Exact Vacuum Solutions of Jordan, Brans-Dicke Field Equations
Sergey Kozyrev
2005-12-04T23:59:59.000Z
We present the static spherically symmetric vacuum solutions of the Jordan, Brans-Dicke field equations. The new solutions are obtained by considering a polar Gaussian, isothermal and radial hyperbolic metrics.
Jordan cells in logarithmic limits of conformal field theory
Jorgen Rasmussen
2006-11-25T23:59:59.000Z
It is discussed how a limiting procedure of conformal field theories may result in logarithmic conformal field theories with Jordan cells of arbitrary rank. This extends our work on rank-two Jordan cells. We also consider the limits of certain three-point functions and find that they are compatible with known results. The general construction is illustrated by logarithmic limits of (unitary) minimal models in conformal field theory. Characters of quasi-rational representations are found to emerge as the limits of the associated irreducible Virasoro characters.
Jordan F. Clark Ira Leifer Libe Washburn Bruce P. Luyendyk
Luyendyk, Bruce
in natural gas bubble plumes: observations from the Coal Oil Point marine hydrocarbon seep field Received: 22 Detailed measurements of bubble composition, dissolved gas concentrations, and plume dynamics wereORIGINAL Jordan F. Clark Æ Ira Leifer Æ Libe Washburn Bruce P. Luyendyk Compositional changes
Nuclear elements in Banach Jordan pairs Ottmar Loos
Nuclear elements in Banach Jordan pairs Ottmar Loos Abstract We introduce nuclear elements in Banach Jordan pairs, generalizing the nuclear elements Jordan pairs and show that the trace form Trintroduced in [3] may be extended to the nuclear
Analysis of Dynamical Recognizers Alan D. Blair & Jordan B. Pollack
Blair, Alan
in nature (Kolen, 1993). Alternative architectures had been employed earlier for related tasks (Jordan, 1986
Jordan frame supergravity and inflation in the NMSSM
Ferrara, Sergio [Physics Department, Theory Unit, CERN, CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Kallosh, Renata; Linde, Andrei [Department of Physics, Stanford University, Stanford, California 94305 (United States); Marrani, Alessio; Van Proeyen, Antoine [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2010-08-15T23:59:59.000Z
We present a complete explicit N=1, d=4 supergravity action in an arbitrary Jordan frame with nonminimal scalar-curvature coupling of the form {Phi}(z,z)R. The action is derived by suitably gauge fixing the superconformal action. The theory has a modified Kaehler geometry, and it exhibits a significant dependence on the frame function {Phi}(z,z) and its derivatives over scalars, in the bosonic as well as in the fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame have a canonical form. We consider an embedding of the next-to-minimal supersymmetric standard model (NMSSM) gauge theory into supergravity, clarifying the Higgs inflation model recently proposed by Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model is required to support the Higgs-type inflation.
Jordan ships oil shale to China
Not Available
1986-12-01T23:59:59.000Z
Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.
Jordan algebras and orthogonal polynomials
Satoshi Tsujimoto; Luc Vinet; Alexei Zhedanov
2011-08-17T23:59:59.000Z
We illustrate how Jordan algebras can provide a framework for the interpretation of certain classes of orthogonal polynomials. The big -1 Jacobi polynomials are eigenfunctions of a first order operator of Dunkl type. We consider an algebra that has this operator (up to constants) as one of its three generators and whose defining relations are given in terms of anticommutators. It is a special case of the Askey-Wilson algebra AW(3). We show how the structure and recurrence relations of the big -1 Jacobi polynomials are obtained from the representations of this algebra. We also present ladder operators for these polynomials and point out that the big -1 Jacobi polynomials satisfy the Hahn property with respect to a generalized Dunkl operator.
Jordan algebras and orthogonal polynomials
Tsujimoto, Satoshi; Zhedanov, Alexei
2011-01-01T23:59:59.000Z
We illustrate how Jordan algebras can provide a framework for the interpretation of certain classes of orthogonal polynomials. The big -1 Jacobi polynomials are eigenfunctions of a first order operator of Dunkl type. We consider an algebra that has this operator (up to constants) as one of its three generators and whose defining relations are given in terms of anticommutators. It is a special case of the Askey-Wilson algebra AW(3). We show how the structure and recurrence relations of the big -1 Jacobi polynomials are obtained from the representations of this algebra. We also present ladder operators for these polynomials and point out that the big -1 Jacobi polynomials satisfy the Hahn property with respect to a generalized Dunkl operator.
Generalized Jordan-Wigner Transformations
Batista, C. D.; Ortiz, G.
2001-02-05T23:59:59.000Z
We introduce a new spin-fermion mapping, for arbitrary spin S generating the SU(2) group algebra, that constitutes a natural generalization of the Jordan-Wigner transformation for S=1/2. The mapping, valid for regular lattices in any spatial dimension d , serves to unravel hidden symmetries. We illustrate the power of the transformation by finding exact solutions to lattice models previously unsolved by standard techniques. We also show the existence of the Haldane gap in S=1 bilinear nearest-neighbor Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated electrons. Moreover, we present a general spin-anyon mapping for the case d{<=}2 .
Generalized Jordan-Wigner Transformations
C. D. Batista; G. Ortiz
2000-08-25T23:59:59.000Z
We introduce a new spin-fermion mapping, for arbitrary spin $S$ generating the SU(2) group algebra, that constitutes a natural generalization of the Jordan-Wigner transformation for $S=1/2$. The mapping, valid for regular lattices in any spatial dimension $d$, serves to unravel hidden symmetries in one representation that are manifest in the other. We illustrate the power of the transformation by finding exact solutions to lattice models previously unsolved by standard techniques. We also present a proof of the existence of the Haldane gap in $S=$1 bilinear nearest-neighbors Heisenberg spin chains and discuss the relevance of the mapping to models of strongly correlated electrons. Moreover, we present a general spin-anyon mapping for the case $d \\leq 2$.
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Coby Mods 002, 006, 020,holiday |Nuclear Security09USEMarch 20101Summit
Jordan Form of (i+j over j) over Z[subscript p
Strauss, Nicholas
The Jordan Form over field Z[subscript p] of J[superscript p][subscript p]n is diagonal for p > 3 with characteristic polynomial, ?(x) = x[superscript 3] - 1, for p prime, n natural number. These matrices have dimension ...
Impact of Syrian Refugees on Jordan's Water Management Research Questions
Impact of Syrian Refugees on Jordan's Water Management Research Questions: What impact has the influx of 590,000 refugees had on water resources? How can Jordan improve refugee and water management: -Water management in Jordan -Environmental impact assessments of refugee camps -Water resource
Light Board Operation 208 Jordan Hall
Buechler, Steven
Light Board Operation 208 Jordan Hall Using the Light Board 1. Turn on the lights next to the entry door. 2. Turn on the Light Board lights (illustration 1). The light switch is on the west wall, slightly behind the computer cart's display. 3. Locate the lapel microphone (usually on top of the Light
Wave Packets and Turbulent Peter Jordan1
Dabiri, John O.
Wave Packets and Turbulent Jet Noise Peter Jordan1 and Tim Colonius2 1 D´epartement Fluides-control efforts is incomplete. Wave packets are intermittent, advecting disturbances that are correlated over review evidence of the existence, energetics, dynamics, and acous- tic efficiency of wave packets. We
DUAL FACE ALGORITHM USING GAUSS-JORDAN ELIMINATION ...
2015-05-06T23:59:59.000Z
Primary 90C05; Secondary 65K05. Key words and phrases. linear programming, bounded-variable, dual face, dual optimal face, Gauss-. Jordan elimination .
Feasibility of Starting a Waterjet Fabrication Plant in Amman, Jordan
Ahmad, Khaled A.
2010-05-14T23:59:59.000Z
with Spanish and Italian imported tiles especially that the labor rates in Jordan are five to six times less than those in Spain and Italy....
"Hardware Verification for Arithmetic Circuits" Michael Shliselberg, Jordan Kaplan
Mountziaris, T. J.
"Hardware Verification for Arithmetic Circuits" Michael Shliselberg, Jordan Kaplan Professor Maciej Ciesielski Our research pertains to finding either new or more efficient methods of hardware verification
JACOBI-JORDAN ALGEBRAS DIETRICH BURDE AND ALICE FIALOWSKI
Fialowski, Alice
JACOBI-JORDAN ALGEBRAS DIETRICH BURDE AND ALICE FIALOWSKI Abstract. We study finite-dimensional commutative algebras, which satisfy the Jacobi iden- tity. Such algebras are Jordan algebras. We describe some-associative algebras. They satisfy the Jacobi identity instead of associativity. It turns out that they are a special
Jordan: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX JumpShun DaSilicon Co Ltd Jump to:ZhongdiantouJmade NewJordan-DLRJordan: Energy
Communicated by Michael Jordan Learning Virtual Equilibrium Trajectories for Control
Shadmehr, Reza
Communicated by Michael Jordan Learning Virtual Equilibrium Trajectories for Control of a Robot Arm Institute of Technology #12;Equilibrium Trajectories to Control a Robot Arm 437 the desired state
NOETHERIAN BANACH JORDAN PAIRS N. Boudi*, A. Fern'andez L'opezy, E. Garc'ia
by Benslimane and Boudi [BeB1] to the alternative case. For a Jordan algebra J or a Jordan pair V a* *nd Boudi [BeB2] proved that a complex Noetherian Banach Jordan algebra is finite dimensional
Social origins of alliances: uneven and combined development and the case of Jordan 1955-7
Allinson, James Christopher
2012-06-29T23:59:59.000Z
This thesis answers the question: ‘what explains Jordan’s international alignments between 1955 and 1957?’ In so doing, the thesis addresses the broader question of why states in the Global South make alignments and ...
Jordan: A Refugee Haven ---Country Profile Graldine Chatelard
Paris-Sud XI, Université de
Jordan: A Refugee Haven --- Country Profile Géraldine Chatelard August 2010, Migration Information by European colonial powers. It soon became the first host of Palestinian refugees. These people have arrived assistance from the international community to help resettle and integrate the refugees. The remittances
Energy systems impacts desalination in Jordan Poul Alberg stergaard*
Kolaei, Alireza Rezania
Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel to the technologies' particular characteristics. The systems are analyses in energy systems analysis model Energy1 Energy systems impacts desalination in Jordan Poul Alberg Østergaard* Department of Development
Why Do the Quantum Observables Form a Jordan Operator Algebra?
Gerd Niestegge
2010-01-21T23:59:59.000Z
The Jordan algebra structure of the bounded real quantum observables was recognized already in the early days of quantum mechanics. While there are plausible reasons for most parts of this structure, the existence of the distributive nonassociative multiplication operation is hard to justify from a physical or statistical point of view. Considering the non-Boolean extension of classical probabilities, presented in a recent paper, it is shown in this paper that such a multiplication operation can be derived from certain properties of the conditional probabilities and the observables, i.e., from postulates with a clear statistical interpretation. The well-known close relation between Jordan operator algebras and C*-algebras then provides the connection to the quantum-mechanical Hilbert space formalism, thus resulting in a novel axiomatic approach to general quantum mechanics that includes the types II and III von Neumann algebras.
Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras
Donald Yau
2010-02-21T23:59:59.000Z
Hom-Maltsev(-admissible) algebras are defined, and it is shown that Hom-alternative algebras are Hom-Maltsev-admissible. With a new definition of a Hom-Jordan algebra, it is shown that Hom-alternative algebras are Hom-Jordan-admissible. Hom-type generalizations of some well-known identities in alternative algebras, including the Moufang identities, are obtained.
The Implementation of Mobile Bank Usage from marketing point of view of bank managers in Jordan.
The Implementation of Mobile Bank Usage from marketing point of view of bank managers in Jordan. The study aims at determine the effect of the implementation of Mobile Bank Usage from marketing point between the Implementation of Mobile Bank Usage from marketing point of view of bank managers in Jordan
Jordan Malheur Resource Area Jonesboro Diversion Dam Replacement FONSI 1
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department of EnergyBrakingDepartment of Energyal. on the Proposed Open Accesson Jordan
Jordan National Energy Research Center | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm Jump to:Indianapolis,OpenJamestown, Colorado:JenningsJohnsourceJordan
Jordan-World Bank Climate Projects | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm Jump to:Indianapolis,OpenJamestown,Information Jordan-US Forest
Jordan-DLR Resource Assessments | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX JumpShun DaSilicon Co Ltd Jump to:ZhongdiantouJmade NewJordan-DLR Resource
Jordan-UNEP Green Economy Advisory Services | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX JumpShun DaSilicon Co Ltd Jump to:ZhongdiantouJmade NewJordan-DLR
Impact of managers emotional intelligence on marketing creativity in Jordan Commercial banks" Innovative Marketing, International Research Journal, vol 6, Issue3, 2010 Abstract: Purpose of paper: This study aims to investigate the Impact of Managers Emotional Intelligence on marketing creativity
Towards improved partnerships in the water sector in the Middle East : A case study of Jordan
Odeh, Nancy
2009-01-01T23:59:59.000Z
This dissertation focuses on the use of public-private partnerships (PPPs) in the water sector in Jordan, a Middle East pioneer with respect to experimenting with different approaches to delivering water services in both ...
Daume III, Hal
Jordan Boyd-Graber. Linguistic Resource Creation in a Web 2.0 World. NSF Workshop on Collaborative Annotation, 2011. @inproceedings{Boyd-Graber-2011, Title = {Linguistic Resource Creation in a Web 2.0 World}, Location = {New York, New York}, } 1 #12;Linguistic Resource Creation in a Web 2.0 World Jordan Boyd
Fighting Poverty: "Making Up" a New Society Around the Use of Human Development in Jordan.
Paris-Sud XI, Université de
1 Fighting Poverty: "Making Up" a New Society Around the Use of Human Development in Jordan349). Poverty is a phenomenon of a subjective and controversial nature, rooted into a specific sociological, historical, and political context. Therefore, the processes of defining (constructing) poverty, measuring it
Study of galactic gamma ray sources with Milagro Jordan A. Goodman for the Milagro Collaboration
California at Santa Cruz, University of
in the Cygnus Region [3], and the possible detection of a gamma-ray burst with our prototype instrument] and the Crab Nebula [7], set stringent upper limits on the prompt TeV emission from several gamma ray bursts [8Study of galactic gamma ray sources with Milagro Jordan A. Goodman for the Milagro Collaboration
Conference IMCL2006 April 19 -21, 2006 Amman, Jordan Applets for Learning Digital Design and Test
Kruus, Margus
hardware, testing and design for testability to learn by hands-on exercises how to design digital systems digital systems. Such topics as design of data- flows and micro-programs of computing algorithmsConference IMCL2006 April 19 -21, 2006 Amman, Jordan 1(4) Applets for Learning Digital Design
A Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1
Mechanical & Aerospace Engineering Dept., UCLA, Los Angeles, CA 90095 ABSTRACT Thin-film shape memory alloysA Free Energy Model for Thin-film Shape Memory Alloys Jordan E. Massad*1 , Ralph C. Smith1 and Greg comparison with thin-film NiTi superelastic hysteresis data. Keywords: Shape memory alloy model; thin film
Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker
Walter, M.Todd
Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use
Philadelphia University P.O. Box (1) Philadelphia University 19392 Jordan
-2-637-4440 Faculty of Information Technology Department of Applied Computer Science Mobile Number : +962-79-9714247 E Faculty of Information Technology, Philadelphia University, Jordan. Responsibilities include teaching Standards for different majors in Information Technology. Ministry of Higher Education and Scientific
Paris-Sud XI, Université de
The Contested Energy Future of Amman, Jordan: Between Promises of Alternative Energies and nuclear energy. Alternative eco-friendly energy resources represent only a small part of the potential authorities and local business elites are often seen as major players in the energy transition in the city
An Air-Operated Multi-Input Logical "OR" Module* Bogdan Stoyanov, Vlaiko Peichev, Jordan Beyazov
Borissova, Daniela
110 An Air-Operated Multi-Input Logical "OR" Module* Bogdan Stoyanov, Vlaiko Peichev, Jordan Beyazov Institute of Information Technologies, 1113 Sofia Abstract: The paper presents an 18-input air is the devel- opment of a specialized air-operated multi-input logical "OR" module intended for use
Jordan Cove Energy Project Fort Chicago Energy Partners L.P.
Jordan Cove Energy Project Fort Chicago Energy Partners L.P. 1.0 Bcfd Coos Bay, Oregon Oregon LNG Funding Partners 1.0-1.5 Bcfd Astoria, Oregon Portwestward LNG Facility Portwestward LNG, LLC 0.7-1.25 Bcfd Clatskanie, Oregon Kitimat LNG Facility Apache Corp 0.64 -1.0 Bcfd Kitimat, British Columbia
Macro-scale Bubbles for Aligning Carbon Nanotubes Jordan Hoyt,1
UG-18 Macro-scale Bubbles for Aligning Carbon Nanotubes Jordan Hoyt,1 Shota Ushiba,2-wall carbon nanotubes (SWCNTs) exhibit high aspect ratios that can lead to extreme anisotropic mechanical-scale bubble structures to align SWCNTs in larger quantities and in less time compared to pre-existing methods
Faculty for Factory: A University-Industry Link Program in Jordan
, mining, cement, and inorganic chemicals · Industrial production growth rate is about 1% #12;Challenges for mechatronics in Jordan · The size of the "production, automation, and manufacturing" industry is small and rubber 9. Construction 10. Wood industry and furniture #12;FFF Projects over the years 0 20 40 60 80 100
OFF-THE-RECORD COMMUNICATION FOR JORDAN COVE ENERGY PROJECT, L.P., FE DKT. NO. 12-32-LNG
Broader source: Energy.gov [DOE]
Posting of Off-the-Record CommunicationThe documents linked below were sent to the Department of Energy (DOE) in reference to the Jordan Cove Energy Project, L.P., FE Dkt. No. 12-32-LNG proceeding....
Alonso Contreras-Astorga; Axel Schulze-Halberg
2015-07-14T23:59:59.000Z
We construct a relationship between integral and differential representation of second-order Jordan chains. Conditions to obtain regular potentials through the confluent supersymmetry algorithm when working with the differential representation are obtained using this relationship. Furthermore, it is used to find normalization constants of wave functions of quantum systems that feature energy-dependent potentials. Additionally, this relationship is used to express certain integrals involving functions that are solution of Schrodinger equations through derivatives.
Boyd-Graber, Jordan
Kenneth R. Fleischmann, Clay Templeton, and Jordan Boyd-Graber. Modeling Diverse Standpoints{Fleischmann:Templeton:Boyd-Graber-2011, Author = {Kenneth R. Fleischmann and Clay Templeton and Jordan Boyd-Graber}, Booktitle = {i Hornbake Building, South Wing College Park, MD 20742-4345 kfleisch@umd.edu Thomas Clay Templeton University
Boyd-Graber, Jordan
Jordan Boyd-Graber. Linguistic Resource Creation in a Web 2.0 World. NSF Workshop on Collaborative Annotation, 2011, 7 pages. @inproceedings{Boyd-Graber-2011, Title = {Linguistic Resource Creation in a Web 2.0 = {2011}, Location = {New York, New York}, } 1 #12;Linguistic Resource Creation in a Web 2.0 World Jordan
Boyd-Graber, Jordan
Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu. A Topic Model for Word Sense Disambiguation. Empirical Methods in Natural Language Processing, 2007. @inproceedings{Boyd-Graber:Blei:Zhu-2007, Author = {Jordan Boyd-Graber and David M. Blei and Xiaojin Zhu}, Booktitle = {Empirical Methods in Natural Language
Boyd-Graber, Jordan
Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. Neural Information Processing Systems, 2009. @inproceedings{Chang:Boyd-Graber:Wang:Gerrish:Blei-2009, Author = {Jonathan Chang and Jordan Boyd-Graber and Chong Wang and Sean Gerrish and David M. Blei
Boyd-Graber, Jordan
Jordan Boyd-Graber and David M. Blei. PUTOP: Turning Predominant Senses into a Topic Model for WSD. 4th International Workshop on Semantic Evaluations, 2007. @inproceedings{Boyd-Graber:Blei-2007, Author = {Jordan Boyd-Graber and David M. Blei}, Booktitle = {4th International Workshop on Semantic
Boyd-Graber, Jordan
Jordan Boyd-Graber and David M. Blei. Syntactic Topic Models. Neural Information Processing Systems, 2008. @inproceedings{Boyd-Graber:Blei-2008, Author = {Jordan Boyd-Graber and David M. Blei}, Booktitle Olden Street Princeton University Princeton, NJ 08540 jbg@cs.princeton.edu David Blei Department
Boyd-Graber, Jordan
Jonathan Chang, Jordan Boyd-Graber, and David M. Blei. Connections between the Lines: Augmenting. @inproceedings{Chang:Boyd-Graber:Blei-2009, Author = {Jonathan Chang and Jordan Boyd-Graber and David M. Blei. Princeton, NJ 08544 jbg@cs.princeton.edu David M. Blei Computer Science 35 Olden St. Princeton, NJ 08544
Jordan-US Forest Service Climate Change Technical Cooperation | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm Jump to:Indianapolis,OpenJamestown,Information Jordan-US Forest Service
Qojas, M.
1999-03-01T23:59:59.000Z
This document is an analysis of options for unilateral and cooperative action to improve the security of Jordan's borders. Sections describe the current political, economic, and social interactions along Jordan's borders. Next, the document discusses border security strategy for cooperation among neighboring countries and the adoption of confidence-building measures. A practical cooperative monitoring system would consist of hardware for early warning, command and control, communications, and transportation. Technical solutions can expand opportunities for the detection and identification of intruders. Sensors (such as seismic, break-wire, pressure-sensing, etc.) can warn border security forces of intrusion and contribute to the identification of the intrusion and help formulate the response. This document describes conceptual options for cooperation, offering three scenarios that relate to three hypothetical levels (low, medium, and high) of cooperation. Potential cooperative efforts under a low cooperation scenario could include information exchanges on military equipment and schedules to prevent misunderstandings and the establishment of protocols for handling emergency situations or unusual circumstances. Measures under a medium cooperation scenario could include establishing joint monitoring groups for better communications, with hot lines and scheduled meetings. The high cooperation scenario describes coordinated responses, joint border patrols, and sharing border intrusion information. Finally, the document lists recommendations for organizational, technical, and operational initiatives that could be applicable to the current situation.
Demonstration of LED Retrofit Lamps at the Jordan Schnitzer Museum of Art
Miller, Naomi J.
2011-09-01T23:59:59.000Z
The Jordan Schnitzer Museum of Art in Eugene, Oregon, houses a remarkable permanent collection of Asian art and antiquities, modern art, and sculpture, and also hosts traveling exhibitions. In the winter and spring of 2011, a series of digital photographs by artist Chris Jordan, titled "Running the Numbers," was exhibited in the Coeta and Donald Barker Special Exhibitions Gallery. These works graphically illustrate waste (energy, money, health, consumer objects, etc.) in contemporary culture. The Bonneville Power Administration and the Eugene Water and Electricity Board provided a set of Cree 12W light-emitting diode (LED) PAR38 replacement lamps (Cree LRP38) for the museum to test for accent lighting in lieu of their standard Sylvania 90W PAR38 130V Narrow Flood lamps (which draw 78.9W at 120V). At the same time, the museum tested LED replacement lamps from three other manufacturers, and chose the Cree lamp as the most versatile and most appropriate color product for this exhibit. The lamps were installed for the opening of the show in January 2011. This report describes the process for the demonstration, the energy and economic results, and results of a survey of the museum staff and gallery visitors on four similar clusters of art lighted separately by four PAR38 lamps.
Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake
Uncertainty-Enabled Design of a Rocket Sled Track Switch Drs. Jordan E. Massad and Matthew R. Brake Sandia National Laboratories, New Mexico Rocket sled tracks provide a dynamically rich environment acceleration profile, the switch closes to complete a circuit for instrument activation. Preliminary tests
Daniel, Rosenfeld
with the metrics of lost amounts of usable water resources. [3] Suppression of rain and snow by urbanPossible impacts of anthropogenic aerosols on water resources of the Jordan River and the Sea trends in the available water for consumption from the Sea of Galilee and in the outflow of the main
Boyd-Graber, Jordan
Jordan Boyd-Graber and David M. Blei. Multilingual Topic Models for Unaligned Text. Uncertainty in Artificial Intelligence, 2009. @inproceedings{Boyd-Graber:Blei-2009, Title = {Multilingual Topic Models-Graber and David M. Blei}, Year = {2009}, Location = {Montreal, Quebec}, } 1 #12;Multilingual Topic Models
On 2-coverings and 2-packings of laminar families J. Cheriyan T. Jordan y R. Ravi z
Cheriyan, Joseph
On 2-coverings and 2-packings of laminar families J. Cheriyan T. Jordan y R. Ravi z January 24: laminar family of subsets, 1-covers, 2-covers, 1-packings, 2-packings, NP-hard, approximation algorithm grant CCR{9625297. 1 #12;1 Introduction Coverings and packings of laminar families by edges Let H
Boyd-Graber, Jordan
Clay Templeton, Kenneth R. Fleischmann, and Jordan Boyd-Graber. Simulating Audiences: Automating. @inproceedings{Templeton:Fleischmann:Boyd-Graber-2011, Author = {Clay Templeton and Kenneth R. Fleischmann, and Sentiment}, } 1 #12;Simulating Audiences Automating Analysis of Values, Attitudes, and Sentiment Thomas Clay
Adya, Atul
. The output of ls and wc is simplified and indented to increase readability. 1 #12; Consider an HTML Web pageThe Web File System: // FileÂlike Access to the Web Atul Adya, Joseph Banks, Jim Napier, Jordan Slott, and H.B. Weinberg. May 20, 1995 1 Introduction The Web File System (WFS) is a file system
Potma, Eric Olaf
Ultrafast pump-probe force microscopy with nanoscale resolution Junghoon Jahng, Jordan Brocious and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy Rev. Sci. Instrum. 83, 053107 (2012); 10.1063/1.4717732 Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz
Mechanical & Aerospace Engineering Dept., UCLA, Los Angeles, CA 90095 ABSTRACT Thinfilm shape memory alloysA Free Energy Model for Thinfilm Shape Memory Alloys Jordan E. Massad *1 , Ralph C. Smith 1 comparison with thinfilm NiTi superelastic hysteresis data. Keywords: Shape memory alloy model; thin film
Perturbations of Single-field Inflation in Modified Gravity Theory
Taotao Qiu; Jun-Qing Xia
2015-04-12T23:59:59.000Z
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form $f(R)$. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so in despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure $f(R)$ theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there are large parameter space in these models, we show that it is easy to fit the data very well.
Perturbations of Single-field Inflation in Modified Gravity Theory
Qiu, Taotao
2015-01-01T23:59:59.000Z
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form $f(R)$. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the perturbations are not equivalent in two frames, so in despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure $f(R)$ theory or single field with nonminiaml coupling, and one should pull them back into its original Jordan frame. In this paper, we calculate the perturbations in such a case in its Jordan frame. We also fit our results with the newest Planck data. Since there are large parameter space in these models, we show that it is easy to fit the data very well.
Towards quantum noncommutative {kappa}-deformed field theory
Daszkiewicz, Marcin; Lukierski, Jerzy; Woronowicz, Mariusz [Institute of Theoretical Physics, University of Wroclaw pl. Maxa Borna 9, 50-206 Wroclaw (Poland)
2008-05-15T23:59:59.000Z
We introduce a new {kappa}-star product describing the multiplication of quantized {kappa}-deformed free fields. The {kappa} deformation of local free quantum fields originates from two sources: noncommutativity of space-time and the {kappa} deformation of field oscillators algebra; we relate these two deformations. We demonstrate that for a suitable choice of {kappa}-deformed field oscillators algebra, the {kappa}-deformed version of the microcausality condition is satisfied, and it leads to the deformation of the Pauli-Jordan commutation function defined by the {kappa}-deformed mass shell. We show by constructing the {kappa}-deformed Fock space that the use of the {kappa}-deformed oscillator algebra permits one to preserve the bosonic statistics of n-particle states. The proposed star product is extended to the product of n fields, which for n=4 defines the interaction vertex in perturbative description of the noncommutative quantum {lambda}{phi}{sup 4} field theory. It appears that the classical four-momentum conservation law is satisfied at the interaction vertices.
The effective field theory of K-mouflage
Brax, Philippe
2015-01-01T23:59:59.000Z
We describe K-mouflage models of modified gravity using the effective field theory of dark energy. We show how the Lagrangian density $K$ defining the K-mouflage models appears in the effective field theory framework, at both the exact fully nonlinear level and at the quadratic order of the effective action. We find that K-mouflage scenarios only generate the operator $(\\delta g^{00}_{(u)})^n$ at each order $n$. We also reverse engineer K-mouflage models by reconstructing the whole effective field theory, and the full cosmological behaviour, from two functions of the Jordan-frame scale factor in a tomographic manner. This parameterisation is directly related to the implementation of the K-mouflage screening mechanism: screening occurs when $ K'$ is large in a dense environment such as the deep matter and radiation eras. In this way, K-mouflage can be easily implemented as a calculable subclass of models described by the effective field theory of dark energy which could be probed by future surveys.
Tachyonic field interacting with Scalar (Phantom) Field
Surajit Chattopadhyay; Ujjal Debnath
2009-01-29T23:59:59.000Z
In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.
Smooth Field Theories and Homotopy Field Theories
Wilder, Alan Cameron
2011-01-01T23:59:59.000Z
1 . . . . . . . . 4 Categories of Field Theories 4.1 Functorto super symmetric field theories. CRM Proceedings and0-dimensional super symmetric field theories. preprint 2008.
Jordan | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Co -UCRL-PROP-220079NuclearAdministrationAdministrationHEU
NREL: Energy Analysis - Jordan Macknick
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif DirectorateWhat IsPowerJon Weers Photo of Jon Weers. Jon
Smooth Field Theories and Homotopy Field Theories
Wilder, Alan Cameron
2011-01-01T23:59:59.000Z
CHAPTER 3. FIELD THEORIES Definition 3.2.1. A smooth fielda ’top down’ definition of field theories. Taking as ourin the following. Definition A field theory is a symmetric
Internal split field generator
Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)
2012-01-03T23:59:59.000Z
A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.
External split field generator
Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)
2012-02-21T23:59:59.000Z
A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.
Introduction Classical Field Theory
Baer, Christian
Introduction Classical Field Theory Locally Covariant Quantum Field Theory Renormalization Time evolution Conclusions and outlook Locality and Algebraic Structures in Field Theory Klaus Fredenhagen IIÂ¨utsch and Pedro Lauridsen Ribeiro) Klaus Fredenhagen Locality and Algebraic Structures in Field Theory #12
U.S. Energy Information Administration (EIA) Indexed Site
OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...
Hull, Chris
The zero modes of closed strings on a torus — the torus coordinates plus dual coordinates conjugate to winding number — parameterize a doubled torus. In closed string field theory, the string field depends on all zero-modes ...
Washington Taylor
2006-06-28T23:59:59.000Z
This elementary introduction to string field theory highlights the features and the limitations of this approach to quantum gravity as it is currently understood. String field theory is a formulation of string theory as a field theory in space-time with an infinite number of massive fields. Although existing constructions of string field theory require expanding around a fixed choice of space-time background, the theory is in principle background-independent, in the sense that different backgrounds can be realized as different field configurations in the theory. String field theory is the only string formalism developed so far which, in principle, has the potential to systematically address questions involving multiple asymptotically distinct string backgrounds. Thus, although it is not yet well defined as a quantum theory, string field theory may eventually be helpful for understanding questions related to cosmology in string theory.
Covariant Noncommutative Field Theory
Estrada-Jimenez, S. [Licenciaturas en Fisica y en Matematicas, Facultad de Ingenieria, Universidad Autonoma de Chiapas Calle 4a Ote. Nte. 1428, Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, H. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F., Mexico and Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Via del Conocimiento 201, Parque de Investigacion e Innovacion Tecnologica (PIIT) Autopista nueva al Aeropuerto km 9.5, Lote 1, Manzana 29, cp. 66600 Apodaca Nuevo Leon (Mexico); Obregon, O. [Instituto de Fisica de la Universidad de Guanajuato P.O. Box E-143, 37150 Leon Gto. (Mexico); Ramirez, C. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2008-07-02T23:59:59.000Z
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Kaiser, David I.
Particle cosmology is among the hottest of hot topics in physics today. The field investigates the smallest units of matter and their role in determining the shape and fate of the entire universe. In recent years the field ...
Covariant Hamiltonian Field Theory
Jürgen Struckmeier; Andreas Redelbach
2012-05-22T23:59:59.000Z
A consistent, local coordinate formulation of covariant Hamiltonian field theory is presented. Whereas the covariant canonical field equations are equivalent to the Euler-Lagrange field equations, the covariant canonical transformation theory offers more general means for defining mappings that preserve the form of the field equations than the usual Lagrangian description. It is proved that Poisson brackets, Lagrange brackets, and canonical 2-forms exist that are invariant under canonical transformations of the fields. The technique to derive transformation rules for the fields from generating functions is demonstrated by means of various examples. In particular, it is shown that the infinitesimal canonical transformation furnishes the most general form of Noether's theorem. We furthermore specify the generating function of an infinitesimal space-time step that conforms to the field equations.
Field emission electron source
Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)
2000-01-01T23:59:59.000Z
A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.
The Ness field: An integrated field study
Karasek, R.M.; Kean, K.R.; Richards, M.L. (Mobil North Sea Ltd., London (England))
1990-05-01T23:59:59.000Z
The Ness oil field, located in UK Block 9/13, was discovered in May 1986 by well 9/13b-28A. The field comprises a high-quality Middle Jurassic reservoir with an average 148-ft oil column trapped in a west-dipping, fault-bounded closure. The oil is substantially undersaturated. The field was brought on production as a subsea satellite development tied back to the Beryl B Platform. Oil was first delivered on August 11, 1987, just over a year from discovery. Initial producing rates from the 9/13B-28A well averaged about 10,000 BOPD. Since this well, another producer and water injector have been completed. Based on the frequent and accurate pressure data available from permanent downhole gauges installed in all three wells of the Ness field, material balance was used to calculate initial oil in place. These calculations gave an oil in place value consistent with recent calculations of 87 {times} 166 STB after less than 3% of the oil-in-place had been produced, compared with 55 {times} 106 STB initially mapped. Pressure monitoring enabled reservoir drive mechanisms to be tracked and a high offtake rate to be maintained by balancing water injection with withdrawals. A reevaluation of the mapped structure was prompted by a revision of the geological model following the 9/13b-38/38Z appraisal wells, together with the discrepancy between the oil in place from mapping and material balance. The seismic data was reinterpreted using the additional well control, and the field remapped. This resulted in a revised volume of 129 {times} 106 STB. Additional insight into the differentiation between oil and water volumes in this low compressibility system and a resolution of the differences between material balance and volumetrics were obtained through a black-oil simulation.
Constructive Quantum Field Theory
Giovanni Gallavotti
2005-10-04T23:59:59.000Z
A review of the renormalization group approach to the proof of non perturbative ultraviolet stability in scalar field theories in dimension d=2,3.
Lane, Michael
2013-06-28T23:59:59.000Z
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
H. C. Potter
2008-12-16T23:59:59.000Z
Gauge transformations are potential transformations that leave only specific Maxwell fields invariant. To reveal more, I develop Lorenz field equations with full Maxwell form for nongauge, sans gauge function, transformations yielding mixed, superposed retarded and outgoing, potentials. The form invariant Lorenz condition is then a charge conservation equivalent. This allows me to define three transformation classes that screen for Lorenz relevance. The nongauge Lorentz conditions add polarization fields which support emergent, light-like rays that convey energy on charge conserving phase points. These localized rays escape discovery in modern Maxwell fields where the polarizations are suppressed by gauge transformations.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lane, Michael
Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.
Field emission chemical sensor
Panitz, J.A.
1983-11-22T23:59:59.000Z
A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.
221B Lecture Notes Quantum Field Theory III (Radiation Field)
Murayama, Hitoshi
221B Lecture Notes Quantum Field Theory III (Radiation Field) 1 Quantization of Radiation Field was quantized: photons. Now that we have gone through quantization of a classical field (Schr¨odinger field so far), we can proceed to quantize the Maxwell field. The basic idea is pretty much the same, except
221B Lecture Notes Quantum Field Theory IV (Radiation Field)
Murayama, Hitoshi
221B Lecture Notes Quantum Field Theory IV (Radiation Field) 1 Quantization of Radiation Field was quantized: photons. Now that we have gone through quantization of a classical field (Schr¨odinger field so far), we can proceed to quantize the Maxwell field. The basic idea is pretty much the same, except
Magnetic Fields Analogous to electric field, a magnet
Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University
Magnetic Fields Analogous to electric field, a magnet produces a magnetic field, B Set up a B field two ways: Moving electrically charged particles Current in a wire Intrinsic magnetic field Basic) Opposite magnetic poles attract like magnetic poles repel #12;Like the electric field lines
Jordan F. Clark Department of Earth Science
Clark, Jordan
, J. F. and K. K. Turekian (1990) Time scale of hydrothermal water - rock reactions in Yellowstone National Park based on radium isotopes and radon. Journal of Volcanology and Geothermal Research, 40, 169
Peter G. O. Freund
2010-08-24T23:59:59.000Z
Erik Verlinde's proposal of the emergence of the gravitational force as an entropic force is extended to abelian and non-abelian gauge fields and to matter fields. This suggests a picture with no fundamental forces or forms of matter whatsoever.
Topological quantum field theories
Albert Schwarz
2000-11-29T23:59:59.000Z
Following my plenary lecture on ICMP2000 I review my results concerning two closely related topics: topological quantum field theories and the problem of quantization of gauge theories. I start with old results (first examples of topological quantum field theories were constructed in my papers in late seventies) and I come to some new results, that were not published yet.
Scalar Field Inhomogeneous Cosmologies
A. Feinstein; J. Ibáñez; P. Labraga
1995-11-24T23:59:59.000Z
Some exact solutions for the Einstein field equations corresponding to inhomogeneous $G_2$ cosmologies with an exponential-potential scalar field which generalize solutions obtained previously are considered. Several particular cases are studied and the properties related to generalized inflation and asymptotic behaviour of the models are discussed.
Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)
2012-12-10T23:59:59.000Z
With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.
Cosmology of Bifundamental Fields
Tanmay Vachaspati
2008-12-17T23:59:59.000Z
If a field theory contains gauged, non-Abelian, bi-fundamental fields i.e. fields that are charged under two separate non-Abelian gauge groups, the transition from a deconfined phase to a hadronic phase may be frustrated. Similar frustration may occur in non-Abelian gauge models containing matter only in higher dimensional representations e.g. models with pure glue, or if ordinary quarks are confined by two flux tubes, as implied in the triangular configuration of baryons within QCD. In a cosmological setting, such models can lead to the formation of a web of confining electric flux tubes that can potentially have observational signatures.
viii Contents. Three Field Theory. 87—89. 90—95. 96—97. 98—107. 108—114. 115—121. De?nition and examples of ?eld structure 67. Vector spaces, bases ...
Manager, Carlsbad Field Office
Broader source: Energy.gov [DOE]
The U.S. Department of Energy (DOE), Office of Environmental Management (EM), Carlsbad Field Office (CBFO) is seeking a highly experienced and motivated executive-minded individual to fill its...
Duble, Richard L.
1995-07-31T23:59:59.000Z
Coaches are often more concerned with injuries, personnel problems and opponents than with the condition of the turf on their playing fields. This publication discusses management strategies, including mowing, fertilizing, watering and renovating...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
please contact Mr. Anthony Stone at (575) 234-7475. flose R. FrManager Carlsbad Field Office Enclosure cc: wenclosure K. Roberts, NMED *ED R. Maestas, NMED ED S. Holmes, NMED ED...
2010-08-05T23:59:59.000Z
dfield8 Direction Fields. • The routine dfield8 is already loaded on all ITaP machines as standard software. To access MAtlAB from any ITaP machine: Start
Quasi light fields: extending the light field to coherent radiation
Wornell, Gregory W.
Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field
Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))
1990-01-01T23:59:59.000Z
The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.
Kristan Jensen
2014-12-24T23:59:59.000Z
We initiate a systematic study of `t Hooft anomalies in Galilean field theories, focusing on two questions therein. In the first, we consider the non-relativistic theories obtained from a discrete light-cone quantization (DLCQ) of a relativistic theory with flavor or gravitational anomalies. We find that these anomalies survive the DLCQ, becoming mixed flavor/boost or gravitational/boost anomalies. We also classify the pure Weyl anomalies of Schr\\"odinger theories, which are Galilean conformal field theories (CFTs) with $z=2$. There are no pure Weyl anomalies in even spacetime dimension, and the lowest-derivative anomalies in odd dimension are in one-to-one correspondence with those of a relativistic CFT in one dimension higher. These results classify many of the anomalies that arise in the field theories dual to string theory on Schr\\"odinger spacetimes.
Sampayan, S.E.
1998-03-03T23:59:59.000Z
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
Sampayan, Stephen E. (Manteca, CA)
1998-01-01T23:59:59.000Z
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
STATISTICAL MECHANICS AND FIELD THEORY
Samuel, S.A.
2010-01-01T23:59:59.000Z
York. K. Bardakci, Field Theory for Solitons, II, BerkeleyFart I Applications of Field Theory Methods to StatisticalStatistical Mechanics to Field Theory Chapter IV The Grand
Noncommutative Quantum Field Theories
H. O. Girotti
2003-03-19T23:59:59.000Z
We start by reviewing the formulation of noncommutative quantum mechanics as a constrained system. Then, we address to the problem of field theories defined on a noncommutative space-time manifold. The Moyal product is introduced and the appearance of the UV/IR mechanism is exemplified. The emphasis is on finding and analyzing noncommutative quantum field theories which are renormalizable and free of nonintegrable infrared singularities. In this last connection we give a detailed discussion of the quantization of the noncommutative Wess-Zumino model as well as of its low energy behavior.
Andrei Linde
2015-04-02T23:59:59.000Z
I describe a simple class of $\\alpha$-attractors, generalizing the single-field GL model of inflation in supergravity. The new class of models is defined for $0<\\alpha \\lesssim 1$, providing a good match to the present cosmological data. I also present a generalized version of these models which can describe not only inflation but also dark energy and supersymmetry breaking.
Algebraic Quantum Field Theory
Hans Halvorson; Michael Mueger
2006-02-14T23:59:59.000Z
Algebraic quantum field theory provides a general, mathematically precise description of the structure of quantum field theories, and then draws out consequences of this structure by means of various mathematical tools -- the theory of operator algebras, category theory, etc.. Given the rigor and generality of AQFT, it is a particularly apt tool for studying the foundations of QFT. This paper is a survey of AQFT, with an orientation towards foundational topics. In addition to covering the basics of the theory, we discuss issues related to nonlocality, the particle concept, the field concept, and inequivalent representations. We also provide a detailed account of the analysis of superselection rules by S. Doplicher, R. Haag, and J. E. Roberts (DHR); and we give an alternative proof of Doplicher and Roberts' reconstruction of fields and gauge group from the category of physical representations of the observable algebra. The latter is based on unpublished ideas due to Roberts and the abstract duality theorem for symmetric tensor *-categories, a self-contained proof of which is given in the appendix.
Sorghum Ergot - Field Identification
Krausz, Joseph P.
1997-07-21T23:59:59.000Z
stream_source_info pdf_835.pdf.txt stream_content_type text/plain stream_size 1934 Content-Encoding ISO-8859-1 stream_name pdf_835.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Sorghum Ergot Field Identif_ication...
Experimental quantum field theory
Bell, J S
1977-01-01T23:59:59.000Z
Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).
A. Steffens; C. A. Riofrío; R. Hübener; J. Eisert
2014-11-06T23:59:59.000Z
We introduce the concept of quantum field tomography, the efficient and reliable reconstruction of unknown quantum fields based on data of correlation functions. At the basis of the analysis is the concept of continuous matrix product states, a complete set of variational states grasping states in quantum field theory. We innovate a practical method, making use of and developing tools in estimation theory used in the context of compressed sensing such as Prony methods and matrix pencils, allowing us to faithfully reconstruct quantum field states based on low-order correlation functions. In the absence of a phase reference, we highlight how specific higher order correlation functions can still be predicted. We exemplify the functioning of the approach by reconstructing randomised continuous matrix product states from their correlation data and study the robustness of the reconstruction for different noise models. We also apply the method to data generated by simulations based on continuous matrix product states and using the time-dependent variational principle. The presented approach is expected to open up a new window into experimentally studying continuous quantum systems, such as encountered in experiments with ultra-cold atoms on top of atom chips. By virtue of the analogy with the input-output formalism in quantum optics, it also allows for studying open quantum systems.
A. M. Gainutdinov; N. Read; H. Saleur; R. Vasseur
2014-12-15T23:59:59.000Z
The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace $\\mathbb{CP}^{1|1} = \\mathrm{U}(2|1) / (\\mathrm{U}(1) \\times \\mathrm{U}(1|1))$, and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
Field/source duality in topological field theories
David Delphenich
2007-02-13T23:59:59.000Z
The relationship between the sources of physical fields and the fields themselves is investigated with regard to the coupling of topological information between them. A class of field theories that we call topological field theories is defined such that both the field and its source represent de Rham cocycles in varying dimensions over complementary subspaces and the coupling of one to the other is by way of an isomorphism of the those cohomology spaces, which we refer to as field/source duality. The deeper basis for such an isomorphism is investigated and the process is described for various elementary physical examples of topological field theories.
None
2013-12-31T23:59:59.000Z
This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report
Graphene field emission devices
Kumar, S., E-mail: shishirk@gmail.com; Raghavan, S. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Duesberg, G. S. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Chemistry, Trinity College Dublin, Dublin, D2 (Ireland); Pratap, R. [Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru (India); Department of Mechanical Engineering, Indian Institute of Science, Bengaluru (India)
2014-09-08T23:59:59.000Z
Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ?10?nA ?m{sup ?1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTechDatastreamsmplDatastreamsxsacrspeccmaskxpol7, 2013 [Facility News, Feature StoriesField Participants Campaign
Noncommutative Dipole Field Theories
K. Dasgupta; M. M. Sheikh-Jabbari
2002-02-05T23:59:59.000Z
Assigning an intrinsic constant dipole moment to any field, we present a new kind of associative star product, the dipole star product, which was first introduced in [hep-th/0008030]. We develop the mathematics necessary to study the corresponding noncommutative dipole field theories. These theories are sensible non-local field theories with no IR/UV mixing. In addition we discuss that the Lorentz symmetry in these theories is ``softly'' broken and in some particular cases the CP (and even CPT) violation in these theories may become observable. We show that a non-trivial dipole extension of N=4, D=4 gauge theories can only be obtained if we break the SU(4) R (and hence super)-symmetry. Such noncommutative dipole extensions, which in the maximal supersymmetric cases are N=2 gauge theories with matter, can be embedded in string theory as the theories on D3-branes probing a smooth Taub-NUT space with three form fluxes turned on or alternatively by probing a space with R-symmetry twists. We show the equivalences between the two approaches and also discuss the M-theory realization.
Polymer Parametrised Field Theory
Alok Laddha; Madhavan Varadarajan
2008-05-02T23:59:59.000Z
Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as that of spacetime diffeomorphisms are represented in an anomaly free manner. Semiclassical states can be analysed at the gauge invariant level. It is shown that `physical weaves' necessarily underly such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.
Unbalanced field RF electron gun
Hofler, Alicia
2013-11-12T23:59:59.000Z
A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.
Nature of Electric and Magnetic Fields; How the Fields Transform
Tomislav Ivezic
2015-08-10T23:59:59.000Z
In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.
Generalized Gravitational Entropy of Interacting Scalar Field and Maxwell Field
Wung-Hong Huang
2014-11-11T23:59:59.000Z
The generalized gravitational entropy proposed by Lewkowycz and Maldacena in recent is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.
Nature of Electric and Magnetic Fields; How the Fields Transform
Ivezic, Tomislav
2015-01-01T23:59:59.000Z
In this paper the proofs are given that the electric and magnetic fields are properly defined vectors on the four-dimensional (4D) spacetime (the 4-vectors in the usual notation) and not the usual 3D fields. Furthermore, the proofs are presented that under the mathematically correct Lorentz transformations (LT), e.g., the electric field vector transforms as any other vector transforms, i.e., again to the electric field vector; there is no mixing with the magnetic field vector B, as in the usual transformations (UT) of the 3D fields. The derivations of the UT from some well-known textbooks are discussed and objected.
Quasi light fields: Extending the light field to coherent radiation
Accardi, Anthony J.
Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...
Hamiltonian Vector Fields on Multiphase Spaces of Classical Field Theory
Michael Forger; Mário Otávio Salles
2010-10-02T23:59:59.000Z
We present a classification of hamiltonian vector fields on multisymplectic and polysymplectic fiber bundles closely analogous to the one known for the corresponding dual jet bundles that appear in the multisymplectic and polysymplectic approach to first order classical field theories.
