Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock  

E-Print Network [OSTI]

and Mass Transfer in Yucca Mountain Drifts,” Proceedings ofMD- 000001 REV 00, Yucca Mountain Project Report, Bechtelthe fractured rock at Yucca Mountain have been investigated

Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

2

Characterization of subsurface fracture patterns in the Coso...  

Open Energy Info (EERE)

LibraryAdd to library Conference Proceedings: Characterization of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of...

3

Evaluation of subsurface fracture geometry using fluid pressure...  

Open Energy Info (EERE)

subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of...

4

Acid Fracture and Fracture Conductivity Study of Field Rock Samples  

E-Print Network [OSTI]

Acid fracturing is a well stimulation strategy designed to increase the productivity of a producing well. The parameters of acid fracturing and the effects of acid interaction on specific rock samples can be studied experimentally. Acid injection...

Underwood, Jarrod

2013-11-15T23:59:59.000Z

5

The use of seismic anisotropy for characterizing subsurface fracture ori-  

E-Print Network [OSTI]

The use of seismic anisotropy for characterizing subsurface fracture ori- entations and intensity anisotropy as a routine technique for fracture characterization is partly because of its inability to pro- vide information about sizes and vol- ume of fractures. Although both grain-scale micro

Edinburgh, University of

6

Crosscutting Subsurface Initiative: Adaptive Control of Subsurface Fractures  

Broader source: Energy.gov [DOE]

The subsurface provides most of the world’s energy and offers great potential for CO2, nuclear waste, and energy storage.  Despite decades of research and recent successes in new extraction methods...

7

Evaluation of subsurface fracture geometry using fluid pressure response to  

Open Energy Info (EERE)

subsurface fracture geometry using fluid pressure response to subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Details Activities (1) Areas (1) Regions (0) Abstract: The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the

8

Characterization of subsurface fracture patterns in the Coso geothermal  

Open Energy Info (EERE)

subsurface fracture patterns in the Coso geothermal subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Characterization of subsurface fracture patterns in the Coso geothermal reservoir by analyzing shear-wave splitting of microearthquake seismorgrams Details Activities (1) Areas (1) Regions (0) Abstract: A large number of microearthquake seismograms have been recorded by a downhole, three-component seismic network deployed around the Coso, California geothermal reservoir. Shear-wave splitting induced by the alignment of cracks in the reservoir has been widely observed in the recordings. Over 100 events with body wave magnitude greater than 1.0 from

9

Seismic anisotropy of fractured rock  

E-Print Network [OSTI]

A comparison of the theory with recent ultra- sonic experiments on a simulated fractured medium .... Note that Poisson's ratio and Young's modulus for the.

M. Schoenberg, C. M. Sayers

2000-02-18T23:59:59.000Z

10

Influence of rock mass fracturing on the net penetration rates of hard rock \\{TBMs\\}  

Science Journals Connector (OSTI)

Abstract Penetration rates during excavation using hard rock tunnel boring machines (TBMs) are significantly influenced by the degree of fracturing of the rock mass. In the NTNU prediction model for hard rock TBM performance and costs, the rock mass fracturing factor (ks) is used to include the influence of rock mass fractures. The rock mass fracturing factor depends on the degree of fracturing, fracture type, fracture spacing, and the angle between fracture systems and the tunnel axis. In order to validate the relationship between the degree of fracturing and the net penetration rate of hard rock TBMs, field work has been carried out, consisting of geological back-mapping and analysis of performance data from a TBM tunnel. The rock mass influence on hard rock TBM performance prediction is taken into account in the NTNU model. Different correlations between net penetration rate and the fracturing factor (ks) have been identified for a variety of ks values.

F.J. Macias; P.D. Jakobsen; Y. Seo; A. Bruland

2014-01-01T23:59:59.000Z

11

Relative Permeability of Fractured Rock  

E-Print Network [OSTI]

, and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;#12;v Abstract fractures and various fluids have yielded different relative permeability-saturation relations. This study

Stanford University

12

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network [OSTI]

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

13

Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock  

E-Print Network [OSTI]

influence of effective fracture aperture, Water Resourcesa system of parallel fractures, Water Resources Research,solutions for a single fractures, Water Resources Research,

Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

2008-01-01T23:59:59.000Z

14

Microwave assisted hard rock cutting  

DOE Patents [OSTI]

An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

1991-01-01T23:59:59.000Z

15

Effects of subsurface fracture interactions on surface deformation  

E-Print Network [OSTI]

Although the surface deformation resulting from the opening of a single fracture in a layered elastic half-space resembles the observed deformation at the InSalah site, it seems unlikely that only a single fracture is ...

Jerry, Ruel (Ruel Valentine)

2013-01-01T23:59:59.000Z

16

Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site  

SciTech Connect (OSTI)

The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

Levey, Schon S.

2010-12-01T23:59:59.000Z

17

Neutron Production from the Fracture of Piezoelectric Rocks  

E-Print Network [OSTI]

A theoretical explanation is provided for the experimental evidence that fracturing piezoelectric rocks produces neutrons. The elastic energy micro-crack production ultimately yields the macroscopic fracture. The mechanical energy is converted by the piezoelectric effect into electric field energy. The electric field energy decays via radio frequency (microwave) electric field oscillations. The radio frequency electric fields accelerate the condensed matter electrons which then collide with protons producing neutrons and neutrinos.

A. Widom; J. Swain; Y. N. Srivastava

2011-09-22T23:59:59.000Z

18

Ozone generation by rock fracture: Earthquake early warning?  

