Powered by Deep Web Technologies
Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS  

SciTech Connect

This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg{sup 2}, with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 Multiplication-Sign 10{sup 6} sources. The Wide Survey consists of 150 deg{sup 2} split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 Multiplication-Sign 10{sup 7} sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

Gwyn, Stephen D. J., E-mail: Stephen.Gwyn@nrc-cnrc.gc.ca [Canadian Astronomy Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, V9E 2E7 (Canada)

2012-02-15T23:59:59.000Z

2

Hawaii Energy (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2006, the Hawaii State Legislature enacted legislation to create a public benefits fund (PBF) for energy efficiency and demand side management. In July 2013, the law was amended to allow...

3

Hawaii Energy Resource Technologies for Energy Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII...

4

Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bills for families April 21, 2008 DOE Selects Project for up to 7 Million of Federal Funding to Modernize Hawaii's Energy Infrastructure University of Hawaii Team to Install...

5

Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2011. Hawaii is offering incentives for the purchase of the vehicle and for home charging station development. The Asia Pacific Clean Energy Summit in Honolulu, Hawaii...

6

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Prices",8,"Annual",2012,"6301980" ,"Release Date:","10312013" ,"Next Release...

7

,"Hawaii Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Hawaii Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

8

Hawaii Energy Resource Technologies for Energy Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HNEI HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa MAUI SMART GRID PROJECT Hawaii Natural Energy Institute University of Hawaii at Manoa Sentech, Inc. HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

9

Hawaii Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Hawaii Quick Facts. With its mild tropical climate, Hawaii had the third lowest per capita energy use in the Nation in 2010; the transportation sector led Hawaiian ...

10

hawaii | OpenEI  

Open Energy Info (EERE)

hawaii hawaii Dataset Summary Description Abstract: Annual average wind resource potential for the state of Hawaii at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Hawaii. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 4, datum WGS 84 projection system. Source National Renewable Energy Laboratory (NREL) Date Released November 30th, 2004 (10 years ago) Date Updated May 04th, 2009 (5 years ago) Keywords GIS hawaii NREL shapefile wind Data application/zip icon Shapefile (zip, 2 MiB)

11

Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 22, 2010 CX-003938: Categorical Exclusion Determination Hawaii Energy Sustainability Program (Subtask 2.4.1: Sub to Real Green Power (RGP)) CX(s) Applied: A9, A11, B1.24,...

12

Hawaii Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

13

Hawaii's Geothermal Development  

DOE Green Energy (OSTI)

On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

Uemura, Roy T.

1980-12-01T23:59:59.000Z

14

Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are eligible for a one-time rebate of 750. Commercial customers may receive custom incentives. July 12, 2013 Solar Rights Hawaii law prohibits the creation of any covenant...

15

Hawaii electric system reliability.  

SciTech Connect

This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability "worth" and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

Silva Monroy, Cesar Augusto; Loose, Verne William

2012-09-01T23:59:59.000Z

16

State Energy Program in Hawaii  

DOE Green Energy (OSTI)

The Hawaii Strategic Industry Division administers DOE's State Energy Program in Hawaii. The division's current accomplishments include establishing a Model Energy Code for the state, instituting a successful solar program, and making energy performance contracts available for government facilities.

Not Available

2003-05-01T23:59:59.000Z

17

Biofuel Crop Growth in Hawaii  

Science Conference Proceedings (OSTI)

Hawaii has had a renewable portfolio standard (RPS) law since 2001 that was recently updated. The aim is to generate 40% of the state's electricity from renewable sources by 2030. This project was originally conceived to gain information on the possible profitable production of oilseed in Hawaii for use as a renewable biofuel. The project involved research teams from Hawaii Agriculture Research Center (HARC), the University of Hawaii -Manoa (UHM), and University ...

2012-12-01T23:59:59.000Z

18

REGULATING HAWAII'S PETROLEUM INDUSTRY  

E-Print Network (OSTI)

This study was prepared in response to House Resolution No. 174, H.D. 2, which was adopted during the Regular Session of 1995. The Resolution requested the Legislative Reference Bureau to conduct a study to obtain the views of selected state agencies and representatives of Hawaii's petroleum industry in order to assist the Legislature in formulating policies that protect the interests of Hawaii's gasoline consumers. The Resolution sought information and the views of survey participants on a broad range of proposals to regulate Hawaii's petroleum industry. This study reviews each of these proposals in terms of their value to consumers, and explores both regulatory policy options and alternatives to regulation available to state lawmakers. The Bureau extends its sincere appreciation to all those whose participation and cooperation made this study possible. A list of contact persons, including the names of survey participants and others who helped to contribute to this study, is contained in Appendix B.

Mark J. Rosen; Wendell K. Kimura

1995-01-01T23:59:59.000Z

19

Hawaii.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Hawaii www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

20

Hawaii's geothermal program  

Science Conference Proceedings (OSTI)

Opposition to Hawaii's geothermal program, which is coming not only from the usual citizens' and environmental groups, but also from worshippers of a native god and, it has been alleged, growers of marijuana, is discussed. The clash occurs just as geothermal ...

G. Zorpette

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hawaii/Incentives | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Incentives Hawaii/Incentives < Hawaii Jump to: navigation, search Contents 1 Financial Incentive Programs for Hawaii 2 Rules, Regulations and Policies for Hawaii Download All Financial Incentives and Policies for Hawaii CSV (rows 1 - 48) Financial Incentive Programs for Hawaii Download Financial Incentives for Hawaii CSV (rows 1 - 32) Incentive Incentive Type Active Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive No Capital Goods Excise Tax Credit (Hawaii) Corporate Tax Credit No City and County of Honolulu - Real Property Tax Exemption for Alternative Energy Improvements (Hawaii) Property Tax Incentive Yes City and County of Honolulu - Solar Loan Program (Hawaii) Local Loan Program Yes Commercial Energy Efficiency Rebate Program (Hawaii) State Rebate Program Yes

22

Hawaii Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

HawaiiGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Hawaii Gas Prices (Ciudades Selectas) - GasBuddy.com Hawaii Gas Prices (Organizado por Condado) -...

23

Related Links on Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii Related Links on Hawaii Below are related links to resources specifically for implementing energy efficiency and renewable energy technologies in Hawaii. Learn more about deployment efforts in Hawaii. Department of Economic Development, Business, and Tourism The state's Department of Business, Economic Development and Tourism works closely with DOE and the National Renewable Energy Laboratory (NREL) to implement deployment efforts from Hawaii Clean Energy Initiative activities. Find resources for economic and statistical data, business development opportunities, energy and conservation information, and foreign trade advantages. Electric Vehicles in Hawaii The state of Hawaii sees the use of electric vehicles (EVs) as one solution to reducing the state's petroleum consumption and provides information on

24

Hawaii geologic map data | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii geologic map data Citation Hawaii geologic map data Internet. 2013....

25

Hawaii Clean Energy Initiative | Open Energy Information  

Open Energy Info (EERE)

Hawaii Clean Energy Initiative Hawaii Clean Energy Initiative Jump to: navigation, search Logo: Hawaii Clean Energy Initiative Name Hawaii Clean Energy Initiative Agency/Company /Organization U.S. Department of Energy Partner State of Hawaii Sector Energy Focus Area Energy Efficiency Topics Background analysis Website http://www.hawaiicleanenergyin Country United States Northern America References Program's "About" Page[1] Abstract The Hawaii Clean Energy Initiative is a partnership program between the state of Hawaii and the U.S. Department of Energy, focused on moving Hawaii towards energy independence. The Hawaii Clean Energy Initiative is a partnership program between the state of Hawaii and the U.S. Department of Energy, focused on moving Hawaii towards energy independence.[1]

26

Microsoft Word - hawaii.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Hawaii NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 2,536 47 Electric Utilities ...................................................................................................... 1,828 40 Independent Power Producers & Combined Heat and Power ................................ 708 47 Net Generation (megawatthours) ........................................................................... 10,836,036 45

27

Microsoft Word - hawaii.doc  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Hawaii NERC Region(s) ....................................................................................................... -- Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 2,536 47 Electric Utilities ...................................................................................................... 1,828 40 Independent Power Producers & Combined Heat and Power ................................ 708 47 Net Generation (megawatthours) ........................................................................... 10,836,036 45

28

Hawaii Energy Strategy: Program guide  

SciTech Connect

The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii`s energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii`s energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

1992-09-01T23:59:59.000Z

29

Alternative Fuels Data Center: Hawaii Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hawaii Information to Hawaii Information to someone by E-mail Share Alternative Fuels Data Center: Hawaii Information on Facebook Tweet about Alternative Fuels Data Center: Hawaii Information on Twitter Bookmark Alternative Fuels Data Center: Hawaii Information on Google Bookmark Alternative Fuels Data Center: Hawaii Information on Delicious Rank Alternative Fuels Data Center: Hawaii Information on Digg Find More places to share Alternative Fuels Data Center: Hawaii Information on AddThis.com... Hawaii Information This state page compiles information related to alternative fuels and advanced vehicles in Hawaii and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

30

Hawaii's 1st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Energy Companies in Hawaii's 1st congressional district Alternate Energy LLC Forest City Military Communities, Hawaii Hoku Fuel Cells Lighthouse Solar Honolulu Hawaii Maui...

31

Hawaii | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

at least as energy efficient as the statewide code. State Specific Research Impacts of ASHRAE.1-2007 for Commercial Buildings in the State of Hawaii (BECP Report, Sept. 2009)...

32

Recovery Act State Memos Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

33

Hawaii-Okinawa Building Evaluations  

SciTech Connect

NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

Metzger, I.; Salasovich, J.

2013-05-01T23:59:59.000Z

34

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

35

Publications on Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications on Hawaii Publications on Hawaii Publications on Hawaii Find publications on deploying energy efficiency and renewable energy in Hawaii. 36 Ways to Save Energy and Money Now This fact sheet outlines the top ways to save energy and money in Hawaii in the office, at home, and in the car. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This National Renewable Energy Laboratory (NREL) technical report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative (HCEI) working groups for recommendation to the 2010 Hawaii State Legislature. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis This NREL technical report presents the results of the Booz Allen Hamilton

36

Hawaii technology utilization experiment  

DOE Green Energy (OSTI)

A one-year technology-transfer project involving ERDA installations and Hawaii consisted of sending teams from the Lawrence Livermore Laboratory on week-long field trips every two months to test the effectiveness of different methods of transferring technology information from federal sources to civilian clients. The team was questioned primarily on non-energy matters, and the energy questions asked related mostly to individuals or small industries. The team responed to all questions and found that a wide range of knowledge was more effective than having a sequence of experts. Hawaiians considered current major ERDA projects to be irrelevant to their needs. The team was most successful on a one-to-one basis because large groups and state agencies tend to be more policy- than action-oriented. Personal followup was considered essential. The team also learned that their visits generated ten times as many inquiries as were received unsolicited by the laboratory. Most inquiries involved biomass and use of agricultural wastes, solar energy, and transportation. An important contribution of the team's workshops was linking groups to work together on common problems. An appendix lists the subjects of queries and the names and addresses of consortium participants and Hawaiian contacts. (DCK)

Dorn, D.W.; Miller, C.F.

1976-12-08T23:59:59.000Z

37

Categorical Exclusion Determinations: Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii Categorical Exclusion Determinations: Hawaii Location Categorical Exclusion Determinations issued for actions in Hawaii. DOCUMENTS AVAILABLE FOR DOWNLOAD November 24, 2010 CX-004536: Categorical Exclusion Determination Subtask 2.4 Ocean Thermal Energy Conversion Facility - University of Hawaii CX(s) Applied: A9, A11 Date: 11/24/2010 Location(s): Hawaii Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 29, 2010 CX-004093: Categorical Exclusion Determination Subtask 2.3 Makai Research Pier: National Marine Renewable Energy Center in Hawaii CX(s) Applied: A9 Date: 09/29/2010 Location(s): Hawaii Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 29, 2010 CX-004162: Categorical Exclusion Determination

38

Energy Crossroads: Utility Energy Efficiency Programs Hawaii...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Hawaiian Electric Company, Inc. (HECO...

39

The University of Hawaii Wide Field Imager (UHWFI)  

E-Print Network (OSTI)

The University of Hawaii Wide-Field Imager (UHWFI) is a focal compressor system designed to project the full half-degree field of the UH 2.2 m telescope onto the refurbished UH 8Kx8K CCD camera. The optics use Ohara glasses and are mounted in an oil-filled cell to minimize light losses and ghost images from the large number of internal lens surfaces. The UHWFI is equipped with a six-position filter wheel and a rotating sector blade shutter,both driven by stepper motors. The instrument saw first light in 2004 in an engineering mode. After filling the lens cell with index matching oil, integration of all software components into the user interface, tuning of the CCD performance, and the purchase of the final filter set, UHWFI is now fully commissioned at the UH 2.2 m telescope.

Klaus W. Hodapp; Andreas Seifahrt; Gerard A. Luppino; Richard Wainscoat; Ed Sousa; Hubert Yamada; Alan Ryan; Richard Shelton; Mel Inouye; Andrew J. Pickles; Yanko K. Ivanov

2006-04-01T23:59:59.000Z

40

Hawaii Renewable | Open Energy Information  

Open Energy Info (EERE)

Renewable Renewable Jump to: navigation, search Name Hawaii Renewable Facility Hawaii Renewable Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Hawaii Electric Light Co. Location Near Upolu Point Big Island HI Coordinates 20.2564°, -155.850409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.2564,"lon":-155.850409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hawaii | OpenEI Community  

Open Energy Info (EERE)

Hawaii Hawaii Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Syndicate content 429 Throttled (bot load)

42

Hawaii energy strategy: Executive summary, October 1995  

SciTech Connect

This is an executive summary to a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

NONE

1995-10-01T23:59:59.000Z

43

Hawaii energy strategy report, October 1995  

SciTech Connect

This is a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

NONE

1995-10-01T23:59:59.000Z

44

Hawaii Natural Energy Institute Energy Programs  

E-Print Network (OSTI)

security in the face of threats to the state's energy supplies; 4. Reduction of greenhouse gas emissions resulting from energy supply and use. §226-18, Hawaii Revised Statutes #12;The Hawaii Clean EnergyHawaii Natural Energy Institute Energy Programs by Rick Rocheleau to Dr. M.R. C. Greenwood December

45

Aerial Observations of Hawaii's Wake  

Science Conference Proceedings (OSTI)

Under the influence of the east-northeasterly trade winds, the island of Hawaii generates a wake that extends about 200 km to the west-southwest. During the HaRP project in July and August 1990, five wake surveys were carried out by the NCAR ...

Ronald B. Smith; Vanda Grubii?

1993-11-01T23:59:59.000Z

46

Categorical Exclusion Determinations: Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii Categorical Exclusion Determinations: Hawaii Location Categorical Exclusion Determinations issued for actions in Hawaii. DOCUMENTS AVAILABLE FOR DOWNLOAD August 29, 2013 CX-011110: Categorical Exclusion Determination Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office August 15, 2013 CX-010748: Categorical Exclusion Determination Distributed Resource Energy Analysis and Management System Development for Real-Time Grid Operations CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Hawaii Offices(s): Golden Field Office June 3, 2013 CX-010507: Categorical Exclusion Determination Development and Demonstration of Smart Grid Inverters for High-Penetration Photovoltaic Applications CX(s) Applied: A9, B3.6, B5.16

47

Hawaii Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

48

Progress report on renewable energy in Hawaii  

DOE Green Energy (OSTI)

Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

Troy, M.; Brown, N.E.

1982-04-01T23:59:59.000Z

49

Hawaii Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

50

Renewable Portfolio Standard (Hawaii) | Open Energy Information  

Open Energy Info (EERE)

Portfolio Standard (RPS), each electric utility company that sells electricity for consumption in Hawaii must establish the following percentages of "renewable electrical energy"...

51

Hydrothermal Geothermal Subprogram, Hawaii Geothermal Research Station, Hawaii County, Hawaii: Environmental assessment  

DOE Green Energy (OSTI)

This environmental impact assessment addresses the design, construction, and operation of an electric generating plant (3 to 4 MWe) and research station (Hawaii Geothermal Research Station (HGRS)) in the Puna district on the Island of Hawaii. The facility will include control and support buildings, parking lots, cooling towers, settling and seepage ponds, the generating plant, and a visitors center. Research activities at the facility will evaluate the ability of a successfully flow-tested well (42-day flow test) to provide steam for power generation over an extended period of time (two years). In future expansion, research activities may include direct heat applications such as aquaculture and the effects of geothermal fluids on various plant components and specially designed equipment on test modules. 54 refs., 7 figs., 22 tabs.

Not Available

1979-06-01T23:59:59.000Z

52

Hawaii Department of Land and Natural Resources | Open Energy...  

Open Energy Info (EERE)

Resources Jump to: navigation, search Logo: Hawaii Department of Land and Natural Resources Name Hawaii Department of Land and Natural Resources Address 1151 Punchbowl St Place...

53

Hawaii Department of Land and Natural Resources Commission on...  

Open Energy Info (EERE)

icon Hawaii Department of Land and Natural Resources Commission on Water Resource Management Jump to: navigation, search Name Hawaii Department of Land and Natural Resources...

54

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

55

Hawaii Electric Light Company News Release | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii Electric Light Company News Release Citation () . () . Hawaii...

56

Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

57

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hawaii Natural Gas % of Total Residential - Sales (Percent) Hawaii Natural Gas % of Total Residential - Sales (Percent)...

58

Report on Hawaii Geothermal Power Plant Project  

DOE Green Energy (OSTI)

The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

Not Available

1983-06-01T23:59:59.000Z

59

Geothermal energy for Hawaii: a prospectus  

DOE Green Energy (OSTI)

An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

Yen, W.W.S.; Iacofano, D.S.

1981-01-01T23:59:59.000Z

60

Energy Incentive Programs, Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii Energy Incentive Programs, Hawaii October 29, 2013 - 11:29am Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? The statewide Hawaii Energy Efficiency Program is run under contract to the PUC and administers all initiatives funded by the state's Public Benefits Fee. Through these programs, along with the remaining utility-administered initiative (see below), over 33 million was budgeted in 2012 for energy efficiency programs. Hawaii Energy Efficiency offers financial incentives through the For Your Business initiative for a broad range of energy-efficient equipment, including lighting, HVAC, appliances, cool roofs, window film, water heating, pumps and motors, and customized projects, as well as for adding

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program

62

Alternative Fuels Data Center: Hawaii Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hawaii Points of Hawaii Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Hawaii Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Hawaii Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Hawaii Points of Contact on Google Bookmark Alternative Fuels Data Center: Hawaii Points of Contact on Delicious Rank Alternative Fuels Data Center: Hawaii Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Hawaii Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Points of Contact The following people or agencies can help you find more information about Hawaii's clean transportation laws, incentives, and funding opportunities.

63

Alternative Fuels Data Center: Hawaii Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hawaii Laws and Hawaii Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Hawaii. Your Clean Cities coordinator at

64

Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii: Energy Resources Hawaii: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.8967662,"lon":-155.5827818,"alt":0,"address":"Hawaii","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Hawai'i's EVolution: Hawai'i Powered. Technology Driven. (Brochure)  

SciTech Connect

This Hawaii Clean Energy Initiative (HCEI) brochure outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. It includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users, including the Hawaiian Electric Company, Enterprise Rent-A-Car, and Senator Mike Gabbard; how EVs can integrate into and help propel Hawaii's evolving smart grid; and much more.

Not Available

2013-05-01T23:59:59.000Z

66

Interdecadal Sea Level Fluctuations at Hawaii  

Science Conference Proceedings (OSTI)

Over the past century, tide gauges in Hawaii have recorded interdecadal sea level variations that are coherent along the island chain. The generation of this signal and its relationship to other interdecadal variability are investigated, with a ...

Yvonne L. Firing; Mark A. Merrifield; Thomas A. Schroeder; Bo Qiu

2004-11-01T23:59:59.000Z

67

Hawaii Gets 'EV Ready' | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gets 'EV Ready' Gets 'EV Ready' Hawaii Gets 'EV Ready' January 31, 2012 - 11:09am Addthis Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol’s underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Last July, Governor Neil Abercrombie unveiled the first public charging station installed in the state capitol's underground parking garage with the "Hawaii EV Ready" program. In 2011, rebates were approved for 237 electric vehicles and 168 chargers. | Photo courtesy of the Office of the Governor. Julie McAlpin Communications Liaison, State Energy Program By 2030, the Hawaii Clean Energy Initiative will:

68

Lighthouse Solar Honolulu Hawaii | Open Energy Information  

Open Energy Info (EERE)

Hawaii Hawaii Jump to: navigation, search Logo: Lighthouse Solar Honolulu Hawaii Name Lighthouse Solar Honolulu Hawaii Address 1040 Sand Island parkway Suite 100 Place Honolulu, HI Zip 96819 Sector Solar Phone number (808) 783-0357 Website http://www.lighthousesolar.com Coordinates 21.3013283°, -157.8704241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3013283,"lon":-157.8704241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Hawaii/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources Hawaii/Wind Resources < Hawaii Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

70

Kaneohe, Hawaii Wind Resource Assessment Report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

Robichaud, R.; Green, J.; Meadows, B.

2011-11-01T23:59:59.000Z

71

Report on Hawaii geothermal power plant project  

DOE Green Energy (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

72

The First VERITAS Telescope  

E-Print Network (OSTI)

The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV $\\gamma$-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.

J. Holder; R. W. Atkins; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; K. L. Byrum; D. A. Carter-Lewis; O. Celik; Y. C. K. Chow; P. Cogan; W. Cui; M. K. Daniel; I. de la Calle Perez; C. Dowdall; P. Dowkontt; C. Duke; A. D. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. F. Fortson; K. Gibbs; G. Gillanders; O. J. Glidewell; J. Grube; K. J. Gutierrez; G. Gyuk; J. Hall; D. Hanna; E. Hays; D. Horan; S. B. Hughes; T. B. Humensky; A. Imran; I. Jung; P. Kaaret; G. E. Kenny; D. Kieda; J. Kildea; J. Knapp; H. Krawczynski; F. Krennrich; M. J. Lang; S. LeBohec; E. Linton; E. K. Little; G. Maier; H. Manseri; A. Milovanovic; P. Moriarty; R. Mukherjee; P. A. Ogden; R. A. Ong; J. S. Perkins; F. Pizlo; M. Pohl; J. Quinn; K. Ragan; P. T. Reynolds; E. T. Roache; H. J. Rose; M. Schroedter; G. H. Sembroski; G. Sleege; D. Steele; S. P. Swordy; A. Syson; J. A. Toner; L. Valcarcel; V. V. Vassiliev; S. P. Wakely; T. C. Weekes; R. J. White; D. A. Williams; R. Wagner

2006-04-06T23:59:59.000Z

73

http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE  

E-Print Network (OSTI)

://www.hnei.hawaii.edu Related Projects: Grid Management Using Hydrogen Batteries for Grid Management Hawai`i Energy of Distribution Management System Status and Accomplishments Phase 1 of this project is in progress were provided by MECO. MECO's Wailea substation was selected for use in this project and preliminary

74

High resolution telescope  

DOE Patents (OSTI)

A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

Massie, N.A.; Oster, Y.