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Co - PA 40 FUSRAPChupadera? r . . W . L.15, 2010 ThisNational551 - g-- !Field
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue,2002TI10)2 PrintAMERICA'SCurrent :Data PlotsgovFieldOverview
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA JourneygovCampaignsPajaritogovFieldMapping ofAandprofilesNauru Site-InactiveInstruments TWPOverview
Particle decay in Ising field theory with magnetic field
Gesualdo Delfino
2007-03-30T23:59:59.000Z
The scaling limit of the two-dimensional Ising model in the plane of temperature and magnetic field defines a field theory which provides the simplest illustration of non-trivial phenomena such as spontaneous symmetry breaking and confinement. Here we discuss how Ising field theory also gives the simplest model for particle decay. The decay widths computed in this theory provide the obvious test ground for the numerical methods designed to study unstable particles in quantum field theories discretized on a lattice.
Measurement of radiofrequency fields
Leonowich, J.A.
1992-05-01T23:59:59.000Z
We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.
Exposure guidelines for magnetic fields
Miller, G.
1987-12-01T23:59:59.000Z
The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.
Field Theory and Standard Model
W. Buchmüller; C. Lüdeling
2006-09-18T23:59:59.000Z
This is a short introduction to the Standard Model and the underlying concepts of quantum field theory.
Direct drive field actuator motors
Grahn, A.R.
1998-03-10T23:59:59.000Z
A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.
Diamond-graphite field emitters
Valone, Steven M. (Santa Fe, NM)
1997-01-01T23:59:59.000Z
A field emission electron emitter comprising an electrode of diamond and a conductive carbon, e.g., graphite, is provided.
The quantum character of physical fields. Foundations of field theories
L. I. Petrova
2006-03-15T23:59:59.000Z
The existing field theories are based on the properties of closed exterior forms, which are invariant ones and correspond to conservation laws for physical fields. Hence, to understand the foundations of field theories and their unity, one has to know how such closed exterior forms are obtained. In the present paper it is shown that closed exterior forms corresponding to field theories are obtained from the equations modelling conservation (balance)laws for material media. It has been developed the evolutionary method that enables one to describe the process of obtaining closed exterior forms. The process of obtaining closed exterior forms discloses the mechanism of evolutionary processes in material media and shows that material media generate, discretely, the physical structures, from which the physical fields are formed. This justifies the quantum character of field theories. On the other hand, this process demonstrates the connection between field theories and the equations for material media and points to the fact that the foundations of field theories must be conditioned by the properties of material media. It is shown that the external and internal symmetries of field theories are conditioned by the degrees of freedom of material media. The classification parameter of physical fields and interactions, that is, the parameter of the unified field theory, is connected with the number of noncommutative balance conservation laws for material media.
Magnetic-field-dosimetry system
Lemon, D.K.; Skorpik, J.R.; Eick, J.L.
1981-01-21T23:59:59.000Z
A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.
Fincke, James R.
2003-09-23T23:59:59.000Z
Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.
Noncommutative Field Theories and Gravity
Victor O. Rivelles
2003-02-21T23:59:59.000Z
We show that after the Seiberg-Witten map is performed the action for noncommutative field theories can be regarded as a coupling to a field dependent gravitational background. This gravitational background depends only on the gauge field. Charged and uncharged fields couple to different backgrounds and we find that uncharged fields couple more strongly than the charged ones. We also show that the background is that of a gravitational plane wave. A massless particle in this background has a velocity which differs from the velocity of light and we find that the deviation is larger in the uncharged case. This shows that noncommutative field theories can be seen as ordinary theories in a gravitational background produced by the gauge field with a charge dependent gravitational coupling.
Dumoulin, Serge O.
of processing in human motion-selective cortex. I N T R O D U C T I O N Neuroimaging experiments localize human by additional experiments. Defining human MT based on stimulus selectivity means that the identificationVisual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT
The Electromagnetic Field as a Synchrony Gauge Field
Bock, Robert D
2015-01-01T23:59:59.000Z
Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.
Dmitriy Palatnik
2005-08-12T23:59:59.000Z
Suggested modification of the Einstein-Maxwell system, such that Maxwell equations become non-gauge and nonlinear. The theory is based on assumption that observable (i.e., felt by particles) metric is $ {\\tilde{g}}_{ab} = g_{ab} - l^2{A}_a{A}_b$, where $g_{ab}$ is metric (found from Einstein equations), $A_a$ is electromagnetic potential, and $l$ is fundamental constant of the theory. Specific model of the mass and charge densities of a fundamental particle is considered. As a result, one obtains solutions corresponding to quantized electrical charge with spectrum $q_{n} = {{2n}\\over3}e$ and $q'_{n} = -{(2n+1)\\over3}e$, where $n = 0, 1, 2, ...$ Theory predicts Coulomb interaction between electrical charges and masses. Namely, if ($m, e$) and ($m',e'$) describe masses and electrical charges of two particles respectively, then energy of interaction (in non-relativistic limit) is $V(r) = [ee' - kmm' - \\sqrt k(em' + e'm)]/r$. It follows, then, that the Earth's mass, $M_E$, contributes negative electrical charge, $Q_E = - \\sqrt k M_E$, which explains why primary cosmic rays consist mainly of positively charged particles. One may attribute the fairweather electric field at the Earth's surface to the charge $Q_E$.
Chandler, Mark A. (Madison, WI); Goggin, David J. (Austin, TX); Horne, Patrick J. (Austin, TX); Kocurek, Gary G. (Roundrock, TX); Lake, Larry W. (Austin, TX)
1989-01-01T23:59:59.000Z
For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.
D-brane effective field theory from string field theory
Washington Taylor
2000-02-15T23:59:59.000Z
Open string field theory is considered as a tool for deriving the effective action for the massless or tachyonic fields living on D-branes. Some simple calculations are performed in open bosonic string field theory which validate this approach. The level truncation method is used to calculate successive approximations to the quartic terms \\phi^4, (A^\\mu A_\\mu)^2 and [A_\\mu, A_\
Interagency Field Test & Evaluation: Field Test 2 Public Fact Sheet
Brian Connor
2013-03-30T23:59:59.000Z
This fact sheet summarizes the second field tests of technologies intended to address wind turbine interference with land-based surveillance radar, which took place in Lubbock, TX.
Continuous Profiling of Magnetotelluric Fields
Verdin, C.T.
2009-01-01T23:59:59.000Z
those employed in seismic data interpretation under the nameseismic nature, these techniques power implicit in the at least two decades of continued field and interpretation
Electrochemical formation of field emitters
Bernhardt, Anthony F. (Berkeley, CA)
1999-01-01T23:59:59.000Z
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.
Electromagnetic field with induced massive term: Case with scalar field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-04-21T23:59:59.000Z
We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Electromagnetic field with induced massive term: Case with spinor field
Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha
2010-08-12T23:59:59.000Z
We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.
Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field
Bishop Mongwane; Peter K. S. Dunsby; Bob Osano
2012-10-21T23:59:59.000Z
We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.
Conservation laws. Generation of physical fields. Principles of field theories
L. I. Petrova
2007-04-19T23:59:59.000Z
In the paper the role of conservation laws in evolutionary processes, which proceed in material systems (in material media) and lead to generation of physical fields, is shown using skew-symmetric differential forms. In present paper the skew-symmetric differential forms on deforming (nondifferentiable) manifolds were used in addition to exterior forms, which have differentiable manifolds as a basis. Such skew-symmetric forms (which were named evolutionary ones since they possess evolutionary properties), as well as the closed exterior forms, describe the conservation laws. But in contrast to exterior forms, which describe conservation laws for physical fields, the evolutionary forms correspond to conservation laws for material systems. The evolutionary forms possess an unique peculiarity, namely, the closed exterior forms are obtained from these forms. It is just this that enables one to describe the process of generation of physical fields, to disclose connection between physical fields and material systems and to resolve many problems of existing field theories.
California at Berkeley, University of
is an aerodynamic drag force resisting motion of the tube through the external, fieldÂfree plasma. The magÂ netic of Sun's XÂray Emission: #12; Emerging Active Regions -- what we see at the photoÂ sphere: (from Cauzzi buoyancy force, FT is the force due to magnetic tension (field line bending), FC represents the Coriolis
Fast superconducting magnetic field switch
Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)
1996-01-01T23:59:59.000Z
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Unified Field Theories Hitoshi Murayama
Murayama, Hitoshi
Unified Field Theories Hitoshi Murayama Department of Physics, University of California Berkeley This article explains the idea of unified field theories in particle physics. It starts with a historical review of two successful theories which unified two apparently distinct forces: Maxwell's theory
Gerbes and quantum field theory
Jouko Mickelsson
2006-03-11T23:59:59.000Z
The basic mechanism how gerbes arise in quantum field theory is explained; in particular the case of chiral fermions in background fields is treated. The role of of various gauge group extensions (central extensions of loop groups and their generalizations) is also explained, in relation to index theory computation of the Dixmier-Douady class of a gerbe.
Fermion measure and axion fields
Mitra, P
2015-01-01T23:59:59.000Z
It is known from path integral studies of the chiral anomaly that the fermion measure has to depend on gauge fields interacting with the fermion. It is argued here that in the presence of axion fields interacting with the fermion, they too may be involved in the measure, with unexpected consequences.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06T23:59:59.000Z
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Field observations and lessons learned
Nielsen, Joh B [Los Alamos National Laboratory
2010-01-01T23:59:59.000Z
This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.
Compact orthogonal NMR field sensor
Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)
2009-02-03T23:59:59.000Z
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
R. L. Collins
2007-03-04T23:59:59.000Z
Consider the electric field E about an electron. Its source has been thought a substance called charge, enclosed within a small volume that defines the size of the electron. Scattering experiments find no size at all. Charge is useful, but mysterious. This study concludes that charge is not real. Useful, but not real. Absent real charge, the electric field must look to a different source. We know another electric field, vxB, not sourced by charge. A simple model of the electron, using EM fields only, has been found that generates an electric field vxB very like E. Gauss' law finds the model contains charge, but div vxB cannot find the charge density. The model contains a permanent magnetic flux quantum, configured as a dipole. The dipolar B fields spin around the symmetry axis, accounting for angular momentum. Spin stabilizes the magnetic flux quantum, and creates the vxB electric field. Stability in this model is dynamic. Energy is exchanged between the dipolar magnetic moment and an encircling toroidal displacement current, at the Compton frequency, mc^2/h = 1.24x10^20 Hz. The electric field undulates at this rate, instead of being static like E associated with charge. Absent any real charge, we have to abandon the notion that size of a charged particle is that of a small sack full of charge. The only electric field is vxB, and its source is not charge. What is the size of an electron? Coulomb scattering finds it point-like, but its spinning B fields extend to infinity.
Confluent primary fields in the conformal field theory
Hajime Nagoya; Juanjuan Sun
2010-08-23T23:59:59.000Z
For any complex simple Lie algebra, we generalize primary fileds in the Wess-Zumino-Novikov-Witten conformal field theory with respect to the case of irregular singularities and we construct integral representations of hypergeometric functions of confluent type, as expectation values of products of generalized primary fields. In the case of sl(2), these integral representations coincide with solutions to confluent KZ equations. Computing the operator product expansion of the energy-momentum tensor and the generalized primary field, new differential operators appear in the result. In the case of sl(2), these differential operators are the same as those of the confluent KZ equations.
Quantum Field and Cosmic Field-Finite Geometrical Field Theory of Matter Motion Part Three
Jianhua Xiao
2005-12-20T23:59:59.000Z
This research establishes an operational measurement way to express the quantum field theory in a geometrical form. In four-dimensional spacetime continuum, the orthogonal rotation is defined. It forms two sets of equations: one set is geometrical equations, another set is the motion equations. The Lorentz transformation can be directly derived from the geometrical equations, and the proper time of general relativity is well expressed by time displacement field. By the motion equations, the typical time displacement field of matter motion is discussed. The research shows that the quantum field theory can be established based on the concept of orthogonal rotation. On this sense, the quantum matter motion in physics is viewed as the orthogonal rotation of spacetime continuum. In this paper, it shows that there are three typical quantum solutions. One is particle-like solution, one is generation-type solution, and one is pure wave type solution. For each typical solution, the force fields are different. Many features of quantum field can be well explained by this theoretic form. Finally, the general matter motion is discussed, the main conclusions are: (1). Geometrically, cosmic vacuum field can be described by the curvature spacetime; (2). The spatial deformation of planet is related with a planet electromagnetic field; (3). For electric charge less matter, the volume of matter will be expanding infinitely; (4).For strong electric charge matter, it shows that the volume of matter will be contracting infinitely.
Noncommutative field with constant background fields and neutral fermion
Cui-bai Luo; Feng-yao Hou; Zhu-fang Cui; Xiao-jun Liu; Hong-shi Zong
2015-03-02T23:59:59.000Z
Introducing constant background fields into the noncommutative gauge theory, we first obtain a Hermitian fermion Lagrangian which involves a Lorentz violation term, then we generalize it to a new deformed canonical noncommutation relations for fermion field. Massless neutrino oscillation in the deformed canonical noncommutation relations is analyzed. The restriction of the noncommutative coefficients is also discussed. By comparing with the existing experimental data of conventional neutrino oscillations, the order of noncommutative deformed coefficients is given from different ways.
High field gradient particle accelerator
Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)
1989-01-01T23:59:59.000Z
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30T23:59:59.000Z
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
Field emission from organic materials
Kymissis, Ioannis, 1977-
2003-01-01T23:59:59.000Z
Field emission displays (FEDs) show great promise as high performance flat panel displays. The light emission process is efficient, long lifetimes are possible with high brightness, and bright passive matrix displays can ...
Reverse Engineering Quantum Field Theory
Robert Oeckl
2012-10-02T23:59:59.000Z
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Kwak, Seung Ki
2012-01-01T23:59:59.000Z
The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time ...
Scalar Field Theory on Supermanifolds
Mir Hameeda
2012-05-21T23:59:59.000Z
In this paper we will analyse a scalar field theory on a spacetime with noncommutative and non-anticommutative coordinates. This will be done using supermanifold formalism. We will also analyse its quantization in path integral formalism.
Double field theory at order ??
Hohm, Olaf
We investigate ?? corrections of bosonic strings in the framework of double field theory. The previously introduced “doubled ??-geometry” gives ??-deformed gauge transformations arising in the Green-Schwarz anomaly ...
Field ionization from carbon nanofibers
Adeoti, Bosun J
2008-01-01T23:59:59.000Z
The Micro Gas Analyzer project aims to develop power-efficient, high resolution, high sensitivity, portable and real-time gas sensors. We developed a field ionizer array based on gated CNTs. Arrays of CNTs are used because ...
Quantum Field Theory of Fluids
Ben Gripaios; Dave Sutherland
2015-04-23T23:59:59.000Z
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.
Electric fields and quantum wormholes
Dalit Engelhardt; Ben Freivogel; Nabil Iqbal
2015-05-24T23:59:59.000Z
Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole". We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a non-perturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.
Electrochemical formation of field emitters
Bernhardt, A.F.
1999-03-16T23:59:59.000Z
Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.
Paramagnetic resonance at low fields
Becker, Stewart
1954-01-01T23:59:59.000Z
field dependence. DPH and solutions of DPH in benzene were used for this part of the investigation.. II. THEORY The theory of paramagnetic resonance is based on the interactions of dipoles in the form of spinning electrons. These dipoles interact... with each other, with externally applied magnetic fields, and with nu? clear spins. Fig. II-l shows in essence the apparatus for observing electron resonance in paramagnetic substances. All detecting equipment has been omitted for simplicity. Two...
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25T23:59:59.000Z
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Finite Temperature Field Theory Joe Schindler 2015
California at Santa Cruz, University of
energy spectrum. #12;Field Thermodynamics Example For a free boson field at thermal equilibrium, calculate energy spectrum. #12;Field Thermodynamics Example For a free boson field at thermal equilibriumFinite Temperature Field Theory Joe Schindler 2015 #12;Part 1: Basic Finite Temp Methods #12
Physical fields and Clifford algebras II. Neutrino field
Vadim V. Varlamov
1998-02-24T23:59:59.000Z
The neutrino field is considered in the framework of a complex Clifford algebra $\\C_3\\cong\\C_2\\oplus\\stackrel{\\ast}{\\C}_2$. The factor-algebras ${}^{\\epsilon}\\C_2$ and ${}^{\\epsilon}\\stackrel{\\ast}{\\C}_2$, which are obtained by means of homomorphic mappings $\\C_3\\to\\C_2$ and $\\C_3\\to\\stackrel{\\ast}{\\C}_2$, are identified with the neutrino and antineutrino fields, respectively. In this framework we have natural explanation for absence of right-handed neutrino and left-handed antineutrino.
Noncommutative field gas driven inflation
Luciano Barosi; Francisco A. Brito; Amilcar R. Queiroz
2008-03-14T23:59:59.000Z
We investigate early time inflationary scenarios in an Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories was recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. As key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that besides the noncommutative parameter $\\theta$ shows up a further parameter $\\sigma$. This parameter $\\sigma$ controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state $p=\\omega(\\sigma,\\theta;\\beta)\\rho$ for the noncommutative bosonic gas relating pressure $p$ and energy density $\\rho$, in the limit of high temperature. We analyse possible behaviours for this gas parameters $\\sigma$, $\\theta$ and $\\beta$, so that $-1\\leq\\omega<-1/3$, which is the region where the Universe enters an accelerated phase.
Noncommutative field gas driven inflation
Barosi, Luciano; Brito, Francisco A [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Queiroz, Amilcar R, E-mail: lbarosi@ufcg.edu.br, E-mail: fabrito@df.ufcg.edu.br, E-mail: amilcarq@gmail.com [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, Caixa Postal 04667, Brasilia, DF (Brazil)
2008-04-15T23:59:59.000Z
We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter {theta}, shows up a further parameter {sigma}. This parameter {sigma} controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = {omega}({sigma},{theta};{beta}){rho} for the noncommutative bosonic gas relating pressure p and energy density {rho}, in the limit of high temperature. We analyse possible behaviours for these gas parameters {sigma}, {theta} and {beta}, so that -1{<=}{omega}<-1/3, which is the region where the Universe enters an accelerated phase.
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Coby Mods 002, 006, 020, 029,NOVEMBER/DECEMBERM4395722/%2A4/%2A en5/%2A2/%2A
David J. Gross; Washington Taylor
2001-06-04T23:59:59.000Z
We describe projection operators in the matter sector of Witten's cubic string field theory using modes on the right and left halves of the string. These projection operators represent a step towards an analytic solution of the equations of motion of the full string field theory, and can be used to construct Dp-brane solutions of the string field theory when the BRST operator Q is taken to be pure ghost, as suggested in the recent conjecture by Rastelli, Sen and Zwiebach. We show that a family of solutions related to the sliver state are rank one projection operators on the appropriate space of half-string functionals, and we construct higher rank projection operators corresponding to configurations of multiple D-branes.
Scully field - Marion County, Kansas
Salgat, B.
1983-08-01T23:59:59.000Z
The Scully field is a multipay new-field discovery located in the southern end of Salina basin, Marion County, Kansas. The Scully field was discovered using a combination of satellite imagery and subsurface control. The overall trapping mechanism at the Scully field is anticlinal closure. Infield drilling has demonstrated, however, that significant stratigraphic variations do exist within the productive area. The Simpson sands have been subdivided in five separate units which range from 4 to 12 ft (1 to 4 m) in thickness. Three of these are of economic importance in the field. In general, the sands with the most economic potential are distributed within relative Ordovician paleolows. The Viola has four main lithologic divisions. The uppermost of these is a relatively thin dolomite cap which ranges from 2 to 15 ft (1 to 5 m). This upper dolomite is the primary Viola pay zone. The Mississippian section is eroded deeply over the Scully structure and demonstrates about 70 ft (20 m) of thinning. The potential pay interval is chert which has 25 to 30% porosity based on log analysis. The trapping mechanism is a combination of erosional truncation and structural closure. In addition to the structural information obtained from satellite imagery, R.J. Walker Oil Co., Inc., evaluated the hydrocarbon potential of T18S, R1E, Marion County, Kansas, which contains the Scully field, using remote sensing technology developed by Earth Reference Systems of Long Beach, California. The technology involves direct detection of hydrocarbons in place, using satellite data, nonlinear mathematics, and the fundamental principles of molecular structure and electromagnetic wave propagation.
Inflating with large effective fields
Burgess, C.P. [PH-TH Division, CERN, CH-1211, Genève 23 (Switzerland); Cicoli, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna (Italy); Quevedo, F. [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Williams, M., E-mail: cburgess@perimeterinstitute.ca, E-mail: mcicoli@ictp.it, E-mail: f.quevedo@damtp.cam.ac.uk, E-mail: mwilliams@perimeterinsititute.ca [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton ON (Canada)
2014-11-01T23:59:59.000Z
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ? ?{sup 2}) and exponential potentials, V(?) = ?{sub k}V{sub x}e{sup ?k?/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |?| || ? and so predict r ? (8/3)(1-n{sub s}); consequently n{sub s} ? 0.96 gives r ? 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Variational methods for field theories
Ben-Menahem, S.
1986-09-01T23:59:59.000Z
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
RELATIVISTIC QUANTUM FIELD THEORY OF A HYPERNUCLEI
Boguta, J.
2013-01-01T23:59:59.000Z
0 Nuclei in Relativistic Field Theory of Nuclear Matter, LBLRelativistic Quantum Field Theory of Finite Nuclei, LBL prein a Relativistic Mean-Field Theory, Stanford preprint F.E.
CLASSICAL FIELD THEORY WITH Z (3) SYMMETRY
Ruck, H.M.
2010-01-01T23:59:59.000Z
and H.M. Ruck, Quantum field theory Potts model, J. Math.in cyclic symmetry field theories, Nucl. Phys. B167 M.J.waves in nonlinear field theories, Phys. Rev. Lett. 32. R.
"Cold Venal Advocate": Henry Fielding's lawyers
Lee, Joshua R
2013-02-22T23:59:59.000Z
Henry Fielding wrote frequently and harshly about lawyers. While many commentators have noted Fielding's criticism of lawyers and studied Fielding's concern with legal institutions generally, none have yet undertaken a ...
Field Sampling | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, NewPage Edit with formField Mapping At The NeedlesEt|Field
Field Techniques | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, NewPage Edit with formField Mapping At TheField Techniques
Dynamics of generalized tachyon field
Rong-Jia Yang; Jingzhao Qi
2012-08-06T23:59:59.000Z
We investigate the dynamics of generalized tachyon field in FRW spacetime. We obtain the autonomous dynamical system for the general case. Because the general autonomous dynamical system cannot be solved analytically, we discuss two cases in detail: $\\beta=1$ and $\\beta=2$. We find the critical points and study their stability. At these critical points, we also consider the stability of the generalized tachyon field, which is as important as the stability of critical points. The possible final states of the universe are discussed.
Negative Energies and Field Theory
Gerald E. Marsh
2008-11-20T23:59:59.000Z
The assumption that the vacuum is the minimum energy state, invariant under unitary transformations, is fundamental to quantum field theory. However, the assertion that the conservation of charge implies that the equal time commutator of the charge density and its time derivative vanish for two spatially separated points is inconsistent with the requirement that the vacuum be the lowest energy state. Yet, for quantum field theory to be gauge invariant, this commutator must vanish. This essay explores how this conundrum is resolved in quantum electrodynamics.
Phenomenology of Noncommutative Field Theories
Christopher D. Carone
2004-09-29T23:59:59.000Z
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.
Renormalization and quantum field theory
R. E. Borcherds
2011-03-09T23:59:59.000Z
The aim of this paper is to describe how to use regularization and renormalization to construct a perturbative quantum field theory from a Lagrangian. We first define renormalizations and Feynman measures, and show that although there need not exist a canonical Feynman measure, there is a canonical orbit of Feynman measures under renormalization. We then construct a perturbative quantum field theory from a Lagrangian and a Feynman measure, and show that it satisfies perturbative analogues of the Wightman axioms, extended to allow time-ordered composite operators over curved spacetimes.
Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)
2008-01-15T23:59:59.000Z
A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.
C. S. Lam
1994-06-24T23:59:59.000Z
A low energy string theory should reduce to an ordinary quantum field theory, but in reality the structures of the two are so different as to make the equivalence obscure. The string formalism is more symmetrical between the spacetime and the internal degrees of freedom, thus resulting in considerable simplification in practical calculations and novel insights in theoretical understandings. We review here how tree or multiloop field-theoretical diagrams can be organized in a string-like manner to take advantage of this computational and conceptual simplicity.
Field's Point Wastewater Treatment Facility (Narragansett Bay...
Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...
Livermore Field Office | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Livermore Field Office Livermore Field Office...
Nevada Field Office | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Nevada Field Office Nevada Field Office FY15 Semi Annual Report FY14 Year End...
Sandia Field Office | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Sandia Field Office Sandia Field Office FY15...
