lee, H. J.; Gauthier, M.; Galtier, E.; Nagler, B.; Heimann, P.; Hastings, J. B.; Glenzer, S. H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Barbrel, B.; Falcone, R. W. [Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Dppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); White, T.; Gregori, G. [Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Wei, M. [General Atomics, San Diego, California 87544 (United States); Zastrau, U. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Institute for Optics and Quantum Electronics, Friedrich-Schiller-University, 07743 Jena (Germany)

2014-11-15T23:59:59.000Z

30

Geohydrology and evapotranspiration at Franklin Lake playa, Inyo County, California  

SciTech Connect (OSTI)

Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the U.S. Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition.

Czarnecki, J.B.

1997-12-31T23:59:59.000Z

31

Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California  

SciTech Connect (OSTI)

Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

NONE

1990-12-01T23:59:59.000Z

32

Franklin County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is classifiedFranklin

33

Franklin County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin County is a

34

Franklin County, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin County is

35

Franklin County, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin County

36

Franklin County, Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin

37

Franklin County, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin3 Climate Zone

38

Franklin County, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin3 Climate

39

Franklin County, Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. It is°,Franklin3

40

Franklin Grove, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklin Grove, Illinois:

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Franklin Lakes, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklin Grove,

42

Franklin Parish, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklin Grove,7960399°,

43

Franklin Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklin

44

Franklin, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates9. ItFranklinis aFranklin, North

45

Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

J. M. Capron

2005-09-28T23:59:59.000Z

46

THE UTILITY OF A BIOLOGICAL STATION ON THE FLORIDA COAST IN ITS RELATION TO THE COMMERCIAL FISHERIES.  

E-Print Network [OSTI]

original research. In none except the Woods Hole Government Station are there any special attempts to solve as his ability and facilities will permit, some purely scientific problem, without any special interest of commercial utility. In Franklin's time no one ever dreamed that electricity would serve the commercial world

47

Franklin retirement date is set: 04/30/2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name:Announcements » Franklin

48

Backyard Leaf Composting Franklin Flower, Extension Specialist Emeritus in Environmental Science  

E-Print Network [OSTI]

Backyard Leaf Composting Franklin Flower, Extension Specialist Emeritus in Environmental Science. Thisprocessinvolves primarily the microbial decomposition of organic matter. Compost - the end result - is a dark. The Composting Process Compostingspeedsnaturaldecompositionundersemi- controlled conditions. Raw organic

Rainforth, Emma C.

49

Microsoft Word - CX-Franklin-BadgerCanyonGrandview-RedMtnsDisconnectSw...  

Broader source: Energy.gov (indexed) [DOE]

8, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Richard Heredia Project Manager - TEP-TPP-1 Proposed Action: Franklin-Badger Canyon and Grandview-Red...

50

Lucy D. (2004) Book review: James Franklin's The Science of Conjecture: evidence and probability before Pascal.  

E-Print Network [OSTI]

(1975) reports how historians had managed to write what was known about pre- Seventeenth Century. Franklin then traces an outline history of Roman law, from early times with Justinian's codification of the Roman legal codes. The Roman law had the concept of onus of proof, but the wealthier sections of Roman

Lucy, David

51

Franklin College Teaching Application residential, year-round study abroad programs  

E-Print Network [OSTI]

Franklin College Teaching Application for residential, year-round study abroad programs ~ Cortona ~ Costa Rica ~ Oxford ~ Name: Department: Name of UGA residential study abroad program: Request teaching study abroad program. For example, a faculty member with a four-course academic year teaching load, who

Arnold, Jonathan

52

Development of By-Pass Blending Station System  

E-Print Network [OSTI]

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can...

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z

53

Assessment of district energy supply from Schiller Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the Public Service of New Hampshire Schiller Generating Station to supply district heating to potential customers. The project involved analysis of power plant retrofit and comparison of district heating cost to the cost of heat supplied with gas boilers for a housing development in close proximity to the Schiller Station.

Hitchko, M. [Public Service Company of New Hampshire, Portsmouth, NH (United States); Major, W. [Joseph Technology Corporation, Inc., Woodcliff Lake, NJ (United States)

1995-06-01T23:59:59.000Z

54

Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report  

SciTech Connect (OSTI)

Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

NONE

1997-07-01T23:59:59.000Z

55

Insecticide Resistance of Alphitobius diaperinus (Coleoptera: Tenebrionidae) to ?-Cyfluthrin And Associated Heat Tolerance  

E-Print Network [OSTI]

three farms in Mt. Pleasant, TX, USA (A-C) and three farms in Franklin, TX, USA (D-F) in order to assess insecticide resistance across populations, as well its relationship to heat tolerance. Filter papers were treated with a range of doses of the active...

Lyons, Brandon Nicholas

2014-05-01T23:59:59.000Z

56

Solar-Assisted Electric Vehicle Charging Station Interim Report  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

57

City of College Station's Thermographic Mobile Scan  

E-Print Network [OSTI]

During the first quarter of 1986, the City of College Station conducted a thermographic mobile scan of the entire city. A thermographic mobile scan is a process by which heat loss/heat gain data is accumulated by a vehicle traveling the city...

Shear, C. K.

1986-01-01T23:59:59.000Z

58

Station Operator Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M. Orr,Energy States DOE's

59

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture ofFRANKLIN COUNTY SANITARY

60

Franklin Job Completion Analysis Yun (Helen) He, Hwa-Chun Wendy Lin, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture ofFRANKLIN COUNTY

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Franklin XT4 to Hopper XE6 Katie Antypas and Helen He NERSC User Services Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture ofFRANKLIN

62

SOUTH STATION TAmtrak, Commuter  

E-Print Network [OSTI]

SOUTH STATION TAmtrak, Commuter Rail, Bus Station, MBTA Red Line Knapp St. Kneeland St. Stuart St) T BOYLSTON (MBTA Green Line) T NEW ENGLAND MEDICAL CENTER (MBTA Orange Line) Boston Campus Accessibility Map

Dennett, Daniel

63

Dr. Jonathan B. Ajo-Franklin Lawrence Berkeley National Laboratory, #1 Cyclotron Rd. MS 74R0120  

E-Print Network [OSTI]

of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring", The Leading Edge, Vol., and J.B. Ajo-Franklin, 2012, "Upscaling calcium carbonate precipitation rates from pore to continuum and reactive transport modeling of ureolytically- driven calcium carbonate precipitation", Geochemical

Ajo-Franklin, Jonathan

64

Franklin College Faculty Senate, The University of Georgia (UGA) To voice our objection to the draft computer administrative access policy  

E-Print Network [OSTI]

to the draft computer administrative access policy written by the Office of Information Technology The Senate rejects the administrative access policy as outlined by current documents submitted and calls for new policy development started as a collaborative process with the Franklin Senate faculty

Arnold, Jonathan

65

Important Resources for Transfer Students Office of Transfer Academic Services--offers academic and procedural assistance to Franklin  

E-Print Network [OSTI]

Important Resources for Transfer Students Office of Transfer Academic Services--offers academic and procedural assistance to Franklin College transfer students adjusting to a new campus by providing resources, and preparing for exams. You'll find them at http://tutor.uga.edu/ or call 706-542-7575 Disability Resource

Arnold, Jonathan

66

Rationalism and the organic analogy in fin-de-sicle Paris : Auguste Perret and the building at 25b rue Franklin  

E-Print Network [OSTI]

The thesis studies the apartment block at 25b rue Franklin in Paris designed in 1903 by the architect Auguste Perret. It documents the building's history and discusses its design in the context of late-nineteenth-century ...

Bressani, Martin

1985-01-01T23:59:59.000Z

67

Interim economic and demographic profile, Benton and Franklin Counties, Washington: Working draft  

SciTech Connect (OSTI)

This report is organized into five sections. Section 2 summarizes the methods used to compile and analyze the data presented in the report. It includes a discussion of the Qualilty Assurance context within which the data were collected, analyzed, and stored; a definition of the variables and time period included in the profile; description of the secondary and primary data collection, compilation, and analysis procedures used in preparing the report; and a summary of the database management system that will be used to store and provide access to the data presented in the the report. Section 3 contains the profile information, organized by topic. A combination of tables, figures, and text are used to describe the economic and demographic conditions in Benton and Franklin counties. Section 4 summarizes outstanding technical issues and data requirements, and Section 5 provides a bibliography of the documents and personal communications from which the data in this report were obtained. 27 refs., 4 figs., 17 tabs.

Clark, D.C.

1987-11-01T23:59:59.000Z

68

The CNGS Target Station Presented by L.Bruno  

E-Print Network [OSTI]

sealed system filled with 0.5 bar of He. The tube has annular fins to enhance convective heat transfer enclosure Inlet target Inlet fixed shielding Outlet Beam #12;The target Assembly The CNGS Target Station as

McDonald, Kirk

69

Franklin Timeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

petsc3.1.04, petsc-complex3.1.04, perftools5.1.3 (includes xt-craypat5.1.3, apprentice25.1.3), trilinos10.6.0, chapel1.2.1. Nov 10, 2010 HW and SW maintenance....

70

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalCharge rate changes

71

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalCharge rate

72

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalCharge rateScheduled

73

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalCharge

74

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalChargeto retire no

75

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalChargeto retire

76

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalChargeto

77

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of CoalChargetoFinal

78

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" GiveFuture of

79

Franklin Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohn A.

80

Franklin Configuration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohn

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Franklin Timeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmailFiles

82

Central Station DHC Phase 1 feasibility  

SciTech Connect (OSTI)

This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

Henderson, H.L.

1992-03-01T23:59:59.000Z

83

Summer HeatSummer Heat Heat stress solutions  

E-Print Network [OSTI]

occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

Liskiewicz, Maciej

84

PMEL Ocean Climate Station Program Meghan Cronin, Chris Sabine, Chris Meinig  

E-Print Network [OSTI]

. Papa HOT MBARI Cold dry air blowing over warm Kuroshio Extension causes large sensible and latent heat for climate reference) Net Surface Heat Flux = TurbPMEL Ocean Climate Station Program Meghan Cronin, Chris Sabine, Chris Meinig NOAA Pacific Marine

85

M Station, Austin  

E-Print Network [OSTI]

SUNSHINE MATHON, M. Arch., LEED Homes AP Design + Development Director sunshine.mathon@foundcom.org FOUNDATION COMMUNITIES Austin, TX T.O.D. District Area T.O.D. District Area T.O.D. District Area T.O.D. District Area 8.5 ACRE SITE 5-1.../2 Acres Buildable Boggy Creek Floodplain 8.5 ACRE SITE 5-1/2 Acres Buildable Boggy Creek Floodplain 4 Acres Concrete Abandoned Grayfield M STATION 80% 2 & 3-Bedrooms 150 1,2 & 3-Bedroom Apts M STATION 80% 2 & 3-Bedrooms 150 1,2 & 3-Bedroom Apts...