1990-01-01T23:59:59.000Z

75

High resolution telescope  

DOE Patents (OSTI)

A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

Massie, Norbert A. (San Ramon, CA); Oster, Yale (Danville, CA)

1992-01-01T23:59:59.000Z

76

High resolution telescope  

DOE Patents (OSTI)

A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1m in a circle-of-nine configuration. The telescope array has an effective aperture of 12m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 9 figs., 1 tab.

Massie, N.A.; Oster, Y.

1990-12-31T23:59:59.000Z

77

Alternative Fuels Data Center: Hawaii Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Other The list below contains summaries of all Hawaii laws and incentives related

78

Hawaii Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

79

Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Ethanol The list below contains summaries of all Hawaii laws and incentives related

80

Alternative Fuels Data Center: Hawaii Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Other The list below contains summaries of all Hawaii laws and incentives related

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hawaii Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

82

Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for NEVs The list below contains summaries of all Hawaii laws and incentives related

83

Alternative Fuels Data Center: Hawaii Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives Listed below are the summaries of all current Hawaii laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

84

Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Exemptions The list below contains summaries of all Hawaii laws and incentives related

85

Hawaii-Okinawa Clean and Efficient Energy Partnership | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii-Okinawa Clean and Efficient Energy Partnership Hawaii-Okinawa Clean and Efficient Energy Partnership August 22, 2010 - 2:55pm Addthis U.S. and Japanese energy experts from...

86

Hawaii - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Hawaii produces no natural gas and has no proven ... solar thermal and photovoltaic (PV); geothermal; biogas including landfill methane; biomass ...

87

The dual-mirror Small Size Telescope for the Cherenkov Telescope Array  

E-Print Network (OSTI)

In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana, Italy/INAF), GATE (Gamma-ray Telescope Elements, France/Paris Observ.) and CHEC (Compact High Energy Camera, universities in UK, US and Japan) which are merging their efforts in order to finalize an end-to-end design that will be constructed for CTA. A number of prototype structures and cameras are being developed in order to investigate various alternative designs. In this contribution, these designs are presented, along with the technological solutions under study.

G. Pareschi; G. Agnetta; L. A. Antonelli; D. Bastieri; G. Bellassai; M. Belluso; C. Bigongiari; S. Billotta; B. Biondo; G. Bonanno; G. Bonnoli; P. Bruno; A. Bulgarelli; R. Canestrari; M. Capalbi; P. Caraveo; A. Carosi; E. Cascone; O. Catalano; M. Cereda; P. Conconi; V. Conforti; G. Cusumano; V. De Caprio; A. De Luca; A. Di Paola; F. Di Pierro; D. Fantinel; M. Fiorini; D. Fugazza; D. Gardiol; M. Ghigo; F. Gianotti; S. Giarrusso; E. Giro; A. Grillo; D. Impiombato; S. Incorvaia; A. La Barbera; N. La Palombara; V. La Parola; G. La Rosa; L. Lessio; G. Leto; S. Lombardi; F. Lucarelli; M. C. Maccarone; G. Malaguti; G. Malaspina; V. Mangano; D. Marano; E. Martinetti; R. Millul; T. Mineo; A. Mist; C. Morello; G. Morlino; M. R. Panzera; G. Rodeghiero; P. Romano; F. Russo; B. Sacco; N. Sartore; J. Schwarz; A. Segreto; G. Sironi; G. Sottile; A. Stamerra; E. Strazzeri; L. Stringhetti; G. Tagliaferri; V. Testa; M. C. Timpanaro; G. Toso; G. Tosti; M. Trifoglio; P. Vallania; S. Vercellone; V. Zitelli; For The Astri Collaboration; J. P. Amans; C. Boisson; C. Costille; J. L. Dournaux; D. Dumas; G. Fasola; O. Hervet; J. M. Huet; P. Laporte; C. Rulten; H. Sol; A. Zech; For The Gate Collaboration; R. White; J. Hinton; D. Ross; J. Sykes; S. Ohm; J. Schmoll; P. Chadwick; T. Greenshaw; M. Daniel; G. Cotter; G. S. Varner; S. Funk; J. Vandenbroucke; L. Sapozhnikov; J. Buckley; P. Moore; D. Williams; S. Markoff; J. Vink; D. Berge; N. Hidaka; A. Okumura; H. Tajima; For The Chec Collaboration; For The Cta Consortium

2013-07-18T23:59:59.000Z

88

Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Driving / Idling

89

Forest City Military Communities, Hawaii | Open Energy Information  

Open Energy Info (EERE)

Military Communities, Hawaii Military Communities, Hawaii Jump to: navigation, search Name Forest City Military Communities, Hawaii Place Honolulu, HI Website http://www.fcnavyhawaii.com/ References Solar Technical Assistance Provided to Forest City Military Communities in Hawaii[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Forest City Military Communities, Hawaii is a company located in Honolulu, HI. References ↑ "Solar Technical Assistance Provided to Forest City Military Communities in Hawaii" Retrieved from "http://en.openei.org/w/index.php?title=Forest_City_Military_Communities,_Hawaii&oldid=381670"

90

Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Idle Reduction

91

Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Tax Incentives

92

EIS-0459: Hawaii Clean Energy Programmatic Environmental Impact Statement |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hawaii Clean Energy Programmatic Environmental Impact 9: Hawaii Clean Energy Programmatic Environmental Impact Statement EIS-0459: Hawaii Clean Energy Programmatic Environmental Impact Statement Summary In 2010, DOE announced its intent to prepare a PEIS for the Hawai'I Interisland Renewable Energy Program (HIREP): Wind (DOE/EIS-0459). In response to public scoping comments, as well as regulatory and policy developments since the scoping meetings, DOE proposes to broaden the range of energy efficiency and renewable energy activities and technologies to be analyzed in the PEIS and, accordingly, has renamed it the Hawai'i Clean Energy PEIS. DOE's proposal involves the development of guidance to use in future funding decisions and other actions to support Hawai'i in achieving the goal established in the Hawai'i Clean Energy Initiative

93

Hawaii is a Renewable Energy Lover's Paradise | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii is a Renewable Energy Lover's Paradise Hawaii is a Renewable Energy Lover's Paradise Hawaii is a Renewable Energy Lover's Paradise July 5, 2011 - 10:36am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory Nearly six weeks ago I visited for the first time the paradise of Hawaii. While it's easy for visitors to appreciate its sun-kissed beaches and warm ocean breezes, you may not realize Hawaii also is a renewable energy lover's paradise. Sunshine and wind, especially, are in abundant supply. The Aloha State is planning to utilize these renewable resources to achieve 70% clean energy by 2030. These are some of the most aggressive clean energy goals in the nation-and in my mind, another reason why Hawaii is such a special place. Thirty percent of Hawaii's Clean Energy Initiative goal comes from energy

94

Characteristics of Local Winds in Northwest Hawaii  

Science Conference Proceedings (OSTI)

During the period 2229 June 1978, meteorological data were collected at six stations arranged in nearly linear transection extending from the coast at Anaehoomalu, Hawaii to Waimea Airport, 25 km inland and 800 m higher. Sea breeze response to ...

Thomas A. Schroeder

1981-08-01T23:59:59.000Z

95

Frances Beinecke | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Frances Beinecke Frances Beinecke About Us Frances Beinecke - President of Natural Resources Defense Council Photo of Frances Beinecke Frances Beinecke is the president of NRDC. Under Ms. Beinecke's leadership, the organization has launched a new strategic campaign that sharply focuses NRDC's efforts on establishing a clean energy future that curbs climate change, reviving the world's oceans, defending endangered wildlife and wild places, protecting our health by preventing pollution, fostering sustainable communities, and ensuring safe and sufficient water. Ms. Beinecke has worked with NRDC for more than 30 years. Prior to becoming the president in 2006, Ms. Beinecke served as the organization's executive director for eight years. Under her years of leadership, NRDC's membership

96

The South Pole Telescope  

E-Print Network (OSTI)

A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over approximately 4000 degrees for galaxy clusters using the Sunyaev-Zel'dovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

SPT Collaboration; J. E. Ruhl; P. A. R. Ade; J. E. Carlstrom; H. M. Cho; T. Crawford; M. Dobbs; C. H. Greer; N. W. Halverson; W. L. Holzapfel; T. M. Lantin; A. T. Lee; J. Leong; E. M. Leitch; W. Lu; M. Lueker; J. Mehl; S. S. Meyer; J. J. Mohr; S. Padin; T. Plagge; C. Pryke; D. Schwan; M. K. Sharp; M. C. Runyan; H. Spieler; Z. Staniszewski; A. A. Stark

2004-11-04T23:59:59.000Z

97

Waikane, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waikane, Hawaii: Energy Resources Waikane, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.501379°, -157.875226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.501379,"lon":-157.875226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

MHK Projects/Hawaii | Open Energy Information  

Open Energy Info (EERE)

Hawaii Hawaii < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.1489,"lon":-157.425,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

99

Maunawili, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maunawili, Hawaii: Energy Resources Maunawili, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3727778°, -157.7705556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3727778,"lon":-157.7705556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Haleiwa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haleiwa, Hawaii: Energy Resources Haleiwa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.59034°, -158.114197° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.59034,"lon":-158.114197,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hauula, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hauula, Hawaii: Energy Resources Hauula, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.612869°, -157.924301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.612869,"lon":-157.924301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Kahuku, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kahuku, Hawaii: Energy Resources Kahuku, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.6802778°, -157.9511111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.6802778,"lon":-157.9511111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Waimanalo, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waimanalo, Hawaii: Energy Resources Waimanalo, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.347424°, -157.7206161° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.347424,"lon":-157.7206161,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Ahuimanu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ahuimanu, Hawaii: Energy Resources Ahuimanu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.441237°, -157.836518° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.441237,"lon":-157.836518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Kaneohe, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaneohe, Hawaii: Energy Resources Kaneohe, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.417351°, -157.803299° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.417351,"lon":-157.803299,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Oahu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oahu, Hawaii: Energy Resources Oahu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4389123°, -158.0000565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4389123,"lon":-158.0000565,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Ainaloa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ainaloa, Hawaii: Energy Resources Ainaloa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.5269444°, -154.9930556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.5269444,"lon":-154.9930556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Hawaii Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

109

Kahului, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kahului, Hawaii: Energy Resources Kahului, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 20.8947222°, -156.47° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.8947222,"lon":-156.47,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Pahoa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pāhoa, Hawaii) Pāhoa, Hawaii) Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.49786°, -154.950897° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.49786,"lon":-154.950897,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Mokuleia, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mokuleia, Hawaii: Energy Resources Mokuleia, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5841667°, -158.1519444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5841667,"lon":-158.1519444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Makaha, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Makaha, Hawaii: Energy Resources Makaha, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.468274°, -158.215062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.468274,"lon":-158.215062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Waimalu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waimalu, Hawaii: Energy Resources Waimalu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4047221°, -157.9433333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4047221,"lon":-157.9433333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Kailua, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kailua, Hawaii: Energy Resources Kailua, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4022222°, -157.7394444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4022222,"lon":-157.7394444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Anahola, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anahola, Hawaii: Energy Resources Anahola, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 22.1452778°, -159.3155556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.1452778,"lon":-159.3155556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Heeia, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heeia, Hawaii: Energy Resources Heeia, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.428°, -157.817183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.428,"lon":-157.817183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Pupukea, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pupukea, Hawaii: Energy Resources Pupukea, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.6641667°, -158.0536111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.6641667,"lon":-158.0536111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Nanakuli, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nanakuli, Hawaii: Energy Resources Nanakuli, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3905556°, -158.1547222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3905556,"lon":-158.1547222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Kahaluu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kahaluu, Hawaii: Energy Resources Kahaluu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 19.5833333°, -155.9691667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.5833333,"lon":-155.9691667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Hawaii State Energy Office | Open Energy Information  

Open Energy Info (EERE)

Dept. of Business, Economic Development & Tourism Dept. of Business, Economic Development & Tourism Address 235 S. Beretania, 5th Floor Place Honolulu, Hawaii Zip 96813 Phone number (808) 587-3807 Website http://energy.hawaii.gov/ Coordinates 21.3095778°, -157.8584382° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3095778,"lon":-157.8584382,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Waialua, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waialua, Hawaii: Energy Resources Waialua, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5766667°, -158.1302777° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5766667,"lon":-158.1302777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Waianae, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waianae, Hawaii: Energy Resources Waianae, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.449089°, -158.190704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.449089,"lon":-158.190704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Wahiawa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wahiawa, Hawaii: Energy Resources Wahiawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5027778°, -158.0236111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5027778,"lon":-158.0236111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Maili, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maili, Hawaii: Energy Resources Maili, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.418733°, -158.18042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.418733,"lon":-158.18042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Aiea, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Aiea, Hawaii: Energy Resources Aiea, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.386338°, -157.9255357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.386338,"lon":-157.9255357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Halawa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Halawa, Hawaii: Energy Resources Halawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.37945°, -157.92158° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.37945,"lon":-157.92158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Waipahu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waipahu, Hawaii: Energy Resources Waipahu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3866667°, -158.0091667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3866667,"lon":-158.0091667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Hawaii Public Utilities Commission | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Commission Public Utilities Commission Jump to: navigation, search Name Hawaii Public Utility Commission Address 465 South King Street #103 Place Honolulu, Hawaii Zip 96813 Coordinates 21.3053513°, -157.85857° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3053513,"lon":-157.85857,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Punaluu, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Punaluu, Hawaii: Energy Resources Punaluu, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5926°, -157.896576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5926,"lon":-157.896576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Kaaawa, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaaawa, Hawaii: Energy Resources Kaaawa, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5572221°, -157.8536111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5572221,"lon":-157.8536111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Waipio, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waipio, Hawaii: Energy Resources Waipio, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.418307°, -158.000602° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.418307,"lon":-158.000602,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

133

Hawaii alternative fuels utilization program. Phase 3, final report  

DOE Green Energy (OSTI)

The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

Kinoshita, C.M.; Staackmann, M.

1996-08-01T23:59:59.000Z

134

Hawaii-Okinawa Clean and Efficient Energy Partnership | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii-Okinawa Clean and Efficient Energy Partnership Hawaii-Okinawa Clean and Efficient Energy Partnership Hawaii-Okinawa Clean and Efficient Energy Partnership August 22, 2010 - 2:55pm Addthis U.S. and Japanese energy experts from the national and local governments will visit Okinawa and Hawaii from August 22-September 4. The experts on this technical mission are expected to exchange views and offer recommendations on future cooperative activities that the United States and Japan can carry out to support the "Hawaii-Okinawa Partnership on Clean and Efficient Energy Development and Deployment" signed by the U.S. Department of Energy, Ministry of Economy, Trade and Industry of Japan, State of Hawaii, and Prefecture of Okinawa in Tokyo on June 17, 2010. The partnership is part of an agreement that the President of the United

135

Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change / Energy Initiatives to someone by E-mail Climate Change / Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Climate Change / Energy Initiatives on AddThis.com...

136

Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

137

Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Standard / Mandate to someone by E-mail Renewable Fuel Standard / Mandate to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Renewable Fuel Standard / Mandate on AddThis.com...

138

Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

139

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

140

OpenEI Community - Hawai'i + flowchart + workshop  

Open Energy Info (EERE)

Hawai'i Meeting #1 - Hawai'i Meeting #1 - Flowchart Development http://en.openei.org/community/blog/hawaii-meeting-1-flowchart-development The Hawai'i kickoff meeting for the Geothermal Regulatory Roadmap had a great turnout with over 20 attendees from Hawai'i agencies, industry, attorneys and subcontractors.  Agency personnel came prepared with supporting documents to review and update developed flowcharts.  Attendees also discussed recent changes to regulations and the impact on permitting processes.  GRR team members have been following up this week with agency personnel who were unable to attend to get feedback and input on flowcharts for permits regulated by their agencies.hawaii-meeting-1-flowchart-development"

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

142

Managing Supply Chain Key for Hawaii Appliance Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Supply Chain Key for Hawaii Appliance Rebate Program Managing Supply Chain Key for Hawaii Appliance Rebate Program Managing Supply Chain Key for Hawaii Appliance Rebate Program August 24, 2010 - 10:00am Addthis Lindsay Gsell Hawaii's appliance rebate program delivered 4,300 rebates to Hawaiians in just three days. And on just the first day of program, almost 4,000 ENERGY STAR qualified refrigerators were sold. Funded by $1.2 million from the American Recovery and Reinvestment Act, the program delivered a proportionate number of $250 ENERGY STAR refrigerator rebates to six of Hawaii's islands: Oahu, Hawaii, Maui, Kauai, Lanai, and Molokai. "It takes a lot of help from manufacturers, distributors, retailers, hauling company, recyclers, advertisers, printers, new reporters, radio stations and television station to create a success story," said Derrick

143

Managing Supply Chain Key for Hawaii Appliance Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Managing Supply Chain Key for Hawaii Appliance Rebate Program Managing Supply Chain Key for Hawaii Appliance Rebate Program Managing Supply Chain Key for Hawaii Appliance Rebate Program August 24, 2010 - 10:00am Addthis Lindsay Gsell Hawaii's appliance rebate program delivered 4,300 rebates to Hawaiians in just three days. And on just the first day of program, almost 4,000 ENERGY STAR qualified refrigerators were sold. Funded by $1.2 million from the American Recovery and Reinvestment Act, the program delivered a proportionate number of $250 ENERGY STAR refrigerator rebates to six of Hawaii's islands: Oahu, Hawaii, Maui, Kauai, Lanai, and Molokai. "It takes a lot of help from manufacturers, distributors, retailers, hauling company, recyclers, advertisers, printers, new reporters, radio stations and television station to create a success story," said Derrick

144

U.S. Coast Guard - Honolulu, Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coast Guard - Honolulu, Hawaii Coast Guard - Honolulu, Hawaii U.S. Coast Guard - Honolulu, Hawaii October 7, 2013 - 10:02am Addthis Photo of U.S. Coast Guard Housing in Honolulu, Hawaii The U.S. Coast Guard (USCG) housing in Honolulu, Hawaii, is located at the Kia'i Kai Hale Housing Area. The USCG converted 278 units in the complex from electric water heaters to solar water-heating systems with assistance from the Federal Energy Management Program (FEMP) and rebates from the local power providers. The solar water-heating systems are active (pumped) open-loop systems with timers to control demand and tempering valves to allow higher storage temperatures without the risk of scalding. Solar water-heating systems are considered cost effective for the Honolulu area because Hawaii's relatively

145

Hawaii Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hawaii Geothermal Region Details Areas (16) Power Plants (1) Projects (2) Techniques (0) References Geothermal Region Data State(s) Hawaii Area 28,311 km²28,311,000,000 m² 10,928.046 mi² 304,736,772,900 ft² 33,859,956,000 yd² 6,995,789.655 acres USGS Resource Estimate for this Region Identified Mean Potential 181 MW181,000 kW 181,000,000 W 181,000,000,000 mW 0.181 GW 1.81e-4 TW Undiscovered Mean Potential 2,435 MW2,435,000 kW 2,435,000,000 W 2,435,000,000,000 mW 2.435 GW 0.00244 TW Planned Capacity Planned Capacity 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Plants Included in Planned Estimate 1 Plants with Unknown Planned Capacity 0 Geothermal Areas within the Hawaii Geothermal Region

146

U.S. Department of Energy and State of Hawaii Sign Agreement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State of Hawaii Sign Agreement to Increase Clean Energy Technologies in Hawaii U.S. Department of Energy and State of Hawaii Sign Agreement to Increase Clean Energy Technologies in...

147

Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii  

Science Conference Proceedings (OSTI)

In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

1993-12-01T23:59:59.000Z

148

Hawaii Department of Land and Natural Resources Historic Preservation...  

Open Energy Info (EERE)

Historic Preservation Division Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Historic Preservation Division Address Kakuhihewa Building 601...

149

NREL GIS Data: Hawaii High Resolution Wind Resource Abstract...  

Open Energy Info (EERE)

potential within the state of Hawaii.

SupplementalInformation: This data set has been validated by NREL and wind energy meteorological consultants. However, the...

150

Hawaii Department of Labor and Industrial Relations Occupational...  

Open Energy Info (EERE)

Labor and Industrial Relations Occupational Safety and Health Division Jump to: navigation, search Name Hawaii Department of Labor and Industrial Relations Occupational Safety and...

151

Hawaii - Compare - U.S. Energy Information Administration (EIA...  

U.S. Energy Information Administration (EIA) Indexed Site

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

152

Kalawao County, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kalawao County, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.2273942, -156.9749731 Loading map... "minzoom":false,"mappingservice...

153

Chemistry of spring and well waters on Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

waters on Kilauea Volcano, Hawaii, and vicinity Abstract Published and new data for chemical and isotopic samples from wells and springson Kilauea Volcano and vicinity are...

154

EIS-0459: Hawaii Clean Energy Programmatic Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

DOE proposes to develop guidance to use in future funding decisions and other actions to support Hawaii in achieving the goal established in the Hawaii Clean Energy Initiative to meet 70% of the States energy needs by 2030 through energy efficiency and renewable energy. The Hawai'i Clean Energy Programmatic Environmental Impact Statement will assess, at a programmatic level, the potential environmental impacts associated with energy efficiency activities and renewable energy technologies and resources (energy efficiency, distributed renewables, utility-scale renewables, alternative transportation fuels and modes, and electrical transmission and distribution) in the State of Hawai'i.

155

Hawaii Profile - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Environment ; Special Programs: Hawaii: ... as amended by the legislature in 2009, ... Wind projects on the rural islands of Molokai and Lanai are ...

156

Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...

157

Maui County - Solar Roofs Initiative Loan Program (Hawaii) |...  

Open Energy Info (EERE)

the loan program and, through the Hawaii Energy Program, offers a 750 rebate for installations through its approved independent solar contractors. Residential homeowners...

158

Hawaii - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Economy ; Population and Employment: Hawaii: U.S. Rank: Period: Population 1.4 million 40 2012 Civilian Labor Force 0.6 million

159

Hawaii - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. ... Share of U.S. Period: ... Consumption for Home Heating: Hawaii: U.S. Average: Period:

160

Hawaii Department of Land and Natural Resources Office of Conservation...  

Open Energy Info (EERE)

Office of Conservation and Coastal Lands Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy...

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hawaii Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Hawaii Regions Hawaii Science Bowl National Science Bowl (NSB) NSB Home About NSB High School High School Students High School Coaches High School Regionals High School Rules,...

162

Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)  

SciTech Connect

Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

Not Available

2009-07-01T23:59:59.000Z

163

Hawaii - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Hawaii: Economy: www.city-data.com, Hawaii - Economy: LNG: ... Assessing Forest Cover and Change across Massachusetts Using Satellite Images, undated ...