A new magnetic field integral measurement system
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
measurements. b. Second field integral (horizontal and vertical) measurements. c. Multipole components of first field integral measurements. 2. Translation Coil a. Multipole...
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01T23:59:59.000Z
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Quantum Field Theory Mark Srednicki
Akhmedov, Azer
The Spin-Statistics Theorem (3) 45 5 The LSZ Reduction Formula (3) 49 6 Path Integrals in Quantum Mechanics Quantization of Spinor Fields II (38) 246 40 Parity, Time Reversal, and Charge Conjugation (23, 39) 254 #12, 59) 369 #12;6 63 The Vertex Function in Spinor Electrodynamics (62) 378 64 The Magnetic Moment
Covariant Geometric Prequantization of Fields
Kanatchikov, I V
2002-01-01T23:59:59.000Z
A geometric prequantization formula for the Poisson-Gerstenhaber bracket on forms found within the DeDonder-Weyl Hamiltonian formalism earlier is presented. The related aspects of covariant geometric quantization of field theories are sketched. In particular, the importance of the framework of Clifford and spinor bundles and superconnections in this context is underlined.
Covariant Geometric Prequantization of Fields
I. V. Kanatchikov
2001-01-04T23:59:59.000Z
A geometric prequantization formula for the Poisson-Gerstenhaber bracket of forms found within the DeDonder-Weyl Hamiltonian formalism earlier is presented. The related aspects of covariant geometric quantization of field theories are sketched. In particular, the importance of the framework of Clifford and spinor bundles and superconnections in this context is underlined.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Calculator simplifies field production forecasting
Bixler, B.
1982-05-01T23:59:59.000Z
A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.
Electric field divertor plasma pump
Schaffer, Michael J. (San Diego, CA)
1994-01-01T23:59:59.000Z
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Noncommutative Quantum Scalar Field Cosmology
Diaz Barron, L. R.; Lopez-Dominguez, J. C.; Sabido, M. [Departamento de Fisica, DCI-Campus Leon, Universidad de Guanajuato, A.P. E-143, C.P. 37150, Guanajuato (Mexico); Yee, C. [Departamento de Matematicas, Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada, Baja California (Mexico)
2010-07-12T23:59:59.000Z
In this work we study noncommutative Friedmann-Robertson-Walker (FRW) cosmology coupled to a scalar field endowed with an exponential potential. The quantum scenario is analyzed in the Bohmian formalism of quantum trajectories to investigate the effects of noncommutativity in the evolution of the universe.
Propagators for Noncommutative Field Theories
R. Gurau; V. Rivasseau; F. Vignes-Tourneret
2006-02-06T23:59:59.000Z
In this paper we provide exact expressions for propagators of noncommutative Bosonic or Fermionic field theories after adding terms of the Grosse-Wulkenhaar type in order to ensure Langmann-Szabo covariance. We emphasize the new Fermionic case and we give in particular all necessary bounds for the multiscale analysis and renormalization of the noncommutative Gross-Neveu model.
Field Internship Claire P. Curtis
Young, Paul Thomas
POLI 402 Field Internship Claire P. Curtis Office: 114 Wentworth, #206 Office Hours: M, 9-11, W 12-2 Phone: 953-6510 e-mail: curtisc@cofc.edu This course provides an opportunity to do an internship in Charleston, to interact with other political science students also doing internships and to ground
PHOTOCHEMISTRY IN THE MICROWAVE FIELD
Cirkva, Vladimir
distinctive kinds of electromagnetic radiation, microwave (MW) and ultraviolet/visible: energy of MW radiation. EDLs Hg-EDLs: I2- and P-EDLs S-EDL vs. solar radiation flux Literature: 1. P. Klán V. Církva, Microwave in the MW field. · No evidence for nonthermal microwave effects was observed. Outlook · MW
FIELD RELIABILITY OF ELECTRONIC SYSTEMS
: ELECTRONIC EQUIPMENT; FAILURES; RELIABILITY; RISK ANALYSIS; SYSTEM ANALYSIS UDC: 621.38.004.64 ISBN 87I Ww i 1 i FIELD RELIABILITY OF ELECTRONIC SYSTEMS wcwotoias R I S 0 - M - 2 4 1 8 An analytical study of in-the fiald axparlanca of electronics reliability Tag© Elm Rise National Laboratory, DK-4000
Quantum Field Theory in Graphene
I. V. Fialkovsky; D. V. Vassilevich
2011-11-18T23:59:59.000Z
This is a short non-technical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Scalar field potentials for cosmology
Victor H. Cardenas; Sergio del Campo
2004-01-05T23:59:59.000Z
We discuss different aspects of modern cosmology through a scalar field potential construction method. We discuss the case of negative potential cosmologies and its relation with oscillatory cosmic evolution, models with a explicit interaction between dark energy and dark matter which address the coincidence problem and also the case of non-zero curvature space.
San Martino Archaeological Field School
Cantlon, Jessica F.
San Martino Archaeological Field School Torano di Borgorose, Italy The San Martino Archaeological at the San Martino site as well as through lab work, assisting in geophysical studies, lectures, readings, and applications from prospective participants at other universities are welcome. #12;The San Martino Site The San
Mellor-Crummey, John
Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior Kaushik Mitra and Ashok Veeraraghavan ECE, Rice University Houston, Tx 77005 Kaushik.Mitra@rice.edu, vashok@rice.edu Abstract With the recent availability of commercial light field
Junction-based field emission structure for field emission display
Dinh, Long N. (Concord, CA); Balooch, Mehdi (Berkeley, CA); McLean, II, William (Oakland, CA); Schildbach, Marcus A. (Livermore, CA)
2002-01-01T23:59:59.000Z
A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.
Soil Sample Questionnaire --Field Crops Sample No. Field Identification Field Size acres
Norton, Jay B.
. Subsoil: (if known) sand gravel clay hardpan lime solid rock 7. Water penetration: rapid moderate slow soil questionnaire on the back of this sheet. Have soil tested at least once every rotation. 2. Sample of the hole and put it in a clean container. Repeat this procedure at 10 or 12 locations in the field. Mix
The spinor field theory of the photon
Ruo Peng Wang
2011-09-18T23:59:59.000Z
I introduce a spinor field theory for the photon. The three-dimensional vector electromagnetic field and the four-dimensional vector potential are components of this spinor photon field. A spinor equation for the photon field is derived from Maxwell's equations,the relations between the electromagnetic field and the four-dimensional vector potential, and the Lorentz gauge condition. The covariant quantization of free photon field is done, and only transverse photons are obtained. The vacuum energy divergence does not occur in this theory. A covariant "positive frequency" condition is introduced for separating the photon field from its complex conjugate in the presence of the electric current and charge.
Apparatuses and methods for generating electric fields
Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L
2013-08-06T23:59:59.000Z
Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.
David J. Gross; Washington Taylor
2001-06-27T23:59:59.000Z
We describe the ghost sector of cubic string field theory in terms of degrees of freedom on the two halves of a split string. In particular, we represent a class of pure ghost BRST operators as operators on the space of half-string functionals. These BRST operators were postulated by Rastelli, Sen, and Zwiebach to give a description of cubic string field theory in the closed string vacuum arising from condensation of a D25-brane in the original tachyonic theory. We find a class of solutions for the ghost equations of motion using the pure ghost BRST operators. We find a vanishing action for these solutions, and discuss possible interpretations of this result. The form of the solutions we find in the pure ghost theory suggests an analogous class of solutions in the original theory on the D25-brane with BRST operator Q_B coupling the matter and ghost sectors.
Diffeomorphisms in group field theories
Baratin, Aristide [Triangle de la Physique, CPHT Ecole Polytechnique, IPhT Saclay, LPT Orsay and Laboratoire de Physique Theorique, CNRS UMR 8627, Universite Paris XI, F-91405 Orsay Cedex (France); Girelli, Florian [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Oriti, Daniele [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, 14467 Golm (Germany)
2011-05-15T23:59:59.000Z
We study the issue of diffeomorphism symmetry in group field theories (GFT), using the noncommutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105, 221302 (2010).]. In the colored Boulatov model for 3d gravity, we identify a field (quantum) symmetry which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical quantum gravity, and the topological (coarse-graining) identities for the 6j symbols. We also show how, for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT models for higher-dimensional BF theories and discuss various insights that they provide on the GFT formalism itself.
ARM - Historical Field Campaign Statistics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTechDatastreamsmplDatastreamsxsacrspeccmaskxpol7, 2013 [Facility News, FeaturePlainsGuestField Campaign Statistics 2015
Quantum fields with classical perturbations
Derezi?ski, Jan, E-mail: Jan.Derezinski@fuw.edu.pl [Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoza 74, 00-682 Warszawa (Poland)
2014-07-15T23:59:59.000Z
The main purpose of these notes is a review of various models of Quantum Field Theory (QFT) involving quadratic Lagrangians. We discuss scalar and vector bosons, spin 1/2 fermions, both neutral and charged. Beside free theories, we study their interactions with classical perturbations, called, depending on the context, an external linear source, mass-like term, current or electromagnetic potential. The notes may serve as a first introduction to QFT.
Gamma radiation field intensity meter
Thacker, L.H.
1994-08-16T23:59:59.000Z
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, Louis H. (Knoxville, TN)
1995-01-01T23:59:59.000Z
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, L.H.
1995-10-17T23:59:59.000Z
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, Louis H. (Knoxville, TN)
1994-01-01T23:59:59.000Z
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Two field matter bounce cosmology
Cai, Yi-Fu; McDonough, Evan; Duplessis, Francis; Brandenberger, Robert H., E-mail: yifucai@physics.mcgill.ca, E-mail: evanmc@physics.mcgill.ca, E-mail: francis.duplessis@mail.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca [Department of Physics, McGill University, Montréal, QC H3A 2T8 (Canada)
2013-10-01T23:59:59.000Z
We re-examine the non-singular Matter Bounce scenario first developed in [20], which starts with a matter-dominated period of contraction and transitions into an Ekpyrotic phase of contraction. We consider both matter fields, the first of which plays the role of regular matter, and the second of which is responsible for the non-singular bounce. Since the dominant matter field is massive, the induced curvature fluctuations are initially not scale-invariant, whereas the fluctuations of the second scalar field (which are initially entropy fluctuations) are scale-invariant. We study the transfer of the initial entropy perturbations into curvature fluctuations in the matter-dominated phase of contraction and show that the latter become nearly scale invariant on large scales but are blue tilted on small scales. We study the evolution of both curvature and entropy fluctuations through the bounce, and show that both have a scale-invariant spectrum which is blue-tilted on small scales. However, we find that the entropy fluctuations have an amplitude that is much smaller than that of the curvature perturbations, due to gravitational amplification of curvature perturbations during the bounce phase.
Encoding field theories into gravities
Aoki, Sinya; Onogi, Tetsuya
2015-01-01T23:59:59.000Z
We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...
ORDER NO. 3413: Jordan Cove LNG | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma | Department ofEnergy 9 LehmanDepartment of EnergyOAHUensure that theORAU South Campus|57:13:
Jordan-Green Growth Planning | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew,IndependentCounty, Oregon: EnergyJohnston, Iowa: EnergyJonesJonestown,
Kinarot Jordan Valley Technological Incubator | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew,IndependentCounty,Kent City, Michigan:Kilawatt Partners JumpKimball
Analysis of Dynamical Recognizers Alan D. Blair & Jordan B. Pollack
Pollack, Jordan B.
examples. The resulting networks often displayed complex limit dynamics which were fractal in nature (Kolen
Oil Prices, External Income, and Growth: Lessons from Jordan
Mohaddes, Kamiar; Raissi, Mehdi
2011-12-08T23:59:59.000Z
This paper extends the long-run growth model of Esfahani et al. (2009) to a labour exporting country that receives large inflows of external income - the sum of remittances, FDI and general government transfers - from major oil exporting economies...
Global Nuclear Energy Partnership Members Convene in Jordan For...
Office of Environmental Management (EM)
United Kingdom and United States, as well as nine observer nations, Argentina, Germany, Belgium, Egypt, Mexico, Netherlands, Slovak Republic, South Africa, and Spain and...
Containing the opposition : selective representation in Jordan and Turkey
Wakeman, Raffaela Lisette
2009-01-01T23:59:59.000Z
How does elite manipulation of election mechanisms affect the representation of political regime opponents? While the spread of elections has reached all the continents, the number of actual democracies has not increased ...
1 3-Graded Lie algebras with Jordan finiteness conditions
@mat.ucm.es and MIGUEL GO'MEZ LOZANO 1 Departamento de 'Algebra, Geometr'ia y Topolog'ia, Universidad de M
MICHAEL I. JORDAN Department of Electrical Engineering and Computer Science
California at Irvine, University of
, 2008. Fellow, American Statistical Association (ASA), 2007. #12;Fellow, American Association, International Statistical Institute (ISI), 2012. Member, American Academy of Arts and Sciences (AAAS), 2011 (IEEE), 2005. Fellow, American Association for Artificial Intelligence (AAAI), 2002. MIT Class of 1947
Global Nuclear Energy Partnership Members Convene in Jordan For Second
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 ofSubscribe toDepartmentDraftRSS August 25, 2015 Geothermal EnergyDepartmentGlenn
Jordan-Clean Technology Fund (CTF) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm Jump to:Indianapolis,OpenJamestown,
Energy Department Authorizes Jordan Cove to Export Liquefied Natural Gas |
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362Transmission:portion of the Raver07-1001DepartmentAmerica's WaterDepartmentFuels | Department
Idempotents and Peirce Gradings of Jordan Algebras1
-01, and by the Plan de InvestigaciÂ´on del Principado de Asturias, FICYT IB05-017. Corresponding author. 1 #12
To: CCSF Directors From: Terry Jordan and Drew Harvell
Angenent, Lars T.
, even disciplinary or "narrow" topics need additional research: 1) alternative fracking technologies, we need: 1) clear distinction between the genuine uncertainties and risks of the fracking and water
Dan Krivitsky named Los Alamos Field Office Employee of the Year | National
National Nuclear Security Administration (NNSA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23Tribal EnergyCatalytic Co - PA 40AdministrationResources |ContainedJordan
Field Equations in the Complex Quaternion Spaces
Zi-Hua Weng
2015-04-06T23:59:59.000Z
The paper aims to adopt the complex quaternion and octonion to formulate the field equations for electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition to combine some physics contents of two fields, which were considered to be independent of each other in the past. J. C. Maxwell applied simultaneously the vector terminology and the quaternion analysis to depict the electromagnetic theory. This method edified the paper to introduce the quaternion and octonion spaces into the field theory, in order to describe the physical feature of electromagnetic and gravitational fields, while their coordinates are able to be the complex number. The octonion space can be separated into two subspaces, the quaternion space and the S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, field equations, and so forth, in the gravitational field. In the S-quaternion space, it is able to deduce the field potential, field strength, field source, and so forth, in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features; meanwhile the S-quaternion space is proper to depict the electromagnetic features.
Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC)
not significantly change the FRC's closed field structure. The FRC is an example of a self-organized plasma wherein field-line closure analysis. The study of field-line closure for FRC-like plasmas with transverse1 Maintaining the closed magnetic-field-line topology of a field-reversed configuration (FRC
California at Berkeley, University of
Quantitative estimates of magnetic field reconnection properties from electric and magnetic field there are positive electric field components tangential to the magnetopause and a magnetic field component normal to it. Because these three components are the smallest of the six electric and magnetic fields
Efficient Concomitant and Remanence Field Artifact Reduction in Ultra-Low-Field MRI Using a
Efficient Concomitant and Remanence Field Artifact Reduction in Ultra-Low-Field MRI Using: For ultra-low-field MRI, the spatial-encoding mag- netic fields generated by gradient coils can have strong to pre-polarize magnetization can improve the signal-to-noise ratio of ultra- low-field MRI. Yet
Field Mapping | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, NewPage Edit with formField Mapping At The NeedlesEt|
Freedom Field | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX Jump to:DasaValley Utility Comm Jump to:RuralField Jump to: navigation, search
Vector field theories in cosmology
A. Tartaglia; N. Radicella
2007-08-05T23:59:59.000Z
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (Cosmic Defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, whilst other vector theories use much more. The Newtonian limits are also compared. Finally we show that the CD theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Deviation differential equations. Jacobi fields
G. Sardanashvily
2013-04-02T23:59:59.000Z
Given a differential equation on a smooth fibre bundle Y, we consider its canonical vertical extension to that, called the deviation equation, on the vertical tangent bundle VY of Y. Its solutions are Jacobi fields treated in a very general setting. In particular, the deviation of Euler--Lagrange equations of a Lagrangian L on a fibre bundle Y are the Euler-Lagrange equations of the canonical vertical extension of L onto VY. Similarly, covariant Hamilton equations of a Hamiltonian form H are the Hamilton equations of the vertical extension VH of H onto VY.
ARM - AAF RACORO Field Campaign
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNEAugust 2013 Tue,2002TI10)2 PrintAMERICA'SCurrent :Data PlotsgovField
Field Controls | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoney Energy Events Jump to:MoreFederal CaveFernley, Nevada:FervenField
Field Offices | Department of Energy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6Environmental1 |MAgnEt for InvEstMEnt Fermilab's specializedSecurityField
Bootstrapping Fuzzy Scalar Field Theory
Christian Saemann
2015-04-13T23:59:59.000Z
We describe a new way of rewriting the partition function of scalar field theory on fuzzy complex projective spaces as a solvable multitrace matrix model. This model is given as a perturbative high-temperature expansion. At each order, we present an explicit analytic expression for most of the arising terms; the remaining terms are computed explicitly up to fourth order. The method presented here can be applied to any model of hermitian matrices. Our results confirm constraints previously derived for the multitrace matrix model by Polychronakos. A further implicit expectation about the shape of the multitrace terms is however shown not to be true.
Primordial Magnetic Fields in False Vacuum Inflation
A. C. Davis; K. Dimopoulos
1996-10-25T23:59:59.000Z
We show that, during false vacuum inflation, a primordial magnetic field can be created, sufficiently strong to seed the galactic dynamo and generate the observed galactic magnetic fields. Considering the inflaton dominated regime, our field is produced by the Higgs-field gradients, resulting from a grand unified phase transition. The evolution of the field is followed from its creation through to the epoch of structure formation, subject to the relevant constraints. We find that it is possible to create a magnetic field of sufficient magnitude, provided the phase transition occurs during the final 5 e-foldings of the inflationary period.
Pulse homodyne field disturbance sensor
McEwan, T.E.
1997-10-28T23:59:59.000Z
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.
Pulse homodyne field disturbance sensor
McEwan, Thomas E. (Livermore, CA)
1997-01-01T23:59:59.000Z
A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.
Plasma stability in a dipole magnetic field
Simakov, Andrei N., 1974-
2001-01-01T23:59:59.000Z
The MHD and kinetic stability of an axially symmetric plasma, confined by a poloidal magnetic field with closed lines, is considered. In such a system the stabilizing effects of plasma compression and magnetic field ...
Frozen ghosts in thermal gauge field theory
P. V. Landshoff; A. Rebhan
2009-03-10T23:59:59.000Z
We review an alternative formulation of gauge field theories at finite temperature where unphysical degrees of freedom of gauge fields and the Faddeev-Popov ghosts are kept at zero temperature.
10 Ways to "See" the Electric Field
Broader source: Energy.gov [DOE]
How can you demonstrate the electric field if it's invisible? This video shows you 10 activities and experiments that help to teach about the electric field using various apparatuses, such as a plasma ball or a Van de Graaff generator.
Development of optical field emitter arrays
Yang, Yujia, S.M. Massachusetts Institute of Technology
2013-01-01T23:59:59.000Z
Optical field emitters are electron emission sources actuated by incident light. Optically actuated field emitters may produce ultrafast pulses of electrons when excited by ultrafast optical pulses, thus making them of ...
A Review of Noncommutative Field Theories
Victor O. Rivelles
2011-01-27T23:59:59.000Z
We present a brief review of selected topics in noncommutative field theories ranging from its revival in string theory, its influence on quantum field theories, its possible experimental signatures and ending with some applications in gravity and emergent gravity.
Functional Integration for Quantum Field Theory
J. LaChapelle
2006-10-16T23:59:59.000Z
The functional integration scheme for path integrals advanced by Cartier and DeWitt-Morette is extended to the case of fields. The extended scheme is then applied to quantum field theory. Several aspects of the construction are discussed.
Matter Field, Dark Matter and Dark Energy
Masayasu Tsuge
2009-03-24T23:59:59.000Z
A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.
High field solenoids for muon cooling
Green, M.A.
2011-01-01T23:59:59.000Z
Field Solenoids for Muon Cooling M. A. Green a , Y. EyssaField Solenoids for Muon Cooling Â· M. A. Green a, Y. EyssaABSTRA CT The proposed cooling system for the muon collider
Coulomb interactions within Halo Effective Field Theory
Renato Higa
2007-11-30T23:59:59.000Z
I present preliminary results of effective field theory applied to nuclear cluster systems, where Coulomb interactions play a significant role.
Translational Invariance and Noncommutative Field Theories
Orfeu Bertolami
2004-02-02T23:59:59.000Z
Implications of noncommutative field theories with commutator of the coordinates of the form $[x^{\\mu},x^{\
Field-induced confined states in graphene
Moriyama, Satoshi, E-mail: MORIYAMA.Satoshi@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Morita, Yoshifumi [Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Watanabe, Eiichiro; Tsuya, Daiju [Nanotechnology Innovation Station, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)
2014-02-03T23:59:59.000Z
We report an approach to confine the carriers in single-layer graphene, which leads to quantum devices with field-induced quantum confinement. We demonstrated that the Coulomb-blockade effect evolves under a uniform magnetic field perpendicular to the graphene device. Our experimental results show that field-induced quantum dots are realized in graphene, and a quantum confinement-deconfinement transition is switched by the magnetic field.
Field Calibration Facilities for Environmental Measurement of...
Broader source: Energy.gov (indexed) [DOE]
the facilities. Field Calibration Facilities for Environmental Measurement of Radium, Thorium, and Potassium (October 2013) More Documents & Publications Calibration Model...
Direct-drive field actuator motors
Grahn, A.R.
1995-07-11T23:59:59.000Z
A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.
Irreducibility of the set of field operators in Noncommutative Quantum Field Theory
M. N. Mnatsakanova; Yu. S. Vernov
2012-09-02T23:59:59.000Z
Irreducibility of the set of quantum field operators has been proved in noncommutative quantum field theory in the general case when time does not commute with spatial variables.
DC-based magnetic field controller
Kotter, Dale K. (Shelley, ID); Rankin, Richard A. (Ammon, ID); Morgan, John P,. (Idaho Falls, ID)
1994-01-01T23:59:59.000Z
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
PALEOMAGNETISM Solar nebula magnetic fields recorded
Walsworth, Ronald L.
REPORTS PALEOMAGNETISM Solar nebula magnetic fields recorded in the Semarkona meteorite Roger R. Walsworth,6,7 Aaron T. Kuan9 Magnetic fields are proposed to have played a critical role in some of the most on the intensity of these fields. Here we show that dusty olivine-bearing chondrules from the Semarkona meteorite
NASA Cold Land Processes Field Experiment
NASA Cold Land Processes Field Experiment Overview and Preliminary Results NASA Cold Land Processes Field Experiment Overview and Preliminary Results NASA Cold Land ProcessesNASA Cold Land Processes Field properties using active and passive microwave remote sensing. NASA DC-8 Airborne Laboratory with AIRSAR
LABORATORY I ELECTRIC FIELDS AND FORCES
Minnesota, University of
LABORATORY I ELECTRIC FIELDS AND FORCES Lab I - 1 The most fundamental forces are characterized the invention of new applications. The problems in this laboratory are primarily designed to give you practice visualizing fields and using the field concept in solving problems. In this laboratory, you will first explore
Sphere Light Field Rendering Zigang Wang1
Sphere Light Field Rendering Zigang Wang1 and Zhengrong Liang1,2 Departments of Radiology1 and Computer Science2 , State University of New York, Stony Brook, NY 11794, USA ABSTRACT Light field algorithm is one of the most famous image-based rendering techniques. In this paper, an improved light field
Quantum Field Theory and Representation Theory
Woit, Peter
Quantum Field Theory and Representation Theory Peter Woit woit@math.columbia.edu Department of Mathematics Columbia University Quantum Field Theory and Representation Theory p.1 #12;Outline of the talk · Quantum Mechanics and Representation Theory: Some History Quantum Field Theory and Representation Theory
FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED
Bertini, Robert L.
FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM Final Report SPR 352 #12;#12;FIELD EVALUATION OF THE MYRTLE CREEK ADVANCED CURVE WARNING SYSTEM SPR 352 Final Report by Robert L's Catalog No. 5. Report Date June 2006 4. Title and Subtitle Field Evaluation of the Myrtle Creek Advanced
CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION
White, Stephen
Chapter 5 CORONAL MAGNETIC FIELD MEASUREMENTS THROUGH GYRORESONANCE EMISSION Stephen M. White This article reviews the use of gyroresonance emission at radio wavelengths to measure coronal magnetic fields. Keywords: Sun, solar corona, solar magnetic fields, solar radio emission Introduction Since the realization
Near-field single molecule spectroscopy
Xie, X.S.; Dunn, R.C.
1995-02-01T23:59:59.000Z
The high spatial resolution and sensitivity of near-field fluorescence microscopy allows one to study spectroscopic and dynamical properties of individual molecules at room temperature. Time-resolved experiments which probe the dynamical behavior of single molecules are discussed. Ground rules for applying near-field spectroscopy and the effect of the aluminum coated near-field probe on spectroscopic measurements are presented.
Superconnections and the Higgs Field
G. Roepstorff
1998-04-09T23:59:59.000Z
Within the mathematical framework of Quillen, one interprets the Higgs field as part of the superconnection on a superbundle. We propose to take as superbundle the exterior algebra obtained from a Hermitian bundle with structure group U(n). Spontaneous symmetry breaking appears as a consequence of a non-vanishing scalar curvature. The U(1) Higgs model reformulates the Ginzburg-Landau theory, while the U(2) model relates to the electroweak theory with the relation $g^2=3g4^2$ for the gauge coupling constants, the formula $\\sin^2\\theta=1/4$ for the Weinberg angle, and the ratio $ m_W^2 : m_Z^2 : m_H^2 = 3 : 4 : 12 $ for the masses (squared) of the W, Z, and Higgs boson (at tree level).
Superconnections and the Higgs Field
Roepstorff, G
1999-01-01T23:59:59.000Z
Within the mathematical framework of Quillen, one interprets the Higgs field as part of the superconnection on a superbundle. We propose to take as superbundle the exterior algebra obtained from a Hermitian bundle with structure group U(n). Spontaneous symmetry breaking appears as a consequence of a non-vanishing scalar curvature. The U(1) Higgs model reformulates the Ginzburg-Landau theory, while the U(2) model relates to the electro-weak theory with the relation $g^2=3g4^2$ for the gauge coupling constants, the formula $ m_W^2 : m_Z^2 : m_H^2 = 3 : 4 : 12 $ for the masses (squared) of the W, Z, and Higgs boson (at tree level).
Continuous profiling of magnetotelluric fields
Verdin, C.T.
1991-05-01T23:59:59.000Z
The magnetotelluric (MT) method of mapping ground electrical conductivity is traditionally based on measurement of the surface impedance at widely spaced stations to infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized least-squares inversion for 2- or 3-D geoelectric media. It is well known that small near-surface inhomogeneities can produce spatial discontinuities in the measured electric fields over a wide frequency range and may consequently bias the impedance on a very local scale. Inadequate station spacing effectively aliases the electric field measurements and results in distortions that cannot be removed in subsequent processing or modelling. In order to fully exploit the benefits of magnetotellurics in complex geological environments, closely spaced measurements must be used routinely. This thesis entertains an analysis of MT data taken along continuous profiles and is a first step that will allow more encompassing 2-D sampling techniques to become viable in the years to come. The developments presented here are to a large extent motivated by the physical insight gained from low-contrast solutions to the forward MT problem. These solutions describe the relationship between a perturbation in the electrical conductivity of the subsurface and the ensuing perturbation of the MT response as the output of a linear system. Albeit strictly accurate in a limited subset of practical exploration problems, the linearized solutions allow one to pursue a model independent study of the response characteristics of MT data. In fact, these solutions yield simple expressions for 1-,2-, and 3-D resistivity models which are here examined in progressive sequence.
A Naturally Renormalized Quantum Field Theory
S. Rouhani; M. V. Takook
2006-07-07T23:59:59.000Z
It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space together with consideration of quantum metric fluctuations, results in quantum field theory without any divergences.
Quadratic $?'$-Corrections to Heterotic Double Field Theory
Kanghoon Lee
2015-04-01T23:59:59.000Z
We investigate $\\alpha'$-corrections of heterotic double field theory up to quadratic order in the language of supersymmetric O(D,D+dim G) gauged double field theory. After introducing double-vielbein formalism with a parametrization which reproduces heterotic supergravity, we show that supersymmetry for heterotic double field theory up to leading order $\\alpha'$-correction is obtained from supersymmetric gauged double field theory. We discuss the necessary modifications of the symmetries defined in supersymmetric gauged double field theory. Further, we construct supersymmetric completion at quadratic order in $\\alpha'$.
Modified Ostrogradski formulation of field theory
M. Leclerc
2007-02-27T23:59:59.000Z
We present a method for the Hamiltonian formulation of field theories that are based on Lagrangians containing second derivatives. The new feature of our formalism is that all four partial derivatives of the field variables are initially considered as independent fields, in contrast to the conventional Ostrogradski method, where only the velocity is turned into an independent field variable. The consistency of the formalism is demonstrated by simple unconstrained and constrained second order scalar field theories. Its application to General Relativity is briefly outlined.
Invariants for Tendex and Vortex Fields
Kenneth A. Dennison; Thomas W. Baumgarte
2012-08-06T23:59:59.000Z
Tendex and vortex fields, defined by the eigenvectors and eigenvalues of the electric and magnetic parts of the Weyl curvature tensor, form the basis of a recently developed approach to visualizing spacetime curvature. In analogy to electric and magnetic fields, these fields are coordinate-dependent. However, in a further analogy, we can form invariants from the tendex and vortex fields that are invariant under coordinate transformations, just as certain combinations of the electric and magnetic fields are invariant under coordinate transformations. We derive these invariants, and provide a simple, analytical demonstration for non-spherically symmetric slices of a Schwarzschild spacetime.
Graphene Nanoribbon in Sharply Localized Magnetic Fields
Abdulaziz D. Alhaidari; Hocine Bahlouli; Abderrahim El Mouhafid; Ahmed Jellal
2013-03-20T23:59:59.000Z
We study the effect of a sharply localized magnetic field on the electron transport in a strip (ribbon) of graphene sheet, which allows to give results for the transmission and reflection probability through magnetic barriers. The magnetic field is taken as a single and double delta type localized functions, which are treated later as the zero width limit of gaussian fields. For both field configurations, we evaluate analytically and numerically their transmission and reflection coefficients. The possibility of spacial confinement due to the inhomogeneous field configuration is also investigated.
Eddy-current-induced multipole field calculations.
Sereno, N. S.; Kim, S. H.
2003-10-15T23:59:59.000Z
Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multipole fields that act on the beam. These fields must be taken into account when doing a lattice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextupole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given on how to generalize this derivation method to include eddy-current-induced multipole fields from higher multipole magnets (quadrupole, sextupole, etc.). Finally, transient effects are considered.
Exterior Differential Systems for Field Theories
Frank B. Estabrook
2015-02-24T23:59:59.000Z
Exterior Differential Systems (EDS) and Cartan forms, set in the state space of field variables taken together with four space-time variables, are formulated for classical gauge theories of Maxwell and SU(2) Yang-Mills fields minimally coupled to Dirac spinor multiplets. Cartan character tables are calculated, showing whether the EDS, and so the Euler-Lagrange partial differential equations, is well-posed. The first theory, with 22 dimensional state space (10 Maxwell field and potential components and 8 components of a Dirac field), anticipates QED. In the second, non-Abelian, case (30 Yang-Mills field components and 16 Dirac), only if three additional "ghost" fields are included (15 more scalar variables) is a well-posed EDS found. This classical formulation anticipates the need for introduction of Fadeev-Popov ghost fields in the quantum standard model.
Generation of the magnetic field in jets
V. Urpin
2006-05-22T23:59:59.000Z
We consider dynamo action under the combined influence of turbulence and large-scale shear in sheared jets. Shear can stretch turbulent magnetic field lines in such a way that even turbulent motions showing mirror symmetry become suitable for generation of a large-scale magnetic field. We derive the integral induction equation governing the behaviour of the mean field in jets. The main result is that sheared jets may generate a large-scale magnetic field if shear is sufficiently strong. The generated mean field is mainly concentrated in a magnetic sheath surrounding the central region of a jet, and it exhibits sign reversals in the direction of the jet axis. Typically, the magnetic field in a sheath is dominated by the component along the jet that can reach equipartition with the kinetic energy of particles, The field in the central region of jets has a more disordered structure.
Tensor gauge field localization in branes
Tahim, M. O. [Departamento de Fisica, Universidade Federal do Ceara, C.P. 6030, 60455-760 Fortaleza, Ceara (Brazil); Departamento de Ciencias da Natureza, Faculdade de Ciencias, Educacao e Letras do Sertao Central (FECLESC), Universidade Estadual do Ceara, 63900-000 Quixada, Ceara (Brazil); Cruz, W. T. [Departamento de Fisica, Universidade Federal do Ceara, C.P. 6030, 60455-760 Fortaleza, Ceara (Brazil); Centro Federal de Educacao Tecnologica do Ceara (CEFETCE), Unidade Descentralizada de Juazeiro do Norte, 63040-000 Juazeiro do Norte, Ceara (Brazil); Almeida, C. A. S. [Departamento de Fisica, Universidade Federal do Ceara, C.P. 6030, 60455-760 Fortaleza, Ceara (Brazil)
2009-04-15T23:59:59.000Z
In this work we study localization of a Kalb-Ramond tensorial gauge field on a membrane described by real scalar fields. The membrane is embedded in an AdS-type five-dimensional bulk space, which mimics a Randall-Sundrum scenario. First, we consider a membrane described by only a single real scalar field. In that scenario we find that there is no localized tensorial zero mode. When we take into account branes described by two real scalar fields with internal structures, we obtain again a nonlocalized zero mode for a Kalb-Ramond tensorial gauge field. After modifying our model of one single scalar field by coupling the dilaton to the Kalb-Ramond field, we find that this result is changed. Furthermore, we analyze Kaluza-Klein massive modes and resonance structures.
Far-field mapping of the longitudinal magnetic and electric optical fields C. Ecoffey, T. Grosjean
Boyer, Edmond
) become noticeable and light has to be seen as a 3D vectorial electromagnetic field. The enhancedFar-field mapping of the longitudinal magnetic and electric optical fields C. Ecoffey, T. Grosjean of the longitudinal magnetic and electric optical fields with a standard scanning microscope that involves a high
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. II. FIELD-PLASMA INTERACTION B. Fornberg,2
Fornberg, Bengt
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. II. FIELD-PLASMA INTERACTION N. Flyer,1 B. Fornberg In the first paper of this series, we treated the self-confinement of nonlinear force-free magnetic fields study of axisymmetric force-free magnetic fields in the unbounded space outside a unit sphere, presented
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS B. Fornberg,2
Fornberg, Bengt
MAGNETIC FIELD CONFINEMENT IN THE SOLAR CORONA. I. FORCE-FREE MAGNETIC FIELDS N. Flyer,1 B, plasma density and magnetic field. We present a hydromag- netic study of the self-confinement of magnetic Axisymmetric force-free magnetic fields external to a unit sphere are studied as solutions to boundary value
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)
2008-08-26T23:59:59.000Z
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Magnetic fields in Neutron Stars
Viganò, Daniele; Miralles, Juan A; Rea, Nanda
2015-01-01T23:59:59.000Z
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.
Graphene nanopore field effect transistors
Qiu, Wanzhi; Skafidas, Efstratios, E-mail: sskaf@unimelb.edu.au [Centre for Neural Engineering, The University of Melbourne, 203 Bouverie Street, Carlton, Victoria 3053 (Australia); Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010 (Australia)
2014-07-14T23:59:59.000Z
Graphene holds great promise for replacing conventional Si material in field effect transistors (FETs) due to its high carrier mobility. Previously proposed graphene FETs either suffer from low ON-state current resulting from constrained channel width or require complex fabrication processes for edge-defecting or doping. Here, we propose an alternative graphene FET structure created on intrinsic metallic armchair-edged graphene nanoribbons with uniform width, where the channel region is made semiconducting by drilling a pore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. The proposed GNP-FETs have high ON-state currents due to seamless atomic interface between the channel and electrodes and are able to be created with arbitrarily wide ribbons. In addition, the performance of GNP-FETs can be tuned by varying pore size and ribbon width. As a result, their performance and fabrication process are more predictable and controllable in comparison to schemes based on edge-defects and doping. Using first-principle transport calculations, we show that GNP-FETs can achieve competitive leakage current of ?70?pA, subthreshold swing of ?60?mV/decade, and significantly improved On/Off current ratios on the order of 10{sup 5} as compared with other forms of graphene FETs.
Development and applications of NMR (nuclear magnetic resonance) in low fields and zero field
Bielecki, A.
1987-05-01T23:59:59.000Z
This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab.
Electromagnetic field with constraints and Papapetrou equation
Z. Ya. Turakulov; A. T. Muminov
2006-01-12T23:59:59.000Z
It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.
Continuous Time Finite State Mean Field Games
Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt [Instituto Superior Tecnico, Center for Mathematical Analysis, Geometry, and Dynamical Systems, Departamento de Matematica (Portugal); Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br [UFRGS, Instituto de Matematica (Brazil)
2013-08-01T23:59:59.000Z
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.
Effective Hamiltonian Constraint from Group Field Theory
Etera R. Livine; Daniele Oriti; James P. Ryan
2011-04-28T23:59:59.000Z
Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.
Thermodynamics of Blue Phases In Electric Fields
O. Henrich; D. Marenduzzo; K. Stratford; M. E. Cates
2010-03-04T23:59:59.000Z
We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases in an electric field. We confirm the earlier prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by means of a semi-analytical approximation. In particular, our simulations show that the blue phase I -- blue phase II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.
Haag's theorem in noncommutative quantum field theory
Antipin, K. V. [Moscow State University, Faculty of Physics (Russian Federation)] [Moscow State University, Faculty of Physics (Russian Federation); Mnatsakanova, M. N., E-mail: mnatsak@theory.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Vernov, Yu. S. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)
2013-08-15T23:59:59.000Z
Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.
Colour superconductivity in a strong magnetic field
Efrain J. Ferrer; Vivian de la Incera; Cristina Manuel
2005-11-30T23:59:59.000Z
We explore the effects of an applied strong external magnetic field in a three flavour massless colour superconductor. The long-range component of the B field that penetrates the superconductor enhances some quark condensates, leading to a different condensation pattern. The external field also reduces the flavour symmetries in the system, and thus it changes drastically the corresponding low energy physics. Our considerations are relevant for the study of highly magnetized compact stars.
Haag's Theorem in Noncommutative Quantum Field Theory
K. V. Antipin; M. N. Mnatsakanova; Yu. S. Vernov
2012-02-05T23:59:59.000Z
Haag's theorem was extended to noncommutative quantum field theory in a general case when time does not commute with spatial variables. It was proven that if S-matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in another theory is equal to unity as well. In fact this result is valid in any SO(1,1) invariant quantum field theory, of which an important example is noncommutative quantum field theory.
Atomic Probes of Noncommutative Field Theory
Charles D. Lane
2002-01-07T23:59:59.000Z
We consider the role of Lorentz symmetry in noncommutative field theory. We find that a Lorentz-violating standard-model extension involving ordinary fields is general enough to include any realisitc noncommutative field theory as a subset. This leads to various theoretical consequences, as well as bounds from existing experiments at the level of (10 TeV)$^{-2}$ on the scale of the noncommutativity parameter.
Local Energy Velocity of Classical Fields
I. V. Drozdov; A. A. Stahlhofen
2007-04-19T23:59:59.000Z
It is proposed to apply a recently developed concept of local wave velocities to the dynamical field characteristics, especially for the canonical field energy density. It is shown that local energy velocities can be derived from the lagrangian directly. The local velocities of zero- and first- order for energy propagation has been obtained for special cases of scalar and vector fields. Some important special cases of these results are discussed.
Mathematical quantization of Hamiltonian field theories
A. V. Stoyanovsky
2015-02-04T23:59:59.000Z
We define the renormalized evolution operator of the Schr\\"odinger equation in the infinite dimensional Weyl-Moyal algebra during a time interval for a wide class of Hamiltonians depending on time. This leads to a mathematical definition of quantum field theory $S$-matrix and Green functions. We show that for renormalizable field theories, our theory yields the renormalized perturbation series of perturbative quantum field theory. All the results are based on the Feynman graph series technique.
Field Monitoring Protocol: Heat Pump Water Heaters
Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.
2013-02-01T23:59:59.000Z
This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.
Topics in low-dimensional field theory
Crescimanno, M.J.
1991-04-30T23:59:59.000Z
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Closed inflationary universe with tachyonic field
Leonardo Balart; Sergio del Campo; Ramon Herrera; Pedro Labrana
2007-05-22T23:59:59.000Z
In this article we study closed inflationary universe models by using a tachyonic field theory. We determine and characterize the existence of an universe with $\\Omega > 1$, and which describes a period of inflation. We find that considered models are less restrictive compared to the standard ones with a scalar field. We use recent astronomical observations to constraint the parameters appearing in the model. Obtained results are compared to those found in the standard scalar field inflationary universes.
Beyond the scalar Higgs, in lattice quantum field theory
Schroeder, Christopher Robert
2009-01-01T23:59:59.000Z
as an effective field theory . . . . . Higgs mass upperHiggs, in Lattice Quantum Field Theory by Christopher Robertin Lattice Quantum Field Theory A dissertation submitted in
Classroom HVAC: Improving ventilation and saving energy -- field study plan
Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.
2004-01-01T23:59:59.000Z
Improving Ventilation and Saving Energy (IVSE) Field StudyImproving Ventilation and Saving Energy (IVSE) Field StudyImproving Ventilation and Saving Energy (IVSE) Field Study
Technology Development and Field Trials of EGS Drilling Systems...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...
Characterization of Field-Aged Exhaust Gas Recirculation Cooler...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Field-Aged Exhaust Gas Recirculation Cooler Deposits Characterization of Field-Aged Exhaust Gas Recirculation Cooler Deposits Characterized field-aged exhaust gas recirculation...
Tank Manufacturing, Testing, Deployment and Field Performance...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank Safety, R&D, and Testing...
Condenser for illuminating a ring field
Sweatt, W.C.
1994-11-01T23:59:59.000Z
A series of segments of a parent aspheric mirror having one foci at a point source of radiation and the other foci at the radius of a ring field have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ring field camera about one of the beams and fall onto the ring field radius as a coincident image as an arc of the ring field. 5 figs.
Electric and magnetic fields program overview
NONE
1995-09-01T23:59:59.000Z
DOE`s EMF Program is presented. The possibility of biological effects from electromagnetic fields created by electricity is examined. Current research at many National Laboratories is reviewed.
Sensor for detecting changes in magnetic fields
Praeg, W.F.
1980-02-26T23:59:59.000Z
A sensor is described for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device that comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.
Introduction to Renormalization in Field Theory
Ling-Fong Li; Chongqing
2012-08-23T23:59:59.000Z
A simple introduction of renormalization in quantum field theory is discussed. Explanation of concepts is emphasized instead of the technical details.
Classical Theorems in Noncommutative Quantum Field Theory
M. Chaichian; M. Mnatsakanova; A. Tureanu; Yu. Vernov
2006-12-12T23:59:59.000Z
Classical results of the axiomatic quantum field theory - Reeh and Schlieder's theorems, irreducibility of the set of field operators and generalized Haag's theorem are proven in SO(1,1) invariant quantum field theory, of which an important example is noncommutative quantum field theory. In SO(1,3) invariant theory new consequences of generalized Haag's theorem are obtained. It has been proven that the equality of four-point Wightman functions in two theories leads to the equality of elastic scattering amplitudes and thus the total cross-sections in these theories.
Nuclear forces from chiral effective field theory
R. Machleidt
2007-04-05T23:59:59.000Z
In this lecture series, I present the recent progress in our understanding of nuclear forces in terms of chiral effective field theory.
Chiral field theory of $0^{-+}$ glueball
Bing an Li
2010-02-22T23:59:59.000Z
A chiral field theory of $0^{-+}$ glueball is presented. By adding a $0^{-+}$ glueball field to a successful Lagrangian of chiral field theory of pseudoscalar, vector, and axial-vector mesons, the Lagrangian of this theory is constructed. The couplings between the pseodoscalar glueball field and mesons are via U(1) anomaly revealed. Qualitative study of the physical processes of the $0^{-+}$ glueball of $m=1.405\\textrm{GeV}$ is presented. The theoretical predictions can be used to identify the $0^{-+}$ glueball.
Quantum chiral field theory of $0^{-+}$ glueball
Bing An Li
2011-08-23T23:59:59.000Z
A chiral field theory of $0^{-+}$ glueball is presented. The coupling between the quark operator and the $0^{-+}$ glueball field is revealed from the U(1) anomaly. The Lagrangian of this theory is constructed by adding a $0^{-+}$ glueball field to a successful Lagrangian of chiral field theory of pseudoscalar, vector, and axial-vector mesons. Quantitative study of the physical processes of the $0^{-+}$ glueball of $m=1.405\\textrm{GeV}$ is presented. The theoretical predictions can be used to identify the $0^{-+}$ glueball.
Monte Carlo Methods in Quantum Field Theory
I. Montvay
2007-05-30T23:59:59.000Z
In these lecture notes some applications of Monte Carlo integration methods in Quantum Field Theory - in particular in Quantum Chromodynamics - are introduced and discussed.
Magnetic Braiding and Parallel Electric Fields
A. L. Wilmot-Smith; G. Hornig; D. I. Pontin
2008-10-08T23:59:59.000Z
The braiding of the solar coronal magnetic field via photospheric motions - with subsequent relaxation and magnetic reconnection -- is one of the most widely debated ideas of solar physics. We readdress the theory in the light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field to an ideal force-free equilibrium; that equilibrium is found to be smooth, with only large- scale current structures. However, the equilibrium is shown to have a highly filamentary integrated parallel current structure with extremely short length- scales. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of a force- free field. Thus the inevitable consequence of the magnetic braiding process is shown to be a loss of equilibrium of the coronal field, probably via magnetic reconnection events.
Sensor for detecting changes in magnetic fields
Praeg, Walter F. (Palos Park, IL)
1981-01-01T23:59:59.000Z
A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.
Alabama's Hatter's Pond called a classic field
McCaslin, J.C.
1981-07-20T23:59:59.000Z
Delineation of the combination (structural-stratigraphic) hydrocarbon traps in southern Alabama's Hatter's Pond field demands a thorough understanding of the facies distribution, diagenesis, and structural relations of the area. The field's trapping mechanism is highly complex. In addition to the salt movement associated with normal faulting, the porosity distribution - and hence reservoir development - is facies-selective and is significantly altered by the field's diagenetic changes. Hatter's Pond is one of the most important fields in the Smackover and Norphlet producing areas. The Jurassic section of southwest Alabama probably holds most of that state's oil and gas.
Group field theories generating polyhedral complexes
Johannes Thürigen
2015-06-28T23:59:59.000Z
Group field theories are a generalization of matrix models which provide both a second quantized reformulation of loop quantum gravity as well as generating functions for spin foam models. While states in canonical loop quantum gravity, in the traditional continuum setting, are based on graphs with vertices of arbitrary valence, group field theories have been defined so far in a simplicial setting such that states have support only on graphs of fixed valency. This has led to the question whether group field theory can indeed cover the whole state space of loop quantum gravity. In this contribution based on [1] I present two new classes of group field theories which satisfy this objective: i) a straightforward, but rather formal generalization to multiple fields, one for each valency and ii) a simplicial group field theory which effectively covers the larger state space through a dual weighting, a technique common in matrix and tensor models. To this end I will further discuss in some detail the combinatorial structure of the complexes generated by the group field theory partition function. The new group field theories do not only strengthen the links between the mentioned quantum gravity approaches but, broadening the theory space of group field theories, they might also prove useful in the investigation of renormalizability.
Symmetries and Renormalization of Noncommutative Field Theory
Szabo, Richard J. [Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom); Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)
2007-06-19T23:59:59.000Z
An overview of recent developments in the renormalization and in the implementation of spacetime symmetries of noncommutative field theory is presented, and argued to be intimately related.
Supersymmetry and Gravity in Noncommutative Field Theories
Victor O. Rivelles
2003-05-14T23:59:59.000Z
We discuss the renormalization properties of noncommutative supersymmetric theories. We also discuss how the gauge field plays a role similar to gravity in noncommutative theories.