Mathon, S.

2011-01-01T23:59:59.000Z

86

Skate Station UF Services  

E-Print Network [OSTI]

friends, practice your English, and try new activities! Where: Skate Station Funworks We will be meeting and more orderly manner. Everyone will be served eventually. Fire Drills/Alarms: Whenever you hear a fire should park your bike in well-lighted areas and lock it up when you park it. The best lock is a U

Pilyugin, Sergei S.

87

Hydrogen Filling Station  

SciTech Connect (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

88

The Composition of the Soils of Archer, Franklin and Harrision Counties.  

E-Print Network [OSTI]

Series. Soils of varying texture and agricultural value are found alo~g streams and subject to overflow. M!ller Feries, These soils are derived from the weathering of ma- terial laid down by the streams durinq floods. They are alluvial soils..., DIRECTOR College Station, Brazos County, Texas STATION STAFFt ADMINISTRATION B YOUNGBLOOD R'l S. Direcfor A' B CONNER B S' +ice Director J.'M: JONES, A. ~..'kssisfanf Diredor CRAS. A. FELKER. Chref Clerk A. S. W~RE, Secrefnrg W. T BRINK.. B. S...

Fraps, G. S. (George Stronach)

1919-01-01T23:59:59.000Z

89

Pacific Southwest Research Station Publications  

E-Print Network [OSTI]

Bulletins 1- 28 1965-1989 Soil- Vegetation Tables -- 1965-1980 Solar Irradiation and Shadow Length Tables-1971 1938 California Forest and Range Experiment Station Annual Report 1939 California Forest and Range Experiment Station Annual Report 1940 California Forest and Range Experiment Station Annual Report 1951

Standiford, Richard B.

90

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

91

Husavik Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWouldOpenSchools JumpStation

92

Transit Infrastructure Finance Through Station Location Auctions  

E-Print Network [OSTI]

Numerous route and station options Strong real estate marketreal estate market Transit friendly constituents Numerous route and station options

Ian Carlton

2009-01-01T23:59:59.000Z

93

Attached algae of the Lake Erie shoreline near Nanticoke Generating Station  

SciTech Connect (OSTI)

The distribution, species composition, and standing crop of attached algae were surveyed in the splash zone along the shore of Lake Erie from 1971 to 1978 to determine the impact of construction and operation of the Nanticoke Generating Station, a coal-fired power plant. Station operation has had no apparent influence on the spatial distribution of attached algae in the lake stations. However, the discharge of heated condenser cooling water has resulted in an accelerated growth of attached algae in the immediate vicinity of the station early in the growing season, but the effect was not sustained after May. The species composition at sites near the generating station differed from control areas. Three years after the initial operation of the plant the generating station had a lower percent abundance of Cladophora and a higher percent abundance of weakly attached algal species such as Zygnema; this is perhaps attributable to the sheltered conditions in the discharge area of the generating station.

Kirby, M.K.; Dunford, W.E.

1981-11-01T23:59:59.000Z

94

Attached algae of the Lake Erie shoreline near Nanticoke generating station  

SciTech Connect (OSTI)

The distribution, species composition and standing crop of attached algae were surveyed in the splash zone along the shore of Lake Erie from 1971 to 1978 to determine the impact of construction and operation of the Nanticoke Generating Station, a coal-fired power plant. Station operation has had no apparent influence on the spatial distribution of attached algae in the lake stations. However, the discharge of heated condenser cooling water has resulted in an accelerated growth of attached algae in the immediate vicinity of the station early in the growing season, but the effect was not sustained after May. The species composition at sites near the generating station differed from control areas. Three years after the initial operation of the plant the generating station had a lower percent abundance of Cladophora and a higher percent abundance of weakly attached algal species such as Zygnema; this is perhaps attributable to the sheltered conditions in the discharge area of the generating station.

Kirby, M.K.; Dunford, W.E.

1981-01-01T23:59:59.000Z

95

Wachs Cutter Tooling Station (4495)  

Broader source: Energy.gov (indexed) [DOE]

purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

96

Station design using orifice meters  

SciTech Connect (OSTI)

This paper reports that proper meter station design using gas orifice meters must include consideration of a number of factors to minimize operation and maintenance problems while obtaining the best accuracy over the life of the station. A station should provide accuracy, be safe, functional, economical and free of undue maintenance. It should comply with all codes, reports and specifications but most of all it should be able to comply with terms set forth in the contract. All measuring stations should be designed with considerations of growth or reductions in volume. It should be attractive and built to last for many years.

Upp, E.L. (Daniel Industries, Inc., Houston, TX (United States))

1992-07-01T23:59:59.000Z

97

Fuel Station Procedure Applicability All  

E-Print Network [OSTI]

Fuel Station Procedure Applicability All Last Revised 11/20/12 Procedure Owner Andrew Grant agrant for the purchasing and distribution of fuel for vehicles owned by Bowling Green State University (BGSU). This centralization is important to ensure compliance for BGSU employees who use the centralized fuel station and fuel

Moore, Paul A.

98

Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II  

SciTech Connect (OSTI)

Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

TIAX, LLC

2005-05-04T23:59:59.000Z

99

Electrolysis at Forecourt Stations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstruction and AnalysisClothesCLEAN FUEL ITM

100

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station Withthe hydrogen costs from the HSCM for electrolysis stations

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Costs Annualized Investment Cost, 1000$/yr Total AnnualizedH2 Fueling Stations Investment Cost Cost ($/yr) OperatingH2 Fueling Stations Investment Cost Cost ($/kg) Operating

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

102

Energy Department Launches Alternative Fueling Station Locator...  

Broader source: Energy.gov (indexed) [DOE]

Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama...

103

Superfund Record of Decision (EPA Region 2): Myers Property, Franklin Township, NJ. (First remedial action), September 1990  

SciTech Connect (OSTI)

The 7-acre Myers Property site is a former pesticide and industrial chemical manufacturing facility in Franklin Township, Hunterdon County, New Jersey. The site lies adjacent to, and in the 100-year floodplain of the Cakepoulin Creek which flows to the north of the site. The site is comprised of adjourning private lands, two acres of wetlands, and five acres of residential property with onsite residents. In 1978, State investigations identified 20 unlabeled drums of chemicals containing metals, DDT, other organic chemicals in a shed, and 24 cubic yards of asbestos material in an onsite warehouse. In addition, surface soil and debris were found to be contaminated with high levels of DDT, other organics, and metals. The Record of Decision (ROD) addresses the first of two operable units, and includes remediation of the soil, sediment, buildings, and shallow ground water aquifer. The ROD also addresses interim remedial activities for the second operable unit, the ground water in the bedrock aquifer, which will be fully addressed in a future ROD. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs including benzene; other organics including PCBs, PAHs, dioxin, and pesticides such as DDT; and metals including arsenic, and lead.

Not Available

1990-09-28T23:59:59.000Z

104

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

e.g. co-locate with gasoline station, bus-yard, or officeintegrated into existing gasoline stations with 8 dispensersof a liquid H 2 and gasoline station layout. Figure 4-9:

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

105

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

located at an existing gasoline station. One could use othere.g. co-locate with gasoline station, bus-yard, or officeequivalent to about 6% of gasoline stations in California 4.

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

106

Mobile Alternative Fueling Station Locator  

SciTech Connect (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

107

NOAA PMEL Station Chemistry Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

Quinn, Patricia

108

Presented by Climate End Station  

E-Print Network [OSTI]

.S. Department of Energy Bettge_LCF Climate_SC10 CESM working groups · Application ­ Climate change, paleoclimate climate change projections for IPCC AR5 Gerald Meehl and Warren Washington, NCAR · Climate changePresented by Climate End Station Thomas Bettge National Center for Atmospheric Research James B

109

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION .............................................................................13 Definition of Levelized Cost ........................................................................................................13 Levelized Cost Components

110

COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION............................................................ 3 Definition of Levelized Cost.................................................................................... 3 Levelized Cost Categories

Laughlin, Robert B.

111

7.1.1. Fernbahnhof / Rail Station  

E-Print Network [OSTI]

Fernbahnhofs 7.1.1.4.5 Klteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

Berlin,Technische Universitt

112

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

the experience of gasoline stations. Driven by the notion "percentages of existing gasoline stations, for a successfulsubset of the existing gasoline station network [14]. These

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

113

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

114

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

115

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

116

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

117

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

118

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

119

Timber Mountain Precipitation Monitoring Station  

SciTech Connect (OSTI)

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

120

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive Solar SpaceStations Incentives

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hanford Meteorological Station - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulf of MexicoDidYouKnowForStation

122

Logging in to Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedom is suitable for running memory-intensive utilities and serial programs like IDL, DDT, parallel make, hsi, and htar. The command to access Freedom is: % ssh -l username...

123

Franklin: User Experiences  

E-Print Network [OSTI]

2008. 15. K. Antypas Allinea DDT as a Parallel Debuggingdebugging tools, such as DDT (Distributed Debugging Tool),additional step of using 7.1 DDT vs. Totalview Totalview is

He, Yun Helen; National Energy Research Supercomputing Center

2009-01-01T23:59:59.000Z

124

Franklin: User Experiences  

E-Print Network [OSTI]

J. Borrill. High Performance Computing For Cosmic Microwaves (DOE) keystone high performance computing facility thatfinalists for high performance computing competition [8].

He, Yun Helen; National Energy Research Supercomputing Center

2009-01-01T23:59:59.000Z

125

None known. Franklin Security  

E-Print Network [OSTI]

irritating to the respiratory system. Moderately irritating to eyes.This product may irritate eyes upon contact lenses. Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting artificial respiration or oxygen by trained personnel. Loosen tight clothing such as a collar, tie, belt

Rollins, Andrew M.