SciTech Connect (OSTI)

We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2011-11-14T23:59:59.000Z

19

Identification of subsurface fractures in the Austin Chalk using vertical seismic profiles  

E-Print Network [OSTI]

IDENTIFICATION OF SUSSURFACE FRACTURES IN THE AUSTIN CHALK USING VERTICAL SEISMIC PROFILES A Thesis by KYLE THOMAS LEWALLEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1992 Major Subject: Geophysics IDENTIFICATION OF SUBSURFACE FRACTURES IN THE AUSTIN CHALK USING VERTICAL SEISMIC PROFILES A Thesis by KYLE THOMAS LEWALLEN Approved as to style and content by: T. W. Spencer...

Lewallen, Kyle Thomas

1992-01-01T23:59:59.000Z

20

MATLOC. Transient Non Lin Deformation in Fractured Rock  

SciTech Connect (OSTI)

MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

Boonlualohr, P.; Mustoe, G.; Williams, J.R.; Lester, B.H.; Huyakorn, P.S. [Geotrans Inc., (United States)

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fracture and Healing of Rock Salt Related to Salt Caverns  

SciTech Connect (OSTI)

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01T23:59:59.000Z

22

Method and apparatus for determining two-phase flow in rock fracture  

DOE Patents [OSTI]

An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

Persoff, Peter (Oakland, CA); Pruess, Karsten (Berkeley, CA); Myer, Larry (Benicia, CA)

1994-01-01T23:59:59.000Z

23

IMA Preprints Series (2002) Micro-and macro-scopic models of rock fracture  

E-Print Network [OSTI]

IMA Preprints Series (2002) Micro- and macro-scopic models of rock fracture Donald L. Turcotte to some earthquakes. Key words: rock mechanics, damage, fracture, critical point, power-law scaling, self involve a sin- gle fracture propagating through an homogeneous solid. However, this is an idealized case

24

IMA Preprints Series (2002) Micro and macroscopic models of rock fracture  

E-Print Network [OSTI]

IMA Preprints Series (2002) Micro­ and macro­scopic models of rock fracture Donald L. Turcotte to some earthquakes. Key words: rock mechanics, damage, fracture, critical point, power­law scaling, self involve a sin­ gle fracture propagating through an homogeneous solid. However, this is an idealized case

25

Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock  

E-Print Network [OSTI]

Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. In this paper, we have developed a scaling methodology to upscale matrix sorption coefficients for fractured for upscaling the sorption coefficients in a saturated, fractured rock system. The derived upscaling equations

Lu, Zhiming

26

Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators  

SciTech Connect (OSTI)

A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented.

Cohen, A.J.B.

1995-10-01T23:59:59.000Z

27

Hydrologic test system for fracture flow studies in crystalline rock  

SciTech Connect (OSTI)

A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

Raber, E; Lord, D.; Burklund, P.

1982-05-05T23:59:59.000Z

28

Inversion of Scattered Waves for Material Properties in Fractured Rock  

SciTech Connect (OSTI)

The authors apply a recently developed low-frequency, non-linear inversion method which includes near and far field terms to a crosshole data set to determine the bulk and shear modulus, as well as the density for a fractured zone in a granitic rock mass. The method uses the scattered elastic wavefield which is extracted from the recorded data before the inversion is performed. The inversion result is appraised by investigating the resolution and standard deviation of the model estimates. The sensitivity of the three parameters to different features of the medium is revealed. While the bulk modulus appears to be sensitive to voids and welded contacts, the density is mostly affected by fractured zones. The shear modulus is least constrained due to the absence of S wave anisotropy information. It is shown that the three medium parameters are generally sensitive to other medium features than those determined by velocity inversions. Thus this method is viewed as a complimentary approach to travel time tomography which provides more insight into the material properties of inhomogeneous media.

Gritto, Roland; Korneev, Valeri A.; Johnson, Lane R.

1999-07-01T23:59:59.000Z

29

Multi-scale approach to invasion percolation of rock fracture networks  

E-Print Network [OSTI]

A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

Ali N. Ebrahimi; Falk K. Wittel; Nuno A. M. Araújo; Hans J. Herrmann

2014-08-12T23:59:59.000Z

30

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

31

Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration  

SciTech Connect (OSTI)

Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

Weimer, R.J. [Colorado School of Mines, Golden, CO (United States)

1994-09-01T23:59:59.000Z

32

Numerical and analytical modeling of heat transfer between fluid and fractured rocks  

E-Print Network [OSTI]

Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

Li, Wei, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

33

Deep borehole log evidence for fractal distribution of fractures in crystalline rock  

Science Journals Connector (OSTI)

......as well as large scale-lengths...fractures seen in drilling cores and...register on a borehole scanning...rock in the borehole wall. In...evidence in the drilling logs or retrieved...core that large-scale fractures...samples, and drilling history...control the large-scale trend...sensitive to borehole lithology......

Peter Leary

1991-12-01T23:59:59.000Z

34

Experimental and Analytical Research on Fracture Processes in ROck  

SciTech Connect (OSTI)

Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

Herbert H.. Einstein; Jay Miller; Bruno Silva

2009-02-27T23:59:59.000Z

35

Colloid-facilitated radionuclide transport in fractured porous rock  

E-Print Network [OSTI]

radionuclide on the fracture surface [kg ? nuclide / m' - surface]. 23 3. 4 The Radionuclide transport in the aqueous phase within the fracture The radionuclide transport in the aqueous phase within the fracture is expressed as: BN cf rr r ? +V J +VV...