Noncommutative Cohomological Field Theory and GMS soliton
Tomomi Ishikawa; Shin-Ichiro Kuroki; Akifumi Sako
2001-09-15T23:59:59.000Z
We show that it is possible to construct a quantum field theory that is invariant under the translation of the noncommutative parameter $\\theta_{\\mu\
Pantex Field Office | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Field Office | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...
On Conformal Field Theory and Number Theory
Huang, An
2011-01-01T23:59:59.000Z
Frontiers in Number Theory, Physics, and Ge- ometry II. (Witten, Quantum Field Theory, Crassmannians, and AlgebraicJ. Polchinski, String Theory, Vol. 1, Cambridge Univ.
Loan Loss Reserves: Lessons from the Field
Broader source: Energy.gov [DOE]
This webinar, held on Sept. 20, 2010, provides in formation on loan loss reserve funds and lessons from the field on their use.
Logarithmic Opinion Pools for Conditional Random Fields
Smith, Andrew
2007-06-26T23:59:59.000Z
Since their recent introduction, conditional random fields (CRFs) have been successfully applied to a multitude of structured labelling tasks in many different domains. Examples include natural language processing ...
Communications Near-Field Fluorescence Microscopy of
** By Grace M. Credo and Steven K. Buratto* We use near-field scanning optical microscopy (NSOM) to probe. Buratto, G. M. Credo Department of Chemistry U
Magnetic field imaging with atomic Rb vapor
Eugeniy E. Mikhailov; I. Novikova; M. D. Havey; F. A. Narducci
2009-07-27T23:59:59.000Z
We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.
Anacleto, M.A.; Gomes, M.; Silva, A.J. da; Spehler, D. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Sao Paulo, SP (Brazil)
2005-05-15T23:59:59.000Z
We study a noncommutative nonrelativistic fermionic field theory in 2+1 dimensions coupled to the Chern-Simons field. We perform a perturbative analysis of the model and show that up to one loop the ultraviolet divergences are canceled and the infrared divergences are eliminated by the noncommutative Pauli term.
Localization of fremions in rotating electromagnetic fields
B. V. Gisin
2015-06-15T23:59:59.000Z
Parameters of localization are defined in the lab and rotating frame for solutions of the Dirac equation in the field of a traveling circularly polarized electromagnetic wave and constant magnetic field. The radius of localization is of the order of the electromagnetic wavelength and lesser.
D-branes and string field theory
Sigalov, Ilya
2006-01-01T23:59:59.000Z
In this thesis we study the D-brane physics in the context of Witten's cubic string field theory. We compute first few terms the low energy effective action for the non-abelian gauge field A, from Witten's action. We show ...
5. Wavelengths and periods of field motions
Finlay, Christopher
. Using a technique based on the Radon transform [2], we determined the amount of power propagating5. Wavelengths and periods of field motions 2D frequency-wavenumber (FK) power spectra were of the large scale magnetic field at the surface of the core. Here we deconstruct such a model (gufm1
M2-Branes and Background Fields
Neil Lambert; Paul Richmond
2009-08-20T23:59:59.000Z
We discuss the coupling of multiple M2-branes to the background 3-form and 6-form gauge fields of eleven-dimensional supergravity, including the coupling of the Fermions. In particular we show in detail how a natural generalization of the Myers flux-terms, along with the resulting curvature of the background metric, leads to mass terms in the effective field theory.
Classical field theory. Advanced mathematical formulation
G. Sardanashvily
2009-03-04T23:59:59.000Z
In contrast with QFT, classical field theory can be formulated in strict mathematical terms of fibre bundles, graded manifolds and jet manifolds. Second Noether theorems provide BRST extension of this classical field theory by means of ghosts and antifields for the purpose of its quantization.
Chiral effective field theory and nuclear forces
R. Machleidt; D. R. Entem
2011-05-15T23:59:59.000Z
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Axiomatic quantum field theory in curved spacetime
S. Hollands; R. M. Wald
2008-03-13T23:59:59.000Z
The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features--such as Poincare invariance and the existence of a preferred vacuum state--that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globally hyperbolic curved spacetimes, it is essential that the theory be formulated in an entirely local and covariant manner, without assuming the presence of a preferred state. We propose a new framework for quantum field theory, in which the existence of an Operator Product Expansion (OPE) is elevated to a fundamental status, and, in essence, all of the properties of the quantum field theory are determined by its OPE. We provide general axioms for the OPE coefficients of a quantum field theory. These include a local and covariance assumption (implying that the quantum field theory is locally and covariantly constructed from the spacetime metric), a microlocal spectrum condition, an "associativity" condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions of the spin-statistics theorem and the PCT theorem. Some potentially significant further implications of our new viewpoint on quantum field theory are discussed.
The Field Museum Education Department Presents
Patterson, Bruce D.
The Field Museum Education Department Presents Evolving Planet Educator Guide First Edition: Spring has created the mosaic of life on Earth. PART TWO Related Programs, Exhibitions, and Resources #12;________________________________________________________________________________________________________ The Field Museum · Educator Guide: Part 2 · Related Programs, Exhibitions, and Resources Page 2 Teacher
LABORATORY IV: ELECTRIC FIELD AND POTENTIAL
Minnesota, University of
LABORATORY IV: ELECTRIC FIELD AND POTENTIAL Lab IV - 1 Many forces in nature cannot be modeled of new devices. The problems in this laboratory are primarily designed to give you practice visualizing. In this laboratory, you will first explore electric fields by building different configurations of charged objects
LABORATORY IV ELECTRIC FIELDS AND FORCES
Minnesota, University of
Lab IV - 1 LABORATORY IV ELECTRIC FIELDS AND FORCES Action-at-a-distance forces (gravitational and inspires the invention of new devices. The problems in this laboratory are primarily designed to give you through an electric field. OBJECTIVES: After successfully completing this laboratory, you should be able
LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS
Minnesota, University of
Lab II - 1 LABORATORY II ELECTRIC FIELDS AND ELECTRIC POTENTIALS In this lab you will continue the concepts of field and potential are abstract and difficult to visualize, this laboratory uses a computer and electric potential at any point in space. OBJECTIVES After successfully completing this laboratory, you
FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP
FLORIDA STATE UNIVERSITY GEOLOGY FIELD CAMP IN NORTHERN NEW MEXICO May 9, through June 15, 2015 The Department of Earth, Ocean & Atmospheric Science, Geological Science at FSU offers a 6 semester-hour course in Field Geology (GLY4790). We have been teaching this highly successful course from a facility north
Fermionic fields in the pseudoparticle Marc Wagner
Fermionic fields in the pseudoparticle approach Marc Wagner Institut f¨ur Physik, Humboldt number of localized building blocks (instantons, merons, akyrons, calorons, dyons, ...). Marc Wagner). Marc Wagner, "Fermionic fields in the pseudoparticle approach", August 2, 2007 #12;Basic principle (1
RDS operations manualField implementation
Mullins, Dyche
for trainings and TA. #12;RDS operations manual IBBS Toolbox 227 Women's Health Monitoring Survey fieldRDS operations manualField implementation #12;RDS operations manual 226 IBBS Toolbox RDS operations manual The RDS operations manual is designed to guide project staff during the implementation of RDS
Noncommutative Field Theory and Lorentz Violation
Sean M. Carroll; Jeffrey A. Harvey; V. Alan Kostelecky; Charles D. Lane; Takemi Okamoto
2001-05-09T23:59:59.000Z
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)^{-2}.
Noncommutative Field Theory and Lorentz Violation
Carroll, Sean M.; Harvey, Jeffrey A.; Kostelecky, V. Alan; Lane, Charles D.; Okamoto, Takemi
2001-10-01T23:59:59.000Z
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV){sup -2} .
From operator algebras to superconformal field theory
Kawahigashi, Yasuyuki [Department of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914 (Japan)
2010-01-15T23:59:59.000Z
We survey operator algebraic approach to (super)conformal field theory. We discuss representation theory, classification results, full and boundary conformal field theories, relations to supervertex operator algebras and Moonshine, connections to subfactor theory of Jones, and certain aspects of noncommutative geometry of Connes.
Gravitational Field of Fractal Distribution of Particles
Vasily E. Tarasov
2006-04-24T23:59:59.000Z
In this paper we consider the gravitational field of fractal distribution of particles. To describe fractal distribution, we use the fractional integrals. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of the Gauss's law, we consider the simple examples of the fields of homogeneous fractal distribution. The examples of gravitational moments for fractal distribution are considered.
The Field Museum Education Department Presents
Patterson, Bruce D.
The Field Museum Education Department Presents African Biodiversity Grades 3-5 Educator Guide The Field Museum Education Department develops on-line Educator Guides to provide detailed information with that of Africa using a concept web, comparison chart, or Venn diagram. · What biomes are found in the United
Field Devices for Monitoring Soil Water Content
SR-IWM-2 Field Devices for Monitoring Soil Water Content by Rafael Muñoz-Carpena1 , Sanjay Shukla1 Water Content Table of Contents 1. Introduction 2. Field Methods for Soil Moisture Measurement 2 Devices for Monitoring Soil Water Content" by Rafael Muñoz-Carpena, Univ. of Florida, Bulletin 343
Symmetries in k-Symplectic Field Theories
Roman-Roy, Narciso [Departamento de Matematica Aplicada IV. Edificio C-3, Campus Norte UPC, C/Jordi Girona 1.08034 Barcelona (Spain); Salgado, Modesto; Vilarino, Silvia [Departamento de Xeometria e Topoloxia, Facultade de Matematicas, Universidade de Santiago de Compostela. 15782 Santiago de Compostela (Spain)
2008-06-25T23:59:59.000Z
k-symplectic geometry provides the simplest geometric framework for describing certain class of first-order classical field theories. Using this description we analyze different kinds of symmetries for the Hamiltonian and Lagrangian formalisms of these field theories, including the study of conservation laws associated to them and stating Noether's theorem.
Effective Field Theory for Top Quark Physics
Cen Zhang; Scott Willenbrock
2010-08-18T23:59:59.000Z
Physics beyond the standard model can affect top-quark physics indirectly. We describe the effective field theory approach to describing such physics, and contrast it with the vertex-function approach that has been pursued previously. We argue that the effective field theory approach has many fundamental advantages and is also simpler.
Identifying Infill Locations and Underperformer Wells in Mature Fields using
Mohaghegh, Shahab
field. Identify opportunities in mature fields: Sweet spots for infill drilling. Underperformer wellsIdentifying Infill Locations and Underperformer Wells in Mature Fields using Monthly Production wells rather than the entire field. #12;Introduction Objective Methodology Results Conclusion Objective
Field Emission Measurements from Niobium Electrodes
M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker
2011-03-01T23:59:59.000Z
Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.
Measuring Magnetic Fields in the Solar Atmosphere
de Wijn, A G
2012-01-01T23:59:59.000Z
Since the discovery by Hale in the early 1900s that sunspots harbor strong magnetic field, magnetism has become increasingly important in our understanding of processes on the Sun and in the Heliosphere. Many current and planned instruments are capable of diagnosing magnetic field in the solar atmosphere. Photospheric magnetometry is now well-established. However, many challenges remain. For instance, the diagnosis of magnetic field in the chromosphere and corona is difficult, and interpretation of measurements is harder still. As a result only very few measurements have been made so far, yet it is clear that if we are to understand the outer solar atmosphere we must study the magnetic field. I will review the history of solar magnetic field measurements, describe and discuss the three types of magnetometry, and close with an outlook on the future.
On the Bel radiative gravitational fields
Joan Josep Ferrando; Juan Antonio Sáez
2012-04-18T23:59:59.000Z
We analyze the concept of intrinsic radiative gravitational fields defined by Bel and we show that the three radiative types, N, III and II, correspond with the three following different physical situations: {\\it pure radiation}, {\\it asymptotic pure radiation} and {\\it generic} (non pure, non asymptotic pure) {\\it radiation}. We introduce the concept of {\\em observer at rest} with respect to the gravitational field and that of {\\em proper super-energy} of the gravitational field and we show that, for non radiative fields, the minimum value of the relative super-energy density is the proper super-energy density, which is acquired by the observers at rest with respect to the field. Several {\\it super-energy inequalities} are also examined.
Renormalization of Noncommutative Quantum Field Theories
Amilcar R. de Queiroz; Rahul Srivastava; Sachindeo Vaidya
2013-02-14T23:59:59.000Z
We report on a comprehensive analysis of the renormalization of noncommutative \\phi^4 scalar field theories on the Groenewold-Moyal (GM) plane. These scalar field theories are twisted Poincar\\'e invariant. Our main results are that these scalar field theories are renormalizable, free of UV/IR mixing, possess the same fixed points and \\beta-functions for the couplings as their commutative counterparts. We also argue that similar results hold true for any generic noncommutative field theory with polynomial interactions and involving only pure matter fields. A secondary aim of this work is to provide a comprehensive review of different approaches for the computation of the noncommutative S-matrix: noncommutative interaction picture and noncommutative LSZ formalism.
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)
1993-01-01T23:59:59.000Z
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.
1993-03-16T23:59:59.000Z
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
Relation between photospheric flow fields and the magnetic field distribution on the solar surface
Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.
1988-04-01T23:59:59.000Z
Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.
Terahertz radiation detection by field effect transistor in magnetic field S. Boubanga-Tombet,1,a
Levelut, Claire
Terahertz radiation detection by field effect transistor in magnetic field S. Boubanga-Tombet,1,a M; accepted 30 July 2009; published online 19 August 2009 We report on terahertz radiation detection with In
Neutron stars in the BPS Skyrme model: mean-field limit vs. full field theory
Adam, C; Sanchez-Guillen, J; Vazquez, R; Wereszczynski, A
2015-01-01T23:59:59.000Z
Using a solitonic model of nuclear matter, the BPS Skyrme model, we compare neutron stars obtained in the full field theory, where gravitational back reaction is completely taken into account, with calculations in a mean-field approximation using the Tolman-Oppenheimer-Volkoff approach. In the latter case, a mean-field-theory equation of state is derived from the original BPS field theory. We show that in the full field theory, where the energy density is non-constant even at equilibrium, there is no universal and coordinate independent equation of state of nuclear matter, in contrast to the mean-field approximation. We also study how neutron star properties are modified by going beyond mean field theory, and find that the differences between mean field theory and exact results can be considerable.
Polarization fields: dynamic light field display using multi-layer LCDs
Lanman, Douglas
We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of ...
Cosmological Models with Nonlinearity of Scalar Field Induced by Yang-Mills Field
V. K. Shchigolev; M. V. Shchigolev
2000-11-24T23:59:59.000Z
The exact solutions of Einstein - Yang - Mills and interacting with SO (3) - Yang-Mills field nonlinear scalar field equations in a class of spatially homogeneous cosmological Friedmann models are obtained.
Quadrature Rotating-Frame Gradient Fields for Ultra-Low Field Nuclear Magnetic Resonance and Imaging
Bouchard, Louis-Serge
2005-01-01T23:59:59.000Z
Frame Gradient Fields For Ultra-Low Field Nuclear Magneticslow, as in the limit of ultra-low ?elds. In the ?rst case,B. Slice selection in ultra-low ?elds We ?rst examine the
DOE/RMOTC/05.98001 Hydro-Balanced Stuffing Box Field Test Field...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
RMOTC05.98001 Hydro-Balanced Stuffing Box Field Test Field Test Project Report Date Published: May 28, 1999 Leo A. Giangiacomo, P.E. Rocky Mountain Oilfield Testing Center 907 N....
Integrating Nanomaterial Applications in the Field of Sustainable...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials Integrating Nanomaterial Applications in the Field of Sustainable Biomaterials Integrating...
Near-Field Based Communication and Electrical Systems
Azad, Umar
2013-01-01T23:59:59.000Z
on near-field communication system performance", IEEEcoupled near field communication system”, IEEE Internationaltransfer and inductive communication systems," Progress in
Twist Field as Three String Interaction Vertex in Light Cone String Field Theory
Isao Kishimoto; Sanefumi Moriyama; Shunsuke Teraguchi
2007-03-22T23:59:59.000Z
It has been suggested that matrix string theory and light-cone string field theory are closely related. In this paper, we investigate the relation between the twist field, which represents string interactions in matrix string theory, and the three-string interaction vertex in light-cone string field theory carefully. We find that the three-string interaction vertex can reproduce some of the most important OPEs satisfied by the twist field.
Washington at Seattle, University of
plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component rotating magnetic fields H. Y. Guo, A. L. Hoffman, and L. C. Steinhauer Redmond Plasma Physics Laboratory in field reversed configurations FRC . A major concern about this method has been the fear of opening up
The driven overdamped mean field model Non-eq. free energies for the mean field model
Dauxois, Thierry
The driven overdamped mean field model Non-eq. free energies for the mean field model Large deviations for turbulent flows Non-Equilibrium Free Energies for Particle Systems and Turbulent Flows F Treilles. F. Bouchet ENSL-CNRS Non-Equilibrium Free Energies #12;The driven overdamped mean field model Non
Excitation Fields in a Superconducting Global String
J. R. Morris
1995-09-28T23:59:59.000Z
A model of a straight superconducting global cosmic string is examined in a setting wherein the string supports a charge/current pulse described by a travelling wave along the string. Linearized field equations are obtained for fluctuations of the scalar and vector fields of the theory, and a set of approximate particular solutions are found for the case in which the linear charge density and the current of the string have equal magnitudes. Although the equations of motion seem to suggest that the scalar and vector excitation fields are massive inside the string core, the particular solutions show that they behave as effectively massless fields which propagate at the speed of light along the string along with the primary charge/current pulse. The effect of the mass parameter is to modulate the radial profile of the excitation fields. The vector excitation field generates radial and angular components for both the electric and magnetic fields, but the particular solutions do not describe the emission or absorption of electromagnetic radiation from the string.
Processing of materials for uniform field emission
Pam, Lawrence S. (Pleasanton, CA); Felter, Thomas E. (Livermore, CA); Talin, Alec (Livermore, CA); Ohlberg, Douglas (Mountain View, CA); Fox, Ciaran (Stanford, CA); Han, Sung (Pojoaque, NM)
1999-01-01T23:59:59.000Z
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12T23:59:59.000Z
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Computing nonlinear force free coronal magnetic fields
T. Wiegelmann; T. Neukirch
2008-01-21T23:59:59.000Z
Knowledge of the structure of the coronal magnetic field is important for our understanding of many solar activity phenomena, e.g. flares and CMEs. However, the direct measurement of coronal magnetic fields is not possible with present methods, and therefore the coronal field has to be extrapolated from photospheric measurements. Due to the low plasma beta the coronal magnetic field can usually be assumed to be approximately force free, with electric currents flowing along the magnetic field lines. There are both observational and theoretical reasons which suggest that at least prior to an eruption the coronal magnetic field is in a nonlinear force free state. Unfortunately the computation of nonlinear force free fields is way more difficult than potential or linear force free fields and analytic solutions are not generally available. We discuss several methods which have been proposed to compute nonlinear force free fields and focus particularly on an optimization method which has been suggested recently. We compare the numerical performance of a newly developed numerical code based on the optimization method with the performance of another code based on an MHD relaxation method if both codes are applied to the reconstruction of a semi-analytic nonlinear force-free solution. The optimization method has also been tested for cases where we add random noise to the perfect boundary conditions of the analytic solution, in this way mimicking the more realistic case where the boundary conditions are given by vector magnetogram data. We find that the convergence properties of the optimization method are affected by adding noise to the boundary data and we discuss possibilities to overcome this difficulty.
Non-Equilibrium Thermo Field Dynamics for Relativistic Complex Scalar and Dirac Fields
Yuichi Mizutani; Tomohiro Inagaki
2012-05-02T23:59:59.000Z
Relativistic quantum field theories for complex scalar and Dirac fields are investigated in non-equilibrium thermo field dynamics. The thermal vacuum is defined by the Bogoliubov transformed creation and annihilation operators. Two independent Bogoliubov parameters are introduced for a charged field. Its difference naturally induces the chemical potential. Time-dependent thermal Bogoliubov transformation generates the thermal counter terms. We fix the terms by the self-consistency renormalization condition. Evaluating the thermal self-energy under the self-consistency renormalization condition, we derive the quantum Boltzmann equations for the relativistic fields.
Multi-field inflation from holography
Garriga, Jaume; Urakawa, Yuko [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Skenderis, Kostas, E-mail: jaume.garriga@ub.edu, E-mail: K.Skenderis@soton.ac.uk, E-mail: urakawa.yuko@h.mbox.nagoya-u.ac.jp [STAG Research Centre and Mathematical Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)
2015-01-01T23:59:59.000Z
We initiate the study of multi-field inflation using holography. Bulk light scalar fields correspond to nearly marginal operators in the boundary theory and the dual quantum field theory is a deformation of a CFT by such operators. We compute the power spectra of adiabatic and entropy perturbations in a simple model and find that the adiabatic curvature perturbation is not conserved in the presence of entropy perturbations but becomes conserved when the entropy perturbations are set to zero or the model is effectively a single scalar model, in agreement with expectations from cosmological perturbation theory.
Neutron Interferometry constrains dark energy chameleon fields
Lemmel, H; Ivanov, A N; Jenke, T; Pignol, G; Pitschmann, M; Potocar, T; Wellenzohn, M; Zawisky, M; Abele, H
2015-01-01T23:59:59.000Z
We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.
Quantum Solution to Scalar Field Theory Models
Gordon Chalmers
2005-09-08T23:59:59.000Z
Amplitudes $A_n$ in $d$-dimensional scalar field theory are generated, to all orders in the coupling constant and at $n$-point. The amplitudes are expressed as a series in the mass $m$ and coupling $\\lambda$. The inputs are the classical scattering, and these generate, after the integrals are performed, the series expansion in the couplings $\\lambda_i$. The group theory of the scalar field theory leads to an additional permutation on the $L$ loop trace structures. Any scalar field theory, including those with higher dimension operators and in any dimension, are amenable.
Gravitational waves induced by spinor fields
Feng, Kaixi
2015-01-01T23:59:59.000Z
In realistic model-building, spinor fields with various masses are present. During inflation, spinor field may induce gravitational waves as a second order effect. In this paper, we calculate the contribution of single massive spinor field to the power spectrum of primordial gravitational wave by using retarded Green propagator. We find that the correction is scale-invariant and of order $H^4/M_P^4$ for arbitrary spinor mass $m_{\\psi}$. Additionally, we also observe that when $m_\\psi \\gtrsim H$, the dependence of correction on $m_\\psi/H$ is nontrivial.
Wide Area Wind Field Monitoring Status & Results
Alan Marchant; Jed Simmons
2011-09-30T23:59:59.000Z
Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.
Sensor devices comprising field-structured composites
Martin, James E. (Tijeras, NM); Hughes, Robert C. (Albuquerque, NM); Anderson, Robert A. (Albuquerque, NM)
2001-02-27T23:59:59.000Z
A new class of sensor devices comprising field-structured conducting composites comprising a textured distribution of conducting magnetic particles is disclosed. The conducting properties of such field-structured materials can be precisely controlled during fabrication so as to exhibit a large change in electrical conductivity when subject to any environmental influence which changes the relative volume fraction. Influences which can be so detected include stress, strain, shear, temperature change, humidity, magnetic field, electromagnetic radiation, and the presence or absence of certain chemicals. This behavior can be made the basis for a wide variety of sensor devices.
Noncommutative Quantization for Noncommutative Field Theory
Yasumi Abe
2006-07-06T23:59:59.000Z
We present a new procedure for quantizing field theory models on a noncommutative spacetime. The new quantization depends on the noncommutative parameter explicitly and reduces to the canonical quantization in the commutative limit. It is shown that a quantum field theory constructed by the new quantization yeilds exactly the same correlation functions as those of the commutative field theory, that is, the noncommutative effects disappear completely after quantization. This implies, for instance, that by using the new quantization, the noncommutativity can be incorporated in the process of quantization, rahter than in the action as conventionally done.
Noncommutative field theory from twisted Fock space
Bu, Jong-Geon; Kim, Hyeong-Chan; Lee, Youngone; Vac, Chang Hyon; Yee, Jae Hyung [Department of Physics, Yonsei University, Seoul (Korea, Republic of)
2006-06-15T23:59:59.000Z
We construct a quantum field theory in noncommutative space time by twisting the algebra of quantum operators (especially, creation and annihilation operators) of the corresponding quantum field theory in commutative space time. The twisted Fock space and S-matrix consistent with this algebra have been constructed. The resultant S-matrix is consistent with that of Filk [Tomas Filk, Phys. Lett. B 376, 53 (1996).]. We find from this formulation that the spin-statistics relation is not violated in the canonical noncommutative field theories.