126

Programming Considerations on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRSStewardship Science AcademicDOEProgramming »

127

Programming on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRSStewardship ScienceHPX on

128

Running Jobs on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN.RocksRoyOverviewjobs Running

129

Franklin Completed Jobs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohn A.Completed Jobs

130

Franklin Compute Nodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohn A.Completed

131

Franklin Email Announcements Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmail Announcements

132

Franklin File Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmailFiles systems

133

Franklin Job Launch Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmailFiles systemsJob

134

Franklin Login Nodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: NewsJohnEmailFiles

135

Franklin Updates and Status  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name:

136

Logging in to Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D E F

137

Station Footprint: Separation Distances, Storage Options, and Pre-Cooling |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M. Orr,Energy States

138

RADIATION AND CLOUD MONITORING STATIONS  

E-Print Network [OSTI]

how they affect the energy balance between incoming solar radiation and heat re-radiated from Earth, and moisture content; area cloud coverage; solar and terrestrial radia- tion; and standard meteorological region and the North Slope of Alaska. ARCS sites are a component of the Department of Energy

Reeves, Geoffrey D.

139

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

total installed capital cost (TIC) 1% Of TIC 25% Estimate ofcost estimates for six station types SMR 100 a Equipment capital

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

140

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

142

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

143

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

144

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

145

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

146

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

147

Computational Optimization of Gas Compressor Stations: MINLP ...  

E-Print Network [OSTI]

Feb 26, 2015 ... Abstract: When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper...

Daniel Rose

2015-02-26T23:59:59.000Z

148

Hydrogen Fueling Infrastructure Research and Station Technology...  

Energy Savers [EERE]

Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

149

Hydrogen refueling station costs in Shanghai  

E-Print Network [OSTI]

Fueling stations; Cost; Shanghai; Fuel cell vehicles 1.and the delivery cost for fuel cell vehicles, however, itthus hydrogen cost therefore depend on the ?eet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

150

Microfabricated fuel heating value monitoring device  

DOE Patents [OSTI]

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

151

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

152

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

153

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

4-12: Hydrogen Cost Comparison for Electrolysis Station WithAnalysis: Electrolysis, 30 kg/day, grid Hydrogen Cost ($/kg)the hydrogen costs from the HSCM for electrolysis stations

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

154

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

155

Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report  

SciTech Connect (OSTI)

''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

Not Available

1988-06-01T23:59:59.000Z

156

(Hydrogen) Service Stations 101 Steven M. Schlasner  

E-Print Network [OSTI]

(Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 #12;2 DISCLAIMER Opinions · Comparison of Conventional with Hydrogen Fueling Stations · Hydrogen Fueling Life Cycle · Practical Design,000 retail outlets (350 company-owned) in 44 states · Brands: Conoco, Phillips 66, 76 · 32,800 miles pipeline

157

High speed imager test station  

DOE Patents [OSTI]

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

Yates, G.J.; Albright, K.L.; Turko, B.T.

1995-11-14T23:59:59.000Z

158

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

159

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

160

University Climatological Station Compiled by Erwin Wodarczak (1998)  

E-Print Network [OSTI]

University Climatological Station Committee fonds Compiled by Erwin Wodarczak (1998) #12;Fonds Description University Climatological Station Committee fonds. ­ 1961-1974. 3 cm of textual records. Administrative History In 1954 a President's Climatological Station Committee was established

Handy, Todd C.

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

162

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

163

Renewable Energy Optimization Report for Naval Station Newport  

SciTech Connect (OSTI)

In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

Robichaud, R.; Mosey, G.; Olis, D.

2012-02-01T23:59:59.000Z

164

Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic...

165

EECBG Success Story: Police Station Triples Solar Power - and...  

Broader source: Energy.gov (indexed) [DOE]

Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police...

166

Alternative Fueling Station Locator App Provides Info at Your...  

Broader source: Energy.gov (indexed) [DOE]

Fueling Station Locator website. It provides information on more than 15,000 public and private alternative fueling stations throughout the United States. The app lists where...

167

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression This presentation by Matther Weaver of Pdc...

168

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

stations and vendors (e.g. Air Products and Chemicals, Inc,including Chevron and Air Products and Chemicals, Inc. , asDiesel a. Verified with Air Products representative, Feb

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

169

IntegratedScienceWorkingforYou Research Station  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . .5 Colorado's forest resources, 2002-2006 . . . . . . . . .6 Post Mountain Research Station Federal Recycling Program Printed on Recycled Paper The Rocky Mountain Research organi- zation--the most extensive natural resources research organization in the world. We maintain 14

170

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

and the delivery cost for fuel cell vehicles, however, itfueling stations, cost, Shanghai, fuel cell vehicles 1.0hydrogen cost therefore depend on the fleet of fuel cell

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

171

The College Station Residential Energy Compliance Code  

E-Print Network [OSTI]

The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

Claridge, D. E.; Schrock, D.

1988-01-01T23:59:59.000Z

172

Field Station Contributors, 2010 Acton, Gary  

E-Print Network [OSTI]

Field Station Contributors, 2010 Acton, Gary Allen, Deborah and Harry Ardell, Robert and Lee Baker Mead, Judson and Jane Mead, Thomas and Lenore Merritt, Andrew and Eleanor Morganwalp, David and Jill

Polly, David

173

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

174

Hydrogen Fueling Infrastructure Research and Station Technology  

Broader source: Energy.gov [DOE]

Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

175

Repowering of the Midland Nuclear Station  

E-Print Network [OSTI]

REPOWERING OF THE MIDLAND NUCLEAR STATION C.E. Gatlin Jr. Gerald C. Velleroer Janes A. Mooney Manager of Projects Fluor Daniel, IrK::. Vice President Fluor Daniel, IrK::. Vice President Midlarrl eogneneration Venture Chicago, Illinois... Chicago, Illinois Midland, Michigan The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The eXisting nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create...

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

176

Solar and Infrared Radiation Station (SIRS) Handbook  

SciTech Connect (OSTI)

The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

Stoffel, T

2005-07-01T23:59:59.000Z

177

City of Allentown assessment of a district heating system  

SciTech Connect (OSTI)

The energy sources selected to accommodate the heat load consist of five 10 MWt units at the high temperature hot water generating station, ten 10 MWt units at the high temperature hot water generating station, and two 25 MWe (37.5 MWt) cogenerating fluidized bed combustion units at the incinerator site. The service area selected consists of the downtown commercial district. Total peak heat load for the forty seven block commercial district and twenty two industrial customers is estimated to be 187 MWt. The following aspects are covered: transmission and distribution piping systems, development strategy, capital costs and construction schedule, operation, economics, environmental analysis, and community impact.

Oliker, I.; Tamayne, T.

1982-09-01T23:59:59.000Z

178

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

vs. delivered hydrogen, compressor type, storage pressure).pump High-pressure hydrogen compressor Compressed hydrogenpipeline High-pressure hydrogen compressor Pipeline Station:

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

179

Calculations of Heat-Capacities of Adsorbates  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

180

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

182

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

183

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

184

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

185

Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)  

SciTech Connect (OSTI)

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

Not Available

2009-04-01T23:59:59.000Z

186

Station Processing for a Low Frequency Array in WA  

E-Print Network [OSTI]

for the remote station, minus 2 kW for cooling (considered "infrastructure"). #12;Station Processing Requirements stations (regardless of role as remote or core) (yes; remote stations can be "less" not "different") 2 (yes: 2-3 for core, 1 for remote) 6. Cost: TBD. (Prorated cost of ~US$500 per dual-pol element

Ellingson, Steven W.

187

The LOFAR Super Station concept : an input for discussion  

E-Print Network [OSTI]

throughout Europe : several stations in Germany1 , UK2 , soon a French LOFAR station in Nançay3 , and further contacts in several other countries4 FLOW context · Official decision for funding the French station taken MHz) o Incoherent addition of the same stations to synthesize a broad instantaneous beam (maximum

Demoulin, Pascal

188

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

station. H2Gens estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).capital costs of about $250,000. Existing hydrogen station cost analyses tend to under-estimate

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

189

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

190

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

191

Hydrogen fueling station development and demonstration  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

192

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network [OSTI]

in the analysis of hydrogen energy stations, additionalattractiveness of the hydrogen energy station scheme in bothECONOMIC ANALYSIS OF HYDROGEN ENERGY STATION CONCEPTS: ARE '

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

193

Pump station for radioactive waste water  

DOE Patents [OSTI]

A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

2003-11-18T23:59:59.000Z

194

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

195

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

196

On-Site Hydrogen Generation & Refueling Station  

E-Print Network [OSTI]

of FC vehicles under real-world conditions Cost analysis vs. target of $3/gge in 2008 On-site Auto Reforming based refueling station DOE Objectives Public education on hydrogen and fuel cells Evaluation cell & HCNG busses in commercial operation ­ Refueling fuel cell & HCNG street sweepers and cars

197

TARGET STATION INFRASTRUCTURE THE CNGS EXPERIENCE  

E-Print Network [OSTI]

of Aluminum Water cooled Current: 150kA (horn) ­ 180 kA (reflector) Pulse duration 7ms #12;Key elements Remote handling Remote station for radiation survey in the target chamber #12;CNGS Target Area I per cooling circuit 2007 run radiation effects on ventilation system electronics broken flexible stripline

McDonald, Kirk

198

HATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

or Revised Project Procedures for initiating a new project or for revising an existing project entail: 1. Abstracting the essential features of the objective and procedures sections from the project outline for CRISHATCH PROJECT PROPOSAL OKLAHOMA AGRICULTURAL EXPERIMENT STATION USDA PROJECT OUTLINE DEVELOPMENT

Ghajar, Afshin J.

199

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase, Ray INDUSTRY COMMISSION 2004 Michigan Potato Research Report Volume 36 Left to Right: Ben Kudwa, MPIC; Caryn

Douches, David S.

200

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION MICHIGAN POTATO RESEARCH REPORT 2003 Volume 35 Click Here to Open the 2003 Potato, S. Cooper, L. Frank, J. Driscoll, and E. Estelle Department of Crop and Soil Sciences Michigan State

Douches, David S.

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Michigan State University Agricultural Experiment Station  

E-Print Network [OSTI]

Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato Department of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase At Michigan State University we are breeding potatoes for the chip-processing and tablestock markets

Douches, David S.

202

Michigan State University Agricultural Experiment Station  

E-Print Network [OSTI]

Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato. Hammerschmidt and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University potato selections from the Michigan State University and other potato breeding programs at the Montcalm

Douches, David S.

203

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University East selections from the Michigan State University and other potato breeding programs at the Montcalm Research

Douches, David S.