Baek, Inseok

2012-06-07T23:59:59.000Z

36

Specific Methods for the Evaluation of Hydraulic Properties in Fractured Hard-rock J.C. Marchala,*  

E-Print Network [OSTI]

1 Specific Methods for the Evaluation of Hydraulic Properties in Fractured Hard-rock Aquifers J, marechal@ngri.res.in Abstract: Blocs underlined by fractures networks mainly compose hard-rock aquifers. The complexity of flows through fractures makes inadequate the use of classical techniques for the interpretation

Paris-Sud XI, Université de

37

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

SciTech Connect (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

38

Establishment of Stress-Permeabilty relationship of fractured rock mass by numerical modeling  

Office of Scientific and Technical Information (OSTI)

Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study Ki-Bok Min *1 , J Rutqvist 2 , Chin-Fu Tsang 2 , and Lanru Jing 1 1 Engineering Geology and Geophysics Research Group, Royal Institute of Technology (KTH), Stockholm, Sweden 2 Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA * corresponding author. Tel.: +46-8-790-7919; fax: +46-8-790-6810. E-mail address: kibok@kth.se (Ki-Bok Min) 1 Abstract We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional

39

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network [OSTI]

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:production by hydraulic fracturing, the focus of fracture

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

40

An Analysis of Surface and Subsurface Lineaments and Fractures for Oil and Gas Exploration in the Mid-Continent Region  

SciTech Connect (OSTI)

An extensive literature search was conducted and geological and mathematical analyses were performed to investigate the significance of using surface lineaments and fractures for delineating oil and gas reservoirs in the Mid-Continent region. Tremendous amount of data were acquired including surface lineaments, surface major fracture zones, surface fracture traces, gravity and magnetic lineaments, and Precambrian basement fault systems. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the region. The correlation between surface linear features and subsurface oil and gas traps was assessed, and the implication of using surface lineament and fracture analysis for delineating hydrocarbon reservoirs in the Mid-Continent region discussed. It was observed that the surface linear features were extremely consistent in orientation with the gravity and magnetic lineaments and the basement faults in the Mid-Continent region. They all consist of two major sets bending northeast and northwest, representing, therefore, the basic structural grains of the region. This consistency in orientation between the surface and subsurface linear features suggests that the systematic fault systems at the basement in the Mid-Continent region have probably been reactivated many times and have propagated upward all the way to the surface. They may have acted as the loci for the development of other geological structures, including oil and gas traps. Also observed was a strong association both in orientation and position between the surface linear features and the subsurface reservoirs in various parts of the region. As a result, surface lineament and fracture analysis can be used for delineating additional oil and gas reserves in the Mid-Continent region. The results presented in this paper prove the validity and indicate the significance of using surface linear features for inferring subsurface oil and gas reservoirs in the Mid-Continent region. Any new potential oil and gas reservoirs in the Mid-Continent region, if they exist, will be likely associated with the northeast- and northwest-trending surface lineaments and fracture traces in the region.

Guo, Genliang; and George, S.A.

1999-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect (OSTI)

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

42

Stress measurements in rock salt using hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing was applied in horizontal drillholes in the Salado salt formation near Carlsbad, New Mexico. Testing took place approximately 650 m below surface in order to support the design of a Waste Isolation Pilot Plant (WIPP) for the disposal of radioactive waste from defense activities of the United States. Hydraulic fracturing was performed primarily to determine whether the virgin in situ stress state at the WIPP site is isotropic and whether the magnitudes of the the virgin in situ stresses correspond to the weight of the overburden. Beyond these limited objectives, measurements are being analyzed to evaluate the usefulness of hydraulic fracturing in salt formations in general. Such measurements are desirable to determine stresses induced by mining and to monitor time-dependent stress changes around underground excavations in salt masses. Hydraulic fracturing measurements are also relevant to the evaluation of allowable pressures before fracturing is induced in pressurized boreholes and storage caverns.

Wawersik, W.R.; Stone, C.M.

1986-01-01T23:59:59.000Z

43

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect (OSTI)

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

44

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

SciTech Connect (OSTI)

A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

2009-01-15T23:59:59.000Z

45

Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures  

SciTech Connect (OSTI)

The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described.

Doe, T.W.; McClain, W.C.

1984-07-01T23:59:59.000Z

46

Salinity Constraints on Subsurface Archaeal Diversity and Methanogenesis in Sedimentary Rock Rich in Organic Matter  

Science Journals Connector (OSTI)

...These substrates yield more energy (78.7 to 191.1 kJ per mol substrate...concentrations by offsetting the energy cost of the increased osmoregulatory...2005. Microbial community in a geothermal aquifer associated with the subsurface...

Patricia J. Waldron; Steven T. Petsch; Anna M. Martini; Klaus Nüsslein

2007-04-27T23:59:59.000Z

47

DOE/EA-1331: Environmental Assessment for Remediation of Subsurface and Groundwater Contamination at the Rock Springs In Situ Oil Shale Retort Site (07/31/00)  

Broader source: Energy.gov (indexed) [DOE]

31 31 ENVIRONMENTAL ASSESSMENT REMEDIATION OF SUBSURFACE AND GROUNDWATER CONTAMINATION AT THE ROCK SPRINGS IN SITU OIL SHALE RETORT SITE SWEETWATER COUNTY, WYOMING July 2000 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY ENVIRONMENTAL ASSESSMENT REMEDIATION OF SUBSURFACE AND GROUNDWATER CONTAMINATION AT THE ROCK SPRINGS IN SITU OIL SHALE RETORT SITE SWEETWATER COUNTY, WYOMING July 2000 Prepared by: U.S. Department of Energy National Energy Technology Laboratory NEPA COMPLIANCE SUMMARY SHEET LEAD AGENCY U.S. Department of Energy (DOE) TITLE Environmental Assessment for Remediation of Subsurface and Groundwater Contamination at the Rock Springs In Situ Oil Shale Retort Test Site; Sweetwater County Wyoming. CONTACT Additional copies or information concerning the Environmental Assessment (EA) can

48

Fractures of the Dammam Dome Carbonate Outcrops: Their Characterization, Development, and Implications for Subsurface Reservoirs.  