164

The ANTARES neutrino telescope: a status report  

E-Print Network (OSTI)

ANTARES is a large volume neutrino telescope currently under construction off La Seyne-sur-mer, France, at 2475m depth. Neutrino telescopes aim at detecting neutrinos as a new probe for a sky study at energies greater than 1 TeV. The detection principle relies on the observation, using photomultipliers, of the Cherenkov light emitted by charged leptons induced by neutrino interactions in the surrounding detector medium. Since late January 2007, the ANTARES detector consists of 5 lines, comprising 75 optical detectors each, connected to the shore via a 40 km long undersea cable. The data from these lines not only allow an extensive study of the detector properties but also the reconstruction of downward going cosmic ray muons and the search for the first upward going neutrino induced muons.The operation of these lines follows on from that of the ANTARES instrumentation line, which has provided data for more than a year on the detector stability and the environmental conditions. The full 12 line detector is planned to be fully operational early 2008.

A. Kouchner; for the Antares collaboration

2007-10-01T23:59:59.000Z

165

Fast Fourier transform telescope  

Science Conference Proceedings (OSTI)

We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

Tegmark, Max; Zaldarriaga, Matias [Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Astrophysics, Harvard University, Cambridge, Massachusetts 02138 (United States)

2009-04-15T23:59:59.000Z

166

Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii  

DOE Green Energy (OSTI)

The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

Chapman, G.A.; Buevens, W.R.

1982-06-01T23:59:59.000Z

167

Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii  

DOE Green Energy (OSTI)

The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

Canon, P.

1980-06-01T23:59:59.000Z

168

http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE  

E-Print Network (OSTI)

in the future, Ability to operate the electrical utility with reduced usage of fossil fuels and to gain Institution Team Partners: Hawai`i Natural Energy Institute Hawaiian Electric Company http://www.heco.com General Electric Company http://ge.geglobalresearch.com Period of Performance: 10/1/08 to 06/30/10 Project

169

Renewable Energy Permitting Barriers in Hawaii: Experience from the Field  

Science Conference Proceedings (OSTI)

This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

2013-03-01T23:59:59.000Z

170

A Night Handline Fishery for Tunas in Hawaii  

E-Print Network (OSTI)

A Night Handline Fishery for Tunas in Hawaii HEENY S. H. YUEN Introduction Modern commercial fishing for tunas brings to mind large superseiners and longliners with complicated and costly equipment and gear. In contrast, the rapidly growing night handline fishery for tunas near the island of Hawaii

171

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network (OSTI)

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

172

January,2008 University of Hawai`i at Mnoa  

E-Print Network (OSTI)

course work in the real world. This year, the Marine Option Program proudly awarded ten certificatesJanuary,2008 University of Hawai`i at Mnoa Seawords, Marine Option Program College of Natural and Color Versions of Seawords http://www.hawaii.edu/mop/seawords Marine Option Program Graduation December

173

US hydropower resource assessment for Hawaii  

DOE Green Energy (OSTI)

US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

Francfort, J.E.

1996-09-01T23:59:59.000Z

174

Sandia National Labs Hawaii Clean Energy Efforts FY '10 Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Lead: Jennifer Stinebaugh jstineb@sandia.gov Project Lead: Jennifer Stinebaugh jstineb@sandia.gov 505-844-7638 Technical Lead: Abbas Akhil aaakhil@sandia.gov 505-280-0997 Program Manager: Juan Torres jjtorre@sandia.gov 505-844-0809 Hawaii Clean Energy Initiative  Partnership between DOE's OE and EERE offices and the State of Hawaii  Goal - Meet 70% of Hawaii's energy needs with renewable energy and energy efficiency by 2030  Many stakeholders involved including SNL, NREL, developers, policy makers, county offices, utilities, HNEI, University of Hawaii, etc. Sandia HCEI Presence in Hawaii Storage Seminar LINE Project Dynamic Sim Storage TA Storage TA PV for resorts TA Solar Integration Study PV for Airports PV for Airports Roadmap with NREL 2010 Current Projects Maui Dynamic Simulation Energy Model -

175

Hawaii Clean Energy Initiative Existing Building Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Clean Energy Initiative Existing Building Energy Efficiency Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010 Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010 This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them. 48318.pdf More Documents & Publications Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative HCEI Road Map: 2011 Edition (Brochure) Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

176

Department of Commerce - Honolulu, Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Commerce - Honolulu, Hawaii Department of Commerce - Honolulu, Hawaii Department of Commerce - Honolulu, Hawaii October 7, 2013 - 9:51am Addthis Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New solar water heating systems were installed on six staff residences. These systems were designed to meet at least 90% of the yearly demand for hot water. They save between $200 and $300 in energy costs each month, so the simple payback period for the project is only five years. The annual savings of approximately $3,600 will go toward the purchase of much needed

177

U.S. Navy - Moanalua Terrace, Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moanalua Terrace, Hawaii Moanalua Terrace, Hawaii U.S. Navy - Moanalua Terrace, Hawaii October 7, 2013 - 10:10am Addthis Photo of the Moanalua Terrace U.S. Navy Housing Project on Oahu, Hawaii Moanalua Terrace is a U.S. Navy housing project on Oahu, Hawaii. At this site the Navy had demolished 752 units of family housing, which were being rebuilt in four phases. The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction projects was an incentive for the Navy to install solar water heaters on family housing units. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, the Navy secured a $130,000 grant from the Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar

178

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

179

Hawai'i + flowchart + workshop | OpenEI Community  

Open Energy Info (EERE)

1 1 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234791 Varnish cache server Hawai'i + flowchart + workshop Home Kyoung's picture Submitted by Kyoung(155) Contributor 2 August, 2012 - 22:34 Hawai'i Meeting #1 - Flowchart Development Hawai'i + flowchart + workshop The Hawai'i kickoff meeting for the Geothermal Regulatory Roadmap had a great turnout with over 20 attendees from Hawai'i agencies, industry, attorneys and subcontractors. Agency personnel came prepared with

180

Hawaii Department of Health Clean Water Branch | Open Energy Information  

Open Energy Info (EERE)

Hawaii Department of Health Clean Water Branch Hawaii Department of Health Clean Water Branch Jump to: navigation, search Name Hawaii Department of Health Clean Water Branch Address P.O. Box 3378 Place Honolulu, Hawaii Zip 96801 Website http://hawaii.gov/health/envir Coordinates 21.31°, -157.86° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.31,"lon":-157.86,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Large Synoptic Survey Telescope  

NLE Websites -- All DOE Office Websites (Extended Search)

night sky. Below: The telescope depicted at its future site atop Cerro Pachn in Chile. (Top image by Todd Mason, Mason Productions Inc. LSST Corporation. Bottom image...

182

U.S. Department of Energy and State of Hawaii Sign Agreement to Increase  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy and State of Hawaii Sign Agreement to U.S. Department of Energy and State of Hawaii Sign Agreement to Increase Clean Energy Technologies in Hawaii U.S. Department of Energy and State of Hawaii Sign Agreement to Increase Clean Energy Technologies in Hawaii January 28, 2008 - 10:53am Addthis DOE to support transformation of Hawaii's energy supply through Hawaii Clean Energy Initiative HONOLULU, HI -The U.S. Department of Energy (DOE) and the State of Hawaii today strengthened cooperation to implement clean energy technologies that will increase energy efficiency and maximize use of the State's vast and abundant renewable resources. DOE Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Hawaii Governor Linda Lingle signed a Memorandum of Understanding (MOU) establishing the Hawaii

183

U.S. Department of Energy and State of Hawaii Sign Agreement to Increase  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy and State of Hawaii Sign Agreement to Department of Energy and State of Hawaii Sign Agreement to Increase Clean Energy Technologies in Hawaii U.S. Department of Energy and State of Hawaii Sign Agreement to Increase Clean Energy Technologies in Hawaii January 28, 2008 - 10:53am Addthis DOE to support transformation of Hawaii's energy supply through Hawaii Clean Energy Initiative HONOLULU, HI -The U.S. Department of Energy (DOE) and the State of Hawaii today strengthened cooperation to implement clean energy technologies that will increase energy efficiency and maximize use of the State's vast and abundant renewable resources. DOE Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Hawaii Governor Linda Lingle signed a Memorandum of Understanding (MOU) establishing the Hawaii

184

2012 SG Peer Review - University of Hawaii Renewable and Distributed Systems - Jay Griffin, Univ. of Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE RDSI Maui Smart Grid Project DOE RDSI Maui Smart Grid Project James "Jay" Griffin, PhD Hawai'i Natural Energy Institute University of Hawai'i at Manoa June 7, 2012 December 2008 DOE RDSI Maui Smart Grid Project Managing Distribution Energy Resources (DER) for Transmission- and Distribution-Level Benefits Objectives Life-cycle Funding ($k) FY09 - FY13 Project Budget DOE: Cost Share: $ 6,995 $ 7,383 Total: $ 14,383 OBJECTIVES D, T Reduce distribution circuit loading and transmission congestion D Help consumers better manage energy use D Improve service quality D, T Use more as-available renewable energy resources (wind and solar PV) D Demonstrate flexible, expandable, architecture compatible with legacy systems TECHNICAL SCOPE Advanced Metering Infrastructure (AMI) * load research * power quality monitoring

185

Laie, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Laie, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.649067°, -157.925454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.649067,"lon":-157.925454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Geothermal Resources Assessment In Hawaii | Open Energy Information  

Open Energy Info (EERE)

Assessment In Hawaii Assessment In Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Resources Assessment In Hawaii Details Activities (78) Areas (14) Regions (0) Abstract: The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRAs) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques. A total of 15 PGRAs on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The results of these studies have allowed us to attempt an estimate of the

187

Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offers $117 Million Conditional Commitment for Hawaii Offers $117 Million Conditional Commitment for Hawaii Wind Power Project Secretary Chu Offers $117 Million Conditional Commitment for Hawaii Wind Power Project March 5, 2010 - 12:00am Addthis Washington DC --- U.S. Secretary of Energy Steven Chu today announced that the Department of Energy has offered a conditional commitment on a $117 million loan guarantee to finance the construction and start-up of an innovative 30 megawatt (MW) wind energy project in Kahuku, Hawaii. Kahuku Wind Power, LLC will install twelve 2.5 MW wind turbine generators along with a battery energy storage system for electricity load stability. The loan guarantee is being supported by funds made available from the American Recovery and Reinvestment Act. "This investment will create jobs and cut our dependence on oil, while

188

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

189

Hawaii Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Hawaii Regions Hawaii Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Hawaii Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Hawaii Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

190

Hawaii Electric Light Co Inc | Open Energy Information  

Open Energy Info (EERE)

Hawaii Electric Light Co Inc Hawaii Electric Light Co Inc Jump to: navigation, search Name Hawaii Electric Light Co Inc Place Hawaii Utility Id 8287 Utility Location Yes Ownership I NERC Location HI NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png SCHEDULE "F" Street Light Service Lighting SCHEDULE "G" General Service Non-Demand - Single Phase Commercial SCHEDULE "G" General Service Non-Demand - Three Phase Commercial

191

Hawaii/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources/Full Version Hawaii/Wind Resources/Full Version < Hawaii‎ | Wind Resources Jump to: navigation, search Print PDF Hawaii Wind Resources HawaiiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

192

Trade Wind Rainfall near the Windward Coast of Hawaii  

Science Conference Proceedings (OSTI)

A dynamically based mesoscale climatology of rainfall and other data are examined for typical trade wind conditions near Hawaii. Relative distributions of rainfall are deduced from radar reflectivity data for a 4000 km2 region over the windward ...

R. E. Carbone; J. D. Tuttle; W. A. Cooper; V. Grubii?; W. C. Lee

1998-11-01T23:59:59.000Z

193

Warm Rain Study in HawaiiRain Initiation  

Science Conference Proceedings (OSTI)

More than 300 hours of aircraft flights were conducted in Hawaii from 1977 to 1979 to study precipitation mechanisms in warm rain. Airborne instruments were used to measure drop size distributions over the size range from cloud droplets to ...

Tsutomu Takahashi

1981-02-01T23:59:59.000Z

194

Aeromagnetic study of the Island of Hawaii | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Aeromagnetic study of the Island of Hawaii Citation T.G. Hildenbrand,J. G....

195

Semidiurnal Baroclinic Wave Momentum Fluxes at Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Kaena Ridge, Hawaii, is a site of energetic conversion of the semidiurnal barotropic tide. Diffuse baroclinic wave beams emanate from the critical-slope regions near the ridge crest, directed upward and southward from the north flank of the ridge ...

Robert Pinkel; Luc Rainville; Jody Klymak

2012-08-01T23:59:59.000Z

196

Hawaii Natural Gas Total Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Hawaii Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

197

Hawaii Natural Gas Number of Residential Consumers (Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

198

A Climate Transect through Tropical Montane Rain Forest in Hawaii  

Science Conference Proceedings (OSTI)

Two years of climate data from a transect of three surface meteorological stations on the windward slopes of Mauna Loa, Hawaii, are analyzed. The stations constitute a transect between 700 and 1640 m through the wet, montane rain forest zone ...

James O. Juvik; Dennis Nullet

1994-11-01T23:59:59.000Z

199

Hawaii Clean Energy Initiative Existing Building Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

7A2-48318 June 2010 Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis November 17, 2009 - June 30, 2010 P. Finch and A. Potes Booz Allen Hamilton...

200

NREL GIS Data: Hawaii Low Resolution Photovoltaic Solar Resource...  

Open Energy Info (EERE)

April 01st, 2011 (3 years ago) Keywords GIS hawaii NREL photovoltaic shapefile solar Data applicationzip icon Shapefile (zip, 1.2 MiB) Metadata Metadata accessible through...

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical Simulations of Sea-Breeze Circulations over Northwest Hawaii  

Science Conference Proceedings (OSTI)

Sea-breeze cases during 2328 June 1978 over northwest Hawaii are simulated using the National Centers for Environmental Prediction (NCEP) Mesoscale Spectral Model (MSM) coupled with an advanced Land Surface Model (LSM) with 3-km horizontal ...

Yongxin Zhang; Yi-Leng Chen; Thomas A. Schroeder; Kevin Kodama

2005-12-01T23:59:59.000Z

202

GeoPowering the West: Hawaii; Why Geothermal?  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Hawaii. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2004-04-01T23:59:59.000Z

203

Hawaii - State Energy Profile Overview - U.S. Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama...

204

Legal and institutional problems facing geothermal development in Hawaii  

DOE Green Energy (OSTI)

The problems discussed confronting future geothermal development in Hawaii include: a seemingly insoluble mismatch of resource and market; the burgeoning land claims of the Native Hawaiian community; a potential legal challenge to the State's claim to hegemony over all of Hawaii's geothermal resources, regardless of surface ownership; resistance to any sudden, large scale influx of Mainland industry, and questionable economics for the largest potential industrial users. (MHR)

Not Available

1978-10-01T23:59:59.000Z

205

Initiative Guides Hawaii to the Path of Energy Independence | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiative Guides Hawaii to the Path of Energy Independence Initiative Guides Hawaii to the Path of Energy Independence Initiative Guides Hawaii to the Path of Energy Independence March 24, 2010 - 5:15pm Addthis The Hawaii Clean Energy Initiative's goal is to generate 70 percent of the state's power using clean energy such as wind. | Photo courtesy of the State of Hawaii. The Hawaii Clean Energy Initiative's goal is to generate 70 percent of the state's power using clean energy such as wind. | Photo courtesy of the State of Hawaii. With 90 percent of its energy coming from oil, Hawaii is the most oil-dependent state in the nation. The Hawaii Clean Energy Initiative is an ambitious plan to reverse that. A partnership between the state and the federal Department of Energy, the HCEI uses a combination of increased

206

Initiative Guides Hawaii to the Path of Energy Independence | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiative Guides Hawaii to the Path of Energy Independence Initiative Guides Hawaii to the Path of Energy Independence Initiative Guides Hawaii to the Path of Energy Independence March 24, 2010 - 5:15pm Addthis The Hawaii Clean Energy Initiative's goal is to generate 70 percent of the state's power using clean energy such as wind. | Photo courtesy of the State of Hawaii. The Hawaii Clean Energy Initiative's goal is to generate 70 percent of the state's power using clean energy such as wind. | Photo courtesy of the State of Hawaii. With 90 percent of its energy coming from oil, Hawaii is the most oil-dependent state in the nation. The Hawaii Clean Energy Initiative is an ambitious plan to reverse that. A partnership between the state and the federal Department of Energy, the HCEI uses a combination of increased

207

The world-wide telescope  

Science Conference Proceedings (OSTI)

Mining vast databases of astronomical data, this new online way to see the global structure of the universe promises to be not only a wonderful virtual telescope but an archetype for the evolution of computational science.

Jim Gray; Alex Szalay

2002-11-01T23:59:59.000Z

208

The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission  

SciTech Connect

The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy {gamma}-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy {gamma}-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic {gamma}-ray background up to TeV energies, and (7) explore the discovery space for dark matter.

Atwood, W.B.; /UC, Santa Cruz; Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Anderson, B. /UC, Santa Cruz; Axelsson, M.; /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bartelt, J.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bederede, D.; /DAPNIA, Saclay; Bellardi, F.; /INFN, Pisa; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bignami, G.F.; /Pavia U.; Bisello, D.; /INFN, Padua /Padua U.; Bissaldi, E.; /Garching, Max Planck Inst., MPE; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Pisa /INFN, Pisa /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /INFN, Padua /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /Kalmar U. /Royal Inst. Tech., Stockholm /DAPNIA, Saclay /ASI, Rome /INFN, Pisa /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /NASA, Goddard /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

2009-05-15T23:59:59.000Z

209

Hawaii Natural Energy Institute: Annual report, 1992  

DOE Green Energy (OSTI)

This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

Not Available

1992-01-01T23:59:59.000Z

210

Environmental resources of selected areas of Hawaii: Geological hazards  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

Staub, W.P.; Reed, R.M.

1995-03-01T23:59:59.000Z

211

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Fuel Taxes The list below contains summaries of all Hawaii laws and incentives related

212

Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Natural Gas The list below contains summaries of all Hawaii laws and incentives related

213

Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Real World Design Challenge Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Real World Design...

214

Hawaii Department of Transportation Highways Division | Open Energy  

Open Energy Info (EERE)

Highways Division Highways Division Jump to: navigation, search Name Hawaii Department of Transportation Highways Division Address 869 Punchbowl Street, Room 513 Place Honolulu, Hawaii Zip 96809 Website http://hawaii.gov/dot/highways Coordinates 21.303779°, -157.860047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.303779,"lon":-157.860047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Hawaii Marine Base Installs Solar Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marine Base Installs Solar Roofs Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing that sunlight to create renewable electricity was considered too expensive to be practical - until 2008. That's when MCBH took advantage of planned maintenance funding to help offset the high cost of installing photovoltaic panels on the base. As a military entity, MCBH can't directly take advantage of federal or state

216

Hawaii Department of Health Office of Environmental Quality Control | Open  

Open Energy Info (EERE)

Office of Environmental Quality Control Office of Environmental Quality Control Jump to: navigation, search Name Hawaii Department of Health Office of Environmental Quality Control Address 235 S. Beretania Suite 702 Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/health/envir Coordinates 21.3094485°, -157.8578603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3094485,"lon":-157.8578603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii Atmospheric Concentrations of CO2 from Mauna Loa, Hawaii The graphs on this page are generated from data taken from "Trends in Carbon Dioxide" page on the Department of Commerce/National Oceanic and Atmospheric Administration (NOAA) website. The NOAA website presents monthly and weekly atmospheric CO2 concentrations measured at the Mauna Loa Observatory in Hawaii. It offers weekly and monthly data, additional graphs, analysis, descriptions of how the data are collected, and an animation of historical changes in atmospheric CO2. Mauna Loa constitutes the longest record of direct measurements of CO2 in the atmosphere. The measurents were started by C. David Keeling of the Scripps Institution of Oceanography in March of 1958. Recent Monthly Average CO2

218

Hawaii Department of Land and Natural Resources Engineering Division | Open  

Open Energy Info (EERE)

Division Division Jump to: navigation, search Name Hawaii Department of Natural Resources Engineering Division Address 1151 Punchbowl Street, Room 221 Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/dlnr/eng Coordinates 21.305788°, -157.855682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.305788,"lon":-157.855682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Hawaii Department of Transportation Harbors Divsion | Open Energy  

Open Energy Info (EERE)

Harbors Divsion Harbors Divsion Jump to: navigation, search Name Hawaii Department of Transportation Harbors Division Address Hale Awa Ku Moku Building 79 South Nimitz Highway Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/dot/harbors/ Coordinates 21.308487°, -157.864609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.308487,"lon":-157.864609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Hawaii Department of Land and Natural Resources Historic Preservation  

Open Energy Info (EERE)

Historic Preservation Historic Preservation Division Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Historic Preservation Division Address Kakuhihewa Building 601 Kamokila Blvd., Suite 555 Kakuhihewa Building 601 Kamokila Blvd., Suite 555 Place Honolulu, Hawaii Zip 96707 Website http://hawaii.gov/dlnr/shpd/ Coordinates 21.331284°, -158.083885° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.331284,"lon":-158.083885,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hawaii Department of Business, Economic Development, and Tourism | Open  

Open Energy Info (EERE)

Business, Economic Development, and Tourism Business, Economic Development, and Tourism Jump to: navigation, search Name Hawaii Department of Business, Economic Development, and Tourism Address P.O. Box 2359 Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/dbedt/ Coordinates 21.3136151°, -157.8480364° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3136151,"lon":-157.8480364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Hawaii Department of Health Indoor and Radiological Health Branch | Open  

Open Energy Info (EERE)

Indoor and Radiological Health Branch Indoor and Radiological Health Branch Jump to: navigation, search Name Hawaii Department of Health Indoor and Radiological Health Branch From Open Energy Information Address 591 Ala Moana Blvd. Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/health/envir Coordinates 21.300314°, -157.864542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.300314,"lon":-157.864542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Hawaii Department of Health Clean Air Branch | Open Energy Information  

Open Energy Info (EERE)

Clean Air Branch Clean Air Branch Jump to: navigation, search Name Hawaii Department of Health Clean Air Branch Address P.O. Box 3378 Place Honolulu, Hawaii Zip 96801 Website http://hawaii.gov/health/envir Coordinates 21.31°, -157.86° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.31,"lon":-157.86,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii 1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii EA-1829: Phycal Algae Pilot Project, Wahiawa and Kalaeloa, Hawaii Summary This EA evaluates the environmental impacts of a proposal, through a cooperative agreement with Phycal, Inc. to partially fund implementing and evaluating new technology for the reuse of Carbon dioxide (CO2) emissions from industrial sources for green energy products. This project would use CO2 to grow algae for the production of algal oil and subsequent conversion to fuel. The project would generate reliable cost information and test data to access its viability for implementation at a future commercial scale. If approved, DOE would provide approximately 80 percent of the funding for the project. Public Comment Opportunities