204

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION  

E-Print Network [OSTI]

MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO Sciences and Plant Pathology Michigan State University East Lansing, MI 48824 INTRODUCTION Each year we conduct a series of variety trials to assess advanced potato selections from the Michigan State University

Douches, David S.

205

Recent developments in HVDC convertor station design  

SciTech Connect (OSTI)

New requirements on HVDC convertor station performance have emerged during the past few years. The paper presents some of these requirements and shows how they have been met through equipment and system development. This development will result in a new generation of HVDC transmissions with still better performance than for the projects presently in operation.

Carlsson, L.

1984-08-01T23:59:59.000Z

206

CASE CRITICAL The Navajo Generating Station  

E-Print Network [OSTI]

Republic The Navajo Generating Station, the largest coal-fired power plant in the West, provides electrical discussions focusing on the environmental, social, and economic implications of high-stakes threats power to customers in three states and for the Central Arizona Project to pump Colorado River water

Hall, Sharon J.

207

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR  

E-Print Network [OSTI]

NUMERICAL STUDY OF FLUID FLOW AND HEAT TRANSFER OVER A SERIES OF IN-LINE NONCIRCULAR TUBES CONFINED, Texas A&M University, College Station, Texas, USA Two-dimensional steady developing fluid flow and heat-volume technique. Grid independence study was carried out by running the developed code for several different grid

Bahaidarah, Haitham M.

208

Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station  

E-Print Network [OSTI]

and Discharge Areas Before and During Early Operation of the Cedar Bayou Generating Station. (May 1972) Monroe Schmidt, A. A. , Blinn College; B. S. , Texas A&M University Directed by: Dr. Kirk Strawn Two trawl and 1 seine station in Tabbs Bay, 2 trawl... were collected twice monthly from May through October 1970. Genera- tion of electric power (and discharge of heated water) by Unit 1, a 750 MW steam-electric unit of the Houston Lighting and Power Company's Cedar Bayou Generating Station, began...

Schmidt, Monroe

1972-01-01T23:59:59.000Z

209

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network [OSTI]

Installed Capital Figure 4-21: Cost Estimates for 1,000 kg/station. H2Gens estimates for capital costs are also lowerestimates and show high variability (26%-117% of capital costs).

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

210

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

211

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

212

Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow...  

Broader source: Energy.gov (indexed) [DOE]

6: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years Fact 816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years In 2003...

213

Geothermal system saving money at fire station | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

214

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

215

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

216

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

217

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

218

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

219

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

220

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

222

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

223

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

224

Small SDI battle stations - More is better  

SciTech Connect (OSTI)

It is presently suggested that large numbers of lower capability SDI systems, in contrast to small numbers of large battle stations, offer better overall defense performance at lower total cost, with lower technical risk, lower sensitivity to threat scenario variability, and improved survivability. This follows from such factors as the positioning of more platforms within effective range of targets during all phases of an attack, less exacting optics requirements, mass production economies-of-scale, and improved survivability.

Cornet, E.

1986-09-01T23:59:59.000Z

225

Improving Unit Operations-Test Station Performance  

E-Print Network [OSTI]

IMPROVING UNIT OPERATIONS - TEST STATION PERFORMANCE JosqIb 1. Filak. Jr, ? Corporate Energy Manager. Park.er?Hannafin COfpontioo- Cleveland. Oh ABSTRACT: This program's basic concept deals with the possibilities for reducing energy efficiency... requirements, control operation test performance functions more successfully, and retain peak load surges from reaching higher utility rate expense levels. 142 ESL-IE-95-04-23 Proceedings from the Seventeenth Industrial Energy Technology Conference...

Filak, J. J. Jr.

226

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

227

Manuel pour installer une station sismologique OSIRIS  

E-Print Network [OSTI]

installation Tout d'abord, enterrer le sismom`etre, s'assurer de l'horizontalit´e du sismo c'est-`a-dire, bulle le c^able sur le sismo, v´erifier de nouveau l'horizontalit´e. GPS Batterie ` Station d "sismo" puis cd osiris puis ./nrtd -set eth0 #12;7- Lancer Firefox (web browser) depuis la barre de menu

Perrot, Julie

228

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

229

Competitive Charging Station Pricing for Plug-in Electric Vehicles  

E-Print Network [OSTI]

. To overcome this challenge, we develop a low-complexity algorithm that efficiently computes the pricingCompetitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs

Huang, Jianwei

230

"Space Station" Theme: Learning to Work, and Live, in Space  

E-Print Network [OSTI]

"Space Station" IMAX Film Theme: Learning to Work, and Live, in Space The educational value of NASM visit and afterward. See the "Alignment with Standards" table for details regarding how "Space Station in the "Space Station" program: · How astronauts train · What it is like to live and work in Space aboard

Mathis, Wayne N.

231

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

232

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)  

SciTech Connect (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

Not Available

2012-04-01T23:59:59.000Z

233

Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution  

E-Print Network [OSTI]

city size, and gasoline station locations. By characterizingfuel than typical gasoline stations. As a result, it will bestreet networks and gasoline stations for (a) Sacramento (b)

Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

2006-01-01T23:59:59.000Z

234

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network [OSTI]

ed Basin Dataset on Urban Gasoline Stations. Institute ofavailability Gasoline stations abstract Alternative fueldistribution, the existing gasoline station networks in many

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

235

E-Print Network 3.0 - arctowski station king Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HoytSt Burnett... Front Stadium Broad St Station Military Park Rutgers University Essex County College PASSAIC RIVER BROAD ST... STATION Route 280 Pennsylvania RailroadStation...

236

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

237

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

238

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

239

Winter Heating Fuels Update  

Gasoline and Diesel Fuel Update (EIA)

Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

240

The Heating of Corn Chops.  

E-Print Network [OSTI]

OF SUB-STATIONS. E. E. B in fobd , Beeville Sub-Station......... ................................... Beeville, Bee County W, S. H o tc h k is s , Troup Sub-Station........................................ Troup, Smith County E. M. J oh n s to n... , Cooperative Rice Station................Beaumont, Jefferson County I. S. Y o rk , Spur Sub-Station.......................................................... Spur, Dickens County T. W . B u e l l , Denton, Sub...

Fraps, G. S.

1912-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ANALYSIS OF THE RADIATION FLUX PROFILE ALONG A PV TROUGH CONCENTRATOR J.S. Coventry, A. Blakers, E. Franklin and G. Burgess  

E-Print Network [OSTI]

illumination on a single cell proportionally reduces its current, and hence affects the performance of all, Performance, Characterisation, Light uniformity 1 INTRODUCTION The Combined Heat and Power Solar (CHAPS then be used for building heating and domestic hot water. The CHAPS system, and its electrical and thermal

242

Kansas City`s Union Station redevelopment opportunity -- Environmental challenges  

SciTech Connect (OSTI)

Kansas City`s Union Station, located at the center of a 1.7 million metropolitan population, is the second largest train station in the United States. The Station ceased to operate as a train station in 1983 and has since been falling into an increasing state of disrepair. This paper provides an insight into ``brownfield`` redevelopment and renovation for adaptive reuse of major turn of the century facilities such as Union Station. Substantial assessment and investigation activities have been conducted at Union Station for compliance and corrective action under RCRA, TSCA, and associated state regulations encompassing remediation estimated at more than $3 million. Recognized environmental conditions identified at Union Station included potential underground storage tanks; solid wastes, special wastes, and potentially hazardous wastes located inside the building; free liquids in sumps and elevator pits; asbestos-containing materials; lead-based paint; and potential for soil contamination on the surrounding property.

Snyder, M.G. [Black and Veatch Waste Science, Inc., Overland Park, KS (United States); Scott, A. [Union Station Assistance Corp., Kansas City, MO (United States)

1995-12-31T23:59:59.000Z

243

Heat transport in the North Atlantic Ocean  

E-Print Network [OSTI]

L IB R AR Y A&M COLLEGE OF TEXAS HEAT TRANSPORT IN THE NORTH ATLANTIS OCEAN A Dissertation By GLENN HAROLD JUNG Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... the velocity difference be? tween depths 1 and 2 in a region between stations situated at positions A and B is used: V1 - v2 z l r - (DA - db ) (2) where c is 1/2X1 sin)#,-ft- Is the angular velocity of the earth, 0 is the latitude of the region, L...

Jung, Glenn Harold

2013-10-04T23:59:59.000Z

244

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

245

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

246

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

247

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

248

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

249

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

250

Existing climate data sources and Their Use in Heat IslandResearch  

SciTech Connect (OSTI)

Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

1998-10-01T23:59:59.000Z

251

Sandia National Laboratories: Reference Station Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act Solar Test Facility Upgrades

252

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

253

Report on Experiments with Citrus Fruits at the Beeville Sub-station.  

E-Print Network [OSTI]

!TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN No. 148. MAY, 1912. Report on Experiments With Citrus Fruits at The Bee- ville Sub-station A. T. POTTS, Superintendent Beeville Sub-station AUSTIN PRINTING COMPANY AUSTIN. TEXAS TEXAS... EXPERIMENT STATIONS. GOVERNING BOARD. 1 DIRECTOR OF STATIONS. ...................................... B. YOUNOBLOOD, M. S.. .College Station I SUPERINTENDENTS OF SUB-STATIONS. .................. E. E. BINFORD, Beeville Sub-station.. .Beeville, P:.e Cc...

Potts, A. T. (Arthur Tillman)

1912-01-01T23:59:59.000Z

254

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

255

Runtime Tuning Options on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nodes can be written to the standard output file by setting environment variable MPICHRANKREORDERDISPLAY to 1. Users can control the distribution of MPI tasks on the nodes...

256

Submitting Batch Jobs on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submitting Batch Jobs Submitting Batch Jobs Debug Jobs Short jobs requesting less than 30 minutes and requiring 512 nodes (2,048 cores) or fewer can run in the debug queue. From...

257

Your First Program on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

successfully log in you will land in your HOME directory. First Program Code: Parallel Hello World Open a new file called helloWorld.f90 with a text editor such as emacs or vi....