E-Print Network [OSTI]

??The exposed Tertiary carbonates of the Dammam Dome present an opportunity to study fractures in outcrops within the oil-producing region of Eastern Saudi Arabia. The… (more)

Al-Fahmi, Mohammed M

2012-01-01T23:59:59.000Z

49

Geochemistry of silicate-rich rocks can curtail spreading of carbon dioxide in subsurface aquifers  

E-Print Network [OSTI]

of carbon sequestration and dissolution rates in the subsurface, suggesting that pooled carbon dioxide may remain in the shallower regions of the formation for hundreds to thousands of years. The deeper regions of the reservoir can remain virtually carbon... interests. References 1. Marini, L. Geochemical Sequestration of Carbon Dioxide. (Elsevier 2007). 2. IPCC Special Report on Carbon Dioxide Capture and Storage, edited by Metz B. et al. (Cambridge University Press, UK and New York, USA, 2005). 3. Falkowski...

Cardoso, S. S. S.; Andres, J. T. H.

2014-12-11T23:59:59.000Z

50

Semi-Analytic Stereological Analysis of Waste Package/Fracture Intersections in a Granitic Rock Nuclear Waste Repository  

Science Journals Connector (OSTI)

In Sweden, spent nuclear fuel is planned to be placed in copper/iron canisters and deposited at a depth of approximately 500 m in granitic rock. Earthquakes may induce secondary shear movements in fractures in...

Allan Hedin

2008-08-01T23:59:59.000Z

51

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network [OSTI]

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

52

Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution  

SciTech Connect (OSTI)

Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

Mukhopadhyay, Sumit; Tsang, Yvonne W.

2008-08-01T23:59:59.000Z

53

Mechanics of Jointed and Faulted Rock, Rossmanith (ed) 0 1995 Balkema, Rotterdam. ISBN 90 54 10 54 7 0 Seismic properties of a general fracture  

E-Print Network [OSTI]

7 0 Seismic properties of a general fracture E. Liu British Geological Survey Edinburgh, UK J Inc., Ponca Cig Okla., USA ABSTRACT: In modelling the wave behaviour through fractured and jointed rocks, different models have been proposed to describe the fractures. A fracture can be modelled (1

Edinburgh, University of

54

Evaluating the Moisture Conditions in the Fractured Rock at Yucca Mountain: The Impact of Natural Convection Processes in Heated Emplacement Drifts  

E-Print Network [OSTI]

THE FRACTURED ROCK AT YUCCA MOUNTAIN: THE IMPACT OF NATURALgeologic repository at Yucca Mountain, Nevada, will stronglyWaste Emplacement Drifts at Yucca Mountain, Nevada, Nuclear

Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

55

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth  

E-Print Network [OSTI]

fracturing fluids, to achieve improved fracture performance and higher recovery of natural gas from shale reservoirs....

Aderibigbe, Aderonke

2012-07-16T23:59:59.000Z

56

Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine  

E-Print Network [OSTI]

injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

Rutqvist, J.

2011-01-01T23:59:59.000Z

57

Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

Cooper, C.A. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center

1990-01-01T23:59:59.000Z

58

A STATISTICAL FRACTURE MECHANICS APPROACH TO THE STRENGTH OF BRITTLE ROCK  

E-Print Network [OSTI]

Carlsson, H. , "Hydraulic fracturing and overcoring stress1949). Haimson, B.C. , "Hydraulic fracturing in porous andc.B. , "Laboratory hydraulic fracturing experiments in

Ratigan, J.L.

2010-01-01T23:59:59.000Z

59

Using seismic tomography to characterize fracture systems induced by hydraulic fracturing  

SciTech Connect (OSTI)

Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

Fehler, M.; Rutledge, J.

1995-01-01T23:59:59.000Z

60

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE  

E-Print Network [OSTI]

hydraulic properties of fractures." T^ be published in Water14). 15. An Approach to the Fracture Hydrology at Stripa:Hydraulic Properties of Fractures by P. A. Witherspoon, C.

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network [OSTI]

of Fracture-Matrix Heat Transfer Jens T. Birkholzer andon the magnitude of heat transfer from the matrix, waterthe interface area for heat transfer between the matrix and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

62

EMSL - Subsurface Flow and Transport  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbonate (CaCO3) geochemical reactions exert a fundamental control on the evolution of porosity and permeability in shallow-to-deep subsurface siliciclastic and limestone rock...

63

A STATISTICAL FRACTURE MECHANICS APPROACH TO THE STRENGTH OF BRITTLE ROCK  

E-Print Network [OSTI]

to evaluate subcritical crack growth, many of the rubberoccurred indicating negligible subcritical crack growth.Subcritical crack growth can occur in many rocks and rock-

Ratigan, J.L.