225

Hawaii Department of Land and Natural Resources Commission on Water  

Open Energy Info (EERE)

and Natural Resources Commission on Water and Natural Resources Commission on Water Resource Management Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address Kalanimoku Building 1151 Punchbowl Street Room 227 Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/dlnr/cwrm/in Coordinates 21.305788°, -157.855682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.305788,"lon":-157.855682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Electric Co. Inc. Smart Grid Project Electric Co. Inc. Smart Grid Project Jump to: navigation, search Project Lead Hawaii Electric Co. Inc. Country United States Headquarters Location Oahu, Hawaii Recovery Act Funding $5,347,598.00 Total Project Value $10,695,195.00 Coverage Area Coverage Map: Hawaii Electric Co. Inc. Smart Grid Project Coordinates 21.4389123°, -158.0000565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

227

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network (OSTI)

, 2012 Prepared for: Forest City Military Communities Hawaii Prepared By: UH Watt Watcher Team Hawaii. In its first project, the UH Watt Watcher program teamed with Forest City Military Communities-Hawaii 69% of the monthly consumption. OBJECTIVES The objective of Phase I was to inform Forest City of key

228

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and  

E-Print Network (OSTI)

Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

229

Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Navy - U.S. Navy - Moanalua Terrace, Hawaii to someone by E-mail Share Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on Facebook Tweet about Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on Twitter Bookmark Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on Google Bookmark Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on Delicious Rank Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on Digg Find More places to share Federal Energy Management Program: U.S. Navy - Moanalua Terrace, Hawaii on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation

230

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

231

GRR/Section 9-HI-b - Hawaii EA Process | Open Energy Information  

Open Energy Info (EERE)

9-HI-b - Hawaii EA Process 9-HI-b - Hawaii EA Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-HI-b - Hawaii EA Process 09HIBHawaiiEAProcess.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Office of Environmental Quality Control Regulations & Policies Hawaii Revised Statutes 343 Hawaii Administrative Rules Title 11, Chapter 200 Triggers None specified Click "Edit With Form" above to add content 09HIBHawaiiEAProcess.pdf 09HIBHawaiiEAProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer begins the Draft Environmental Assessment Process if the Approving Agency determines that the project triggers the Hawai`i

232

Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Hydrogen Fuel Cells

233

The Asia Pacific Clean Energy Summit in Honolulu, Hawaii | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Asia Pacific Clean Energy Summit in Honolulu, Hawaii The Asia Pacific Clean Energy Summit in Honolulu, Hawaii The Asia Pacific Clean Energy Summit in Honolulu, Hawaii October 6, 2010 - 6:18pm Addthis Assistant Secretary Patricia Hoffman test drives the new Nissan Leaf. Nissan will introduce the all-electric Leaf in Hawaii in January 2011. Hawaii is offering incentives for the purchase of the vehicle and for home charging station development. Assistant Secretary Patricia Hoffman test drives the new Nissan Leaf. Nissan will introduce the all-electric Leaf in Hawaii in January 2011. Hawaii is offering incentives for the purchase of the vehicle and for home charging station development. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Earlier this month, Department of Energy Assistant Secretary for

234

The Asia Pacific Clean Energy Summit in Honolulu, Hawaii | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asia Pacific Clean Energy Summit in Honolulu, Hawaii Asia Pacific Clean Energy Summit in Honolulu, Hawaii The Asia Pacific Clean Energy Summit in Honolulu, Hawaii October 6, 2010 - 6:18pm Addthis Assistant Secretary Patricia Hoffman test drives the new Nissan Leaf. Nissan will introduce the all-electric Leaf in Hawaii in January 2011. Hawaii is offering incentives for the purchase of the vehicle and for home charging station development. Assistant Secretary Patricia Hoffman test drives the new Nissan Leaf. Nissan will introduce the all-electric Leaf in Hawaii in January 2011. Hawaii is offering incentives for the purchase of the vehicle and for home charging station development. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Earlier this month, Department of Energy Assistant Secretary for

235

University of Hawai`i Systemwide MultiHazard  

E-Print Network (OSTI)

`olani Community College, Kaua`i Community College, Leeward Community College, Maui College, and Windward Community for transfer to a four-year college at UH Ma¯noa or UH Hilo. MAJORS Hawai`i Honolulu Kapi`olani Kaua`i Leeward Island Studies BA Performing Arts BA Pharmacy Studies BA Philippine Language and Literature BA Philosophy

Olsen, Stephen L.

236

Hawaii Bioenergy Master Plan Potential Environmental Impacts of  

E-Print Network (OSTI)

market conditions. This analysis will give transparency to the potential indirect and direct greenhouse gas (GHG) emissions and energy self-sufficiency offered to Hawaii by bioenergy development been developed based on stakeholder input and information collected in the preparation of this study. 1

237

Hawaii Integrated Biofuels Research Program: Final Subcontract Report, Phase III  

DOE Green Energy (OSTI)

This report is a compilation of studies done to develop an integrated set of strategies for the production of energy from renewable resources in Hawaii. Because of the close coordination between this program and other ongoing DOE research, the work will have broad-based applicability to the entire United States.

Not Available

1992-05-01T23:59:59.000Z

238

Experimental resistivity electrode emplacement for the Hawaii geothermal project  

SciTech Connect

Sandia Laboratories expertise in Earth-penetrating projectiles has been applied to problems of geothermal resource research. Field trials of an experimental terradynamics electrode for resistivity surveys have been carried out in cooperation with the Hawaii Institute of Geophysics, and the design of an instrumented magma penetrometer begun. (auth)

Brandvold, G.E.

1974-04-01T23:59:59.000Z

239

Structure of the Baroclinic Tide Generated at Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Repeat transects of full-depth density and velocity are used to quantify generation and radiation of the semidiurnal internal tide from Kaena Ridge, Hawaii. A 20-km-long transect was sampled every 3 h using expendable current profilers and the ...

Jonathan D. Nash; Eric Kunze; Craig M. Lee; Thomas B. Sanford

2006-06-01T23:59:59.000Z

240

Hawaii Ocean Current Resources and Tidal Turbine Assessment  

Science Conference Proceedings (OSTI)

Interest in converting the kinetic energy of ocean current and tidal flow into electrical power has increased in recent years. This report focuses on the ocean current resource in Hawaii, which includes tidal flows as well as uni-directional oceanic current flows around the main Hawaiian Islands, with the exception of Kauai, from the shoreline to approximately the 2000-m depth contour.

2008-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)  

SciTech Connect

This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.

Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

1994-06-01T23:59:59.000Z

242

Environmental resources of selected areas of Hawaii: Socioeconomics  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the environmental impact statement (EIS) for Phases 3--4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The USDOE published a notice withdrawing its Notice of Intent to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District. Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. this report describes existing socioeconomic resources in the areas studied and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are population, housing, land use, economic structure, infrastructure and public services, local government revenues and expenditures, and tourism and recreation.

Saulsbury, J.W.; Sorensen, B.M.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, TN (United States)

1995-03-01T23:59:59.000Z

243

Environmental resources of selected areas of Hawaii: Ecological resources  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

Trettin, C.C.; Tolbert, V.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Jones, A.T. [Jones (Anthony T.), Vancouver, British Columbia (Canada); Smith, C.R. [Smith (Craig R.), Kailna, HI (United States); Kalmijn, A.J. [Kalmijn (Adrianus J.), Encinitas, CA (United States)

1995-03-01T23:59:59.000Z

244

Hawaii Geothermal Project; HGP-A Reservoir Engineering  

DOE Green Energy (OSTI)

The Hawaii Geothermal Project well HGP-A has undergone a two-year testing program which included cold water pumpdown tests, flashing flows with measurements of temperature and pressure profiles, and noise surveys. These tests and the data obtained are discussed in detail.

Yuen, P.C.; Chen, B.H.; Kihara, D.H.; Seki, A.S.; Takahashi, P.K.

1978-09-01T23:59:59.000Z

245

Hawaii Renewable Hydrogen Program State & Regional Initiatives Webinar  

E-Print Network (OSTI)

Petroleum dependence for electricity ­ top six states #12;Highest Electricity Prices in U.S. Hawaii and US in park Reduce visitor car volume Reduce size of buses in the park Reduce emissions pollution Reduce noise pollution Reduce traffic congestion Evaluate performance of fleet of plug-in hybrid electric

246

SMU: Alaska and Hawaii Geothermal Data The Southern Methodist...  

Open Energy Info (EERE)

2011-05-13T17:17:03Z 2011-05-16T14:42:26Z I accessed this dataset from a public site. Alaska and Hawaii To complete the optional self assessment, please add comments to the...

247

Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And  

E-Print Network (OSTI)

advantage in terms of growing conditions, #12;12 proprietary technology, raw materials, and economies logistics, conversion, distribution, and end use) and their potential impact on the production of biofuels in the biofuel industry in the State of Hawai`i. The scope covers both Federal and State financial instruments

248

Forcing of Flow Reversal along the Windward Slopes of Hawaii  

Science Conference Proceedings (OSTI)

Hawaii is an island approximately 4 km high, the lower portion of which is immersed in an easterly trade-wind layer that is typically 2 km deep. Blockage of the trade wind combined with diurnal, thermally driven circulations, leads to a general ...

Richard E. Carbone; William A. Cooper; Wen-Chau Lee

1995-12-01T23:59:59.000Z

249

SLAC National Accelerator Laboratory - Bringing Telescope Tech...  

NLE Websites -- All DOE Office Websites (Extended Search)

Telescope Tech to X-ray Lasers By Glenn Roberts Jr July 10, 2012 Technology that helps ground-based telescopes cut through the haze of Earth's atmosphere to get a clearer view of...

250

Export.gov - France - Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Pour les importateurs français Pour les importateurs français Register | Manage Account Search Our Site Click to Search Our Site Export.gov Home Opportunities By Industry By Country Market Research Trade Events Trade Leads Free Trade Agreements Solutions International Sales & Marketing International Financing International Logistics Licenses & Regulations Trade Data & Analysis Trade Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > France Local Time: Print | E-mail Page France France Home Mission Doing Business in France Trade Events Services for U.S. Companies Corporate Promotion American Companies operating in France Business Service Providers Financing US Exports Internships Regional Consulates & APP's Share your Success in France Contact Us Useful Links FAQs

251

Evaluating Primary Marine Aerosol Production and Atmospheric Roll Structures in Hawaiis Natural Oceanic Wind Tunnel  

Science Conference Proceedings (OSTI)

Topography-induced steady-state accelerated wind flow in the Alenuihaha Channel between the islands of Hawaii and Maui provides about 100 km of fetch with winds that can nearly double over trade wind speed. Here ship- and aircraft-based ...

Vladimir N. Kapustin; Antony D. Clarke; Steven G. Howell; Cameron S. McNaughton; Vera L. Brekhovskikh; Jingchuan Zhou

2012-05-01T23:59:59.000Z

252

Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)  

DOE Green Energy (OSTI)

The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

Siegel, S.M.; Siegel, B.Z.

1980-06-01T23:59:59.000Z

253

Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

Staub, W.P.; Reed, R.M.

1995-03-01T23:59:59.000Z

254

Partech International (France) | Open Energy Information  

Open Energy Info (EERE)

France) France) Jump to: navigation, search Logo: Partech International (France) Name Partech International (France) Address 12 rue de Penthièvre Place Paris, France Zip 75008 Product Venture capital firm. Year founded 1982 Phone number +33 1 53 65 65 53 Website http://www.partechvc.com/ Coordinates 48.872931°, 2.3163864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.872931,"lon":2.3163864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

European Wind Atlas: France | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: France European Wind Atlas: France Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: France Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/france.jpg Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-france,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource map shows resources at 50 meters above ground level for four different topographic conditions, including sheltered terrain, open plain, coastal and hills and ridges. The greatest resources appear to be near the Mediterranean Sea coast, and the second greatest resources are near the English Channel and northern Atlantic coast.

256

Mililani Town, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mililani Town, Hawaii: Energy Resources Mililani Town, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.45°, -158.0011111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.45,"lon":-158.0011111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Makakilo City, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Makakilo City, Hawaii: Energy Resources Makakilo City, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3469444°, -158.0858333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3469444,"lon":-158.0858333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Schofield Barracks, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Schofield Barracks, Hawaii: Energy Resources Schofield Barracks, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4954957°, -158.0626555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4954957,"lon":-158.0626555,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

SMU: Alaska and Hawaii Geothermal Data | OpenEI  

Open Energy Info (EERE)

Alaska and Hawaii Geothermal Data Alaska and Hawaii Geothermal Data Dataset Summary Description The Southern Methodist University (SMU) Regional Geothermal Database of the U.S. consists of data from over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean; all wells within a geothermal area are located where available; the majority of the data are from company documents, well logs and publications. Many of the wells were not previously accessible to the public.Database includes: latitude/longitude, township/range, well depth, elevation, maximum temp, BHT, gradient(s), thermal conductivity, heat flow, date of drilling and logging measurement(s), lithology and references. Source SMU Date Released Unknown Date Updated Unknown Keywords Alaska

260

Waimanalo Beach, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waimanalo Beach, Hawaii: Energy Resources Waimanalo Beach, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3402778°, -157.7027778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3402778,"lon":-157.7027778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Whitmore Village, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii: Energy Resources Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.5138889°, -158.0230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.5138889,"lon":-158.0230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Iroquois Point, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Iroquois Point, Hawaii: Energy Resources Iroquois Point, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3275°, -157.9802778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3275,"lon":-157.9802778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Pearl City, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii: Energy Resources Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3972222°, -157.9733333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3972222,"lon":-157.9733333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Ewa Beach, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ewa Beach, Hawaii: Energy Resources Ewa Beach, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3169°, -158.013199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3169,"lon":-158.013199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Village Park, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Park, Hawaii: Energy Resources Park, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3930017°, -158.0253941° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3930017,"lon":-158.0253941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Ewa Villages, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Villages, Hawaii: Energy Resources Villages, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.341009°, -158.0373177° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.341009,"lon":-158.0373177,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Hickam Housing, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hickam Housing, Hawaii: Energy Resources Hickam Housing, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.341267°, -157.961371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.341267,"lon":-157.961371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Maui County, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii: Energy Resources Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 20.7983626°, -156.3319253° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.7983626,"lon":-156.3319253,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Barbers Point Housing, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barbers Point Housing, Hawaii: Energy Resources Barbers Point Housing, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.32455°, -158.083156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.32455,"lon":-158.083156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Makaha Valley, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Makaha Valley, Hawaii: Energy Resources Makaha Valley, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4822222°, -158.2038889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4822222,"lon":-158.2038889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Hawaii Department of Labor and Industrial Relations Occupational Safety and  

Open Energy Info (EERE)

Industrial Relations Occupational Safety and Industrial Relations Occupational Safety and Health Division Jump to: navigation, search Name Hawaii Department of Labor and Industrial Relations Occupational Safety and Health Division Address 830 Punchbowl Street #425 Place Honolulu, HI Zip 96813 Phone number 808586-9100 Website http://hawaii.gov/labor/hiosh Coordinates 21.3036793°, -157.8607676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3036793,"lon":-157.8607676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Kaneohe Station, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaneohe Station, Hawaii: Energy Resources Kaneohe Station, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.44882°, -157.760696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.44882,"lon":-157.760696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Kawela Bay, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kawela Bay, Hawaii: Energy Resources Kawela Bay, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.7033333°, -158.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.7033333,"lon":-158.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Waipio Acres, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Waipio Acres, Hawaii: Energy Resources Waipio Acres, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.4675°, -158.0163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4675,"lon":-158.0163889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Hawaii Department of Health Safe Drinking Water Branch | Open Energy  

Open Energy Info (EERE)

Branch Branch Jump to: navigation, search Name Hawaii Department of Health Safe Drinking Water Branch Address 919 Ala Moana Blvd Room 308 Place Honolulu, Hawaii Zip 96814 Coordinates 21.294755°, -157.858979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.294755,"lon":-157.858979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Wheeler AFB, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFB, Hawaii: Energy Resources AFB, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.481945°, -158.041423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.481945,"lon":-158.041423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Ewa Gentry, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gentry, Hawaii: Energy Resources Gentry, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.3441667°, -158.0308333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.3441667,"lon":-158.0308333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

Science Conference Proceedings (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

279

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

280

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fueling / TSE Infrastructure Owner on AddThis.com...

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open  

Open Energy Info (EERE)

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Abstract Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Keller et al. of the Colorado School of Mines used the dipole mapping and time-domain EM sounding techniques to define low resistivity areas around the summit and flanks of Kilauea. Kauahikaua and Klein of the Hawaii Institute of Geophysics then detailed the East Rift

282

Hawai'i Meeting #1 - Flowchart Development | OpenEI Community  

Open Energy Info (EERE)

Hawai'i Meeting #1 - Flowchart Development Hawai'i Meeting #1 - Flowchart Development Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 2 August, 2012 - 22:34 Hawai'i + flowchart + workshop The Hawai'i kickoff meeting for the Geothermal Regulatory Roadmap had a great turnout with over 20 attendees from Hawai'i agencies, industry, attorneys and subcontractors. Agency personnel came prepared with supporting documents to review and update developed flowcharts. Attendees also discussed recent changes to regulations and the impact on permitting processes. GRR team members have been following up this week with agency personnel who were unable to attend to get feedback and input on flowcharts for permits regulated by their agencies. The next Hawai'i Geothermal Regulatory Roadmap workshop will be held

283

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

284

Summary of Pu u O o - Kupaianaha Eruption, Kilauea Volcano, Hawaii | Open  

Open Energy Info (EERE)

Summary of Pu u O o - Kupaianaha Eruption, Kilauea Volcano, Hawaii Summary of Pu u O o - Kupaianaha Eruption, Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Summary of Pu_u _O_o - Kupaianaha Eruption, Kilauea Volcano, Hawaii Published USGS, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Summary of Pu_u _O_o - Kupaianaha Eruption, Kilauea Volcano, Hawaii Citation Summary of Pu_u _O_o - Kupaianaha Eruption, Kilauea Volcano, Hawaii [Internet]. 2012. USGS. [cited 06/26/2013]. Available from: http://hvo.wr.usgs.gov/kilauea/summary/ Retrieved from "http://en.openei.org/w/index.php?title=Summary_of_Pu_u_O_o_-_Kupaianaha_Eruption,_Kilauea_Volcano,_Hawaii&oldid=682513" Categories: References Uncited References

285

Hawaii Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Hawaii Regions » Hawaii Science Bowl Hawaii Regions » Hawaii Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Hawaii Regions Hawaii Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Steven Golden Email: steven.golden@hawaiiantel.com Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20 Maximum Number of Teams per School: 2

286

United States and France Sign Joint Statement on Civil Liability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States and France Sign Joint Statement on Civil Liability for Nuclear Damage United States and France Sign Joint Statement on Civil Liability for Nuclear Damage Joint...

287

Sandia-Power Surety Task Force Hawaii foam analysis.  

SciTech Connect

The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

McIntyre, Annie

2010-11-01T23:59:59.000Z

288

Noi'i o Puna: Geothermal Research in Hawaii  

DOE Green Energy (OSTI)

Noi'i 0 Puna - The Puna Research Center (PRC), located on the grounds of the HGP-A power plant site in Puna, Hawaii, was dedicated on August 24, 1985. Research projects, supported by the U.S. Department of Energy (USDOE), State, County, utility, and the private sector have been initiated in the areas of geothermal reservoir engineering, silica utilization, and corrosion of materials. An international geothermal applications workshop was held in Hilo, Hawaii the day before the dedication to discuss common problems and methods of solution by cooperative research. The three main categories addressed were process chemistry design, reservoir engineering, and agriculture/aquaculture applications. The workshop identified how PRC might be used for these research purposes. The advantages provided by PRC include the availability of non-proprietary information, an operational power plant with adjacent laboratory, proximity of private wells, the Fellows in Renewable Energy Engineering program, and strong support from the State, County, and utility. A second workshop is in the planning stages to follow through on the recommendations and will be held in the Orient next year. The Community Geothermal Technology Program, featuring projects conducted by individuals and companies in the local community, has been funded and will actively initiate projects this month. This program received matching funds from the USDOE, County of Hawaii and the private sector.

Seki, Arthur; Chen, Bill; Takahashi, Patrick; Woodruff, Jim

1986-01-21T23:59:59.000Z

289

RSTN (Radio Solar Telescope Network) observations of the 16 February 1984 cosmic-ray flare  

SciTech Connect

The radio Solar Telescope Network (RSTN) are located at Sagamore Hill (Massachusetts), Palehua (Hawaii), and Learmonth (Australia). A fourth site at San Vito (Italy) will begin making observations in 1986. The RSTN stations monitor the quiet and disturbed Sun at eight fixed frequencies logarithmically spaced from 245-15400 MHz. The radiometer patrols are operated from sunrise to sunset. Data are stored on magnetic tape with 1 second time resolution and archived at the World Data Center A in Boulder for dissemination to the scientific community. The Palehua site became operational in July 1980, followed by Learmonth in August 1980, and Sagamore Hill in October 1981. Thus digitized radiometer observations of the Sun are available for a significant fraction of the maximum phase of solar cycle 21.

Cliver, E.W.; Gentile, L.C.; Wells, G.D.

1987-07-01T23:59:59.000Z

290

Commissioning of the Dual-Beam Imaging Polarimeter for the UH 88-inch telescope  

E-Print Network (OSTI)

In this paper we present the design, calibration method, and initial results of the Dual-Beam Imaging Polarimeter (DBIP). This new instrument is designed to measure the optical polarization properties of point sources, in particular Main Belt asteroids. This instrument interfaces between the Tek 2048x2048 camera and the University of Hawaii's 88-inch telescope, and is available for facility use. Using DBIP we are able to measure linear polarization with a 1-sigma Poisson signal noise of 0.03% per measurement and a systematic error of order 0.06% +/- 0.02%. Additionally, we discuss measurements of the polarization of the asteroid 16 Psyche which were taken as part of the instrument commissioning. We confirm Psyche's negative polarization of -1.037% +/- 0.006% but find no significant modulation of the signal with rotation above the 0.05% polarization level.

Joseph Masiero; Klaus Hodapp; Dave Harrington; Haosheng Lin

2007-08-09T23:59:59.000Z

291

Energy self-sufficiency for the big Island of Hawaii. Appendices. Final report  

SciTech Connect

Appendix A lists members of the Hawaii County Energy Advisory Committee. Appendix B deals with the energy self-sufficiency plan for the county of Hawaii (energy demand patterns and projections). Appendix C presents background data and analysis of conservation in residential, commercial, and industrial sectors with notes on electric generation, transmission, and distribution on the Island of Hawaii. Additional appendices contain information on study contacts; scenarios; letter describing action to be taken for study of the scenarios; and model calculations.

Kinderman, E.M.

1980-01-01T23:59:59.000Z

292

Hawaii Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

School: 2 Registration Fee: NA Regional Geographic Information: Hawaii Team Approval Process Teams are approved on a first-come, first-served basis determined by the datetime...

293

Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui  

DOE Green Energy (OSTI)

This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

Matsuoka, J.K; Minerbi, L. [Cultural Advocacy Network for Developing Options (CANDO) (United States); Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury [Oak Ridge National Lab., TN (United States); Trettin, L.D. [Tennessee Univ., Knoxville, TN (United States)

1996-05-01T23:59:59.000Z

294

Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis  

SciTech Connect

The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

Yamaguchi, N.D.; Breazeale, K. [ed.