258

Update on Franklin retirement plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAX (For3WebinarUpdate

259

Running Interactive Jobs on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN.RocksRoy PrimusPAMMInteractive

260

Runtime Tuning Options on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ.Running on Carver

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rita Franklin | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource Program September DepartmentRioRisk Removal

262

Your First Program on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoung Inventor Shares HisFA-250F /May

263

Franklin Delano Roosevelt - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsClean

264

Memory Usage Considerations on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubeyChallenge Melrose named

265

Submitting Batch Jobs on Franklin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (Newport NewsStyle GuideResearchToddSubmitting

266

The University of Wisconsin-Milwaukee Field Station The Field Station is celebrating its 50th  

E-Print Network [OSTI]

land, until today the Field Station has grown into an active, vibrant facility with many projects for experimental research. Growth of our facilities has been funded by the National Science Foundation Bat Hibernaculum, an abandoned iron mine in Dodge County that is one of the largest sites

Saldin, Dilano

267

Energy Balance Bowen Ratio Station (EBBR) Handbook  

SciTech Connect (OSTI)

The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

Cook, DR

2011-02-23T23:59:59.000Z

268

An MHD heat source based on intermetallic reactions  

SciTech Connect (OSTI)

The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))

1991-05-06T23:59:59.000Z

269

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

270

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

271

Resilient design of recharging station networks for electric transportation vehicles  

SciTech Connect (OSTI)

As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

2011-08-01T23:59:59.000Z

272

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

273

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

274

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

275

Illinois Nuclear Profile - LaSalle Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

276

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

277

Electric Vehicle Charging Stations, Coming Soon to a City Near...  

Broader source: Energy.gov (indexed) [DOE]

to be available throughout the Orlando area next year. File photo Orlando Plugs into Electric Vehicle Charging Stations Assistant Secretary Patricia Hoffman test drives the...

278

Investigations of Sediment Elutriate Toxicity at Three Estuarine Stations  

E-Print Network [OSTI]

Investigations of Sediment Elutriate Toxicity at Three Estuarine Stations in San Francisco Bay.............................................................................................. 8 Sediment-Water Interface Exposures................................................................................. 9 August 1997 Sediment-Water Interface Exposures

279

Microgrid V2G Charging Station Interconnection Testing (Presentation)  

SciTech Connect (OSTI)

This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

Simpson, M.

2013-07-01T23:59:59.000Z

280

anna power station: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Regarding Kewaunee Power Station CiteSeer Summary: This supplemental environmental impact statement (SEIS) has been prepared in response to an application submitted by Dominion...

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

anna power stations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Regarding Kewaunee Power Station CiteSeer Summary: This supplemental environmental impact statement (SEIS) has been prepared in response to an application submitted by Dominion...

282

Sandia National Laboratories: More California Gas Stations Can...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

than Previously Thought, Sandia Study Says More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says Diamond Plates Create Nanostructures...

283

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network [OSTI]

costs of cars with alternative fuels/engines." Energy Policyto the Choice of Alternative Fuels and Vehicles." Energyhydrogen; station location; alternative fuel; optimization

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

284

Columbia Generating Station debt options for rate relief - November...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extending about 350 million of existing Columbia Generating Station debt to 2024 to the Energy Northwest Audit, Legal and Finance Committee (www.bpa.govcorporateFinanceDebt...

285

Design of Photovoltaics e-bikes charging station:.  

E-Print Network [OSTI]

??It is a project about designing a photovoltaics charging station for electrical bikes and scooters, which can facilitate electrical bike user and promote sustainable way (more)

Zhao, Y.

2014-01-01T23:59:59.000Z

286

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Broader source: Energy.gov [DOE]

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

287

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

288

Photovoltaic roof heat flux  

E-Print Network [OSTI]

designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

289

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

290

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, Donald M. (Leola, PA)

1984-10-23T23:59:59.000Z

291

MA HEAT Loan Overview  

Broader source: Energy.gov [DOE]

Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

292

Abrasion resistant heat pipe  

DOE Patents [OSTI]

A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

Ernst, D.M.

1984-10-23T23:59:59.000Z

293

Solar heat receiver  

DOE Patents [OSTI]

A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

Hunt, A.J.; Hansen, L.J.; Evans, D.B.

1982-09-29T23:59:59.000Z

294

Project X Energy Station Workshop Report. Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop  

SciTech Connect (OSTI)

Project X Energy Station Workshop Report Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

Asner, David M.; Hurh, Patrick; Brady Raap, Michaele C.; Gohar, Yoursy; Peterson, Mary E.; Pithcer, Eric; Riemer, Bernie; Senor, David J.; Wootan, David W.

2013-06-14T23:59:59.000Z

295

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

296

Heat Transfer Guest Editorial  

E-Print Network [OSTI]

Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

Kandlikar, Satish

297

Acoustic Heating Peter Ulmschneider  

E-Print Network [OSTI]

mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

Ulmschneider, Peter

298

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

299

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

300

Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards  

SciTech Connect (OSTI)

Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

NONE

1995-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

Richlen, S.L.

1987-08-10T23:59:59.000Z

302

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas as a feedstock for

303

Hydrogen Fueling Infrastructure Research and Station Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel

304

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

305

Absorption heat pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

306

ESBWR response to an extended station blackout/loss of all AC power  

SciTech Connect (OSTI)

U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

Barrett, A. J.; Marquino, W. [New Plants Engineering, GE Hitachi Nuclear Energy, M/CA 75, 3901 Castle Hayne Road, Wilmington, NC 28402 (United States)

2012-07-01T23:59:59.000Z

307

References Applicable to Station-Level Calibration Steve Ellingson  

E-Print Network [OSTI]

, W. Hocking, and F. Fabry, "Precipitation Measurement using VHF Wind-Profiler Radars: A MultifacetedReferences Applicable to Station-Level Calibration Steve Ellingson July 17, 2008 1 Summary This is a list of references possibly applicable to LWA station-level calibration. References [1] R.L. Balsano

Ellingson, Steven W.

308

Achieving High Chilled Water Delta T Without Blending Station  

E-Print Network [OSTI]

on the blending station performance. The results show that the blending station is not necessary in the building chilled water systems with 2-way modulation valves at end users. Actually the end user valve configuration and control mainly impacts building chilled...

Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

2007-01-01T23:59:59.000Z

309

Heat pump apparatus  

DOE Patents [OSTI]

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

310

Active microchannel heat exchanger  

DOE Patents [OSTI]

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

2001-01-01T23:59:59.000Z

311

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect (OSTI)

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

312

A computer program for HVDC converter station RF noise calculations  

SciTech Connect (OSTI)

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

313

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

314

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

315

Heating control methodology in coke oven battery at Rourkela Steel Plant  

SciTech Connect (OSTI)

A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

1996-12-31T23:59:59.000Z

316

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

317

Compression station key to Texas pipeline project  

SciTech Connect (OSTI)

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

318

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

319

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

320

Early Station Costs Questionnaire | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included NotFederal4 - InMaterialEarly

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Krafla Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJVII & III

322

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

323

Fluidized bed heat treating system  

DOE Patents [OSTI]

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

324

Water-heating dehumidifier  

DOE Patents [OSTI]

A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

Tomlinson, John J. (Knoxville, TN)

2006-04-18T23:59:59.000Z

325

Design of high pressure metering and regulating stations  

SciTech Connect (OSTI)

Metering and regulating stations effectively serve as the cash registers of the natural gas industry. While the potential for lost revenue resulting from improper design is a serious consideration, it is not the only one. The potential exists for problems such as excessive noise levels, inaccurate reflection of lost and unaccounted-for gas, and numerous potentially hazardous situations. The best time to limit the potential for problems is during the design process. This, together with the critical nature of these stations, dictates that proper design is imperative. Proper design of metering and regulating stations is a constantly changing and extremely complicated subject. There are virtually an infinite number of situations that the designer can encounter in evaluating his design. In view of this, it is impossible to develop a cookbook method of designing these stations that covers all possible situations. The emphasis of this paper is to briefly touch on the major aspects of metering and regulating station design. Steps involved in station design are: 1. Collection of data on the proposed station. 2. Determination of piping configuration. 3. Selection of measurement equipment. 4. Selection of pressure regulating and overpressure protection equipment. 5. Communication of the final design to field personnel.

Rehler, D.A. [Oklahoma Natural Gas Co., Enid, OK (United States)

1995-12-01T23:59:59.000Z

326

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

327

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

328

DOE Zero Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, First DOE Zero Energy Ready Home Retrofit, Garland, TX  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment ofCaldwell and Johnson

329

Solar Heating in Uppsala.  

E-Print Network [OSTI]

?? The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar (more)

Blomqvist, Emelie; Hger, Klara

2012-01-01T23:59:59.000Z

330

Solar heating in Colombia.  

E-Print Network [OSTI]

?? This report describes the process of a thesis implemented in Colombia concerning solar energy. The project was to install a self-circulating solar heating system, (more)

Skytt, Johanna

2012-01-01T23:59:59.000Z

331

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

332

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2007-09-18T23:59:59.000Z

333

Heat and mass exchanger  

DOE Patents [OSTI]

A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

2011-06-28T23:59:59.000Z

334

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

335

Heat rejection system  

DOE Patents [OSTI]

A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

1980-01-01T23:59:59.000Z

336

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

337

OPTIMIZING PERFORMANCE OF THE HESKETT STATION  

SciTech Connect (OSTI)

The overall conclusion from this work is that a switch from river sand bed material to limestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch to limestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium and sulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bed without agglomeration, allowing either the bed turnover rate to be reduced to half the current sand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned with limestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO{sub 2} emissions can be controlled. A small improvement in boiler efficiency should be achievable by operating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NO{sub x} emissions, providing a margin of safety for meeting emission standards. No detrimental effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Some specific conclusions from this work include the following: The bed material feed rate can be reduced from the current rate of 5.4% of the coal feed rate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This will result in an annual savings of approximately $200,000. (1) SO{sub 2} emissions at the recommended feed rate would be approximately 250 ppm (0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO{sub 2} allowances could be generated at a cost of $60/ton SO{sub 2} , leaving a large profit margin for the sale of allowances. The addition of limestone at the same rate currently used for sand feed could generate $455,000 net income if allowances are sold at $200/ton SO2 . (2) At full-load operation, unburned carbon losses increase significantly at excess oxygen levels below 2.8%. No efficiency gains are expected at high-load operation by switching from sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiency gain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annual savings. (3) A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by using limestone at the recommended feed rate compared to the current sand feed rate. No measurable change in volume would be realized because of the lower bulk density of the limestone-derived material.