2010-01-01T23:59:59.000Z

64

On Two-Phase Relative Permeability and Capillary Pressure of Rough-Walled Rock Fractures  

E-Print Network [OSTI]

in Single Rock Joints", Licentiate Thesis, Lulea Universityof Technology, Lulea, Sweden. Heiba, A. A. , Sahimi, M. ,

Pruess ed, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

65

The effect of fracture patterns on penetration rate of TBM in fractured rock mass using probabilistic numerical approach  

Science Journals Connector (OSTI)

Existence of discontinuity features has a great influence on mechanical properties and cuttability of a rock mass. In the literature, the influence of geometrical properties of joint sets such as joint spacing an...

M. Eftekhari; A. Baghbanan; R. Bagherpour

2014-12-01T23:59:59.000Z

66

International Journal of Rock Mechanics & Mining Sciences 44 (2007) 739757 Computer simulation of hydraulic fractures  

E-Print Network [OSTI]

of hydraulic fractures J. Adachia , E. Siebritsb , A. Peircec,Ã?, J. Desrochesd a Schlumberger Data of hydraulic fracturing models for use in the petroleum and other industries. We discuss scaling laws and the propagation regimes that control the growth of hydraulic fractures from the laboratory to the field scale. We

Peirce, Anthony

67

U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998  

SciTech Connect (OSTI)

The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

NONE

1998-09-01T23:59:59.000Z

68

An integrated methodology for characterizing flow and transport processes in fractured rock  

E-Print Network [OSTI]

Unsaturated Zone, Yucca Mountain, Nevada. Water-Resourcesof the unsaturated zone of Yucca Mountain, NV from three-in fractured tuffs of Yucca Mountain, Vadose Zone Journal,

Wu, Yu-Shu

2007-01-01T23:59:59.000Z

69

Fracture mechanics and subcritical crack growth approach to model time-dependent failure in brittle rock.  

E-Print Network [OSTI]

??Subcritical crack growth (SCG) takes place when a crack is stressed below its short-term strength. This slow fracturing process may lead to an accelerating crack… (more)

Rinne, Mikael

2008-01-01T23:59:59.000Z

70

E-Print Network 3.0 - artificial rock fractures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France Summary: -vertical highly...

71

Results of Laboratory Scale Fracture Tests on Rock/Cement Interfaces  

SciTech Connect (OSTI)

A number of pure cement and cement-basalt interface samples were subjected to a range of compressive loads to form internal fractures. X-ray microtomography was used to visualize the formation and growth of internal fractures in three dimensions as a function of compressive loads. This laboratory data will be incorporated into a geomechanics model to predict the risk of CO2 leakage through wellbores during geologic carbon storage.

Um, Wooyong; Jung, Hun Bok

2012-06-01T23:59:59.000Z

72

Experiences with aquifer testing and analysis in fractured low-permeability sedimentary rocks exhibiting nonradial pumping response  

SciTech Connect (OSTI)

Multiple-well aquifer pumping tests have been used successfully to measure the bulk hydraulic properties of limestone and shale formations of the Conasauga Group of East Tennessee and to define directional components in transmissivity associated with joints and small-scale folds. This experience demonstrates that multiple-well pumping tests can be used to measure the characteristics of low-permeability fractured rocks, and it illustrates the application of data interpretation techniques that are based on models of nonradial aquifer pumping response. Analytical models that have been used to interpret pumping test data include models for simple anisotropic response and for complex pumping response in an anisotropic aquifer intersected by a single high-conductivity vertical fracture. Comparisons of results obtained using nonradial flow methods with those obtained using traditional (radial flow) analytical methods indicate that the error from radial flow methods is generally less than an order of magnitude, an insignificant error in most low-permeability settings. However, the nonradial flow methods provide much more information on structural controls on groundwater movement. Special challenges encountered in conducting aquifer pumping tests in this hydrogeologic environment include selecting a pumping rate that can be sustained after fracture storage is depleted and laying out a test configuration that is consistent with the test geometry required by the nonradial flow interpretive models. Effective test design and data interpretation thus require extensive insight into site geology.

Smith, E.D.; Vaughan, N.D.

1985-01-01T23:59:59.000Z

73

System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals  

DOE Patents [OSTI]

A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

2014-12-30T23:59:59.000Z

74

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

SciTech Connect (OSTI)

We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

2008-06-01T23:59:59.000Z

75

MERTL, S., BRCKL, E., 2007. Observation of fracture processes in creeping rock masses by  

E-Print Network [OSTI]

, sliding, and rolling). Subcritical crack growth may control deformation velocity (Brückl and Parotidis related to pore water pressure. However, additional observational quantities related to the development/year. The rock mass deforms by the mechanisms of brittle rheology and subcritical crack growth may control

Brückl, Ewald

76

Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin  

SciTech Connect (OSTI)

The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

Wood, James R.; Harrison, William B.

2002-12-02T23:59:59.000Z

77

Unsaturated fractured rock characterization methods and data sets at the Apache Leap Tuff Site  

SciTech Connect (OSTI)

Performance assessment of high-level nuclear waste containment feasibility requires representative values of parameters as input, including parameter moments, distributional characteristics, and covariance structures between parameters. To meet this need, characterization methods and data sets for interstitial, hydraulic, pneumatic and thermal parameters for a slightly welded fractured tuff at the Apache Leap Tuff Site situated in central Arizona are reported in this document. The data sets include the influence of matric suction on measured parameters. Spatial variability is investigated by sampling along nine boreholes at regular distances. Laboratory parameter estimates for 105 core segments are provided, as well as field estimates centered on the intervals where the core segments were collected. Measurement uncertainty is estimated by repetitively testing control samples. 31 refs., 10 figs., 21 tabs.