1993-12-01T23:59:59.000Z

295

Scientific Potential of Einstein Telescope  

E-Print Network (OSTI)

Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.

B. Sathyaprakash; M. Abernathy; F. Acernese; P. Amaro-Seoane; N. Andersson; K. Arun; F. Barone; B. Barr; M. Barsuglia; M. Beker; N. Beveridge; S. Birindelli; S. Bose; L. Bosi; S. Braccini; C. Bradaschia; T. Bulik; E. Calloni; G. Cella; E. Chassande-Mottin; S. Chelkowski; A. Chincarini; J. Clark; E. Coccia; C. Colacino; J. Colas; A. Cumming; L. Cunningham; E. Cuoco; S. Danilishin; K. Danzmann; R. De. Salvo; T. Dent; R. De. Rosa; L. Di. Fiore; A. Di. Virgilio; M. Doets; V. Fafone; P. Falferi; R. Flaminio; J. Franc; F. Frasconi; A. Freise; D. Friedrich; P. Fulda; J. Gair; G. Gemme; E. Genin; A. Gennai; A. Giazotto; K. Glampedakis; C. Grf; M. Granata; H. Grote; G. Guidi; A. Gurkovsky; G. Hammond; M. Hannam; J. Harms; D. Heinert; M. Hendry; I. Heng; E. Hennes; S. Hild; J. Hough; S. Husa; S. Huttner; G. Jones; F. Khalili; K. Kokeyama; K. Kokkotas; B. Krishnan; T. G. F. Li; M. Lorenzini; H. Lck; E. Majorana; I. Mandel; V. Mandic; M. Mantovani; I. Martin; C. Michel; Y. Minenkov; N. Morgado; S. Mosca; B. Mours; H. Mller-Ebhardt; P. Murray; R. Nawrodt; J. Nelson; R. Oshaughnessy; C. D. Ott; C. Palomba; A. Paoli; G. Parguez; A. Pasqualetti; R. Passaquieti; D. Passuello; L. Pinard; W. Plastino; R. Poggiani; P. Popolizio; M. Prato; M. Punturo; P. Puppo; D. Rabeling; I. Racz; P. Rapagnani; J. Read; T. Regimbau; H. Rehbein; S. Reid; L. Rezzolla; F. Ricci; F. Richard; A. Rocchi; S. Rowan; A. Rdiger; L. Santamaria; B. Sassolas; R. Schnabel; C. Schwarz; P. Seidel; A. Sintes; K. Somiya; F. Speirits; K. Strain; S. Strigin; P. Sutton; S. Tarabrin; A. Thring; J. van den Brand; M van Veggel; C. Van Den Broeck; A. Vecchio; J. Veitch; F. Vetrano; A. Vicere; S. Vyatchanin; B. Willke; G. Woan; K. Yamamoto

2011-08-05T23:59:59.000Z

296

BNL | Large Synoptic Survey Telescope (LSST)  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Synoptic Survey Telescope Large Synoptic Survey Telescope About LSST Digital Sensor Array Brookhaven & Physics of the Universe LSST Project Website LSST: Providing an Unprecedented View of the Cosmos rendering of the LSST site in Chile A revolutionary 3.2 gigapixel camera mounted in a massive ground-based telescope will produce unprecedented views of the cosmos, driving discoveries with the widest, densest, and most complete images of our universe ever captured. New Visions The Large Synoptic Survey Telescope (LSST) will peer into space as no other telescope can. This new facility will create an unparalleled wide-field astronomical survey of our universe - wider and deeper in volume than all previous telescopes combined. The combination of a 3200 megapixel camera sensor array, a powerful supercomputer, a cutting-edge data processing and

297

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France  

Open Energy Info (EERE)

Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France Details Activities (0) Areas (0) Regions (0) Abstract: Geothermal energy has been supplying heat to district networks in the Paris Basin for more than 40 years. The most serious difficulties have been corrosion and scaling related problems that occurred in many geothermal loops in the mid-1980s. The main target of all exploration and exploitation projects has been the Dogger aquifer. Most of the operating facilities use the "doublet" technology which consists of a closed loop with one production well and one injection well. Injection of the cooled

298

Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)  

SciTech Connect

Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

2009-07-01T23:59:59.000Z

299

The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA  

E-Print Network (OSTI)

The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA Introduction Historically, the pole-and-line, live bait fishery for skipjack tuna, Katsuwonus pelamis, was the largest commercial fishery in Hawaii. Annual pole-and-line landings of skipjack tuna

300

Energy Levels, Phase, and Amplitude Modulation of the Baroclinic Tide off Hawaii  

Science Conference Proceedings (OSTI)

Inverted echo sounder data from Station Aloha north of Oahu, Hawaii, are used to determine the absolute energy levels and time-varying nature of the first-mode baroclinic tide north of Hawaii. The semidiurnal tide amplitude and phase are ...

Stephen M. Chiswell

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The ANTARES underwater neutrino telescope  

E-Print Network (OSTI)

ANTARES is the first undersea neutrino telescope. It is in its complete configuration since May 2008 at about 2.5 km below the sea surface close to Marseille. Data from 12 lines are being analyzed and are producing first results. Here we discuss first analysis results for 5 lines and 10 lines, and we also comment on the performance of the full detector. We show that the detector has capabilities for discriminating upgoing neutrino events from the much larger amount of downgoing atmospheric muons and that data and simulation are in good agreement. We then discuss the physics reach of the detector for what concerns point-like source and dark matter searches.

Teresa Montaruli; for the ANTARES Collaboration

2008-10-21T23:59:59.000Z

302

Hawaii Geothermal Project: initial Phase II progress report  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP), which consisted of a two-year study on the potential of geothermal energy for the Big Island of Hawaii, are reviewed. One conclusion from Phase I was that preliminary results looked sufficiently encouraging to warrant the drilling of the first experimental geothermal well in the Puna area of the Big Island. During the first two months of drilling, parallel activity has continued in all research and support areas. Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. Earlier work on mathematical and physical modeling of geothermal reservoirs was expanded; analysis of liquid-dominated geothermal systems continued; and studies on testing of geothermal wells were initiated. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. Early stages of the drilling program proceeded slowly. The initial 9 7/8-inch drill hole to 400 feet, as well as each of the three passes required to open the hole to 26 inches, were quite time consuming. Cementing of the 20-inch surface casing to a depth of 400 feet was successfully accomplished, and drilling beyond that depth has proceeded at a reasonable rate. Penetration below the surface casing to a depth of 1050 feet was accomplished at a drilling rate in excess of 150 feet per day, with partial circulation over the entire range.

Not Available

1976-02-01T23:59:59.000Z

303

Brigham Young University, Brigham Young University--Hawaii, BYU--Idaho, and LDS Business College exist to provide an  

E-Print Network (OSTI)

Brigham Young University, Brigham Young University--Hawaii, BYU--Idaho, and LDS Business College, and student body at BYU, BYU-- Hawaii, BYU--Idaho, and LDSBC are selected and retained from among those who represent BYU, BYU--Hawaii, BYU--Idaho, and LDSBC are to maintain the highest standards of honor, integrity

Hart, Gus

304

Geothermal power development in Hawaii. Volume I. Review and analysis  

DOE Green Energy (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

305

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

DOE Green Energy (OSTI)

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

306

GRR/Section 9-HI-c - Hawaii EIS Process | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 9-HI-c - Hawaii EIS Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-HI-c - Hawaii EIS Process 09HICHawaiiEISProcess (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Office of Environmental Quality Control Regulations & Policies Hawaii Revised Statutes 343 Hawaii Administrative Rules Title 11, Chapter 200 Triggers None specified Click "Edit With Form" above to add content 09HICHawaiiEISProcess (1).pdf 09HICHawaiiEISProcess (1).pdf 09HICHawaiiEISProcess (1).pdf Error creating thumbnail: Page number not in range. Flowchart Narrative If the accepting agency does not issue a FONSI and instead determines the

307

GRR/Section 6-HI-b - Hawaii Construction Storm Water Permit | Open Energy  

Open Energy Info (EERE)

b - Hawaii Construction Storm Water Permit b - Hawaii Construction Storm Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-b - Hawaii Construction Storm Water Permit 06HIBHawaiiConstructionStormWaterPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Clean Water Branch Regulations & Policies Section 402 of the Clean Water Act (33 U.S.C. 1251 et seq.) Hawaii Administrative Rules 11-55 Triggers None specified Click "Edit With Form" above to add content 06HIBHawaiiConstructionStormWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must prepare and submit a Notice of Intent and associated

308

Hawaii Hydrogen Power Park - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Richard (Rick) E. Rocheleau (Primary Contact), Mitch Ewan Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, HI 96822 Phone: (808) 956-8346 Email: rochelea@hawaii.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805; Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC51-02R021399 A008 Project Start Date: June 29, 2009 Project End Date: December 31, 2014 Fiscal Year (FY) 2012 Objectives Island of Hawaii (Big Island) Install hydrogen fueling station infrastructure at Hawaii * Volcanoes (HAVO) National Park on the Big Island of

309

Ground radon survey of a geothermal area in Hawaii | Open Energy  

Open Energy Info (EERE)

radon survey of a geothermal area in Hawaii radon survey of a geothermal area in Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Ground radon survey of a geothermal area in Hawaii Abstract Rates of ground radon emanation, inthe Puna geothermal area on the lower east riftof Kilauea volcano, were measured by alpha particle sensitive cellulose nitrate films. The survey successfully defined an area of thermal significance associated with the rift structure,and suggests that a thermally driven ground gas convection system exists within, and peripheralto, the rift. This type of survey was found suitable for the basaltic island environment characteristic of Hawaii and is now used in Hawaii as a routine geothermal exploration technique. Author Malcolm E. Cox Published Journal

310

Hawaii Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii Hawaii Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Hawaii Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Hawaii homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Hawaii homeowners will save $8,860 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows

311

Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Hawaii Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

312

Hawaii Geothermal Project summary report for Phase I  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP) are reported. It was a multidisciplinary research effort in the following program areas: (1) geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; (2) engineering-- analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and (3) socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal resources, and economic planning studies on the impact of geothermal power. The major emphasis of Phase I was on the Geophysical Program, since the issue of if and where geothermal resources exist is crucial to the project. However, parallel studies were initiated in all supporting programs, so that progress was made in identifying and clarifying the technological, environmental, legal, regulatory, social and economic problems that could impede the development of geothermal power in Hawaii. Although the analysis and interpretation of field data are still incomplete, the consensus developed early--both on the basis of preliminary geophysical results and from complementary studies conducted on the Big Island over the past several decades--that an exploratory drilling program would be essential to check out the subsurface conditions predicted by the surveys.

Not Available

1975-05-01T23:59:59.000Z

313

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)  

SciTech Connect

This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

2010-04-01T23:59:59.000Z

314

NIST Telescope Calibration May Help Explain Mystery of ...  

Science Conference Proceedings (OSTI)

... They will use this information to calibrate a much larger telescopethe Large Synoptic Survey Telescope, planned for construction in Chile. ...

2011-01-05T23:59:59.000Z

315

Measuring Neutrinos with the ANTARES Telescope  

Science Conference Proceedings (OSTI)

The ANTARES underwater neutrino telescope has been taking data since construction began in 2006. The telescope, completed in May of 2008, detects the Cerenkov radiation of charged leptons produced by high energy neutrinos interacting in or around the detector. The lepton trajectory is reconstructed with high precision, revealing the direction of the incoming neutrino. The performance of the detector will be discussed and recent data showing muons, electromagnetic showers and atmospheric neutrinos will be presented. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies will be presented, and the sensitivity of the telescope will be discussed.

Reed, Corey [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands)

2009-12-17T23:59:59.000Z

316

Hawaii Integrated Energy Assessment. Volume V. Rules, regulations, permits and policies affecting the development of alternate energy sources in Hawaii  

DOE Green Energy (OSTI)

A comprehensive presentaton of the major permits, regulations, rules, and controls which are likely to affect the development of alternate energy sources in Hawaii is presented. An overview of the permit process, showing the major categories and types of permits and controls for energy alternatives is presented. This is followed by a brief resume of current and projected changes designed to streamline the permit process. The permits, laws, regulations, and controls that are applicable to the development of energy alternatives in Hawaii are described. The alternate energy technologies affected, a description of the permit or control, and the requirements for conformance are presented for each applicable permit. Federal, state, and county permits and controls are covered. The individual energy technologies being considered as alternatives to the State's present dependence on imported fossil fuels are emphasized. The alternate energy sources covered are bioconversion, geothermal, ocean thermal, wind, solar (direct), and solid waste. For each energy alternative, the significant permits are summarized with a brief explanation of why they may be necessary. The framework of policy development at each of the levels of government with respect to the alternate energy sources is covered.

Not Available

1980-01-01T23:59:59.000Z

317

Paris, France: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Paris, France: Energy Resources Paris, France: Energy Resources Jump to: navigation, search Name Paris, France Equivalent URI DBpedia GeoNames ID 2988507 Coordinates 48.85341°, 2.3488° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.85341,"lon":2.3488,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

France: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

France: Energy Resources France: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46,"lon":2,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

DOE Green Energy (OSTI)

DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

2011-11-01T23:59:59.000Z

320

SCIENTIFIC EFFICIENCY OF GROUND-BASED TELESCOPES  

SciTech Connect

I scanned the six major astronomical journals of 2008 for all 1589 papers that are based on new data obtained from ground-based optical/IR telescopes worldwide. Then I collected data on numbers of papers, citations to them in 3+ years, the most-cited papers, and annual operating costs. These data are assigned to four groups by telescope aperture. For instance, while the papers from telescopes with an aperture >7 m average 1.29 more citations than those with an aperture of 2 to <4 m, this represents a small return for a factor of four difference in operating costs. Among the 17 papers that have received {>=}100 citations in 3+ years, only half come from the large (>7 m) telescopes. I wonder why the large telescopes do so relatively poorly and suggest possible reasons. I also found that papers based on archival data, such as the Sloan Digital Sky Survey, produce 10.6% as many papers and 20.6% as many citations as those based on new data. Also, the 577.2 papers based on radio data produced 36.3% as many papers and 33.6% as many citations as the 1589 papers based on optical/IR telescopes.

Abt, Helmut A., E-mail: abt@noao.edu [Kitt Peak National Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hawaii - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Seds - U.S. Energy Information Administration (EIA) Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

322

Hawai'i Meeting #2 | OpenEI Community  

Open Energy Info (EERE)

2 2 Home > Groups > Geothermal Regulatory Roadmap Kwitherbee's picture Submitted by Kwitherbee(15) Member 12 August, 2012 - 21:07 Like the first Hawai'i meeting, both industry and agencies were well represenated. Discussion was lively, with the focus being mixed between the identification of challenges and education about the current leasing and permitting processes. A major focus of discussion delt the Department of Land and Natural Resources' (DLNR) management of the subsurface, geothermal resources, on all lands regardless of surface ownership and the surface estate of state lands. This discussion lead to an understanding and insight into the past, current, how the future process will look as they implement streamlining the permitting process via both legistative changes and setting policy on

323

Governor's energy conference - Hawaii's energy options for the 80s  

Science Conference Proceedings (OSTI)

The purpose of the conference was to share with the people of Hawaii the latest knowledge in the fields of energy conservation, alternate energy development, and related legal and financial considerations. Representatives from government, private industry, and the scientific community were among the speakers. The conference program was presented in six sessions: public-sector conservation; private-sector conservation; public-sector alternate energy; private-sector alternate energy; liquid and gas fuels and fuel cells; and legal and financial considerations. At the luncheon and banquet sessions, nationally-known speakers discussed the Strategic Petroleum Reserve and global aspects of energy supply and demand. A separate abstract was prepared for each of 47 individual presentations.

Fowler, N.; Sorenson, K.

1982-01-01T23:59:59.000Z

324

Small Wind Electric Systems: A Hawaii Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

325

Hawaii Geothermal Project initial Phase II progress report, February 1976  

DOE Green Energy (OSTI)

Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. The engineering program has expanded its earlier work on mathematical and physical modeling of geothermal reservoirs; continued with the analysis of liquid-dominated geothermal systems; and initiated studies on geothermal well testing. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. The Drilling Program has provided assistance in contract negotiations, preparation of the drilling and testing programs, and scientific input to the drilling operation. (MHR)

Not Available

1976-02-01T23:59:59.000Z

326

Small Wind Electric Systems: A Hawaii Consumer's Guide  

DOE Green Energy (OSTI)

Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2005-03-01T23:59:59.000Z

327

The AROME-France Convective-Scale Operational Model  

Science Conference Proceedings (OSTI)

After six years of scientific, technical developments and meteorological validation, the Application of Research to Operations at Mesoscale (AROME-France) convective-scale model became operational at Mto-France at the end of 2008. This paper ...

Y. Seity; P. Brousseau; S. Malardel; G. Hello; P. Bnard; F. Bouttier; C. Lac; V. Masson

2011-03-01T23:59:59.000Z

328

NREL GIS Data: Hawaii High Resolution Photovoltaic | OpenEI  

Open Energy Info (EERE)

Photovoltaic Photovoltaic Dataset Summary Description Abstract - Monthly and annual average solar resource potential for the State of Hawaii. Purpose - Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental Info - This data provides monthly average and annual average daily total solar resource averaged over surface cells of 0.1 degrees in both latitude and longitude, or about 10 km in size. This data was developed using the State University of New York/Albany satellite radiation model. This model was developed by Dr. Richard Perez and collaborators at the National Renewable Energy Laboratory and other universities for the U.S. Department of Energy. Specific information about this model can be found in Perez, et al. (2002). This model uses hourly radiance images from geostationary weather satellites, daily snow cover data, and monthly averages of atmospheric water vapor, trace gases, and the amount of aerosols in the atmosphere to calculate the hourly total insolation (sun and sky) falling on a horizontal surface. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalable at a 10km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

329

Hawaii-bound in search of global climate data | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii-bound in search of global climate data Hawaii-bound in search of global climate data By Brian Grabowski * September 13, 2013 Tweet EmailPrint While the idea of a cruise to Hawaii may sound like paradise, making that same journey 25 times back and forth in a year might start to lose its appeal. But for a climate data-gathering machine called AMF2, perched aboard the ship, every trip is a chance to gather more data that is critical to understanding the Pacific Ocean's role in the global climate. The machine is the Department of Energy's second Atmospheric Radiation Measurement (ARM) mobile facility, operated and managed by Argonne scientists. It carries a suite of instruments to measure properties of clouds, the ocean, precipitation, aerosols, and radiation. Over the summer of 2013, the AMF2 traveled back and forth between Hawaii and Los Angeles,

330

Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii-  

Open Energy Info (EERE)

Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Evidence For The Distribution Of Magma Below Kilauea'S East Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anomalously High B-Values In The South Flank Of Kilauea Volcano, Hawaii- Evidence For The Distribution Of Magma Below Kilauea'S East Rift Zone Details Activities (1) Areas (1) Regions (0) Abstract: The pattern of b-value of the frequency-magnitude relation, or mean magnitude, varies little in the Kaoiki-Hilea area of Hawaii, and the b-values are normal, with b=0.8 in the top 10 km and somewhat lower values below that depth. We interpret the Kaoiki-Hilea area as relatively stable, normal Hawaiian crust. In contrast, the b-values beneath Kilauea's South

331

Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Real  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Real World Design Challenge Iolani School from Honolulu, Hawaii Wins U.S. Department of Energy Real World Design Challenge March 21, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Iolani School from Honolulu, Hawaii is the winner of the DOE's 2009 Real World Design Challenge. Fifty-four high school students representing 10 states from across the Nation competed in the National Challenge. The finals were held at the Smithsonian's National Air and Space Museum. "I would like to offer my congratulations to all of the students who competed in the Real World Design Challenge," U.S. Secretary of Energy Steven Chu said. "Today's competition shows that U.S. students, when

332

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii  

Open Energy Info (EERE)

Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii Abstract During the drilling of injection well KS-13 in 2005 at the Puna Geothermal Venture (PGV) well field, on the island of Hawaii, a 75-meter interval of diorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the well bore and was repeatedly re-drilled over a depth interval of 8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly

333

Memorandum of Understanding Between the State of Hawaii and the U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MEMORANDUM OF UNDERSTANDING BETWEEN THE STATE OF HAWAII AND THE U.S. DEPARTMENT OF ENERGY I. Background The State of Hawaii depends on imported fossil fuels to meet over 90 percent of its energy needs. This dependence leaves Hawaii vulnerable to supply disruptions and high energy prices with estimates showing that every 10 percent increase in world oil prices results in a 0.5 percent reduction in the State's GDP. At the same time, the islands of Hawaii have abundant natural resources, including wind, sunshine, and geothermal sources for electricity generation, and land for energy crops that can be refined into biofuels to address transportation needs. Economic and culturally sensitive use of natural resources can provide energy supply security and price stability

334

Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subcontract Report Subcontract Report NREL/SR-7A2-48318 June 2010 Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis November 17, 2009 - June 30, 2010 P. Finch and A. Potes Booz Allen Hamilton Honolulu, Hawaii National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Subcontract Report NREL/SR-7A2-48318 June 2010 Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis November 17, 2009 - June 30, 2010 P. Finch and A. Potes Booz Allen Hamilton Honolulu, Hawaii NREL Technical Monitor: S. Busche

335

Velocity Structure of Internal Tide Beams Emanating from Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Observations are reported of the semidiurnal (M2) internal tide across Kaena Ridge, Hawaii. Horizontal velocity in the upper 10001500 m was measured during eleven ~240-km-long shipboard acoustic Doppler current profiler (ADCP) transects across ...

Andy Pickering; Matthew H. Alford

2012-06-01T23:59:59.000Z

336

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation,...

337

_____________ Augmentative releases ofpredatory mites on papaya in Hawaii 167 AUGMENTATIVE RELEASES OF PREDATORY MITES ON PAPAYA  

E-Print Network (OSTI)

. This species is a polyphagous pest worldwide, mainly distributed in semitropical and tropical areas (jeppson et ----~-------~--~ #12;______~ Augmentative releases ofpredatory mites on papaya in Hawaii 175 REFERENCES Jeppson, L. R

Rosenheim, Jay A.

338

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

1978 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A...

339

Residential building design : comprehensive comparative guidelines for building single-family dwellings in Hawaii  

E-Print Network (OSTI)

Energy shortages, earthquakes, and hurricanes are environmental factors that challenge the home designers of Hawaii. The depletion of renewable natural resources and global warming trends foreshadow energy shortage and the ...

Nagata, Rochelle Morie

1997-01-01T23:59:59.000Z

340

Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

A 3-month mooring deployment (AugustNovember 2002) was made in 2425-m depth, on the south flank of Kaena Ridge, Hawaii, to examine tidal variations within 200 m of the steeply sloping bottom. Horizontal currents and vertical displacements, ...