Michael D. Mann; Ann K. Henderson

1999-03-01T23:59:59.000Z

338

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect (OSTI)

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

339

Detailed Analysis of Urban Station Siting for California Hydrogen Highway Network  

E-Print Network [OSTI]

www.energy.ca.gov/gasoline/gasoline_stations/index.html.estimates range from 10% of existing gasoline stations to30% of gasoline stations. Two of the studies[7,8] further

Nicholas, Michael A; Ogden, Joan M

2007-01-01T23:59:59.000Z

340

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

station in 1921. | Photo courtesy of Franklin Township Public Library Archive. Beyond Tesla and Edison: Other Luminaries from the Age of Electricity From electric chairs to...

342

SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.  

SciTech Connect (OSTI)

This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

2014-02-01T23:59:59.000Z

343

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

344

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference  

E-Print Network [OSTI]

Proceedings of Heat Transfer 2003: ASME Summer Heat Transfer Conference Las Vegas, Nevada, USA July 21-23, 2003 HT2003-47449 HEAT TRANSFER FROM A MOVING AND EVAPORATING MENISCUS ON A HEATED SURFACE meniscus with complete evaporation of water without any meniscus break-up. The experimental heat transfer

Kandlikar, Satish

345

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER  

E-Print Network [OSTI]

IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

346

First university owned district heating system using biomass heat  

E-Print Network [OSTI]

Highlights First university owned district heating system using biomass heat Capacity: 15 MMBtu Main Campus District Heating Performance Avoided: 3500 tonnes of CO2 Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

347

E-Print Network 3.0 - air station usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and WALD, Lucien. Adding virtual measuring stations to a network for urban air pollution Summary: , and WALD, Lucien. Adding virtual measuring stations to a network for...

348

Cranberry Station Celebrates 100th Anniversary with a 100 Year Endowment  

E-Print Network [OSTI]

Cranberry Station Celebrates 100th Anniversary with a 100 Year Endowment The Cranberry Station established with contributions from growers, friends, ag companies, and cranberry handlers. The funds

Massachusetts at Amherst, University of

349

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

350

Tri-Generation Success Story: World's First Tri-Gen EnergyStation...  

Energy Savers [EERE]

Energy Department, the Fountain Valley energy station is the world's first tri-generation hydrogen energy and electrical power station to provide transportation fuel to the public...

351

Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations  

SciTech Connect (OSTI)

Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

Cornish, John

2011-03-05T23:59:59.000Z

352

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

353

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

354

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

355

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

356

Microchannel heat sink assembly  

DOE Patents [OSTI]

The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

Bonde, W.L.; Contolini, R.J.

1992-03-24T23:59:59.000Z

357

Enhancing the energy efficiency of radio base stations  

E-Print Network [OSTI]

This thesis is concerned with the energy efficiency of cellular networks. It studies the dominant power consumer in future cellular networks, the Long Term Evolution (LTE) radio Base Station (BS), and proposes mechanisms ...

Holtkamp, Hauke Andreas

2014-06-30T23:59:59.000Z

358

Waiting for TOD : developing in the Millbrae BART Station Area  

E-Print Network [OSTI]

The suburban terminus station dedicates large amounts of land for parking in order to cater to its driving riders, and causes a trade-off tension between attracting ridership through providing park-and-rides and building ...

Shih, Janet Wei

2012-01-01T23:59:59.000Z

359

College Station Utilities- Residential Energy Back II Rebate Program  

Broader source: Energy.gov [DOE]

College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system...

360

antarctic station casey: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOAP for setting up the tetheredsonde All of the Costa Rica REU groups for data 148 OF CAR SHARING STATIONS CiteSeer Summary: Approximately half of the worlds population is...

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Strategy for international cooperation in planning the Chinese Space Station  

E-Print Network [OSTI]

After ten years of planning and pre-development, the Chinese government approved the space station project on September 25, 2010. In October 2010, the People's Republic of China (PRC) officially announced its independent ...

Foley, Jordan J. (Jordan James)

2014-01-01T23:59:59.000Z

362

Microsoft Word - Noxon Radio Station Upgrade CX.doc  

Broader source: Energy.gov (indexed) [DOE]

Action: Noxon Radio Station Upgrade Project Budget Information: Work Order 00254987 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

363

Where the Rubber Meets the Road -- the Alternative Fuel Station...  

Broader source: Energy.gov (indexed) [DOE]

Road -- the Alternative Fuel Station Locator August 10, 2010 - 2:32pm Addthis Dennis A. Smith Director, National Clean Cities Last week, this blog highlighted the highly efficient...

364

Niwot Ridge CRN Station Up & On-Line.  

E-Print Network [OSTI]

Niwot Ridge CRN Station Up & On-Line. I made a decision after the Science Panel Review to put tree removal Wind Speed 3, terrain elevation change Solar Radiation 3, solar shading to west #12;

365

Southwest Region Experiment Station - Final Technical Report  

SciTech Connect (OSTI)

Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners

Rosenthal, A

2011-08-19T23:59:59.000Z

366

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

367

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

368

Large Optic Drying Station: Summary of Dryer Certification Tests  

SciTech Connect (OSTI)

The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

Barbee, T W; Ayers, S L; Ayers, M J

2009-08-28T23:59:59.000Z

369

Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations  

E-Print Network [OSTI]

-807. (5) K. Kesavan. The Use of Dissociating Gases As the Working Fluid in Thermodynamic Power Conversion Cycles, Ph.D. thesis. Carnegie-Mellon University, 1978, Ann Arbor, MI: University Microfilms International, 1978. 5. Heat amplifier with a gas...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

Kirol, L. D.

370

Integrating preconcentrator heat controller  

DOE Patents [OSTI]

A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

2007-10-16T23:59:59.000Z

371

Proceedings: Heat exchanger workshop  

SciTech Connect (OSTI)

Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

Not Available

1987-07-01T23:59:59.000Z

372

Micro heat barrier  

DOE Patents [OSTI]

A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

2003-08-12T23:59:59.000Z

373

Condensing Heating and Water Heating Equipment Workshop Location...  

Energy Savers [EERE]

Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

374

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath...

375

Economic Options for Upgrading Waste Heat  

E-Print Network [OSTI]

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

Erickson, D. C.

1983-01-01T23:59:59.000Z

376

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

377

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

378

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

379

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network [OSTI]

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

380

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network [OSTI]

Project Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12.444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils of the industry and markets in the ProHeatPump partner countries, and should provide useful comparisons

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Photovoltaic roof heat flux  

E-Print Network [OSTI]

under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

382

Composite heat damage assessment  

SciTech Connect (OSTI)

The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

1993-12-31T23:59:59.000Z

383

Solar Heating Contractor Licensing  

Broader source: Energy.gov [DOE]

Michigan offers a solar heating contractor specialty license to individuals who have at least three years of experience installing solar equipment under the direction of a licensed solar contractor...

384

Passive solar heating analysis  

SciTech Connect (OSTI)

This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

1984-01-01T23:59:59.000Z

385

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

386

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*II. HEAT WAVE DEFINITIONS .. A . HCHANGE AND HEAT WAVES .. CLIMATE III. IV. HEAT

Carlson, Ann E.

2008-01-01T23:59:59.000Z

387

Heat flux limiting sleeves  

DOE Patents [OSTI]

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

388

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

389

ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

Stoffel, Tom; Kay, Bev; Habte, Aron; Anderberg, Mary; Kutchenreiter, Mark

390

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-12-25T23:59:59.000Z

391

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

392

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1984-01-01T23:59:59.000Z

393

Convective heat flow probe  

DOE Patents [OSTI]

A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

Dunn, J.C.; Hardee, H.C.; Striker, R.P.

1984-01-09T23:59:59.000Z

394

Intrinsically irreversible heat engine  

DOE Patents [OSTI]

A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-01-01T23:59:59.000Z

395

INVESTIGATION OF HYDRAULIC PROBLEMS IN PUMPING STATION; CASE STUDY  

E-Print Network [OSTI]

Pumping stations play an important role in agriculture development projects. Performance of the pumping stations should satisfy water requirements, and management. There are many problems face these pumping stations affecting their reliability and stability. Hydraulic problems are the most important item in the field of pumping station operation and design. Motivation of this research was presence of wear and pitting impellers and casing of double suction volute casing centrifugal pumps for Ahmed Orabee Pumping Station. Vibration level, hydraulic performance test and visual inspection of impeller wear and pitting show that cavitation problem is the cause of damage. Cavitation normally occurs when liquid at a constant temperature is subjected to vapor pressure either by static or dynamic means. If the local pressure somewhere in the fluid drops to or below vapor pressure and nuclei are present, vapor cavities can be formed. As long as the local pressure stays at vapor pressure and cavity has reached a critical diameter, it will continue to grow rapidly. If the surrounding pressure is above vapor pressure, the bubbles become unstable and collapse. The

M. A. Younes

396

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

397

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P. (San Ramon, CA)

2012-07-24T23:59:59.000Z

398

Heat exchanger device and method for heat removal or transfer  

DOE Patents [OSTI]

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P

2013-12-10T23:59:59.000Z

399

Locating PHEV Exchange Stations in V2G  

E-Print Network [OSTI]

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

400

Cranberry Station Farm and Grounds Manager (R35360) The University of Massachusetts Cranberry Station (www.umass.edu/cranberry) has a  

E-Print Network [OSTI]

Cranberry Station Farm and Grounds Manager (R35360) The University of Massachusetts Cranberry Station (www.umass.edu/cranberry) has a full time/fully benefited position available. Benefits include vacation, retirement, medical, and dental. Duties: Under the general supervision of the Cranberry Station

Mountziaris, T. J.

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oil Extraction Factory Crude Oil Heating System Design  

E-Print Network [OSTI]

Abstract:-The design of general process is divided into: according to the original material and the data were based on the calculated; calculate the joint station dewatering tank and the sewage tank capacity; then its thermodynamic calculation, hydraulic calculation, selection of pump in heating furnace and to determine the types and quantity of the last of the pipelines; the permitted maximum, minimum throughput and stop lose time to carry out a series of process calculation, also made the hot oil pipeline thermal stress compensation calculation. Keywords:-calculate; hydraulic; pipeline;minimum throughput I.

Dai Qiushi; Pan Yi; Yang Shuangchun

402

Solar photovoltaic power system for a radio station  

SciTech Connect (OSTI)

Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

Nichols, B. E.