Rasmussen, T.C.; Evans, D.D.; Sheets, P.J.; Blanford, J.H. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-08-01T23:59:59.000Z

78

Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities; Phase 2, Iterative performance assessment: Volume 1  

SciTech Connect (OSTI)

Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.

Gureghian, A.B.; Wu, Y.T.; Sagar, B. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Codell, R.A. [Nuclear Regulatory Commission, Washington, DC (United States)

1992-12-01T23:59:59.000Z

79

Hydraulic Fracturing in Particulate Materials.  

E-Print Network [OSTI]

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

80

ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN  

SciTech Connect (OSTI)

Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an accelerating pace. The data management software developed to handle the data, Atlas, is scheduled to undergo a 3rd revision before the project ends. The goals are to streamline access to the data by improving the display and add several new features, including the ability to turn the landgrid on and off. We may also be able to include the capability to calculate or recalculate footage calls as well. We discovered the reason that some of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan contain high levels of noise and are making one last attempt to acquire a set of good files before the project ends. This will greatly improve the large-scale map (48 inches x 84 inches) that has been constructed by mosaicking of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan.

James R. Wood; William B. Harrison

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied.

Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

1993-12-31T23:59:59.000Z

82

Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report  

SciTech Connect (OSTI)

Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion coefficients obtained from tracer tests highlights this point and suggests that the underlying mechanisms and relationship between rock and fracture properties are not fully understood in large complex fracture networks. In this project, we developed a high-resolution DFN model of solute transport in fracture networks to explore and quantify the mechanisms that control transport in complex fracture networks and how these may give rise to observed scale-dependent matrix diffusion coefficients. Results demonstrate that small scale heterogeneity in the flow field caused by local aperture variability within individual fractures can lead to long-tailed breakthrough curves indicative of matrix diffusion, even in the absence of interactions with the fracture matrix. Furthermore, the temporal and spatial scale dependence of these processes highlights the inability of short-term tracer tests to estimate transport parameters that will control long-term fate and transport of contaminants in fractured aquifers.

Detwiler, Russell

2014-06-30T23:59:59.000Z

83

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

84

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

85

Test plan: Sealing of the Disturbed Rock Zone (DRZ), including Marker Bed 139 (MB139) and the overlying halite, below the repository horizon, at the Waste Isolation Pilot Plant. [Cementitious grout into fractured WIPP rock  

SciTech Connect (OSTI)

This test plan describes activities intended to demonstrate equipment and techniques for producing, injecting, and evaluating microfine cementitious grout. The grout will be injected in fractured rock located below the repository horizon at the Waste Isolation Pilot Plant (WIPP). These data are intended to support the development of the Alcove Gas Barrier System (AGBS), the design of upcoming, large-scale seal tests, and ongoing laboratory evaluations of grouting efficacy. Degradation of the grout will be studied in experiments conducted in parallel with the underground grouting experiment.

Ahrens, E.H.

1992-05-01T23:59:59.000Z

86

Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole  

E-Print Network [OSTI]

Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

Bakku, Sudhish Kumar

2011-01-01T23:59:59.000Z

87

DNAPL invasion into a partially saturated dead-end fracture  

E-Print Network [OSTI]

Mobilization in Rock Fractures, Water Resources Research,of DNAPL trapped in dead-end fractures, Geophysical Researchpartially saturated dead-end fracture and a DNAPL lens above

Su, Grace W.; Javandel, Iraj

2008-01-01T23:59:59.000Z

88

Neutron and Gamma Ray Scattering Measurements for Subsurface Geochemistry  

Science Journals Connector (OSTI)

...subsurface porous rocks that covers...definition ofa reservoir is made more...extent, porosity, hydrocarbon...possibility for the reservoir to be profitable...assessment of rock formation...reservoir quality. The selection...ofporosity, permeability, and hydrocarbon...

Darwin V. Ellis

1990-10-05T23:59:59.000Z

89

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

90

Autonomous microexplosives subsurface tracing system final report.  

SciTech Connect (OSTI)

The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

2004-04-01T23:59:59.000Z

91

An analysis of tensile strength, fracture initiation and propagation in anisotropic rock (gas shale) using Brazilian tests equipped with high speed video and acoustic emission.  

E-Print Network [OSTI]

?? This study attempts to further our knowledge of fracture behaviour by establishing an experimental system that links tensile strength, fracture initiation and propagation of… (more)

Simpson, Nathaniel Denis John

2013-01-01T23:59:59.000Z

92

Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses  

E-Print Network [OSTI]

from previous evaluations of fracture hydromechanicalof flow through fractures in rock, In: Proceedings ofsaturated, variable-aperture fracture, Geophys. Res. Lett. ,

Cappa, F.

2009-01-01T23:59:59.000Z

93

EA-1331: Remediation of Subsurface and Groundwater Contamination at the  

Broader source: Energy.gov (indexed) [DOE]

331: Remediation of Subsurface and Groundwater Contamination at 331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater County, Wyoming. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 31, 2000 EA-1331: Finding of No Significant Impact Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site July 31, 2000 EA-1331: Final Environmental Assessment

94

Scientists Pass Solid Particles Through Rock in DOE-Sponsored...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rock fractures in the laboratory. This technology has the potential for mapping fracture systems in detail and aid in determining reservoir characteristics. This research was...