Wavelet-Based Quantum Field Theory
Mikhail V. Altaisky
2007-11-11T23:59:59.000Z
The Euclidean quantum field theory for the fields $\\phi_{\\Delta x}(x)$, which depend on both the position $x$ and the resolution $\\Delta x$, constructed in SIGMA 2 (2006), 046, hep-th/0604170, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Scanning tip microwave near field microscope
Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)
1998-01-01T23:59:59.000Z
A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.
Green Functions of Relativistic Field Equations
Ying-Qiu Gu
2006-12-20T23:59:59.000Z
In this paper, we restudy the Green function expressions of field equations. We derive the explicit form of the Green functions for the Klein-Gordon equation and Dirac equation, and then estimate the decay rate of the solution to the linear equations. The main motivation of this paper is to show that: (1). The formal solutions of field equations expressed by Green function can be elevated as a postulate for unified field theory. (2). The inescapable decay of the solution of linear equations implies that the whole theory of the matter world should include nonlinear interaction.
Three approaches to classical thermal field theory
Gozzi, E., E-mail: gozzi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, Miramare - Grignano, 34151 Trieste (Italy); INFN, Sezione di Trieste (Italy); Penco, R., E-mail: rpenco@syr.edu [Department of Physics, Syracuse University, Syracuse, NY 13244-1130 (United States)
2011-04-15T23:59:59.000Z
Research Highlights: > Classical thermal field theory admits three equivalent path integral formulations. > Classical Feynman rules can be derived for all three formulations. > Quantum Feynman rules reduce to classical ones at high temperatures. > Classical Feynman rules become much simpler when superfields are introduced. - Abstract: In this paper we study three different functional approaches to classical thermal field theory, which turn out to be the classical counterparts of three well-known different formulations of quantum thermal field theory: the closed-time path (CTP) formalism, the thermofield dynamics (TFD) and the Matsubara approach.
Wide field imaging of distant clusters
T. Treu
2004-08-05T23:59:59.000Z
Wide field imaging is key to understanding the build-up of distant clusters and their galaxy population. By focusing on the so far unexplored outskirts of clusters, where infalling galaxies first hit the cluster potential and the hot intracluster medium, we can help separate cosmological field galaxy evolution from that driven by environment. I present a selection of recent advancements in this area, with particular emphasis on Hubble Space Telescope wide field imaging, for its superior capability to deliver galaxy morphologies and precise shear maps of distant clusters.
Neutron Interferometry constrains dark energy chameleon fields
H. Lemmel; Ph. Brax; A. N. Ivanov; T. Jenke; G. Pignol; M. Pitschmann; T. Potocar; M. Wellenzohn; M. Zawisky; H. Abele
2015-02-20T23:59:59.000Z
We present phase shift measurements for neutron matter waves in vacuum and in low pressure Helium using a method originally developed for neutron scattering length measurements in neutron interferometry. We search for phase shifts associated with a coupling to scalar fields. We set stringent limits for a scalar chameleon field, a prominent quintessence dark energy candidate. We find that the coupling constant $\\beta$ is less than 1.9 $\\times10^7$~for $n=1$ at 95\\% confidence level, where $n$ is an input parameter of the self--interaction of the chameleon field $\\varphi$ inversely proportional to $\\varphi^n$.
Multi-field open inflation model and multi-field dynamics in tunneling
Sugimura, Kazuyuki; Yamauchi, Daisuke; Sasaki, Misao, E-mail: sugimura@yukawa.kyoto-u.ac.jp, E-mail: yamauchi@icrr.u-tokyo.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto (Japan)
2012-01-01T23:59:59.000Z
We consider a multi-field open inflation model, in which one of the fields dominates quantum tunneling from a false vacuum while the other field governs slow-roll inflation within the bubble nucleated from false vacuum decay. We call the former the tunneling field and the latter the inflaton field. In the limit of a negligible interaction between the two fields, the false vacuum decay is described by a Coleman-De Luccia instanton. Here we take into account the coupling between the two fields and construct explicitly a multi-field instanton for a simple quartic potential model. We also solve the evolution of the scalar fields within the bubble. We find our model realizes open inflation successfully. This is the first concrete, viable model of open inflation realized with a simple potential. We then study the effect of the multi-field dynamics on the false vacuum decay, specifically on the tunneling rate. We find the tunneling rate increases in general provided that the multi-field effect can be treated perturbatively.
Field Redefinitions, T-duality and Solutions in Closed String Field Theories
Yoji Michishita
2006-04-26T23:59:59.000Z
We investigate classical solutions in closed bosonic string field theory and heterotic string field theory that are obtained order by order starting from solutions of the linearized equations of motion, and we discuss the ``field redefinitions'' which relate massless fields in the string field theory side and the low energy effective theory side. Massless components of the string field theory solutions are not corrected and from them we can infer corresponding solutions in the effective theory: the chiral null model and the pp-wave solution with B-field, which have been known to be alpha'-exact. These two sets of solutions in the two sides look slightly different because of the field redefinitions. It turns out that T-duality is a useful tool to determine them: We show that some part of the field redefinitions can be determined by using the correspondence between T-duality rules in the two sides, irrespective of the detail of the interaction terms and the integrating-out procedure. Applying the field redefinitions, we see that the solutions in the effective theory side are reproduced from the string field theory solutions.
Field-induced magnetostructural transition in Gd5ge4 studied by pulsed magnetic fields
Ouyang, Z.W.; Nojiri, H.; Yoshii, S.; Rao, G.H.; Wang, Y.C.; Pecharsky, V.K.; Gschneidner Jr., K.A.
2008-05-22T23:59:59.000Z
The field-induced magnetostructural transformation in Gd{sub 5}Ge{sub 4} was examined by magnetization measurements in pulsed magnetic fields. The low-temperature irreversibility of the transition can be destroyed by the magnetocaloric effect, and depending on the heat exchange between the sample and its surroundings, the irreversibility (or kinetic arrest) can also be retained. Measurements by using various magnetic-field sweep rates were conducted to examine the dynamic response of the system in the transition region. The critical fields for the magnetostructural transition below 20 K are field sweep rate dependent--the larger the field sweep rate, the higher the critical field. However, this rate dependence is readily suppressed with increasing temperature.
Soil phosphorus status in potato fields
He, Z.; Honeycutt, C. W.; Zhang, H.
2009-01-01T23:59:59.000Z
P deficiency in irrigated potatoes. Can. J. Plant Sci. 68,soil test P levels in these potato fields. References He,Introduction The potato crop requires substantial amounts of
Carbon nanotube-based field ionization vacuum
Jang, Daniel, M. Eng. Massachusetts Institute of Technology
2012-01-01T23:59:59.000Z
We report the development of a novel micropump architecture that uses arrays of isolated vertical carbon nanotubes (CNT) to field ionize gas particles. The ionized gas molecules are accelerated to and implanted into a ...
Convergence analysis in near-field imaging
Gang Bao
2014-07-24T23:59:59.000Z
Jul 25, 2014 ... power series in the deformation parameter by using the transformed field and ... deformation parameter, measurement distance, noise level of the ...... Taking the real part, and applying lemma 2.5 and lemma 2.1, we obtain.
Spinless Quantum Field Theory and Interpretation
Dong-Sheng Wang
2013-03-07T23:59:59.000Z
Quantum field theory is mostly known as the most advanced and well-developed theory in physics, which combines quantum mechanics and special relativity consistently. In this work, we study the spinless quantum field theory, namely the Klein-Gordon equation, and we find that there exists a Dirac form of this equation which predicts the existence of spinless fermion. For its understanding, we start from the interpretation of quantum field based on the concept of quantum scope, we also extract new meanings of wave-particle duality and quantum statistics. The existence of spinless fermion is consistent with spin-statistics theorem and also supersymmetry, and it leads to several new kinds of interactions among elementary particles. Our work contributes to the study of spinless quantum field theory and could have implications for the case of higher spin.
Some convolution products in Quantum Field Theory
Herintsitohaina Ratsimbarison
2006-12-05T23:59:59.000Z
This paper aims to show constructions of scale dependence and interaction on some probabilistic models which may be revelant for renormalization theory in Quantum Field Theory. We begin with a review of the convolution product's use in the Kreimer-Connes formalism of perturbative renormalization. We show that the Wilson effective action can be obtained from a convolution product propriety of regularized Gaussian measures on the space of fields. Then, we propose a natural C*-algebraic framework for scale dependent field theories which may enhance the conceptual approach to renormalization theory. In the same spirit, we introduce a probabilistic construction of interacting theories for simple models and apply it for quantum field theory by defining a partition function in this setting.
Nuclear clusters with Halo Effective Field Theory
Renato Higa
2008-09-30T23:59:59.000Z
After a brief discussion of effective field theory applied to nuclear clusters, I present the aspect of Coulomb interactions, with applications to low-energy alpha-alpha and nucleon-alpha scattering.
About the global magnetic fields of stars
Bychkov, V D; Madej, J
2013-01-01T23:59:59.000Z
We present a review of observations of the stellar longitudinal (effective) magnetic field ($B_e$) and its properties. This paper also discusses contemporary views on the origin, evolution and structure of $B_e$.
The Galactic Magnetic Field and UHECR Optics
Farrar, Glennys R; Khurana, Deepak; Sutherland, Michael
2015-01-01T23:59:59.000Z
A good model of the Galactic magnetic field is crucial for estimating the Galactic contribution in dark matter and CMB-cosmology studies, determining the sources of UHECRs, and also modeling the transport of Galactic CRs since the halo field provides an important escape route for by diffusion along its field lines. We briefly review the observational foundations of the Jansson-Farrar 2012 model for the large scale structure of the GMF, underscoring the robust evidence for a N-to-S directed, spiraling halo field. New results on the lensing effect of the GMF on UHECRs are presented, displaying multiple images and dramatic magnification and demagnification that varies with source direction and CR rigidity.
General Embedded Brane Effective Field Theories
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Goon, Garrett L.; Hinterbichler, Kurt; Trodden, Mark
2011-06-10T23:59:59.000Z
We presented a new general class of four-dimensional effective field theories with interesting global symmetry groups, which may prove relevant to the cosmology of both the early and late universe.
HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS
Taylor, C.
2011-01-01T23:59:59.000Z
D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.
Continuity of Scalar Fields With Logarithmic Correlations
Rajeev, S G
2015-01-01T23:59:59.000Z
We apply select ideas from the modern theory of stochastic processes in order to study the continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as a massless field in 1+1 spacetime dimensions) has the mildest of singularities, making it a logical starting point. Instead of the usual inner product of the field with a smooth function, we introduce a moving average on an interval which allows us to obtain explicit results and has a simple physical interpretation. Using the mathematical work of Dudley, we prove that the averaged random process is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.
Lunar magnetic field measurements with a cubesat
Garrick-Bethell, Ian
We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...
THE NEAR FIELD REFRACTOR CRISTIAN E. GUTIERREZ
Huang, Qingbo
THE NEAR FIELD REFRACTOR CRISTIAN E. GUTIÂ´ERREZ AND QINGBO HUANG Abstract. We present an abstract #12;2 C. E. GUTIÂ´ERREZ AND QINGBO HUANG to illuminate D. This implies that one can design a lens
Magnetic Backgrounds and Noncommutative Field Theory
Richard J. Szabo
2004-02-09T23:59:59.000Z
This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.
Some Studies in Noncommutative Quantum Field Theories
Sunandan Gangopadhyay
2008-06-12T23:59:59.000Z
The central theme of this thesis is to study some aspects of noncommutative quantum mechanics and noncommutative quantum field theory. We explore how noncommutative structures can emerge and study the consequences of such structures in various physical models.
Operatorial Methods in Noncommutative Field Theory
Acatrinei, Ciprian [Smoluchowski Institute of Physics, Jagellonian University Reymonta 4, Cracow (Poland)
2007-11-14T23:59:59.000Z
We review the operatorial quantization of noncommutative field theory, with emphasis on the fundamentally bilocal nature of the degrees of freedom. Interactions and IR/UV mixing are discussed from this point of view.
Three lectures on noncommutative field theories
F. A. Schaposnik
2004-08-18T23:59:59.000Z
Classical and quantum aspects of noncommutative field theories are discussed. In particular, noncommutative solitons and instantons are constructed and also d=2,3 noncommutative fermion and bosonic (Wess-Zumino-Witten and Chern-Simons)theories are analyzed.
Noncommutative Deformations of Wightman Quantum Field Theories
Harald Grosse; Gandalf Lechner
2008-08-26T23:59:59.000Z
Quantum field theories on noncommutative Minkowski space are studied in a model-independent setting by treating the noncommutativity as a deformation of quantum field theories on commutative space. Starting from an arbitrary Wightman theory, we consider special vacuum representations of its Weyl-Wigner deformed counterpart. In such representations, the effect of the noncommutativity on the basic structures of Wightman theory, in particular the covariance, locality and regularity properties of the fields, the structure of the Wightman functions, and the commutative limit, is analyzed. Despite the nonlocal structure introduced by the noncommutativity, the deformed quantum fields can still be localized in certain wedge-shaped regions, and may therefore be used to compute noncommutative corrections to two-particle S-matrix elements.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S. (Oak Ridge, TN)
1994-01-01T23:59:59.000Z
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25T23:59:59.000Z
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Continuity of Scalar Fields With Logarithmic Correlations
S. G. Rajeev; Evan Ranken
2015-08-19T23:59:59.000Z
We apply select ideas from the modern theory of stochastic processes in order to study the continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as a massless field in 1+1 spacetime dimensions) has the mildest of singularities, making it a logical starting point. Instead of the usual inner product of the field with a smooth function, we introduce a moving average on an interval which allows us to obtain explicit results and has a simple physical interpretation. Using the mathematical work of Dudley, we prove that the averaged random process is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.
Effective field theories for inclusive B decays
Lee, Keith S. M. (Keith Seng Mun)
2006-01-01T23:59:59.000Z
In this thesis, we study inclusive decays of the B meson. These allow one to determine CKM elements precisely and to search for physics beyond the Standard Model. We use the framework of effective field theories, in ...
Security Sciences Field Lab (SSFL) | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
stand-alone, remote communication; unmanned aerial and activated delay systems. At the heart of SSFL is a simulated border region of varied terrain such as open grassy fields,...
Optical Effects of the Wake Fields
Heifets, S.; Novokhatski, S.; Teytelman, D.; /SLAC
2006-09-27T23:59:59.000Z
We discuss optical effects of the wake fields: synchronous phase and bunch length variation along the train of bunches, effect of the wakes on the tune and on the Twiss parameters.
Extended Hamiltonian systems in multisymplectic field theories
Echeverria-Enriquez, Arturo; Leon, Manuel de; Munoz-Lecanda, Miguel C.; Roman-Roy, Narciso [Departamento de Matematica Aplicada IV, Campus Norte UPC, Edificio C-3, C/Jordi Girona 1, E-08034 Barcelona (Spain); Instituto de Matematicas y Fisica Fundamental, CSIC, C/Serrano 123, E-28006 Madrid (Spain); Departamento de Matematica Aplicada IV, Campus Norte UPC, Edificio C-3, C/Jordi Girona 1, E-08034 Barcelona (Spain)
2007-11-15T23:59:59.000Z
We consider Hamiltonian systems in first-order multisymplectic field theories. We review the properties of Hamiltonian systems in the so-called restricted multimomentum bundle, including the variational principle which leads to the Hamiltonian field equations. In an analogous way to how these systems are defined in the so-called extended (symplectic) formulation of nonautonomous mechanics, we introduce Hamiltonian systems in the extended multimomentum bundle. The geometric properties of these systems are studied, the Hamiltonian equations are analyzed using integrable multivector fields, the corresponding variational principle is also stated, and the relation between the extended and the restricted Hamiltonian systems is established. All these properties are also adapted to certain kinds of submanifolds of the multimomentum bundles in order to cover the case of almost-regular field theories.
Double field theory of type II strings
Hohm, Olaf
We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D, D) and ...
HIGH FIELD SOLENOID FOR MUON COOLING.
KAHN, S.A.; ALSHARO'A, M.; HANLET, P.; JOHNSON, R.P.; KUCHNIR, M.; NEWSHAM, F.; GUPTA, R.C.; PALMER, R.B.; WILLEN, E.
2006-06-26T23:59:59.000Z
Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we address how to mitigate the high Lorentz stresses associated with this high field magnet.
Field tests of timber railroad bridge piles
Donovan, Kendra Ann
2005-02-17T23:59:59.000Z
generated model and previous test data. Field testing involved consent from a railroad company to install load cells and string potentiometers on an in-situ timber bridge. While simultaneously taking load and deflection measurements for bridges under...
Process development for a field emission structure
Legg, James Derek
1990-01-01T23:59:59.000Z
, thereby decreasing the electric field and the magnitude of electron emission. The ions are created when residual gases become ionized by the extremely high fields and are attracted and accelerated towards the negatively biased cathode. This brings about... are still required to stimulate significant electron emission. An ultrahigh vacuum (typically 10 torr or better) is required by these devices or the problems of adsorption of contaminants and ion sputtering will still exist. An alternative approach...
Remote State Preparation for Quantum Fields
Ran Ber; Erez Zohar
2015-01-07T23:59:59.000Z
Remote state preparation is generation of a desired state by a remote observer. In spite of causality, it is well known, according to the Reeh-Schlieder theorem, that it is possible for relativistic quantum field theories, and a "physical" process achieving this task, involving superoscillatory functions, has recently been introduced. In this work we deal with non-relativistic fields, and show that remote state preparation is also possible for them, hence generalizing the Reeh-Schlieder theorem.
Response of initial field to stiffness perturbation
Chen-Wu Wu
2014-03-19T23:59:59.000Z
Response of initial elastic field to stiffness perturbation and its possible application is investigated. Virtual thermal softening is used to produce the stiffness reduction for demonstration. It is interpreted that the redistribution of the initial strain will be developed by the non-uniform temperature elevation, as which leads to the non-uniform reduction of the material stiffness. Therefore, the initial filed is related to the stiffness perturbation and incremental field in a matrix form after eliminating the thermal expansion effect.
Permanent magnet edge-field quadrupole
Tatchyn, Roman O. (Mountain View, CA)
1997-01-01T23:59:59.000Z
Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.
Quantum field theory and the Standard Model
W. Hollik
2010-12-17T23:59:59.000Z
In this lecture we discuss the basic ingredients for gauge invariant quantum field theories. We give an introduction to the elements of quantum field theory, to the construction of the basic Lagrangian for a general gauge theory, and proceed with the formulation of QCD and the electroweak Standard Model with electroweak symmetry breaking via the Higgs mechanism. The phenomenology of W and Z bosons is discussed and implications for the Higgs boson are derived from comparison with experimental precision data.
Process development for a field emission structure
Legg, James Derek
1990-01-01T23:59:59.000Z
structures. Field emission diode. Cutaway view of a fabricated field emission structure, Image reversal photolithography process steps. Cathode etch progression. Dashed lines represent shape of cath- ode with increasing etch duration. 12 19 23 SEM... is due to breaking the substrate for profile view. 23 Effect of etch duration on average silicon etch rates in a CFi-Oz plasma. 50 FIGURE Page 24 Effect of etch rate variations on cathode geometry for sn B minute CFq-Oq etch. 52 25 Ef...
Superconducting surface impedance under radiofrequency field
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Xiao, Binping P [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Reece, Charles E [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kelley, Michael J [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2013-07-01T23:59:59.000Z
Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.
Thermo--hydrodynamics As a Field Theory
Jacek Jezierski; Jerzy Kijowski
2011-12-26T23:59:59.000Z
The field theoretical description of thermo-hydrodynamics is given. It is based on the duality between the physical space--time and the "material space-time" which we construct here. The material space appearing in a natural way in the canonical formulation of the hydrodynamics is completed with a material time playing role of the field potential for temperature. Both Lagrangian and Hamiltonian formulations, the canonical structure, Poisson bracket, N\\"other theorem and conservation laws are discussed.
Trace anomaly of the conformal gauge field
Sladkowski, J
1993-01-01T23:59:59.000Z
The proposed by Bastianelli and van Nieuwenhuizen new method of calculations of trace anomalies is applied in the conformal gauge field case. The result is then reproduced by the heat equation method. An error in previous calculation is corrected. It is pointed out that the introducing gauge symmetries into a given system by a field-enlarging transformation can result in unexpected quantum effects even for trivial configurations.
Noncommutative scalar fields from symplectic deformation
Daoud, M. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy); Hamama, A. [High Energy Laboratory, Faculty of Sciences, University Mohamed V, P.O. Box 1014, Rabat (Morocco)
2008-02-15T23:59:59.000Z
This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.
Cathodic protection of storage field well casings
Dabkowski, J.
1986-01-01T23:59:59.000Z
Downhole logging of gas storage field wells to determine cathodic protection (CP) levels is expensive and requires removing the well from service. A technique allowing the prediction of downhole CP levels by modeling combined with limiting field measurements would provide the industry with a cost-effective means of implementing and monitoring casing protection. A computer model has been developed for a cathodically protected well casing.
Computer Stochastics in Scalar Quantum Field Theory
C. B. Lang
1993-12-01T23:59:59.000Z
This is a series of lectures on Monte Carlo results on the non-perturbative, lattice formulation approach to quantum field theory. Emphasis is put on 4D scalar quantum field theory. I discuss real space renormalization group, fixed point properties and logarithmic corrections, partition function zeroes, the triviality bound on the Higgs mass, finite size effects, Goldstone bosons and chiral perturbation theory, and the determination of scattering phase shifts for some scalar models.
Aspects of locally covariant quantum field theory
Ko Sanders
2008-09-28T23:59:59.000Z
This thesis considers various aspects of locally covariant quantum field theory (LCQFT; see Brunetti et al., Commun.Math.Phys. 237 (2003), 31-68), a mathematical framework to describe axiomatic quantum field theories in curved spacetimes. New results include: a philosophical interpretation of certain aspects of this framework in terms of modal logic; a proof that the truncated n-point functions of any Hadamard state of the free real scalar field are smooth, except for n=2; a description of he free Dirac field in a representation independent way, showing that the theory is determined entirely by the relations between the adjoint map, the charge conjugation map and the Dirac operator; a proof that the relative Cauchy evolution of the free Dirac field is related to its stress-energy-momentum tensor in the same way as for the free real scalar field (cf. loc.cit.); several results on the Reeh-Schlieder property in LCQFT, including but not limited to those of our earlier paper; a new and elegant approach to wave front sets of Banach space-valued distributions, which allows easy proofs and extensions of results in the literature.
Motional Spin Relaxation in Large Electric Fields
Riccardo Schmid; B. Plaster; B. W. Filippone
2008-07-02T23:59:59.000Z
We discuss the precession of spin-polarized Ultra Cold Neutrons (UCN) and $^{3}$He atoms in uniform and static magnetic and electric fields and calculate the spin relaxation effects from motional $v\\times E$ magnetic fields. Particle motion in an electric field creates a motional $v\\times E$ magnetic field, which when combined with collisions, produces variations of the total magnetic field and results in spin relaxation of neutron and $^{3}$He samples. The spin relaxation times $T_{1}$ (longitudinal) and $T_{2}$ (transverse) of spin-polarized UCN and $^{3}$He atoms are important considerations in a new search for the neutron Electric Dipole Moment at the SNS \\emph{nEDM} experiment. We use a Monte Carlo approach to simulate the relaxation of spins due to the motional $v\\times E$ field for UCN and for $^{3}$He atoms at temperatures below $600,\\mathrm{mK}$. We find the relaxation times for the neutron due to the $v\\times E$ effect to be long compared to the neutron lifetime, while the $^{3}$He relaxation times may be important for the \\emph{nEDM} experiment.
The polarization field for pulsed Raman transitions
Shore, B.W.; Sacks, R.; Karr, T.
1987-05-15T23:59:59.000Z
This memo discusses the induced polarization field that occurs in the presence of Raman processes, and the propagation equations that result from this field. First the paper summarizes the relationship between the macroscopic polarization field and the microscopic dipole-moment expectation value. It summarizes expressions for the induced dipole moment that result from the adiabatic elimination of non-resonant molecular transitions, to produce an effective two-photon (Raman) Hamiltonian. Then it shows that the polarization field has a similar mode expansion to the electric field. Using this result the equations for pulse propagation of the electric field are described. These equations involve a generalized gain matrix and mode velocity, as well as a refractive index, each of which depends upon position and time. Finally the paper summarizes these results and exhibits succinctly the pulse propagation equations in the plane-wave slowly-varying envelope approximation. The equations presented here must be supplemented with excitation equations (or by steady-state results) for the molecules. The material presented here is a portion of a more extensive treatment of propagation to be presented separately.