1980-12-01T23:59:59.000Z

403

Design of photovoltaic central power station concentrator array  

SciTech Connect (OSTI)

A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

404

EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)  

Broader source: Energy.gov [DOE]

The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

405

Sandia National Laboratories: Hydrogen Refueling Stations Analysis Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology Infrastructure ResearchRefueling Stations

406

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

407

Heat distribution ceramic processing method  

DOE Patents [OSTI]

A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

408

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

409

Air heating system  

DOE Patents [OSTI]

A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

1983-03-01T23:59:59.000Z

410

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

411

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

412

APPARENT WATER OPTICAL PROPERTIES AT THE CARIBBEAN TIME SERIES STATION  

E-Print Network [OSTI]

APPARENT WATER OPTICAL PROPERTIES AT THE CARIBBEAN TIME SERIES STATION Roy A. Armstrong, Jose M of Puerto Rico Mayagüez, Puerto Rico 00681 ABSTRACT The Caribbean Time Series, located 28 nautical miles in near- surface waters of the northeastern Caribbean Basin. Apparent optical properties such as, remote

Gilbes, Fernando

413

MET Stations and Web Cams in the Great Lakes  

E-Print Network [OSTI]

in Alpena, MI, Muskegon, MI, South Haven, MI, Michigan City, IN, Chicago, IL, and Toldeo, OH also include: Alpena, MI Chicago, IL Muskegon, MI Michigan City, IN South Haven, MI Toledo, OH Met Data Stations: Alpena, MI Chicago, IL Michigan City, IN Milwaukee, WI Muskegon, MI South Haven, MI Thunder Bay

414

National Aeronautics and Space Administration International Space Station  

E-Print Network [OSTI]

and technological endeavor ever undertaken, involving support from five space agencies representing 16 nations. Once's solar panels exceed the wingspan of a Boeing 777 jetliner and harness enough energy from the sunNational Aeronautics and Space Administration NASAfacts International Space Station Clearly

415

Great Lakes Hydrometeorological Station Directory Database and Internet Web Development  

E-Print Network [OSTI]

Great Lakes Hydrometeorological Station Directory Database and Internet Web Development Primary Investigator: Thomas Croley - NOAA GLERL (Emeritus) This project was completed in 2001 Overview A new directory in hydrometeorological data availability with in the Great Lakes. The new directory will consist of an updated database

416

DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION  

E-Print Network [OSTI]

of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrate to the reforming of natural gas to produce a reformate stream; · Develop an efficient, cost-effective means the basis for future commercial Fueling Stations. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review

417

VISITOR PARKING Pay station parking meters are available around  

E-Print Network [OSTI]

temporary parking needs. Daily scratch-off permits are available in advance from Parking Services. LOT METER PAY STATION RATES (SUMMER RATES MAY BE DISCOUNTED) HOW DO I GET A PERMIT? When parking on campus, a CSM parking permit is required Monday through Friday, from 7AM until 5 PM. Permits authorize parking

418

Bryan Balkenbush Fukushima Daiichi Nuclear Power Station `Issue'  

E-Print Network [OSTI]

Bryan Balkenbush Fukushima Daiichi Nuclear Power Station `Issue' Map: Timeline: March 11th, sparking a tsunami March 14th : Explosion reported by second nuclear reactor, authorities scramble to cool reactors to avoid full nuclear meltdown March 15th : A second explosion occurs in reactor 4. Radiation

Toohey, Darin W.

419

A summary of North American HVDC converter station reliability specifications  

SciTech Connect (OSTI)

This paper summarizes Reliability, Availability, and Maintainability (RAM) specifications that were issued for thyristor based HVDC converter stations in service in North America. A total of twenty project specifications are summarized. A detailed summary by project is shown with specific quantitative requirements categorized. Definitions of terms, representative design principles, and formulas used in calculating RAM parameters contained in existing reliability specifications are presented.

Vancers, I. (ABB Power Systems Inc., Los Angeles, CA (United States)); Hormozi, F.J. (Los Angeles Dept. of Water and Power, CA (United States))

1993-07-01T23:59:59.000Z

420

Station GPS permanente IPG Paris DGF Uchile UNAP Iquique  

E-Print Network [OSTI]

NetRS, Antenna TRIMBLE Zephyr geodetic and autonomous energy (battery and solar panel). HISTORIC Semi.71476292 - 69.82727839 1675.36 DESCRIPTION North Chile II region, semi-permanent GPS station IPGP / DGF network American but in the convergence area of Nazca/ SOAM plates. Approximate Position X coordinate (m) : 2044899

Vigny, Christophe

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Station GPS permanente IPG Paris DGF Uchile UNAP Iquique  

E-Print Network [OSTI]

-glue. Receptor TRIMBLE NetRS, Antenna TRIMBLE Zephyr geodetic and autonomous energy (battery and solar panel Coordinates : URCU : -21.763750 - 70.152917 DESCRIPTION North Chile II region, semi-permanent GPS station American but in the convergence area of Nazca/ SOAM plates. Approximate Position X coordinate (m) : Y

Vigny, Christophe

422

Heat driven heat pump using paired ammoniated salts  

SciTech Connect (OSTI)

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

423

Heat-transfer coefficients in agitated vessels. Latent heat models  

SciTech Connect (OSTI)

Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

1996-03-01T23:59:59.000Z

424

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network [OSTI]

-reaching meaning of solving energy and environment problems if new type energy conservation and environment protection heating system ? solar assisted ground-source heat pump (SAGHP) heating system with a latent heat storage tank will be practical... was established at the laboratory of construction energy conservation in Harbin Institute of Technology (HIT) in 2004. It added a latent heat storage tank in original SAGHP system. The schematic diagram of the system is shown in Figure 1. The experimental...

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

425

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReportRecovery |

426

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

Kronberg, J.W.

1992-09-01T23:59:59.000Z

427

Wastewater heat recovery apparatus  

DOE Patents [OSTI]

A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1992-01-01T23:59:59.000Z

428

Low Level Heat Recovery Through Heat Pumps and Vapor Recompression  

E-Print Network [OSTI]

The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

Gilbert, J.

1980-01-01T23:59:59.000Z

429

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network [OSTI]

heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

Selkowitz, S.

2011-01-01T23:59:59.000Z

430

Heat Transfer Derivation of differential equations for heat transfer conduction  

E-Print Network [OSTI]

) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

Veress, Alexander

431

Heat-transfer coefficients in agitated vessels. Sensible heat models  

SciTech Connect (OSTI)

Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

1995-12-01T23:59:59.000Z

432

Heat engine Device that transforms heat into work.  

E-Print Network [OSTI]

, and rocket engines are heat engines. So are steam engines and turbines #12;2 refrigerator Device that uses by steam turbines. Steam turbines, jet engines and rocket engines use a Brayton cycle #12;4 Steam turbines1 Heat engine Device that transforms heat into work. It requires two energy reservoirs at different

Winokur, Michael

433

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

434

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

435

MERCURY SPECIATION SAMPLING AT NEW CENTURY ENERGY'S VALMONT STATION  

SciTech Connect (OSTI)

The 1990 Clean Air Act Amendments required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the ''Mercury Study Report to Congress'' and ''Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units''. The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam electric generating units. Although these reports did not state that mercury controls on coal-fired electric power stations would be required given the current state of the art, they did indicate that the EPA views mercury as a potential threat to human health. Therefore, it was concluded that mercury controls at some point may be necessary. EPA also indicated that additional research/information was necessary before any definitive statement could be made. In an effort to determine the amount and types of mercury being emitted into the atmosphere by coal-fired power plants, EPA in late 1998 issued an information collection request (ICR) that required all coal-fired power plants to analyze their coal and submit the results to EPA on a quarterly basis. In addition, about 85 power stations were required to measure the speciated mercury concentration in the flue gas. These plants were selected on the basis of plant configuration and coal type. The Valmont Station owned and operated by New Century Energy in Boulder, Colorado, was selected for detailed mercury speciation of the flue gas as part of the ICR process. New Century Energy, in a tailored collaboration with EPRI and the U.S. Department of Energy, contracted with the Energy & Environmental Research Center (EERC) to do a study evaluating the behavior of mercury at the Valmont Station. The activities conducted at the Valmont Station by the EERC not only included the sampling needed to meet the requirements of the ICR, but involved a much more extensive mercury research program. The following objectives for the sampling at New Century Energy's Valmont Station were accomplished: (1) Successfully complete all of the mercury sampling and reporting requirements of the ICR. (2) Determine the variability in mercury concentrations at the stack using mercury continuous emission monitors (CEMs). (3) Calculate mercury mass balances and emission rates. (4) Determine the mercury concentration in the fly ash as a function of particle size. (5) Determine the impact of a fabric filter on mercury emissions for a western bituminous coal.

Dennis L. Laudal

2000-04-01T23:59:59.000Z

436

Geothermal Heat Pump Grant Program  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

437

Heat Pipes: An Industrial Application  

E-Print Network [OSTI]

This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

Murray, F.

1984-01-01T23:59:59.000Z

438

Challenges in Industrial Heat Recovery  

E-Print Network [OSTI]

This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

Dafft, T.

2007-01-01T23:59:59.000Z

439

Heat Pumps - Theory and Applications  

E-Print Network [OSTI]

compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

Altin, M.

1982-01-01T23:59:59.000Z

440

Faculty Positions Heat Transfer and  

E-Print Network [OSTI]

Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential Solar Water Heating Rebates  

Broader source: Energy.gov [DOE]

New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

442

Can You Afford Heat Recovery?  

E-Print Network [OSTI]

many companies to venture into heat recovery projects without due consideration of the many factors involved. Many of these efforts have rendered less desirable results than expected. Heat recovery in the form of recuperation should be considered...

Foust, L. T.

1983-01-01T23:59:59.000Z

443

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

444

Heat transfer probe  

DOE Patents [OSTI]

Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

2006-10-10T23:59:59.000Z

445

Optical heat flux gauge  

DOE Patents [OSTI]

A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

1991-04-09T23:59:59.000Z

446

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

Wong, Vincent

447

Fact #832: August 4, 2014 Over Half of the Refueling Stations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada...

448

E-Print Network 3.0 - alternative fueling station Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plan for 1,000 stations and 2 million FECVs by 2025... continues to grow at a rapid pace. Germany, Japan, and Korea anticipate having over 300 fueling stations... the mass...

449

Industrial Heat Recovery - 1982  

E-Print Network [OSTI]

like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

Csathy, D.

1982-01-01T23:59:59.000Z

450

Optimization of Heat Exchanger Cleaning  

E-Print Network [OSTI]

decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods. INTRODUCTION In most... can be somewhat mitigated by periodic chemical or mechanical cleaning of the exchanger surface, and by the addition of antifoul ants. The typical decay in heat recovery capabil ity due to fou 1i ng and restoration afte r heat exchanger cleaning...