95

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect (OSTI)

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25T23:59:59.000Z

96

Numerical Modeling of Hydraulic Fracturing in Oil Sands  

E-Print Network [OSTI]

Hydraulic fracturing is a widely used and e cient technique for enhancing oil ... for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil ...

2008-11-16T23:59:59.000Z

97

Characterizing Fractures in the Geysers Geothermal Field by Micro...  

Broader source: Energy.gov (indexed) [DOE]

Efficient Use of MEQ Data Auto-picker Soft Computing Triggered vs induced seismicity. Fracture Mapping Fractal Dimensions Hot dry rock fracture regime Monitoring FluidTemp Dynamic...

98

Modeling of crack initiation, propagation and coalescence in rocks  

E-Print Network [OSTI]

Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

Gonçalves da Silva, Bruno Miguel

2009-01-01T23:59:59.000Z

99

Characterizing the Mechanics of Fracturing from Earthquake Source Parameter and Multiplet Analyses: Application to the Soultz-sous-Forêts Hot Dry Rock site  

E-Print Network [OSTI]

In 2000 and 2003, two massive hydraulic fracturing experiments were carried out at the European Geothermal Hot

Michelet, Sophie

2005-01-01T23:59:59.000Z

100

Seismic monitoring of the growth of a hydraulic fracture zone at Fenton Hill, New Mexico  

SciTech Connect (OSTI)

The hydraulic fracturing technique is an important method for enhancing hydrocarbon recovery, geothermal energy extraction, and solid waste disposal. Determination of the geometry and growth process of a hydraulic fracture zone is important for monitoring and assessing subsurface fractures. A relative-source-location approach, based on a waveform correlation and a grid search method, has been developed to estimate relative hypocenter locations for a cluster of 157 microearthquakes induced by hydraulic fracturing at the Los Alamos Hot Dry Rock (HDR) geothermal site. Among the 157 events, 147 microearthquakes occurred in a tight cluster with a dimension of 40 m, roughly defining a vertical hydraulic fracture zone with an orientation of N40{degree}W. The length, height, and width of the hydraulic fracture zone are estimated to be 40, 35, and 5 m, respectively. Analysis of the spatial-temporal pattern of the induced microearthquakes reveals that the fracture zone grew significantly, averaging 0.2m/ minute in a two-hour period toward the northwest along the fracture zone strike.

Li, Y.; Cheng, C.H.; Toksoez, M.N. [Massachusetts Inst. of Tech., Cambridge, MA (United States)] [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geomechanical Simulation of Fluid-Driven Fractures  

SciTech Connect (OSTI)

The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

2012-11-30T23:59:59.000Z

102

How can we use one fracture to locate another?  

E-Print Network [OSTI]

Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

Poliannikov, Oleg V.

2011-01-01T23:59:59.000Z

103

Hydraulic Fracture Monitoring: A Jonah Field Case Study  

E-Print Network [OSTI]

Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

Seher, T.

2011-01-01T23:59:59.000Z

104

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect (OSTI)

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

105

MULTIDIMENSIONAL NUMERICAL SIMULATION OF FLUID FLOW IN FRACTURED POROUS MEDIA  

E-Print Network [OSTI]

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:Fig. 13. Simulation of hydraulic fracturing: field data on

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

106

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

107

Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives  

SciTech Connect (OSTI)

The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

Faybishenko, Boris

2002-11-27T23:59:59.000Z

108

Neutron and Gamma Ray Scattering Measurements for Subsurface Geochemistry  

Science Journals Connector (OSTI)

...subsurface porous rocks that covers a large...academic definition ofa reservoir is made more precise...areal extent, porosity, hydrocarbon content...possibility for the reservoir to be profitable...the assessment of rock formation properties...analyses ofporosity, permeability, and hydrocarbon...

Darwin V. Ellis

1990-10-05T23:59:59.000Z

109

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network [OSTI]

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

110

Regional Analysis And Characterization Of Fractured Aquifers...  

Open Energy Info (EERE)

geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available...

111

Crosscutting Subsurface Initiative: Adaptive Control of Subsurface...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the ability to access, characterize, predict, and adaptively manipulate fracture and flow processes over scales from nanometers to kilometers. This town hall...

112

Scale-Dependent Fracture-Matrix Interactions and Their Impact on Radionuclide Transport: Development of efficient particle-tracking methods  

SciTech Connect (OSTI)

Matrix Diffusion and Adsorption within a rock matrix are important mechanisms for retarding transport of radionuclides in fractured rock. Due to computational limitations and difficulties in characterizing complex subsurface systems, diffusive exchange between a fracture network and surrounding rock matrix is often modeled using simplified conceptual representations. There is significant uncertainty in “effective” parameters used in these models, such as the “effective matrix diffusivity”. Often, these parameters are estimated by fitting sparse breakthrough data, and estimated values fall outside meaningful ranges, because simplified interpretive models do not consider complex three-dimensional flow. There is limited understanding of the relationship between the effective parameters and rock mass characteristics including network structure and matrix properties. There is also evidence for an apparent scale-dependence in “effective matrix diffusion” coefficients. These observations raise questions on whether fracture-matrix interaction parameters estimated from small-scale tracer tests can be used for predicting radionuclide fate and transport at the scale of DOE field sites. High-resolution three-dimensional Discrete-Fracture-Network-Matrix (DFNM) models based on well-defined local scale transport equations can help to address some of these questions. Due to tremendous advances in computational technology over the last 10 years, DFNM modeling in relatively large domains is now feasible. The overarching objective of our research is to use DFNM modeling to improve fundamental understanding of how effective parameters in conceptual models are related to fracture network structure and matrix properties. An advanced three-dimensional DFNM model is being developed, which combines upscaled particle-tracking algorithms for fracture-matrix interaction and a parallel fracture-network flow simulator. The particle-tracking algorithms allow complexity in flow fields at different scales, and track transport across fracture-matrix interfaces based on rigorous local approximations to the transport equations. This modeling approach can incorporate aperture variability, multi-scale preferential flow and matrix heterogeneity. We developed efficient particle-tracking methods for handling matrix diffusion and adsorption on fracture walls and demonstrated their efficiency for use within the context of large-scale complex fracture network models with variability in apertures across a network of fractures and within individual fractures.