Jerome Aucan; Mark A. Merrifield; Douglas S. Luther; Pierre Flament

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii  

Science Conference Proceedings (OSTI)

Large semidiurnal vertical displacements (?100 m) and strong baroclinic currents (?0.5 m s?1; several times as large as barotropic currents) dominate motions in Mamala Bay, outside the mouth of Pearl Harbor, Hawaii. During September 2002, the ...

Matthew H. Alford; Michael C. Gregg; Mark A. Merrifield

2006-06-01T23:59:59.000Z

342

DARRP -Protecting and restoring natural resources nationwide Protecting and Restoring Natural Resources in Hawaii  

E-Print Network (OSTI)

(Kalaeloa) - see case highlights. Coral reef habitat obliter- ated by the M/V Cape Flattery Ship Grounding removed from reefs in Hawaii. Emergency restoration at Kalaeloa (Barbers Point) recementing 2800 dislodged

343

Modeling Return Periods of Tropical Cyclone Intensities in the Vicinity of Hawaii  

Science Conference Proceedings (OSTI)

Tropical cyclones in the vicinity of Hawaii have resulted in great property damage. An estimate of the return periods of tropical cyclone intensities is of particular interest to governments, public interest groups, and private sectors.

Pao-Shin Chu; Jianxin Wang

1998-09-01T23:59:59.000Z

344

Eddy Energetics in the Upper Equatorial Pacific during the Hawaii-to-Tahiti Shuttle Experiment  

Science Conference Proceedings (OSTI)

Eddy energetics in the central equatorial Pacific Ocean is examined using Acoustic Doppler Current Profiler velocities and CTD densities collected during the Hawaii-to-Tahiti Shuttle Experiment, in 197980. Three distinct sources of eddy energy ...

Douglas S. Luther; Eric S. Johnson

1990-07-01T23:59:59.000Z

345

Energy Independence . . . It's up to us. Hawaii Clean Energy Initiative (HCEI) (Brochure)  

SciTech Connect

This tri-fold brochure provides an overview of how the State of Hawaii will work toward a goal of 70% clean energy by 2030 and the importance of meeting this goal.

2009-11-01T23:59:59.000Z

346

Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010  

SciTech Connect

In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

Finch, P.; Potes, A.

2010-06-01T23:59:59.000Z

347

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

348

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

349

Positioning system of the ANTARES Neutrino Telescope  

E-Print Network (OSTI)

Completed in May 2008, the ANTARES neutrino telescope is located 40 km off the coast of Toulon, at a depth of about 2500 m. The telescope consists of 12 detect or lines housing a total of 884 optical modules. Each line is anchored to the seabed and pulled taught by the buoyancy of the individual optical modules and a top buoy. Due to the fluid nature of the sea-water detecting medium and the flexible nature of the detector lines, the optical modules of the ANTARES telescope can suffer from deviations of up to several meters from the vertical and as such, real time positioning is needed. Real time positioning of the ANTARES telescope is achieved by a combination of an acoustic positioning system and a lattice of tiltmeters and compasses. These independent and complementary systems are used to compute a global fit to each individual detector line, allowing us to construct a 3 dimensional picture of the ANTARES neutrino telescope with an accuracy of less than 10 cm. In this paper we describe the positioning syst...

Brown, Anthony M

2009-01-01T23:59:59.000Z

350

Mirror Development for the Cherenkov Telescope Array  

E-Print Network (OSTI)

The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

Frster, A; Baba, H; Bhr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Micha?owski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Phlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wi?niewski, ?; Wrnlein, A; Yoshida, T

2013-01-01T23:59:59.000Z

351

Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil  

Science Conference Proceedings (OSTI)

Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

2009-01-01T23:59:59.000Z

352

NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Low Resolution Concentrating Solar Power Resource Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Hawaii. Purpose: Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

353

Avignon, France: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Avignon, France: Energy Resources Avignon, France: Energy Resources Jump to: navigation, search Equivalent URI DBpedia GeoNames ID 3035681 Coordinates 43.95°, 4.81667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.95,"lon":4.81667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Intermediate photovoltaic system application experiment operational performance report. Volume 3. For G. N. Wilcox Memorial Hospital, Kauai, Hawaii  

DOE Green Energy (OSTI)

Presented are the project description, list of participants, and system specifications for the intermediate photovoltaic project at G.N. Wilcox Memorial Hospital, Kauai, Hawaii.

Not Available

1982-09-01T23:59:59.000Z

355

36 Ways to Save Energy and Money - Right Now! Hawai'i Clean Energy Initiative (HCEI) (Fact Sheet)  

SciTech Connect

Fact sheet outlining top ways to save energy and money in Hawaii, in the office, at home, and in the car.

Not Available

2010-01-01T23:59:59.000Z

356

http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822  

E-Print Network (OSTI)

in transportation and electricity generation will require knowledge concerning the levels and duration of fuel cell of fuel cell systems and avoid future costly failures in fuel cell vehicles and electricity generation Contaminants and Fuel Cell Performance Team Partners: Hawai`i Natural Energy Institute Center for Clean Energy

357

Preliminary studies for geothermal exploration in Hawaii, 1973--1975  

DOE Green Energy (OSTI)

The first volume of the series on geothermal exploration in Hawaii is a compilation of information and data relevant to geothermal resources, which are available prior to the commencement of the exploration program. A narrative account of the exploration program puts into perspective the various stages of the exploration program from 1973 to 1975. The value of this narrative account lies in that it shows how the conclusion was reached to concentrate the exploration program on the east rift of Kilauea volcano as that rift zone showed the most promise of all the volcanic centers and rift zones. The narrative ends at the selection of a drilling site. The geology and hydrology of the east rift was summarized to include data existing before the exploration program and some of the early results of the field surveys. A literature survey of Kilauea volcano attempted to cover the information available on the volcano. A literature survey of the geothermal potential of the volcanoes on the island of Oahu has already been published elsewhere. A short summary and reference is included in the volume.

Furumoto, A.S.; MacDonald, G.A.; Druecker, M.; Fan, P.F.

1977-12-01T23:59:59.000Z

358

The TACTIC atmospheric Cherenkov Imaging telescope  

E-Print Network (OSTI)

The TACTIC $\\gamma$-ray telescope, equipped with a light collector of area $\\sim$9.5m$^2$ and a medium resolution imaging camera of 349-pixels, has been in operation at Mt.Abu, India since 2001. This paper describes the main features of its various subsystems and its overall performance with regard to (a) tracking accuracy of its 2-axes drive system, (b) spot size of the light collector, (c) back-end signal processing electronics and topological trigger generation scheme, (d) data acquisition and control system and (e) relative and absolute gain calibration methodology. Using a trigger field of view of 11$\\times$11 pixels ($\\sim$ 3.4$^\\circ$$\\times3.4^\\circ$), the telescope records a cosmic ray event rate of $\\sim$2.5 Hz at a typical zenith angle of 15$^\\circ$. Monte Carlo simulation results are also presented in the paper for comparing the expected performance of the telescope with actual observational results. The consistent detection of a steady signal from the Crab Nebula above $\\sim$1.2 TeV energy, at a sensitivity level of $\\sim5.0\\sigma$ in $\\sim$25 h, alongwith excellent matching of its energy spectrum with that obtained by other groups, reassures that the performance of the TACTIC telescope is quite stable and reliable. Furthermore, encouraged by the detection of strong $\\gamma$-ray signals from Mrk 501 (during 1997 and 2006 observations) and Mrk 421 (during 2001 and 2005-2006 observations), we believe that there is considerable scope for the TACTIC telescope to monitor similar TeV $\\gamma$-ray emission activity from other active galactic nuclei on a long term basis.

R. Koul; A. K. Tickoo; S. K. Kaul; S. R. Kaul; N. Kumar; K. K. Yadav; N. Bhatt; K. Venugopal; H. C. Goyal; M. Kothari; P. Chandra; R. C. Rannot; V. K. Dhar; M. K. Koul; R. K. Kaul; S. Kotwal; K. Chanchalani; S. Thoudam; N. Chouhan; M. Sharma; S. Bhattacharyya; S. Sahayanathan

2007-06-14T23:59:59.000Z

359

OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS  

SciTech Connect

The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

Swetz, D. S.; Devlin, M. J.; Dicker, S. R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Chervenak, J. [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doriese, W. B.; Hilton, G. C.; Irwin, K. D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Duenner, R. [Departamento de Astronomia y Astrofisica, Facultad de Fisica, PontificIa Universidad Catolica, Casilla 306, Santiago 22 (Chile)

2011-06-01T23:59:59.000Z

360

An Analog Trigger System for Atmospheric Cherenkov Telescopes  

E-Print Network (OSTI)

Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telescope camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanced versions of all components of the system have been produced and working prototypes have been tested, showing a performance that meets the original specifications. Finally, issues related to integrating the trigger system in a telescope camera and in the whole array will be dealt with.

Barcelo, M; Bigas, O Blanch; Boix, J; Delgado, C; Herranz, D; Lopez-Coto, R; Martinez, G

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

1995-03-01T23:59:59.000Z

362

Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program  

DOE Green Energy (OSTI)

The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hot brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.

None

1976-11-01T23:59:59.000Z

363

Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use  

SciTech Connect

This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

1993-12-01T23:59:59.000Z

364

Community Education Program * Hawai`i Institute of Marine Biology * P.O. Box 1346 *Kne`ohe, HI 96744 Phone: (808)235-9302 * Fax: (808)235-9300 * Email: himbcep@hawaii.edu  

E-Print Network (OSTI)

Community Education Program * Hawai`i Institute of Marine Biology * P.O. Box 1346 *Käne`ohe, HI.hawaii.edu/HIMB CEP - Program Request Form (For Walking Tour, Family Sundays & Expedition Tour) Group Name ___ Community Group Phone #: ______________________ home / work / school / cell (indicate which) Best # for us

365

Cornell Caltech Atacama Telescope (CCAT): a 25 m aperture telescope above 5000 m altitude  

E-Print Network (OSTI)

Cornell, California Institute of Technology (Caltech), and Jet Propulsion Lab (JPL) have joined together to study development of a 25 meter sub-millimeter telescope (CCAT) on a high peak in the Atacama region of northern Chile, where the atmosphere is so dry as to permit observation at wavelengths as short as 200 micron. The telescope is designed to deliver high efficiency images at that wavelength with a total 1/2 wavefront error of about 10 microns. With a 20 arc min field of view, CCAT will be able to accommodate large format bolometer arrays and will excel at carrying out surveys as well as resolving structures to the 2 arc sec. resolution level. The telescope will be an ideal complement to ALMA. Initial instrumentation will include both a wide field bolometer camera and a medium resolution spectrograph. Studies of the major telescope subsystems have been performed as part of an initial Feasibility Concept Study. Novel aspects of the telescope design include kinematic mounting and active positioning of primary mirror segments, high bandwidth secondary mirror segment motion control for chopping, a Calotte style dome of 50 meter diameter, a mount capable of efficient scanning modes of operation, and some new approaches to panel manufacture. Analysis of telescope performance and of key subsystems will be presented to illustrate the technical feasibility and pragmatic cost of CCAT. Project plans include an Engineering Concept Design phase followed by detailed design and development. First Light is planned for early 2012.

Thomas A. Sebring; Riccardo Giovanelli; Simon Radford; Jonas Zmuidzinas

2006-10-17T23:59:59.000Z

366

THE SPITZER SPACE TELESCOPE MISSION M. W. Werner,1  

E-Print Network (OSTI)

with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arraysTHE SPITZER SPACE TELESCOPE MISSION M. W. Werner,1 T. L. Roellig,2 F. J. Low,3 G. H. Rieke,3 M2 Receivved 2004 March 26; accepted 2004 May 26 ABSTRACT The Spitzer Space Telescope, NASA's Great

Galis, Frietson

367

Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)  

SciTech Connect

This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

Not Available

2012-05-01T23:59:59.000Z

368

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project  

E-Print Network (OSTI)

Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

Wang, Yuqing

369

How Gaz de France optimizes LNG regasification  

Science Conference Proceedings (OSTI)

A regasification optimization program was implemented at Montoir-de-Bretagne in 1984, and rapidly accepted by the operators. It has been an important tool for decision-making in the optimizing operation of this liquefied natural gas (LNG) storage and regasification terminal. The models used are regularly and easily updated on the basis of equipment behavior: aging or fouling. The Montoir-de-Bretagne LNG terminal is in the port area of Nates-Saint Nazaire on the Atlantic coast. It was commissioned in 1982 by Gaz de France. This terminal is used for receiving, storing, and regasifying the Algerian LNG received under a contract between Gaz de France and Sonatrach, as well as the LNG imported by Belgium and temporarily routed through France. It is designed to receive 25,000 to 200,000 cu m LNG carriers and has three 120,000 cm m LNG storage tanks. The daily sendout ranges between 6.7 million cu m and 36 million cu m. Monitor terminal supplies mainly Brittany and the Paris area. Two identifical berths allow the simultaneous reception of two LNG carriers. LNG is carried to the storage tanks in 32-in. lines at a rate of 12,000 cu m/hr. Each storage tank is equipped with three submerged 450 cu m/hr pumps with which the LNG is sent from the tanks to the secondary pumps at 8 bar. The nine high-pressure (HP) secondary pumps, with a capacity of either 450 cu m/hr or 180 cu m/hr, raise the LNG pressure to a level at least equal to pipeline pressure prior to revaporization.

Colonna, J.L.; Lecomte, B.; Caudron, S.

1986-05-05T23:59:59.000Z

370

US, UK, France Discuss Stockpile Stewardship, Arms Control and...  

National Nuclear Security Administration (NNSA)

in the 2010 Non-Proliferation Treaty Review Conference Action Plan. About the photo: Policy and technical representatives from the United States, United Kingdom, and France...

371

US, UK, France Discuss Stockpile Stewardship, Arms Control and...  

NLE Websites -- All DOE Office Websites (Extended Search)

US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site | National Nuclear Security Administration Our Mission...

372

Hawaii Department of Land and Natural Resources Division of Forestry and  

Open Energy Info (EERE)

Forestry and Forestry and Wildlife Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address Kalanimoku Building 1151 Punchbowl St., Room 325 Place Honolulu, Hawaii Zip 96813 Website http://hawaii.gov/dlnr/dofaw Coordinates 21.305788°, -157.855682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.305788,"lon":-157.855682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Hawaii Department of Land and Natural Resources Office of Conservation and  

Open Energy Info (EERE)

Office of Conservation and Office of Conservation and Coastal Lands Jump to: navigation, search Name Hawaii Department of Land and Natural Resources Office of Conservation and Coastal Lands From Open Energy Information Address P.O. Box 261 Place Honolulu, Hawaii Zip 96809 Website http://www.hawaii.gov/dlnr/occ Coordinates 21.31°, -157.86° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.31,"lon":-157.86,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Details Activities (2) Areas (1) Regions (0) Abstract: Two seismic refraction surveys were carried out in 1976 and 1977 on the east rift zone of Kilauea volcano as part of an exploratory program for geothermal resources. The short traverse seismic refraction survey of January 1976 delineated the upper surface structure of the east rift, revealing velocities of 2.5 km/s under the Kalapana line and 3.1 km/s under the Leilani line beneath a surface layer of low, but variable velocity. This survey was not successful in determining the depth of the

375

An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii | Open  

Open Energy Info (EERE)

Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Approach to Problems of a Geothermal Mercury Survey, Puna, Hawaii Abstract Concentrations of soil mercury of 15 to 1250ppb were determined in the Puna geothermal areaon the lower east rift zone of Kilauea volcano. As the area is young and volcanically active a wide range of soils exist. Hg concentrations are partly controlled by such factors as soil development and organic content, which tend to complicate interpretation of the absolute concentrations measured. The pH of both ground gas and soil may also influence transport and fixation of the Hg, and some low pH soils may be due to SO2 and C02 in ground gas. By relating the Hg concentration of

376

ORNL DAAC NPP TROPICAL FOREST: MAUI, HAWAII, U.S.A., 1996-1997  

NLE Websites -- All DOE Office Websites (Extended Search)

TROPICAL FOREST: MAUI, HAWAII, U.S.A., 1996-1997 TROPICAL FOREST: MAUI, HAWAII, U.S.A., 1996-1997 Get Data Summary: The objective of this study was to quantify net primary productivity as a function of rainfall in mesic to wet montane rainforests in Maui, Hawaii. The Maui Moisture Gradient is a sequence of six sites located on the island of Maui that range from 2200-mm to 5050-mm mean annual rainfall, while temperature and all other state factors (parent material, substrate age, organisms, and topography) that control NPP remain relatively constant. This data set contains annual estimates of net primary productivity made in 1996 and 1997. The data provided are estimates of the accumulation of biomass by plants for a given year, or net primary productivity (NPP). Estimates are given for aboveground and belowground productivity, and the sum as net primary

377

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On  

Open Energy Info (EERE)

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Details Activities (4) Areas (1) Regions (0) Abstract: Deep drilling has allowed for the first time an examination of most of the shield stage of a Hawaiian volcano when it is centered over the hotspot and most of its volume is produced. We determined the lithologies, ages, geochemical characteristics and accumulation rates of rocks from the continuously cored, ~1.7 km deep Scientific Observation Hole (SOH) 1, which was drilled into Kilauea's East Rift Zone. The uppermost ~750 m of this hole contain relatively unaltered subaerially quenched lavas; the lower

378

Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and  

Open Energy Info (EERE)

Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity Abstract Published and new data for chemical and isotopic samples from wells and springson Kilauea Volcano and vicinity are presented. These data are used to understandprocesses that determine the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower

379

Hawaii Department of Health Solid and Hazardous Waste Branch | Open Energy  

Open Energy Info (EERE)

and Hazardous Waste Branch and Hazardous Waste Branch Jump to: navigation, search Name Hawaii Department of Health Solid and Hazardous Waste Branch Address 919 Ala Moana Boulevard #212 Place Honolulu, Hawaii Zip 96814 Website http://hawaii.gov/health/envir Coordinates 21.294755°, -157.858979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.294755,"lon":-157.858979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)  

DOE Data Explorer (OSTI)

Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

Sengupta, M.; Andreas, A.

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)  

Science Conference Proceedings (OSTI)

Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

Sengupta, M.; Andreas, A.

2010-03-16T23:59:59.000Z

382

Ultra Violet Imaging Telescope (UVIT) on ASTROSAT  

E-Print Network (OSTI)

Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDIA. UVIT will image the selected regions of the sky simultaneously in three channels and observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One of the telescopes images in the...

Kumar, Amit; Hutchings, J; Kamath, P U; Kathiravan, S; Mahesh, P K; Murthy, J; S, Nagbhushana; Pati, A K; Rao, M N; Rao, N K; Sriram, S; Tandon, S N

2012-01-01T23:59:59.000Z

383

A Cosmic Ray Telescope For Educational Purposes  

SciTech Connect

Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm{sup 3}. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

Voulgaris, G.; Kazanas, S.; Chamilothoris, I. [Department of Physics, National and Kapodistrian University of Athens (Greece)

2010-01-21T23:59:59.000Z

384

Extending the Sensitivity of Air Cerenkov Telescopes  

E-Print Network (OSTI)

Over the last decade, the Imaging Air Cerenkov technique has proven itself to be an extremely powerful means to study very energetic gamma-radiation from a number of astrophysical sources in a regime which is not practically accessible to satellite-based instruments. The further development of this approach in recent years has generally concentrated on increasing the density of camera pixels, increasing the mirror area and using multiple telescopes. Here we present a practical method to substantially improve the sensitivity of Atmospheric Cerenkov Telescopes using wide-field cameras with a relatively course density of photomultiplier tubes. The 2-telescope design considered here is predicted to be more than ~3 times more sensitive than existing/planned arrays in the regime above 300 GeV for continuously emitting sources; up to ~10 times more sensitive for hour-scale emission (relevant for episodic sources, such as AGN); significantly more sensitive in the regime above 10 TeV; and possessing a sky coverage which is roughly an order of magnitude larger than existing instruments. It should be possible to extend this approach for even further improvement in sensitivity and sky coverage.

I. de la Calle Perez; S. D. Biller

2006-02-13T23:59:59.000Z

385

Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii  

DOE Green Energy (OSTI)

Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

1993-10-01T23:59:59.000Z

386

SOLAR DECATHLON EUROPE 2014 IN FRANCE REQUEST FOR PROPOSAL 2014  

E-Print Network (OSTI)

SOLAR DECATHLON EUROPE 2014 IN FRANCE REQUEST FOR PROPOSAL 2014 #12;TABLE OF CONTENTS 1 and design) are invited to participate in the third edition of the Solar Decathlon Europe in 2014 in France ! The SDE (Solar Decathlon Europe) organization, the French Ministry of territorial Equality and Housing

Papadopoulos, Evangelos

387

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 2: Application in Hawaii  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

388

Hawai`i's Seafood Consumption and its Supply Sources Cheryl Geslani  

E-Print Network (OSTI)

are at the retail level, the import data are normally valued either at Freight On Board (FOB) or Cost, Insurance. Algae, as a category, is Hawai`i's most valuable aquaculture crop. It is comprised mainly of Spirulina-2009 average 15 #12;pressures in their ocean resources and rising costs of transportation, which is driven

Hawai'i at Manoa, University of

389

Direct Breaking of the Internal Tide near Topography: Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge ...

Jody M. Klymak; Robert Pinkel; Luc Rainville

2008-02-01T23:59:59.000Z

390

Flow and Mixing around a Small Seamount on Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Microstructure observations over a small seamount on the Kaena Ridge, Hawaii, showed asymmetry in the along- and across-ridge directions. The 400-m-high seamount is on the southern edge of the ridge (centered at 2143?49?N, 15838?48?W), 42 km ...

Glenn S. Carter; Michael C. Gregg; Mark A. Merrifield

2006-06-01T23:59:59.000Z

391

Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources  

SciTech Connect

This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1996-01-01T23:59:59.000Z

392

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network (OSTI)

Consumption Data Analysis Phase I Interim Report March 30, 2011 Prepared for: Forest City Military RECOMMENDATIONS TO FOREST CITY 12 ITEMS TO ADD TO FOREST CITY TURNOVER PUNCH LIST 17 APPENDIXUniversity of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report

393

Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement  

SciTech Connect

This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

1995-03-01T23:59:59.000Z

394

Orographic Cloud over the Eastern Slopes of Mauna Loa Volcano, Hawaii, Related to Insolation and Wind  

Science Conference Proceedings (OSTI)

During the period 111 June 1978, solar radiation and other meteorological data were gathered at eight stations arranged in a nearly linear transaction extending from the coast at Hilo, Hawaii to Mauna Loa Observatory, 60 km inland and 3400 m ...

Alfred J. Garrett

1980-07-01T23:59:59.000Z

395

The Effects of the Island of Hawaii on Offshore Rainband Evolution  

Science Conference Proceedings (OSTI)

The diurnal cycle of airflow on the island of Hawaii and the structure of the low-level flow separation line between the island-induced offshore flow and incoming trade winds are reasonably well understood. This study examines the formation and ...