Electric field of a point-like charge in a strong magnetic field
A. E. Shabad; V. V. Usov
2006-07-22T23:59:59.000Z
We describe the potential produced by a point electric charge placed into a constant magnetic field, so strong that the electron Larmour length is much shorter than its Compton length. The standard Coulomb law is modified due to the vacuum polarization by the external magnetic field. Only mode-2 photons mediate the static interaction. The corresponding vacuum polarization component, taken in the one-loop approximation, grows linearly with the magnetic field. Thanks to this fact a scaling regime occurs in the limit of infinite magnetic field, where the potential is determined by a universal function, independent the magnetic field. The scaling regime implies a short-range character of interaction in the Larmour scale, expressed as a Yukawa law. On the contrary, the electromagnetic interaction regains its long-range character in a larger scale, characterized by the Compton length. In this scale the tail of the Yukawa potential follows an anisotropic Coulomb law: it decreases as the distance from the charge increases, slower along the magnetic field and faster across. The equipotential surface is an ellipsoid stretched along the magnetic field. As a whole, the modified Coulomb potential is a narrower-shaped function than the standard Coulomb function, the narrower the stronger the field. The singular behavior in the vicinity of the charge remains unsuppressed by the magnetic field. These results may be useful for studying atomic spectra in super- strong magnetic fields of several Schwinger's characteristic values.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D. [Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro - RJ (Brazil)] [Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro - RJ (Brazil)
2013-10-15T23:59:59.000Z
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q? 1. The main characteristic of this field theory consists on the fact that besides the usual ?(x(vector sign),t), a new field ?(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field ?(x(vector sign),t), which is defined by means of an additional equation, becomes ?{sup *}(x(vector sign),t) only when q? 1. The solutions for the fields ?(x(vector sign),t) and ?(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
Peterson, J.; Hanson, J.; Hartwell, G.; Knowlton, S. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)
2010-03-15T23:59:59.000Z
Understanding the behavior of plasmas in magnetic confinement fusion devices typically requires accurate knowledge of the magnetic field structure. In stellarator-type confinement devices, the helical magnetic field is produced by currents in external coils and may be traced experimentally in the absence of plasma through the experimental technique of vacuum magnetic field mapping. Field mapping experiments, such as these, were performed on the recently constructed compact toroidal hybrid to verify the range of accessible magnetic configurations, compare the actual magnetic configuration with the design configuration, and identify any vacuum field errors that lead to perturbations of the vacuum magnetic flux surfaces. Furthermore, through the use of a new coil optimization routine, modifications are made to the simulation coil model such that better agreement exists between the experimental and simulation results. An outline of the optimization procedure is discussed in conjunction with the results of one such optimization process performed on the helical field coil.
Meininger, Aaron G.
2012-01-01T23:59:59.000Z
Jordan Kazakhstan Kuwait Kyrgyzstan Lebanon Saudi ArabiaJordan Kazakhstan Kuwait Kyrgyzstan Lebanon Saudi Arabia
Particle acceleration by fluctuating electric fields at a magnetic field null point
P. Petkaki; A. L. MacKinnon
2007-07-09T23:59:59.000Z
Particle acceleration consequences from fluctuating electric fields superposed on an X-type magnetic field in collisionless solar plasma are studied. Such a system is chosen to mimic generic features of dynamic reconnection, or the reconnective dissipation of a linear disturbance. We explore numerically the consequences for charged particle distributions of fluctuating electric fields superposed on an X-type magnetic field. Particle distributions are obtained by numerically integrating individual charged particle orbits when a time varying electric field is superimposed on a static X-type neutral point. This configuration represents the effects of the passage of a generic MHD disturbance through such a system. Different frequencies of the electric field are used, representing different possible types of wave. The electric field reduces with increasing distance from the X-type neutral point as in linear dynamic magnetic reconnection. The resulting particle distributions have properties that depend on the amplitude and frequency of the electric field. In many cases a bimodal form is found. Depending on the timescale for variation of the electric field, electrons and ions may be accelerated to different degrees and often have energy distributions of different forms. Protons are accelerated to $\\gamma$-ray producing energies and electrons to and above hard X-ray producing energies in timescales of 1 second. The acceleration mechanism is possibly important for solar flares and solar noise storms but is also applicable to all collisionless plasmas.
Yuichi Mizutani; Tomohiro Inagaki; Yusuke Nakamura; Yoshiya Yamanaka
2011-09-05T23:59:59.000Z
A relativistic neutral scalar field is investigated in non-equilibrium thermo field dynamics. The canonical quantization is applied to the fields out of equilibrium. Because the thermal Bogoliubov transformation becomes time-dependent, the equations of motion for the ordinary unperturbed creation and annihilation operators are modified. This forces us to introduce a thermal counter term in the interaction Hamiltonian which generates additional radiative corrections. Imposing the self-consistency renormalization condition on the total radiative corrections, we obtain the quantum Boltzmann equation for the relativistic scalar field.
Confined quantum fields under the influence of a uniform magnetic field
E. Elizalde; F. C. Santos; A. C. Tort
2002-07-10T23:59:59.000Z
We investigate the influence of a uniform magnetic field on the zero-point energy of charged fields of two types, namely, a massive charged scalar field under Dirichlet boundary conditions and a massive fermion field under MIT boundary conditions. For the first, exact results are obtained, in terms of exponentially convergent functions, and for the second, the limits for small and for large mass are analytically obtained too. Coincidence with previously known, partial result serves as a check of the procedure. For the general case in the second situation --a rather involved one-- a precise numerical analysis is performed.
Chavez Ballesteros, Luis Eladio
2005-02-17T23:59:59.000Z
Quantifying infill potential in marginal oil fields often involves several challenges. These include highly heterogeneous reservoir quality both horizontally and vertically, incomplete reservoir databases, considerably ...
L. I. Petrova
2008-12-02T23:59:59.000Z
Historically it happen so that in branches of physics connected with field theory and of physics of material systems (continuous media) the concept of "conservation laws" has a different meaning. In field theory "conservation laws" are those that claim the existence of conservative physical quantities or objects. These are conservation laws for physical fields. In contrast to that in physics (and mechanics) of material systems the concept of "conservation laws" relates to conservation laws for energy, linear momentum, angular momentum, and mass that establish the balance between the change of physical quantities and external action. In the paper presented it is proved that there exist a connection between of conservation laws for physical fields and those for material systems. This points to the fact that physical fields are connected with material systems. Such results has an unique significance for field theories. This enables one to substantiate many basic principles of field theories, such as, for example, the unity of existing field theories and the causality. The specific feature of field theory equations, namely, their connection to the equations for material systems, is elicited. Such results have been obtained by using skew-symmetric differential forms, which reflect the properties of conservation laws.
Tahmasebi Birgani, Mohamad J. [Department of Radiation Therapy, Golestan Hospital, JondiShapour University of Medical Science, Ahvaz (Iran, Islamic Republic of); Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of); Chegeni, Nahid, E-mail: nchegen@yahoo.com [Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of); Zabihzadeh, Mansoor; Hamzian, Nima [Department of Medical Physics, JondiShapour University of Medical Sciences, Ahvaz (Iran, Islamic Republic of)
2014-04-01T23:59:59.000Z
Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18 MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field.
High-field instability of a field-induced triplon Bose-Einstein condensate
Rakhimov, Abdulla [Institute of Nuclear Physics, Tashkent 100214 (Uzbekistan); Sherman, E. Ya. [Department of Physical Chemistry, University of Basque Country, 48080 Bilbao (Spain); IKERBASQUE Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao, Bizkaia (Spain); Kim, Chul Koo [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of)
2010-01-01T23:59:59.000Z
We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.
Washington at Seattle, University of
not significantly change the FRC's closed field structure. The FRC is an example of a self-organized plasma wherein motivates the present field-line closure analysis. The study of field-line closure for FRC-like plasmas with the addition of static transverse magnetic fields S. A. Cohen Princeton University, Plasma Physics Laboratory
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06T23:59:59.000Z
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
Field theoretic simulations of polymer nanocomposites
Koski, Jason; Chao, Huikuan; Riggleman, Robert A., E-mail: rrig@seas.upenn.edu [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2013-12-28T23:59:59.000Z
Polymer field theory has emerged as a powerful tool for describing the equilibrium phase behavior of complex polymer formulations, particularly when one is interested in the thermodynamics of dense polymer melts and solutions where the polymer chains can be accurately described using Gaussian models. However, there are many systems of interest where polymer field theory cannot be applied in such a straightforward manner, such as polymer nanocomposites. Current approaches for incorporating nanoparticles have been restricted to the mean-field level and often require approximations where it is unclear how to improve their accuracy. In this paper, we present a unified framework that enables the description of polymer nanocomposites using a field theoretic approach. This method enables straightforward simulations of the fully fluctuating field theory for polymer formulations containing spherical or anisotropic nanoparticles. We demonstrate our approach captures the correlations between particle positions, present results for spherical and cylindrical nanoparticles, and we explore the effect of the numerical parameters on the performance of our approach.
Revisiting the gauge fields of strained graphene
Iorio, Alfredo
2015-01-01T23:59:59.000Z
We join the on-going debate on the nature of the gauge fields arising when straining graphene, hopefully adding clarity to the debate, especially in view of the use of graphene as a table-top indirect laboratory for high energy physics. We identify two types of gauge fields: the first one arising from a trivial spin-connection of zero Riemann tensor, that gives a pure-gauge Weyl field; the second one originating from peculiar structure of the graphene honeycomb, whose non-triviality is encoded in a special rank-three tensor. The former cannot give a nonzero "pseudo-magnetic field", but the relativistic approach behind it explains non-isotropic, space-dependent Fermi velocity. The latter has, in general, nonzero associated field-strength, and gives an example of a low-energy (continuum limit) relic of a high-energy (lattice) structure, a feature that makes it interesting for explorations of fundamental physics scenarios with similar behaviors. We conclude by briefly pointing to some of those scenarios.
Revisiting the gauge fields of strained graphene
Alfredo Iorio; Pablo Pais
2015-08-04T23:59:59.000Z
We join the on-going debate on the nature of the gauge fields arising when straining graphene, hopefully adding clarity to the debate, especially in view of the use of graphene as a table-top indirect laboratory for high energy physics. We identify two types of gauge fields: the first one arising from a trivial spin-connection of zero Riemann tensor, that gives a pure-gauge Weyl field; the second one originating from peculiar structure of the graphene honeycomb, whose non-triviality is encoded in a special rank-three tensor. The former cannot give a nonzero "pseudo-magnetic field", but the relativistic approach behind it explains non-isotropic, space-dependent Fermi velocity. The latter has, in general, nonzero associated field-strength, and gives an example of a low-energy (continuum limit) relic of a high-energy (lattice) structure, a feature that makes it interesting for explorations of fundamental physics scenarios with similar behaviors. We conclude by briefly pointing to some of those scenarios.
Quantum field theory of relic nonequilibrium systems
Nicolas G. Underwood; Antony Valentini
2014-11-14T23:59:59.000Z
In terms of the de Broglie-Bohm pilot-wave formulation of quantum theory, we develop field-theoretical models of quantum nonequilibrium systems which could exist today as relics from the very early universe. We consider relic excited states generated by inflaton decay, as well as relic vacuum modes, for particle species that decoupled close to the Planck temperature. Simple estimates suggest that, at least in principle, quantum nonequilibrium could survive to the present day for some relic systems. The main focus of this paper is to describe the behaviour of such systems in terms of field theory, with the aim of understanding how relic quantum nonequilibrium might manifest experimentally. We show by explicit calculation that simple perturbative couplings will transfer quantum nonequilibrium from one field to another (for example from the inflaton field to its decay products). We also show that fields in a state of quantum nonequilibrium will generate anomalous spectra for standard energy measurements. Possible connections to current astrophysical observations are briefly addressed.
?-Decay in Ultra-Intense Laser Fields
Serban Misicu; Margarit Rizea
2013-07-05T23:59:59.000Z
We investigate the \\alpha-decay of a spherical nucleus under the influence of an ultra-intense laser field for the case when the radius vector joining the center-of-masses of the \\alpha-particle and the daughter is aligned with the direction of the external field. The time-independent part of the \\alpha-daughter interaction is taken from elastic scattering compilations whereas the time-varying part describes the interaction between the decaying system with the laser field. The time-dependent Schr\\"odinger equation is solved numerically by appealing to a modified scheme of the Crank-Nicolson type where an additional first-order time derivative appears compared to the field-free case. The tunneling probability of the \\alpha-cluster, and derived quantities (decay rate, total flux) is determined for various laser intensities and frequencies for either continous waves or few-cycle pulses of envelope function F(t)=1. We show that in the latter case pulse sequences containing an odd number of half-cycles determine an enhancement of the tunneling probability compared to the field-free case and the continuous wave case. The present study is carried out taking as example the alpha decaying nucleus $^{106}$Te.
The Kurtosis of the Cosmic Shear Field
Masahiro Takada; Bhuvnesh Jain
2002-08-14T23:59:59.000Z
We study the fourth-order moment of the cosmic shear field using the dark matter halo approach to describe the nonlinear gravitational evolution of structure in the universe. Since the third-order moment of the shear field vanishes because of symmetry, non-Gaussian signatures in its one-point statistics emerge at the fourth-order level. We argue that the shear kurtosis parameter S_4 = /^3 may be more directly applicable to realistic data than the well-studied higher-order statistics of the convergence field, since obtaining the convergence requires a non-local reconstruction from the measured shear field. We compare our halo model predictions for the variance, skewness and kurtosis of lensing fields with ray-tracing simulations of cold dark matter models and find good agreement. The shear kurtosis calculation is made tractable by developing approximations for fast and accurate evaluations of the 8-dimensional integrals needed to obtain the kurtosis. We show that on small scales it is dominated by correlations within halos more massive than 10^14 solar masses. The shear kurtosis is sensitive to the mass density parameter of the universe, Omega, and has relatively weak dependences on other parameters. The approximations we develop for the third- and fourth-order moments allow for accurate halo model predictions for the 3-dimensional mass distribution as well. We demonstrate their accuracy in the small scale regime, below 2 Mpc, where analytical approaches used in the literature so far cease to be accurate.
WIDE-FIELD ASTRONOMICAL MULTISCALE CAMERAS
Marks, Daniel L.; Brady, David J., E-mail: dbrady@ee.duke.edu [Department of Electrical and Computer Engineering and Fitzpatrick Institute for Photonics, Box 90291, Duke University, Durham, NC 27708 (United States)
2013-05-15T23:59:59.000Z
In order to produce sufficiently low aberrations with a large aperture, telescopes have a limited field of view. Because of this narrow field, large areas of the sky at a given time are unobserved. We propose several telescopes based on monocentric reflective, catadioptric, and refractive objectives that may be scaled to wide fields of view and achieve 1.''1 resolution, which in most locations is the practical seeing limit of the atmosphere. The reflective and Schmidt catadioptric objectives have relatively simple configurations and enable large fields to be captured at the expense of the obscuration of the mirror by secondary optics, a defect that may be managed by image plane design. The refractive telescope design does not have an obscuration but the objective has substantial bulk. The refractive design is a 38 gigapixel camera which consists of a single monocentric objective and 4272 microcameras. Monocentric multiscale telescopes, with their wide fields of view, may observe phenomena that might otherwise be unnoticed, such as supernovae, glint from orbital space debris, and near-earth objects.
Cosmological simulations with disformally coupled symmetron fields
R. Hagala; C. Llinares; D. F. Mota
2015-04-27T23:59:59.000Z
We use N-body simulations to study the matter distribution in disformal gravity. The disformal model studied here is a conformally coupled symmetron field with an additional exponential disformal term. We conduct cosmological simulations with the aim to find the impact of the new disformal terms in the matter power spectrum, halo mass function and radial profile of the scalar field. This is done by calculating the disformal geodesic equation and the equation of motion for the scalar field, then implementing them into the N-body code ISIS, which is a modified gravity version of the code RAMSES. The presence of a conformal symmetron field increases both the power spectrum and mass function compared to standard gravity on small scales. Our main result is that the newly added disformal terms tend to counteract this effects and can make the evolution slightly closer to standard gravity. We finally show that the disformal terms give rise to oscillations of the scalar field in the centre of the dark matter haloes.
Electromagnetic fields: Biological and clinical aspects
Tabrah, F.L.; Batkin, S. (Department of Physiology, University of Hawaii School of Medicine, Honolulu (USA))
1991-03-01T23:59:59.000Z
Our entire biosphere is immersed in a sea of man-made electromagnetic fields (EMF). Occupational and public health data suggest that these fields may be a health hazard, possibly involving cancer and fetal loss. This paper reviews the history and pertinent physics of electromagnetic fields and presents evidence from the authors' work, and that of others, of biological interaction with living systems. Epidemiological data suggesting EMF hazards are reviewed including a discussion of possible risks associated with Hawaii's Lualualei transmitter site, TV and FM antennas in high-density population areas, fields surrounding electric power transmission and computer terminals, and the plan to route a major highway through the near-field of an operating Omega signal-source. In the face of current public fear and controversial research reports about long-term EMF exposure, suggestions are presented for public policy about these local sources of concern, as well as for the EMF risks common to any similarly developed areas. 30 refs.
External-field-free magnetic biosensor
Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping, E-mail: jpwang@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2014-03-24T23:59:59.000Z
In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6?dB from one iron oxide magnetic nanoparticle with 8?nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200?nm?×?200?nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3?dB is achieved for 30??l magnetic nanoparticles suspension (30?nm iron oxide particles, 1?mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.
Electric field controlled emulsion phase contactor
Scott, T.C.
1995-01-31T23:59:59.000Z
A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo (Hercules, CA); Moussa, David (San Francisco, CA); Wilde, Stephen B. (Pleasant Hill, CA)
1991-01-01T23:59:59.000Z
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic fields which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
Viscosity, Black Holes, and Quantum Field Theory
D. T. Son; A. O. Starinets
2007-07-11T23:59:59.000Z
We review recent progress in applying the AdS/CFT correspondence to finite-temperature field theory. In particular, we show how the hydrodynamic behavior of field theory is reflected in the low-momentum limit of correlation functions computed through a real-time AdS/CFT prescription, which we formulate. We also show how the hydrodynamic modes in field theory correspond to the low-lying quasinormal modes of the AdS black p-brane metric. We provide a proof of the universality of the viscosity/entropy ratio within a class of theories with gravity duals and formulate a viscosity bound conjecture. Possible implications for real systems are mentioned.
Fields of View for Environmental Radioactivity
Malins, Alex; Machida, Masahiko; Takemiya, Hiroshi; Saito, Kimiaki
2015-01-01T23:59:59.000Z
The gamma component of air radiation dose rates is a function of the amount and spread of radioactive nuclides in the environment. These radionuclides can be natural or anthropogenic in origin. The field of view describes the area of radionuclides on, or below, the ground that is responsible for determining the air dose rate, and hence correspondingly the external radiation exposure. This work describes Monte Carlo radiation transport calculations for the field of view under a variety of situations. Presented first are results for natural 40K and thorium and uranium series radionuclides distributed homogeneously within the ground. Results are then described for atmospheric radioactive caesium fallout, such as from the Fukushima Daiichi Nuclear Power Plant accident. Various stages of fallout evolution are considered through the depth distribution of 134Cs and 137Cs in soil. The fields of view for the natural radionuclides and radiocaesium are different. This can affect the responses of radiation monitors to th...
Aleph Field Solver Challenge Problem Results Summary.
Hooper, Russell; Moore, Stan Gerald
2015-01-01T23:59:59.000Z
Aleph models continuum electrostatic and steady and transient thermal fields using a finite-element method. Much work has gone into expanding the core solver capability to support enriched mod- eling consisting of multiple interacting fields, special boundary conditions and two-way interfacial coupling with particles modeled using Aleph's complementary particle-in-cell capability. This report provides quantitative evidence for correct implementation of Aleph's field solver via order- of-convergence assessments on a collection of problems of increasing complexity. It is intended to provide Aleph with a pedigree and to establish a basis for confidence in results for more challeng- ing problems important to Sandia's mission that Aleph was specifically designed to address.
Radiation Reaction in High-Intense Fields
Seto, Keita
2015-01-01T23:59:59.000Z
After the development of the radiating electron model by P. A. M. Dirac in 1938, many authors have tried to reformulate this model so-called radiation reaction. Recently, this effects has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a method for the stabilization of radiation reaction in quantum vacuum [PTEP 2014, 043A01 (2014), PTEP 2015, 023A01 (2015)]. In the other hand, the field modification by high-intense fields should be required under 10PW lasers, like ELI-NP facility. In this paper, I propose the combined method how to adopt the high-intense field correction with the stabilization by quantum vacuum as the extension from the model by Dirac.
Dark energy as a massive vector field
C. G. Boehmer; T. Harko
2007-01-11T23:59:59.000Z
We propose that the Universe is filled with a massive vector field, non-minimally coupled to gravitation. The field equations of the model are consistently derived and their application to cosmology is considered. The Friedmann equations acquire an extra dark-energy component, which is proportional to the mass of the vector particle. This leads to a late-time accelerated de Sitter type expansion. The free parameters of the model (gravitational coupling constants and initial value of the cosmological vector field) can be estimated by using the PPN solar system constraints. The mass of the cosmological massive vector particle, which may represent the main component of the Universe, is of the order of 10^-63 g.
Electric field induced spin-polarized current
Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng
2006-05-02T23:59:59.000Z
A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.
Vacuum birefringence in strong inhomogeneous electromagnetic fields
Karbstein, Felix; Reuter, Maria; Zepf, Matt
2015-01-01T23:59:59.000Z
Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of non-linear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generatio...
Electric Field Quench, Equilibration and Universal Behavior
M. Ali-Akbari; S. Amiri-Sharifi; H. R. Sepangi
2015-04-14T23:59:59.000Z
We study electric field quench in N=2 strongly coupled gauge theory, using the AdS/CFT correspondence. To do so, we consider the aforementioned system which is subjected to a time-dependent electric field indicating an out of equilibrium system. Defining the equilibration time t_{eq}, at which the system relaxes to its final equilibrium state after injecting the energy, we find that the rescaled equilibriation time k^{-1}t_{eq} decreases as the transition time k increases. Therefore, we expect that for sufficiently large transition time, k ->infinity, the relaxation of the system to its final equilibrium can be an adiabatic process. On the other hand, we observe a universal behavior for the fast quenches, k electric field. Our calculations generalized to systems in various dimensions also confirm universalization process which seems to be a typical feature of all strongly coupled gauge theories that admit a gravitational dual.
Massless Dirac Fermions in Electromagnetic Field
Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud
2012-02-12T23:59:59.000Z
We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.
Effective Field Theory Techniques for Resummation in Jet Physics
Dunn, Nicholas Daniel
2012-01-01T23:59:59.000Z
gamma in effective field theory. Phys. Rev. , D63:014006, [factorization from effective field theory. Phys. Rev. , D66:Stewart. An ef- fective field theory for collinear and soft
Opportunities and Context for Reversed Field Pinch Research!
Opportunities and Context for Reversed Field Pinch Research! FESAC Strategic Planning Meeting! ! #12;The Reversed Field Pinch magnetic configuration! · Magnetic field is generated primarily foundational burning plasma science with the science and technology girding long pulse, sustained operations
Welcome to Q?rius Field Trip Logistics
Miller, Scott
· Welcome to Q?rius · Field Trip Logistics · Getting the Most from Q?rius · Class Overview.qrius.si.edu4 FIELD TRIP LOGISTICS FIELD TRIP LOGISTICS GETTING READY · Carefully review your confirmation
Field Test Best Practices Website | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website...
Oil and Gas Field Code Master List 1990
Not Available
1991-01-04T23:59:59.000Z
This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.
Velas, K. M. [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States); Milroy, R. D. [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)] [Plasma Science and Innovation-Center, William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Box 352250, Seattle, Washington 98195-2250 (United States)
2014-01-15T23:59:59.000Z
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub ?}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10?kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.
Methane Hydrate Field Studies | Department of Energy
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334Department ofEnergyEnergy Mapping8, 2012 subject:Field Studies Methane Hydrate Field
Energy conditions and classical scalar fields
S. Bellucci; V. Faraoni
2001-06-19T23:59:59.000Z
Attention has been recently called upon the fact that the weak and null energy conditions and the second law of thermodynamics are violated in wormhole solutions of Einstein's theory with classical, nonminimally coupled, scalar fields as material source. It is shown that the discussion is only meaningful when ambiguities in the definitions of stress-energy tensor and energy density of a nonminimally coupled scalar are resolved. The three possible approaches are discussed with emphasis on the positivity of the respective energy densities and covariant conservation laws. The root of the ambiguities is traced to the energy localization problem for the gravitational field.
Visual Sample Plan (VSP) - FIELDS Integration
Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck
2003-04-19T23:59:59.000Z
Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download instructions and software requirements for running the integrated package.
Complementary junction heterostructure field-effect transistor
Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.
1995-12-26T23:59:59.000Z
A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.