Siegell, J. H.

451

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

452

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-08-01T23:59:59.000Z

453

Heat and mass transfer considerations in advanced heat pump systems  

SciTech Connect (OSTI)

Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

Panchal, C.B.; Bell, K.J.

1992-01-01T23:59:59.000Z

454

Characterization of industrial process waste heat and input heat streams  

SciTech Connect (OSTI)

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

455

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

456

Optimal sequencing site of hydro-power stations  

SciTech Connect (OSTI)

At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

1995-06-01T23:59:59.000Z

457

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

SciTech Connect (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

458

E-Print Network 3.0 - air station north Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Refueling Station... . Irvine North ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 3 INTERNATIONAL JOURNAL OF CLIMATOLOGY, VOL....

459

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

460

Heat Pump Strategies and Payoffs  

E-Print Network [OSTI]

After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

Gilbert, J. S.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Industrial Heat Pump Case Study  

E-Print Network [OSTI]

with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

Wagner, J. R.; Brush, F. C.

462

Spring 2014 Heat Transfer -1  

E-Print Network [OSTI]

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

463

5. Heat transfer Ron Zevenhoven  

E-Print Network [OSTI]

1/120 5. Heat transfer Ron Zevenhoven ?bo Akademi University Thermal and Flow Engineering / Värme Three heat transfer mechanisms Conduction Convection Radiation 2/120 Pic: B?88 ?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/120 5.1 Conductive heat transfer ?bo Akademi

Zevenhoven, Ron

464

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

465

Development of Power-head based Fan Airflow Station  

E-Print Network [OSTI]

related to the measured fan speed. Actually the measured fan speed is assumed to equal the motor synchronous speed, which is proportional to the VFD frequency. Theoretically it is not true. The difference between the synchronous speed and motor speed... the basic theory, experiment and results of the power-head based airflow station. Theory Figure 1 shows variable speed fan connection schematic. VFD is normally installed on the motor to adjust the motor speed by modulating frequency. Typically...

Wang, G.; Liu, M.

2005-01-01T23:59:59.000Z

466

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

467

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

468

Ottawa Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont:Ottawa County, Kansas Bennington,Station

469

Genesee Power Station LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: Energy ResourcesEnergyGeneralGeneseeStation LP

470

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticut InformationEthanolStation

471

Effective Load Management for the City of College Station  

E-Print Network [OSTI]

to reduce the overall cost of producing and distributing power. Demand reduction comes as the result of wise manage- ment of power and therefore helps not only the con- sumer by reducing costs but also the supplier by decreasing system demand during.... The greatest impact can be achieved in communities that purchase wholesale power from a separate utility supplier and have their own billing and meter reading department, and thus a real incentive to save. DEVELOPING A ?LAN BACKGROUND College Station...

Hecox, O. D.; Bauer, V.

1985-01-01T23:59:59.000Z

472

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers [EERE]

Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

473

Heat Waves, Global Warming, and Mitigation  

E-Print Network [OSTI]

Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

Carlson, Ann E.

2008-01-01T23:59:59.000Z

474

The ALTCRISS project on board the International Space Station  

E-Print Network [OSTI]

The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13.

M. Casolino; F. Altamura; M. Minori; P. Picozza; C. Fuglesang; A. Galper; A. Popov; V. Benghin; V. M. Petrov; A. Nagamatsu; T. Berger; G. Reitz; M. Durante; M. Pugliese; V. Roca; L. Sihver F. Cucinotta; E. Semones; M. Shavers; V. Guarnieri; C. Lobascio; D. Castagnolo; R. Fortezza

2007-08-20T23:59:59.000Z

475

Report of Progress at the Troupe Sub-Station, Smith County Texas.  

E-Print Network [OSTI]

TEXAS AGRICULTUR 146-409-lorn [PERIMENT STATIONS BULLETIN NO. 121 FEBRUARY 1, 1909 REPORT OF PROGRESS AT THE TROUPE SUB-STATION, SMITH COUNTY, TEXAS W. H. HOTCHKISS, SUPERINTENDENT IN CHARGE POSTOFFICE COLLEGE STATION, BRAZOS COUNTY.... ..................................... C. W. CRISLER. .Chief Clerk. .................................. F. R. N~VAILLE. .Stenographer. ...................................... A. S. WARE.. .Stenographer. STATE SUBSTATIONS. ..................... H. H. HARRINGTON, Director. .College...

Hotchkiss, W.S.

1909-01-01T23:59:59.000Z

476

Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building  

E-Print Network [OSTI]

Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building Stefan Unnasch. Hydrogen Fueling Requirements Building hydrogen energy stations requires further efforts to reduce costs Energy Station The combined production of fuel cell power and hydrogen at the same facility

477

H2FIRST Reference Station Design Task: Project Deliverable 2-2  

Broader source: Energy.gov [DOE]

This H2FIRST project report, published in April 2015, presents near-term station cost results and discusses cost trends of different station types. It also contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layouts.

478

Power-Optimal Scheduling for a Green Base Station with Delay Constraints  

E-Print Network [OSTI]

objective of Green Communication is to provide quality of service (QoS) at reduced energy consumptionPower-Optimal Scheduling for a Green Base Station with Delay Constraints Anusha Lalitha, Santanu with average delay constraint on the downlink of a Green Base- station. A Green Base-station is powered by both

Sharma, Vinod

479

United States Department of Agriculture / Forest Service Rocky Mountain Research Station  

E-Print Network [OSTI]

United States Department of Agriculture / Forest Service Rocky Mountain Research Station Research Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 8 p Sciences Laboratory of the Rocky Mountain Research Station (U.S. Department of Agriculture, Forest Service

Flury, Markus

480

MAPS Stations on National Wildlife Refuges in the USFWS Pacific Region  

E-Print Network [OSTI]

MAPS Stations on National Wildlife Refuges in the USFWS Pacific Region Current Status and Future ............................................................................................. 3 Capture Rates of Adult Birds at MAPS Stations on NWR Lands .................... 3 Identifying ................................................................................. 4 Identifying Gaps in the Distribution of MAPS Stations in the Pacific Region ...... 5 Assessing

DeSante, David F.

Note: This page contains sample records for the topic "franklin heating station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating  

SciTech Connect (OSTI)

BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Techs new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Techs design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

None

2010-09-01T23:59:59.000Z

482

Absorption-heat-pump system  

DOE Patents [OSTI]

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

483

A prototype station for ARIANNA: a detector for cosmic neutrinos  

E-Print Network [OSTI]

showing the tower structure and solar panels. The mainwhite to minimize solar heating. The towers are stabilizedsolar panels, a wind generator and an anemometer are mounted on a square tower

Gerhardt, L.

2010-01-01T23:59:59.000Z

484

Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993  

SciTech Connect (OSTI)

This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

Not Available

1994-08-01T23:59:59.000Z

485

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

486

Gelling by Heating  

E-Print Network [OSTI]

We introduce a simple model, a binary mixture of patchy particles, which has been designed to form a gel upon heating. Due to the specific nature of the particle interactions, notably the number and geometry of the patches as well as their interaction energies, the system is a fluid both at high and at low temperatures, whereas at intermediate temperatures the system forms a solid-like disordered open network structure, i.e. a gel. Using molecular dynamics we investigate the static and dynamic properties of this system.

Sandalo Roldan-Vargas; Frank Smallenburg; Walter Kob; Francesco Sciortino

2013-03-11T23:59:59.000Z

487

Solar heated rotary kiln  

DOE Patents [OSTI]

A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

Shell, Pamela K. (Tracy, CA)

1984-01-01T23:59:59.000Z

488

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministration (EIA)heating

489

Sandia National Laboratories: Heat Exchanger Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LabHeat Exchanger Development Heat Exchanger Development Planned Heat Exchanger Test Loop Capabilities Heat Exchanger 1 500 kW Heaters (Elec.) 500 kW Gas Cooler Unbalanced flows...

490

Billet Heating with the Homopolar Generator  

E-Print Network [OSTI]

Forging billets are presently brought from room temperature to forging temperature using one of three heating methods - indirect heating in a furnace, either fuel-fired or electric; direct electric resistance heating; or induction heating. Homopolar...

Weldon, W. F.; Keith, R. E.; Weldon, J. M.

1980-01-01T23:59:59.000Z

491

Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs  

E-Print Network [OSTI]

An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

Huang, Y.; Sun, D.

2006-01-01T23:59:59.000Z

492

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network [OSTI]

the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

493

New vertical cryostat for the high field superconducting magnet test station at CERN  

SciTech Connect (OSTI)

In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertion and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.

Vande Craen, A.; Atieh, S.; Bajko, M.; Benda, V.; Rijk, G. de; Favre, G.; Giloux, C.; Minginette, P.; Parma, V.; Perret, P.; Pirotte, O.; Ramos, D.; Viret, P. [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Hanzelka, P. [Institute of Scientific Instruments of the ASCR, Kralovopolska 147, 612 64 Brno, CZ (Czech Republic)

2014-01-29T23:59:59.000Z

494

Nuclear Simulation and Radiation Physics Investigations of the Target Station of the European Spallation Neutron Source  

SciTech Connect (OSTI)

The European Spallation Neutron Source (ESS) delivers high-intensity pulsed particle beams with 5-MW average beam power at 1.3-GeV incident proton energy. This causes sophisticated demands on material and geometry choices and a very careful optimization of the whole target system. Therefore, complex and detailed particle transport models and computer code systems have been developed and used to study the nuclear assessment of the ESS target system. The purpose here is to describe the methods of calculation mainly based on the Monte Carlo code to show the performance of the ESS target station. The interesting results of the simulations of the mercury target system are as follows: time-dependent neutron flux densities, energy deposition and heating, radioactivity and afterheat, materials damage by radiation, and high-energy source shielding. The results are discussed in great detail. The validity of codes and models, further requirements to improve the methods of calculation, and the status of running and planned experiments are given also.

Filges, Detlef; Neef, Ralf-Dieter; Schaal, Hartwig [Forschungszentrum Juelich GmbH (Germany)

2000-10-15T23:59:59.000Z

495

Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station  

SciTech Connect (OSTI)

For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro [Japan Atomic Energy Agency 4-33 Muramatsu, Tokaimura, Nakagun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

496

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

497

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

498

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

499

North Village Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

500

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the...