Jian-Jian Wang; Robert M. Rauber; Harry T. Ochs III; Richard E. Carbone

2000-04-01T23:59:59.000Z

396

Ice Bear Energy Storage Demonstration at Hawaii Department of Education Operations and Maintenance  

Science Conference Proceedings (OSTI)

Energy storage strategies can play a major role in helping a utilities use their existing assets to meet projected loads. This project demonstrated the operational effectiveness and technical feasibility of the Ice Bear Ice Storage Air Conditioner for use with Direct-Expansion (DX) air-conditioners as an appropriate technology for demand reduction and peak load management in Hawaii.

2007-06-05T23:59:59.000Z

397

Heavy Rain Events over the South-Facing Slopes of Hawaii: Attendant Conditions  

Science Conference Proceedings (OSTI)

Heavy rain events (>100 mm day?1) over the southeast flank of Mauna Loa volcano on the island of Hawaii are examined using surface, rawinsonde, rain gauge, and satellite data. The events occur in the presence of four types of synoptic-scale ...

Kevin Kodama; Gary M. Barnes

1997-06-01T23:59:59.000Z

398

A Bow Echo and Severe Weather Associated with a Kona Low in Hawaii  

Science Conference Proceedings (OSTI)

On 2 November 1995 a kona low formed to the northwest of Hawaii. During the following 48 h a series of convective rainbands developed on the southeastern side of the low as it slowly moved eastward. On the afternoon of 3 November 1995 Hawaiian ...

Steven Businger; Thomas Birchard Jr.; Kevin Kodama; Paul A. Jendrowski; Jian-Jian Wang

1998-09-01T23:59:59.000Z

399

Hawai`i Solar Integration Study: Final Technical Report for Maui  

E-Print Network (OSTI)

of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT of the Maui PV Scenario Analysis Prepared by GE Energy Consulting Submitted to Hawai`i Natural Energy ..........................................................................................................4 4.0 GE Power System Modeling Tools

400

Upper Ocean Heat Budget During the Hawaii-to-Tahiti Shuttle Experiment  

Science Conference Proceedings (OSTI)

Heat flux, CTD and current profile data from the Hawaii-to- Tahiti Shuttle Experiment are used to study the upper ocean heat budget in order to better understand the seasonal evolution of sea surface temperature (SST) in the central tropical ...

James W. Stevenson; Pearn P. Niiler

1983-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

40 Years Of Dogger Aquifer Management In Ile-De-France, Paris...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40 Years Of Dogger Aquifer Management In Ile-De-France, Paris Basin, France edit Details Activities (0) Areas (0)...

402

A Short and Personal History of the Spitzer Space Telescope  

E-Print Network (OSTI)

The Spitzer Space Telescope, born as the Shuttle Infrared Telescope Facility (SIRTF) and later the Space Infrared Telescope Facility (still SIRTF), was under discussion and development within NASA and the scientific community for more than 30 years prior to its launch in 2003. This brief history chronicles a few of the highlights and the lowlights of those 30 years from the authors personal perspective. A much more comprehensive history of SIRTF/Spitzer has been written by George Rieke (2006).

Michael Werner

2005-03-29T23:59:59.000Z

403

Status of the second phase of the MAGIC telescope  

E-Print Network (OSTI)

The MAGIC 17m diameter Cherenkov telescope will be upgraded with a second telescope with advanced photon detectors and ultra fast readout within the year 2007. The sensitivity of MAGIC-II, the two telescope system, will be improved by a factor of 2. In addition the energy threshold will be reduced and the energy and angular resolution will be improved. The design, status and expected performance of MAGIC-II is presented here.

Florian Goebel; for the MAGIC collaboration

2007-09-17T23:59:59.000Z

404

Very Large Aperture Diffractive Space Telescope  

DOE Patents (OSTI)

A very large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass ''aiming'' at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The magnifying glass includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the magnifying glass, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets.

Hyde, Roderick Allen

1998-04-20T23:59:59.000Z

405

Imaging Atmospheric Cerenkov Telescopes: Techniques and Results  

E-Print Network (OSTI)

The hunt for cosmic TeV particle accelerators is prospering through Imaging Atmospheric Cerenkov Telescopes. We face challenges such as low light levels and MHz trigger rates, and the need to distinguish between particle air showers stemming from primary gamma rays and those due to the hadronic cosmic ray background. Our test beam is provided by the Crab Nebula, a steady accelerator of particles to energies beyond 20 TeV. Highly variable gamma-ray emission, coincident with flares at longer wavelengths, is revealing the particle acceleration mechanisms at work in the relativistic jets of Active Galaxies. These 200 GeV to 20 TeV photons propagating over cosmological distances allow us to place a limit on the infra-red background linked to galaxy formation and, some speculate, to the decay of massive relic neutrinos. Gamma rays produced in neutralino annihilation or the evaporation of primordial black holes may also be detectable. These phenomena and a zoo of astrophysical objects will be the targets of the next generation multi-national telescope facilities.

S. M. Bradbury

2001-01-30T23:59:59.000Z

406

The ROTSE-IIIa Telescope System  

E-Print Network (OSTI)

We report on the current operating status of the ROTSE-IIIa telescope, currently undergoing testing at Los Alamos National Laboratories in New Mexico. It will be shipped to Siding Spring Observatory, Australia, in first quarter 2002. ROTSE-IIIa has been in automated observing mode since early October, 2001, after completing several weeks of calibration and check-out observations. Calibrated lists of objects in ROTSE-IIIa sky patrol data are produced routinely in an automated pipeline, and we are currently automating analysis procedures to compile these lists, eliminate false detections, and automatically identify transient and variable objects. The manual application of these procedures has already led to the detection of a nova that rose over six magnitudes in two days to a maximum detected brightness of m_R~13.9 and then faded two magnitudes in two weeks. We also readily identify variable stars, includings those suspected to be variables from the Sloan Digital Sky Survey. We report on our system to allow public monitoring of the telescope operational status in real time over the WWW.

D. A. Smith; C. Akerlof; M. C. B. Ashley; D. Casperson; G. Gisler; R. Kehoe; S. Marshall; K. McGowan; T. McKay; M. A. Phillips; E. Rykoff; W. T. Vestrand; P. Wozniak; J. Wren

2002-04-24T23:59:59.000Z

407

The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part II: Interactions with Mesoscale Currents  

Science Conference Proceedings (OSTI)

Observations of semidiurnal surface currents in the Kauai Channel, Hawaii, are interpreted in the light of the interaction of internal tides with energetic surface-intensified mesoscale currents. The impacts on internal tide propagation of a ...

C. Chavanne; P. Flament; D. Luther; K-W. Gurgel

2010-06-01T23:59:59.000Z

408

Subharmonic Energy Transfer from the Semidiurnal Internal Tide to Near-Diurnal Motions over Kaena Ridge, Hawaii  

Science Conference Proceedings (OSTI)

Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating ...

Oliver M. Sun; Robert Pinkel

2013-04-01T23:59:59.000Z

409

The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I: Observations and Numerical Predictions  

Science Conference Proceedings (OSTI)

Observations of semidiurnal currents from high-frequency radio Doppler current meters and moored acoustic Doppler current profilers (ADCPs) in the Kauai Channel, Hawaii, are described and compared with two primitive equation numerical models of ...

C. Chavanne; P. Flament; G. Carter; M. Merrifield; D. Luther; E. Zaron; K-W. Gurgel

2010-06-01T23:59:59.000Z

410

Using Horizontal and Slant Lidar Measurements to Obtain Calibrated Aerosol Scattering Coefficients from a Coastal Lidar in Hawaii  

Science Conference Proceedings (OSTI)

Sea salt aerosol concentrations in the clean marine boundary layer can be considered spatially homogeneous when averaged over space and time. Using this assumption, horizontal and slant lidar measurements are carried out at a Hawaii coastal site ...

J. N. Porter; B. Lienert; Shiv K. Sharma

2000-11-01T23:59:59.000Z

411

Measurement of Expected Nucleation Precursor Species and 3500-nm Diameter Particles at Mauna Loa Observatory, Hawaii  

Science Conference Proceedings (OSTI)

Atmospheric measurements of expected homogeneous nucleation precursors and aerosols were made at the Mauna Loa Observatory, Hawaii, from 28 June to 27 July 1992. Large molecular clusters and gas phase species including sulfuric acid (H2SO4), ...

R. J. Weber; P. H. McMurry; F. L. Eisele; D. J. Tanner

1995-06-01T23:59:59.000Z

412

Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement  

DOE Green Energy (OSTI)

In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

Reed, R.M.; Saulsbury, J.W.

1993-06-01T23:59:59.000Z

413

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices  

E-Print Network (OSTI)

Cost forecasts: Euyropean International High-Energy Physics facilities - Million Swiss Francs at 1966 prices

ECFA meeting

1966-01-01T23:59:59.000Z

414

Evolution of the Standard Helium Liquefier and Refrigerator Range designed by Air Liquide DTA, France  

E-Print Network (OSTI)

Evolution of the Standard Helium Liquefier and Refrigerator Range designed by Air Liquide DTA, France

Crispel, S; Caillaud, A; Delcayre, F; Grabie, V

2008-01-01T23:59:59.000Z

415

Advance information on forthcoming market surveys and calls for tenders expected 200'000 Swiss francs  

E-Print Network (OSTI)

Advance information on forthcoming market surveys and calls for tenders expected 200'000 Swiss francs

2002-01-01T23:59:59.000Z

416

Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)  

SciTech Connect

This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

Braccio, R.; Finch, P.; Frazier, R.

2012-03-01T23:59:59.000Z

417

Argonne CNM Highlight: 2007 U.S.-France Nanoscience Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships in Nanoscience Explored between France and the United States Partnerships in Nanoscience Explored between France and the United States During June 3-5, 2007, a group of 50 researchers and invited participants came together at Argonne National Laboratory for the France-U.S. Nanoscience Workshop. The purpose of this workshop was to help stimulate U.S.-France collaborations in nanoscience. Pat Dehmer, Associate Director for Science, U.S. Department of Energy (DOE), Office of Basic Energy Sciences, attended along with Linda Blevins, Technical and International Advisor. The importance of international collaboration and cooperation for solving critical issues in nanoscience and nanotechnology (e.g., in energy and information technology) was apparent. In yet another demonstration that international partnerships have always been important for the success of DOE laboratory-based research, participants from many of the DOE national laboratories were present.

418

International Conference on Hydroinformatics HIC 2006, Nice, FRANCE  

E-Print Network (OSTI)

Author manuscript, published in "The 7th Hydro-Informatics Conference, France (2006)" #12;paper, and many cars were carried out. The majority of these floods are related to land use, agricultural

Paris-Sud XI, Université de

419

Electricite de France Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The Smart Grid demonstration project host site supported by lectricit de France (EDF) is part of a five-year collaborative initiative with 19 utility members. The Production Rpartie, Enr et MDE, Intgres et Optimises (PREMIO) project is to demonstrate an innovative, open, and repeatable architecture to optimize the integration of distributed energy resources in order to provide load relief and local network support and to reduce CO2 emissions in southeast France. The PREMIO project also tests a solution t...

2011-06-30T23:59:59.000Z

420

Deployment of a Pair of 3 M telescopes in Utah  

SciTech Connect

Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

Finnegan, G.; Adams, B.; Butler, K.; Cardoza, J.; Colin, P.; Hui, C. M.; Kieda, D.; Kirkwood, D.; Kress, D.; Kress, M.; LeBohec, S.; McGuire, C.; Newbold, M.; Nunez, P.; Pham, K. [University of Utah, Department of Physics, Salt Lake City, Utah 84112 (United States)

2008-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Searching for Transient Pulses with the ETA Radio Telescope  

Science Conference Proceedings (OSTI)

Array-based, direct-sampling radio telescopes have computational and communication requirements unsuited to conventional computer and cluster architectures. Synchronization must be strictly maintained across a large number of parallel data streams, from ... Keywords: Direct sampling radio telescope array, FPGA cluster computing, RFI mitigation, signal dedispersion

C. D. Patterson; S. W. Ellingson; B. S. Martin; K. Deshpande; J. H. Simonetti; M. Kavic; S. E. Cutchin

2009-01-01T23:59:59.000Z

422

Optimal Networks of Future Gravitational-Wave Telescopes  

E-Print Network (OSTI)

We aim to find the optimal site locations for a hypothetical network of 1-3 triangular gravitational-wave telescopes. We define the following N-telescope figures of merit and construct three corresponding metrics: (a) capability of reconstructing the signal polarization; (b) accuracy in source localization; and (c) accuracy in reconstructing the parameters of a standard binary source. We also define a combined metric that takes into account the three figures of merit with practically equal weight. After constructing a geomap of possible telescope sites, we give the optimal 2-telescope networks for the four figures of merit separately in example cases where the location of the first telescope has been predetermined. We found that the optimal site locations for a second telescope based on the combined metric form a +/-7 deg annulus at an angular distance of ~130 deg from the location of the first telescope. Based on this result we conclude that placing the first telescope to Australia provides the most options ...

Raffai, Peter; Heng, Ik Siong; Kelecsenyi, Nandor; Logue, Josh; Marka, Zsuzsa; Marka, Szabolcs

2013-01-01T23:59:59.000Z

423

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 40193,0 40224,0 40252,0 40283,0 40313,0 40344,0

424

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

956 956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared under Task No. IDHW.9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

425

STATE: HI PROJECT Subtask 2.2 MCBH Site: National Marine Renewable Energy Center in Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 MCBH Site: National Marine Renewable Energy Center in Hawaii 2 MCBH Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-002 G018180 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized ullder DOE Order 451.1A), I have made the fODowing determinatioll: Cx, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, Iterature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasbHity studies, analytical energy supply and demand studies), and dissenination (including, but not limited to, docl.lllent mailings, pLt>lication, and distribution;

426

,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035hi3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035hi3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:09 PM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,11.65 36937,11.84

427

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Technical Report NREL/ TP-7A40-52897 November 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey Prepared under Task No. IDHW.9180

428

NREL GIS Data: U.S. Hawaii Offshore Windspeed 90m Height High Resolution |  

Open Energy Info (EERE)

Hawaii Offshore Windspeed 90m Height High Resolution Hawaii Offshore Windspeed 90m Height High Resolution Dataset Summary Description This dataset is a geographic shapefile generated from the original raster data. The original raster data resolution is a 200-meter cell size. The data provide an estimate of annual average wind speed at 90 meter height above surface for specific offshore regions of the United States. To learn more, please see the Assessment of Offshore Wind Energy Resources for the United States. These data were produced in cooperation with U.S. Department of Energy, and have been validated by NREL. To download state wind resource maps, visit Wind Powering America. In order to ensure the downloadable shapefile is current, please compare the date updated on this page to the last updated date on the NREL GIS Wind Data webpage.

429

STATE: HI PROJECT Subtask 2.1 Maui Site: National Marine Renewable Energy Center in Hawaii  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Maui Site: National Marine Renewable Energy Center in Hawaii 1 Maui Site: National Marine Renewable Energy Center in Hawaii TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-08G098030 DE-FG36-08G018180 GFO-09-013-001 G018180 Based on my review of the information concerning the pro posed action, as NEPA CompHance Officer (authorized under DOE Order 451.1A), I have made the foHowing determination: Cx, EA, EIS APPENDIX AND NUMBER: Description: 83.1 Onsite and offsite site characterization and environmental monitoring, including siting, construction (or modification), operation, and dismantlement or closing (abandonment) of qharacterization and monitoring devices and siting, construction, and associated operation of a small-scale laboratory building or renovation of a room in an existing building

430

,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:17 PM" "Back to Contents","Data 1: Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SHI_2" "Date","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)" 35611,284 35976,0 36341,380 36707,0 37072,0 37437,0 37802,0 38168,0

431

NREL GIS Data: Hawaii High Resolution Wind Resource | OpenEI  

Open Energy Info (EERE)

Wind Resource Wind Resource Dataset Summary Description Abstract: Annual average wind resource potential for the state of Hawaii at a 50 meter height. Purpose: Provide information on the wind resource development potential within the state of Hawaii. Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from a raster dataset with a 200 m resolution, in a UTM zone 4, datum WGS 84 projection system. Other_Citation_Details: The wind power resource estimates were produced by TrueWind Solutions using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants.

432

Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1981-02-01T23:59:59.000Z

433

Preliminary assessment report for Waiawa Gulch, Installation 15080, Pearl City, Oahu, Hawaii. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Hawaii Army National Guard (HIARNG) property near Pearl City, Oahu, Hawaii. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Waiawa Gulch property, phase I of the Department of Defense Installation Restoration Program (IRP).

Not Available

1993-08-01T23:59:59.000Z

434

Final technical report: DOE-High Energy Physics contract with the University of Hawaii  

Science Conference Proceedings (OSTI)

This report is divided into two sections: (1) experimental program; and (2) theoretical program. In each case the report includes a highly condensed summary of the major developments on various Hawaii projects. The various experimental programs in which Hawaii played a significant role during this period are: (1) neutrino bubble chamber experiments; (2) electron-positron colliding beams; (3) development of silicon particle-position detectors for HEP; (4) proton decay search; (5) high energy gamma-ray astronomy; and (6) DUMAND project. The theoretical programs are: (1) research in neutrino physics; (2) supernova neutrinos; (3) solar neutrinos; (4) atmospheric neutrinos; (5) searching for supersymmetry; (6) Higgs boson searches; (7) simulation of supersymmetry; (8) signals of R-parity violation; (9) leptoquarks, stable heavy particles and other exotica; (10) CP non conservation; (11) neutron electron dipole moment; (12) heavy quark physics; and (13) hadron spectroscopy.

Not Available

1995-12-31T23:59:59.000Z

435

Transportation and Electrical Efficiency Potential in the State of Hawaii Using Existing Technologies  

Science Conference Proceedings (OSTI)

The purpose of this study on Hawaii's transportation and electrical efficiency options is to provide policy makers with a clearly defined set of options to capture the energy efficiency prize. Neoclassical prescriptions for implementation of energy policies using prices, taxes, regulation, and deregulation are well known but politically fraught, though authentic competition in the context of a least-cost strategy can be effective. Yet unknown to many analysts and policymakers is a powerful new portfolio ...

2005-10-31T23:59:59.000Z

436

Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)  

SciTech Connect

The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support project facilities in a safe and environmentally acceptable manner; and non-power generating alternatives, such as conservation and demand-side management.

None

1992-09-18T23:59:59.000Z

437

Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint  

DOE Green Energy (OSTI)

This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

2012-05-01T23:59:59.000Z

438

Hawaii energy strategy project 3: Renewable energy resource assessment and development program  

DOE Green Energy (OSTI)

RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

NONE

1995-11-01T23:59:59.000Z

439

Geothermal spas in Hawaii: A new tourist industry. : A preliminary report  

SciTech Connect

There are at least three very good uses for active volcanism: Obtain energy from it. Study it. Enjoy it. We are already obtaining electrical energy and industrial heat from Kilauea's abundant resource by drilling geothermal wells and building power plants. Our Volcano Observatory is recognized as a world renowned center of learning about volcanism. Our Volcanoes National Park allows us to view and appreciate this awesome phenomenon. For several years people have speculated about the high potential in Hawaii for another way of enjoying this warmth of mother earth -- spas or resorts that would make use of water that is naturally heated and mineralized by volcanic activity. However, before spas are developed in Hawaii, answers are needed to several important questions dealing with such topics as the suitability of our geothermal waters, sources of water that could be tapped, special equipment and materials needed, land availability, governmental and environmental hurdles, and the economics of this unique business. Though a considerable amount of research is still needed, it was felt worthwhile to summarize the information gathered to date from historical works, brochures, personal communications, and other sources. This report should stimulate interest in, and perhaps accelerate, the development of one of Hawaii's most important natural resources.

Woodruff, J.L.

1987-07-01T23:59:59.000Z

440

The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park  

E-Print Network (OSTI)

The U.S. National Park Service has recognized visitor health and safety as an important component of protected area management. Despite this recognition, research investigating visitor health and safety issues in national parks is lacking. In order to improve the understanding of the factors contributing to visitor injuries, the purpose of this study was to: 1) identify the distribution of injuries in Hawaii Volcanoes National Park, 2) examine the relationship between visitor factors and the severity of visitor injuries in Hawaii Volcanoes National Park, 3) examine the relationship between environmental factors and the severity of visitor injuries in Hawaii Volcanoes National Park, and 4) determine the effectiveness of sign placement and indirect supervision on controlling visitor injuries in the park. Data for this study consisted of 5,947 incident reports recorded in Hawaii Volcanoes between January 1, 1993 and December 31, 2002. The results found that even though 26% of the injuries in the park occur in frontcountry regions, 53% of all visitor injuries took place at the Eruption Site. As well, 130 of the 268 (49%) fatalities occurred on roadway environments and 1,179 of the 1,698 (69%) severe injuries occurred at the Eruption Site. Logistic regression analysis used to examine the relationship between visitor factors and injury severity in Hawaii Volcanoes National Park found that female visitors, visitors wearing minimal footwear and clothing, and visitors carrying no flashlight and minimal drinking water are factors significantly associated with fatal injuries. Visitors wearing minimal footwear and clothing, visitors carrying no flashlight and minimal drinking water, visitors entering restricted areas, visitors with pre-existing health conditions, and visitors aged 50-59 years of age are factors significantly associated with severe injuries. Logistic regression analysis found no built environment factor to be significantly associated with visitor fatalities or severe injuries. However, darkness and rugged terrain were significantly associated with visitor fatalities. Chi-square tests of independence found the combined treatment of sign placement and indirect supervision to have no effect on reducing the frequency and severity of visitor injuries at the Eruption Site.

Heggie, Travis Wade

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Real-time condition assessment of RAPTOR telescope systems  

Science Conference Proceedings (OSTI)

The RAPid Telescopes for Optical Response (RAPTOR) observatory network consists of several robotic astronomical telescopes primarily designed to search for astrophysical transients called a gamma-ray bursts (GRBs). Although intrinsically bright, GRBs are difficult to detect because of their short duration. Typically, they are first observed by satellites that then relay the coordinates of the GRB to a ground station which, in turn, distributes the coordinates over the internet so that ground based observers can perform follow-up observations. Typically the ground based observations begin after the GRB has ended and only residual emiSSion (the 'afterglow') is left. However, if the satellite relays the GRB coordinates quickly enough, a 'fast' robotic telescope on the ground may be able to catch the GRB in progress. The RAPTOR telescope system is one of only a few in the world to have accomplished this feat. In order to achieve these results, the RAPTOR telescopes must operate autonomously at a high duty-cycle and in peak operating condition. Currently the telescopes are maintained in an ad hoc manner, often in a run-to-failure mode. The RAPTOR project could benefit greatly from a structural health monitoring (SHM) system, especially as more complex units are added to the suite of telescopes. This paper will summarize preliminary results from an SHM study performed on one of the RAPTOR telescopes. Damage scenarios that are of concern and that have been previously observed are first summarized. Then a specific study of damage to the telescope drive mechanism is presented where the data acquisition system is first described. Next, damage detection algorithms are developed with LANL's new publically available software SHMTools and the results of this process are discussed in detail. The paper will conclude with a summary of future planned refinemenls of the RAPTOR SHM system.

Stull, Chris [Los Alamos National Laboratory; Taylor, Stuart [Los Alamos National Laboratory; Wren, James [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

2010-11-30T23:59:59.000Z

442

A retrospective of the GREGOR solar telescope in scientific literature  

E-Print Network (OSTI)

In this review, we look back upon the literature, which had the GREGOR solar telescope project as its subject including science cases, telescope subsystems, and post-focus instruments. The articles date back to the year 2000, when the initial concepts for a new solar telescope on Tenerife were first presented at scientific meetings. This comprehensive bibliography contains literature until the year 2012, i.e., the final stages of commissioning and science verification. Taking stock of the various publications in peer-reviewed journals and conference proceedings also provides the "historical" context for the reference articles in this special issue of Astronomische Nachrichten/Astronomical Notes.

Denker, C; Feller, A; Arlt, K; Balthasar, H; Bauer, S -M; Gonzlez, N Bello; Berkefeld, T; Caligari, P; Collados, M; Fischer, A; Granzer, T; Hahn, T; Halbgewachs, C; Heidecke, F; Hofmann, A; Kentischer, T; Klva?a, M; Kneer, F; Lagg, A; Nicklas, H; Popow, E; Puschmann, K G; Rendtel, J; Schmidt, D; Schmidt, W; Sobotka, M; Solanki, S K; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; Waldmann, T; Wiehr, E; Wittmann, A D; Woche, M

2012-01-01T23:59:59.000Z

443

Microsoft Word - France-US Nanoscience agenda_FINAL.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

France - U.S. Nanoscience Workshop France - U.S. Nanoscience Workshop Argonne National Laboratory June 3-5, 2007 APS 401, Room A1100 SUNDAY, June 3 7:30 Bus departures begin from Argonne Guest House (APS 401 is also in walking distance) 8:00-9:00 Registration in APS Atrium 8:00-9:00 Continental Breakfast Welcome and Introduction 9:00 Welcome to Argonne Eric Isaacs 9:10 DOE Overview Pat Dehmer 9:40 CNRS Overview Didier Stiévenard and Alain Fontaine "Center of Competence of Nanosciences in France" 10:00 CEA Overview Jean-Philippe Bourgoin 10:15 Break Electronic and Magnetic Properties Eric Isaacs, Presiding 10:30 Bruno Grandidier (IEMN, CNRS, Lille) "Linewidths in Tunneling Spectroscopy of Semiconducting Nanocrystals" 11:00 Philippe Guyot Sionnest (University of Chicago)

444

Address (Smart Grid Project) (France) | Open Energy Information  

Open Energy Info (EERE)

France) France) Jump to: navigation, search Project Name Address Country France Coordinates 46.073231°, 2.427979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.073231,"lon":2.427979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

The Solar Optical Telescope for the Hinode Mission: An Overview  

E-Print Network (OSTI)

The Solar Optical Telescope (SOT) aboard the Hinode satellite (formerly called Solar-B) consists of the Optical Telescope Assembly (OTA) and the Focal Plane Package (FPP). The OTA is a 50 cm diffraction-limited Gregorian telescope, and the FPP includes the narrow-band (NFI) and wide-band (BFI) filtergraphs, plus the Stokes spectro-polarimeter (SP). SOT provides unprecedented high resolution photometric and vector magnetic images of the photosphere and chromosphere with a very stable point spread function, and is equipped with an image stabilization system that reduces the error to less than 0.01 arcsec rms. Together with the other two instruments on Hinode (the X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS)), SOT is poised to address many fundamental questions about solar magneto-hydrodynamics. Note that this is an overview, and the details of the instrument are presented in a series of companion papers.

S. Tsuneta

2007-11-12T23:59:59.000Z

446

Hubble space telescope; A new window opens on the universe  

Science Conference Proceedings (OSTI)

This paper reports on the Hubble space telescope. The telescope is expected to help answer key questions in astronomy, astrophysics, and cosmology, such as how stars and galaxies form and evolve; the size and age of the universe; the nature of quasars, black holes, and other exotic objects; the characteristics of planets in our solar system; and evidence for existence of planets orbiting other stars.

Seltzer, R.J. (C and EN, Washington, DC (US))

1990-04-09T23:59:59.000Z

447

Geomagnetic Effects on the Performance of Atmospheric Cerenkov Telescopes  

E-Print Network (OSTI)

Atmospheric Cerenkov telescopes are used to detect electromagnetic showers from primary gamma rays of energy > 300 GeV and to discriminate these from cascades due to hadrons using the shape and orientation of the Cerenkov images. The geomagnetic field affects the development of showers and diffuses and distorts the images. When the component of the field normal to the shower axis is sufficiently large (> 0.4 G) the performance of gamma ray telescopes may be affected.

P. M. Chadwick; K. Lyons; T. J. L. McComb; K. J. Orford; J. L. Osborne; S. M. Rayner; S. E. Shaw; K. E. Turver

1999-06-08T23:59:59.000Z

448

The Sloan Digital Sky Survey Monitor Telescope Pipeline  

E-Print Network (OSTI)

The photometric calibration of the Sloan Digital Sky Survey (SDSS) is a multi-step process which involves data from three different telescopes: the 1.0-m telescope at the US Naval Observatory (USNO), Flagstaff Station, Arizona (which was used to establish the SDSS standard star network); the SDSS 0.5-m Photometric Telescope (PT) at the Apache Point Observatory (APO), New Mexico (which calculates nightly extinctions and calibrates secondary patch transfer fields); and the SDSS 2.5-m telescope at APO (which obtains the imaging data for the SDSS proper). In this paper, we describe the Monitor Telescope Pipeline, MTPIPE, the software pipeline used in processing the data from the single-CCD telescopes used in the photometric calibration of the SDSS (i.e., the USNO 1.0-m and the PT). We also describe transformation equations that convert photometry on the USNO-1.0m u'g'r'i'z' system to photometry the SDSS 2.5m ugriz system and the results of various validation tests of the MTPIPE software. Further, we discuss the semi-automated PT factory, which runs MTPIPE in the day-to-day standard SDSS operations at Fermilab. Finally, we discuss the use of MTPIPE in current SDSS-related projects, including the Southern u'g'r'i'z' Standard Star project, the u'g'r'i'z' Open Star Clusters project, and the SDSS extension (SDSS-II).

D. L. Tucker; S. Kent; M. W. Richmond; J. Annis; J. A. Smith; S. S. Allam; C. T. Rodgers; J. L. Stute; J. K. Adelman-McCarthy; J. Brinkmann; M. Doi; D. Finkbeiner; M. Fukugita; J. Goldston; B. Greenway; J. E. Gunn; J. S. Hendry; D. W. Hogg; S. -I. Ichikawa; Z. Ivezic; G. R. Knapp; H. Lampeitl; B. C. Lee; H. Lin; T. A. McKay; A. Merrelli; J. A. Munn; E. H. Neilsen, Jr.; H. J. Newberg; G. T. Richards; D. J. Schlegel; C. Stoughton; A. Uomoto; B. Yanny

2006-08-26T23:59:59.000Z

449

Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis  

Science Conference Proceedings (OSTI)

This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

NONE

1995-04-01T23:59:59.000Z

450

,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

451

Exploratory energy research program of the University of Hawaii at Manoa. Progress report  

DOE Green Energy (OSTI)

Progress is reported from the University of Hawaii on: UHM rooftop solar energy laboratory; solar pond cleansing techniques; combustion properties of biomass pyrolysis products; high-temperature solar concentrator absorber; biological abatement of hydrogen sulfide during geothermal energy production; geothermal systems on submarine rift zones of the Hawaiian chain; nitrogenous products of OTEC chlorination; interaction of hydrogen and deuterium with transition metals and their alloys at high pressures; shallow magma chambers and geothermal potential of Haleakala, Maui; effects of OTEC waste water on phytoplankton; sodium-lithium geothermometer; breaking wave forces on OTEC pipes; seismic and thermal properties on basalts. (PSB)

Not Available

1984-01-01T23:59:59.000Z

452

Building Integrated PV System at Lahaina Civic Center Gymnasium Complex, Maui, Hawaii (MECO)  

Science Conference Proceedings (OSTI)

A 1.2kW building integrated photovoltaic system was designed by Maui Electric Company Ltd (MECO) and installed at the Lahaina Civic Center Gymnasium on the island of Maui, Hawaii. The BIPV structure serves as an extension to an existing covered walkway. The system is powered by the photovoltaic modules and the energy is stored in four gel cell type batteries. An entryway structure was constructed to house the system equipment, an LED display sign and lighted message board. A parking lot light is also pow...

2004-05-03T23:59:59.000Z

453

LE DISCOURS POLITIQUE RELATIF A AMNAGEMENT LINGUISTIQUE EN FRANCE (1997-2002).  

E-Print Network (OSTI)

??LE DISCOURS POLITIQUE RELATIF L'AMENAGEMENT LINGUISTIQUE EN FRANCE (1997-2002) L'histoire de France est marque depuis le XVIe sicle par l'uniformisation linguistique. La Rpublique a (more)

Cherkaoui Messin, Kenza

454

Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii  

DOE Green Energy (OSTI)

If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

Mowris, Robert J.

1990-05-21T23:59:59.000Z

455

Solar Atlas (PACA Region - France) | Open Energy Information  

Open Energy Info (EERE)

Solar Atlas (PACA Region - France) Solar Atlas (PACA Region - France) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Atlas (PACA Region - France) Agency/Company /Organization: MINES ParisTech Sector: Energy Focus Area: Solar Topics: Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Website Website: www.webservice-energy.com/ Country: France Web Application Link: www.webservice-energy.org/viewer/heron/applications/atlas-paca/ Cost: Free OpenEI Keyword(s): International UN Region: Western Europe Coordinates: 43.615149095322°, 7.0526915788651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615149095322,"lon":7.0526915788651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Science and the "Civilizing Mission": France and the Colonial Enterprise  

E-Print Network (OSTI)

Science and the "Civilizing Mission": France and the Colonial Enterprise Patrick Petitjean REHSEIS with a conference "20th Century Sciences: Beyond the Metropolis". 1 ORSTOM (Office de la Recherche Scientifique et," founded in 1943.2 This conference showed an evident acceptance of the colonial heritage in science

Paris-Sud XI, Université de

457

File:Hawaii rules on leasing and drilling of geothermal resources.pdf |  

Open Energy Info (EERE)

File File Edit History Facebook icon Twitter icon » File:Hawaii rules on leasing and drilling of geothermal resources.pdf Jump to: navigation, search File File history File usage File:Hawaii rules on leasing and drilling of geothermal resources.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 339 KB, MIME type: application/pdf, 52 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:43, 23 October 2012 Thumbnail for version as of 09:43, 23 October 2012 1,275 × 1,650, 52 pages (339 KB) Dklein2012 (Talk | contribs)

458

Marine mammal fauna of potential OTEC sites in the Gulf of Mexico and Hawaii  

DOE Green Energy (OSTI)

Twenty-seven marine mammal species have been recorded for the Gulf of Mexico, including 7 Mysticetes or baleen whales, 17 Odontocetes or toothed whales, 1 Sirenian (manatee), and 1 or 2 Pinnipeds or seals. The most common species in the Gulf is the bottlenosed dolphin, an inshore species. Offshore, the spotted dolphin, is fairly common. Most other species are recorded from very few sightings or strandings. None of the endangered species is common in potential OTEC sites in the Gulf of Mexico. Twenty-two marine mammals may occur in Hawaii; 2 Mystecetes, 19 Odonotocetes, and the endemic monk seal. The monk seal, an endangered species, lives in the extreme northwestern island chain away from potential OTEC sites. Among the most common cetaceans in Hawaii is the endangered humpback whale. The spinner dolphin and the bottlenosed dolphin are also fairly common. The baleen whales feed on zooplankton during the summer in polar waters, and are migratory, while the toothed whales feed mainly on fish and squid, and are found in temperate or tropical regions year-round. The manatee is vegetarian and the pinnipeds are fish- or squid-eaters. Environmental effects of OTEC which may affect mammals are: toxic effects of biocide release or ammonia spill, biostimulating effects of seawater redistribution, oil spills, or effects of the physical presence of OTEC plants.

Payne, S.F.

1979-05-01T23:59:59.000Z

459

Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint  

SciTech Connect

The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

2013-03-01T23:59:59.000Z

460

Coordinated exploration program for geothermal sources on the island of Hawaii  

DOE Green Energy (OSTI)

Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and ground noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples. Aeromagnetic, regional gravity, and crustal seismic refraction data were available in published literature. A model of the thermal structure of the east rift was put together to account for the data. The dike complex, through which magma from the central vent of Kilauea travels laterally occupies a zone 3-km wide extending from 1-km to 5-km depth. On the south side of the dike complex, there may be a self-sealing geothermal reservoir where groundwater heated by the dike complex is trapped. Not all of the dike complex is hot; hot sections seem to occur in patches.

Furumoto, A.S.

1975-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "france hawaii telescope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Community Education Program * Hawai`i Institute of Marine Biology * P.O. Box 1346 *Kne`ohe, HI 96744 Phone: (808)235-9302 * Fax: (808)235-9300 * Email: himbcep@hawaii.edu  

E-Print Network (OSTI)

Community Education Program * Hawai`i Institute of Marine Biology * P.O. Box 1346 *Käne`ohe, HI Phone #: ______________________ home / work / school / cell (indicate which) Best # for us to call: __________________________________________________ ____________________________________________________ Program Fees: $35/ person (youth and adults). Program is based on camping on the lawn. Beach House

462

Numerical Simulations of the Island-Induced Circulations over the Island of Hawaii during HaRP  

Science Conference Proceedings (OSTI)

The fifth-generation Pennsylvania State UniversityNCAR Mesoscale Model (MM5)/land surface model (LSM) is used to simulate the diurnal island-scale circulations over the island of Hawaii during the Hawaiian Rainband Project (HaRP, 11 July24 ...

Yang Yang; Yi-Leng Chen; Francis M. Fujioka

2005-12-01T23:59:59.000Z

463

Effects of Trade-Wind Strength and Direction on the Leeside Circulations and Rainfall of the Island of Hawaii  

Science Conference Proceedings (OSTI)

The leeside circulations and weather of the island of Hawaii were studied from the fifth-generation Pennsylvania State UniversityNCAR Mesoscale Model (MM5) land surface model simulations for eight strong (7.9 m s?1) and eight weak (5.2 m s?1) ...

Yang Yang; Yi-Leng Chen; Francis M. Fujioka

2008-12-01T23:59:59.000Z

464

Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii  

DOE Green Energy (OSTI)

This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

Jacobi, J.D.; Reynolds, M.; Ritchotte, G.; Nielsen, B.; Viggiano, A.; Dwyer, J.

1994-10-01T23:59:59.000Z

465

Agronomy Research Assistant Biofuels The Hawaii Agriculture Research Center (HARC) is seeking a qualified applicant to fill a full time  

E-Print Network (OSTI)

Agronomy Research Assistant ­ Biofuels The Hawaii Agriculture Research Center (HARC) is seeking a qualified applicant to fill a full time Research Assistant position to work with biofuel crops to assist in the evaluation of multiple crops of interest to the biofuels research program. The position

Kaye, Jason P.

466

The Impact of Trade Wind Strength on Precipitation over the Windward Side of the Island of Hawaii  

Science Conference Proceedings (OSTI)

The effects of trade wind strength and the diurnal heating cycle on the production of summer trade wind rainfall on the windward side of the island of Hawaii are examined from the data collected from the Hawaiian Rainband Project (HaRP) during 11 ...

Mary Ann Esteban; Yi-Leng Chen

2008-03-01T23:59:59.000Z

467

Evolution of Downslope Flow under Strong Opposing Trade Winds and Frequent Trade-Wind Rainshowers over the Island of Hawaii  

Science Conference Proceedings (OSTI)

The evolution of downslope flow on the windward side of the island of Hawaii during 78 August 1990 is investigated. This period is characterized by atypical strong (11 m s?1) upstream trade winds and frequent nocturnal rainshowers. In the late ...

Jeffrey L. Frye; Yi-Leng Chen

2001-05-01T23:59:59.000Z

468

Chloride/magnesium ratio of shallow groundwaters as a regional geothermal indicator in Hawaii. Assessment of geothermal resources in Hawaii: Number 3  

DOE Green Energy (OSTI)

Because of the complex geological and hydrological conditions and the virtual lack of thermal springs, regional geothermal investigations in Hawaii require the use of techniques substantially different from those conventionally applied in other geothermal environments. The large number of hydrological wells in the state provides an appreciable source of groundwater chemical data. However, largely because of the island environment, interpretation of much of these data as geothermal indicators becomes ambiguous. Initially, SiO/sub 2/ and temperature of groundwaters were used to identify thermally anomalous zones, but on a regional basis it has been found that these criteria are not always successful. As a further criterion for assessment, the Cl/Mg ratio of the groundwater has been used. On a state-wide basis, this ratio has been successful in further screening the SiO/sub 2/-temperature selected sites, and in defining more specific areas which warrant further investigation. Temperature, SiO/sub 2/ and Cl/Mg values for nearly 400 groundwater samples are included.

Cox, M.E.; Thomas, D.M.

1979-11-01T23:59:59.000Z

469

Session 1 Examples of Long Term Pedogenesis Workshop on Modelling of Pedogenesis, October 2-4, 2006, Orlans France  

E-Print Network (OSTI)

­ IPGC, 75252 Paris cedex 05, France. Introduction Pedogenetic processes that redistribute soil elements

Paris-Sud XI, Université de

470

Pascal Baron, CEA - France Christine Brown, BNFL - U.K.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- November 2004 - November 2004 Final Report - November 2004 An Evaluation of the Proliferation Resistant Characteristics of Light Water Reactor Fuel with the Potential for Recycle in the United States Pascal Baron, CEA - France Christine Brown, BNFL - U.K. Bruce Kaiser, WGI - U.S.A. Bruce Matthews, LANL - U.S.A. Takehiko Mukaiyama, JAIF- Japan Ronald Omberg, PNNL, U.S.A. Lee Peddicord, Texas A&M - U.S.A., Massimo Salvatores, CEA - France, Alan Waltar, PNNL - U.S.A., Chair Compiled by Alan E. Waltar and Ronald P. Omberg Pacific Northwest National Laboratory Final Report - November 2004 Final Report - November 2004 1 Table of Contents Executive Summary 2 I. Introduction 5 II. Background 5 III. Historical Perspective 7

471

Electricite de France Smart Grid Host Site Progress Report  

Science Conference Proceedings (OSTI)

The Smart Grid demonstration host site, the European Institute for Energy Research (EIFER), supported by lectricit de France (EDF) is part of a five-year collaborative initiative with 19 utility members. The PREMIO (Production Rpartie, Enr et MDE, Intgres et Optimises) project is to demonstrate an innovative, open, and repeatable architecture to optimize the integration of distributed energy resources to provide load relief and local network support and reduce carbon dioxide emissions in the southeast of...

2010-08-31T23:59:59.000Z

472

France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in  

E-Print Network (OSTI)

the construction costs will be shouldered by the EU. "We believe that the Iter project should start as soon energy programme in 1959. ITER - NUCLEAR FUSION PROJECT Project estimated to cost 10bn euros and will runFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn

473

Designing Hawaiis First LEED Platinum Net Zero Community: Kaupuni Village  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kaupuni Village Kaupuni Village Department of Hawaiian Home Lands Designing Hawaii's first LEED Platinum Net Zero Community GUIDING PRINCIPALS *Pihapono *Hoa ÿÄina *Mälama ÿÄina Enable Native Hawaiians to return to their lands in order to fully support self-sufficiency INTENTIONS set by Prince Jonah Kuhio Kalanianaole Hawaiian Commission Act 1920 Establish a permanent land base for the benefit and use of native Hawaiians, upon which they may live, farm, ranch, and otherwise engage in commercial or industrial or any other activities as authorized in this Act Placing native Hawaiians on the lands set aside under this Act in a prompt and efficient manner and assuring long-term tenancy to beneficiaries of this Act and their successors Preventing alienation of the fee title to the lands set aside under this Act so that

474

Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics  

SciTech Connect

This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

1993-12-01T23:59:59.000Z

475

Internal wave inversions for one year of PioneerHawaii ATOC transmissions  

Science Conference Proceedings (OSTI)

The ATOC experiment transmitted 75?Hz signals from Pioneer Seamount off the coast of California to a vertical line array (VLA) off Hawaii. The combination of VLA and long?range propagation provides the opportunity to perform mode?based internal wave tomography. Each arrival is mode?filtered and the statistics of the mode arrivals are tabulated. These individual mode arrival time (centroid) and spread are then compared with calculated mode statistics from broadband PE modeling of the propagation path. In this manner a statistically robust inversion for the internal wave strength is performed. The weakness of the inversion is the sensitivity to the bottom scattering near the source. Results for one year of data will be presented for two different bottom types. The long?scale time series may indicate possible sources of internal waves in the ocean. Small time scale variations may be attributable to internal tides. a)The ATOC Group: A. B. Baggeroer

Kevin D. Heaney; ATOC Group

1999-01-01T23:59:59.000Z

476

A Preliminary Report on the Early History and Archaeology of Kahauale'A, Puna, Hawaii  

DOE Green Energy (OSTI)

The following is a report on the findings of a documentary literature search on the ahupuaa of Kahauale'a in the Puna District of the island of Hawaii. Attention is given to the entirety of the ahupuaa, though the emphasis is on the mauka portions from about 1,500 to 3,800-feet elevation, or roughly three miles inland to the northern terminus of the ahupuaa, just below Kilauea. The report was commissioned by The Estate of James Campbell for purposes of ascertaining what the extent of early Hawaiian activities and/or habitation occurred in the mauka regions of Kahauale'a--specifically to see if proposed geothermal drilling activities in these areas would disturb any archaeological sites.

Holmes, Tommy

1982-04-14T23:59:59.000Z

477

Forecasting a state-specific demand for highway fuels: the case for Hawaii  

SciTech Connect

An econometric model is developed to predict the demand for highway fuels in Hawaii over the next 20 years. The stock of motor vehicles is separated into six classes, and the demand for new vehicles is estimated using seemingly unrelated regression. Average fuel efficiency for the entire fleet stock, gasoline price, per capita income, and per capita stock are used to estimate per capita vehicle-miles traveled. Highway fuel consumption is then calculated as the quotient of vehicle-miles traveled and average fleet fuel efficiency. The model performs well within and outside the historical sample period. A historical simulation is performed which shows what might have happened had gasoline prices not skyrocketed in the 1970s. Predictions of highway fuel consumption through the year 2000 under three different gasoline price scenarios are then made. 29 references, 3 figures, 9 tables.

Leung, P.; Vesenka, M.H.

1987-01-01T23:59:59.000Z

478

Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems  

SciTech Connect

Hydrogen power park experiments in Hawaii produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawaii Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of traditional photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust three-stage fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel four-terminal devices integrating high-efficiency CIGS and a-Si:H with operat