Rajaram, Harihar [University of Colorado, Boulder; Brutz, Michael [University of Colorado, Boulder; Klein, Dylan R [University of Colorado, Boulder; Mallikamas, Wasin [University of Colorado, Boulder

2014-09-18T23:59:59.000Z

113

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network [OSTI]

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

114

subsurface science | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science subsurface science Leads No leads are available at this time. Oxidative Remobilization of Technetium Sequestered by Sulfide-Transformed Nano Zerovalent Iron. Abstract: The...

115

Proceedings of the Workshop on Numerical Modeling of Thermohydrological Flow in Fractured Rock Masses, Feb. 19-20, 1980, Berkeley, CA  

E-Print Network [OSTI]

the formation i V Coupling of Fluid Plow and Heat Transferof years. In general fluid flow, heat transfer, rock defor­The fluid flow eq'iation and the heat transfer equation are

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

116

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

E-Print Network [OSTI]

and Cooling at the Yucca Mountain Drift Scale Test J.mechanical analysis of the Yucca Mountain Drift Scale Test –scale heater test at Yucca Mountain, Nevada, USA. Int J Rock

Rutqvist, J.

2008-01-01T23:59:59.000Z

117

Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

1992-01-01T23:59:59.000Z

118

Subsurface Geotechnical Parameters Report  

SciTech Connect (OSTI)

The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce conclusions derived from the pool of data gathered within a full QA-controlled domain. An evaluation of the completeness of the current data is provided with respect to the requirements for geotechnical data to support design and performance assessment.

D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

2003-12-17T23:59:59.000Z

119

Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

1997-09-01T23:59:59.000Z

120

Growth of geologic fractures into large-strain populations: review of nomenclature, subcritical crack growth, and some implications  

E-Print Network [OSTI]

Growth of geologic fractures into large-strain populations: review of nomenclature, subcritical at the earliest stages of fracture nucleation). Slow, subcritical crack growth in rock is associated

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report  

SciTech Connect (OSTI)

Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

Detwiler, Russell

2014-04-30T23:59:59.000Z

122

Subsurface Contamination Control  

SciTech Connect (OSTI)

There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.

Y. Yuan

2001-11-16T23:59:59.000Z

123

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

124

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

125

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

126

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect (OSTI)

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

127

Detection and Characterization of Natural and Induced Fractures...  

Broader source: Energy.gov (indexed) [DOE]

Institute of Technology) Objectives: To combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to...

128

Detection and Characterization of Natural and Induced Fractures...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to...

129

Detection and Characterization of Natural and Induced Fractures...  

Broader source: Energy.gov (indexed) [DOE]

RelevanceImpact of Research - Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to...

130

Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquake  

SciTech Connect (OSTI)

The origin of increased stream flow and spring discharge following earthquakes have been the subject of controversy, in large part because there are many models to explain observations and few measurements suitable for distinguishing between hypotheses. On October 30, 2007 a magnitude 5.5 earthquake occurred near the Alum Rock springs, California, USA. Within a day we documented a several-fold increase in discharge. Over the following year, we have monitored a gradual return towards pre-earthquake properties, but for the largest springs there appears to be a permanent increase in the steady discharge at all the springs. The Alum Rock springs discharge waters that represent a mixture between modern ('shallow') meteoric water and old ('deep') connate waters expelled by regional transpression. After the earthquake, the increased discharge at the largest springs was accompanied by a small decrease in the fraction of connate water in the spring discharge. Combined with the rapid response, this implies that the increased discharge has a shallow origin. Increased discharge at these springs occurs for earthquakes that cause static volumetric expansion and those that cause contraction, supporting models in which dynamic strains are responsible for the subsurface changes that cause flow to increase. We show that models in which the permeability of the fracture system feeding the springs increases after the earthquake are in general consistent with the changes in discharge. The response of these springs to another earthquake will provide critical constraints on the changes that occur in the subsurface.

Rowland, Joel C [Los Alamos National Laboratory; Manga, Michael [UC BERKELEY

2009-01-01T23:59:59.000Z

131

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

132

Fracture Blisters  

E-Print Network [OSTI]

21. McCann S, Gruen G. Fracture Blisters: A Review of thewith Lower Extremity Fracture: Results of a ProspectiveC, Koval K. Treatment of Fracture Blisters: A Prospective

Uebbing, Claire M; Walsh, Mark; Miller, Joseph B; Abraham, Mathew; Arnold, Clifford

2011-01-01T23:59:59.000Z

133

A Computational Model for Explosive Fracture of Oil Shale  

Science Journals Connector (OSTI)

Successful in-situ retorting of subsurface oil shale beds may depend on the ability to ... develop a mathematical model for dynamic fracture of oil shale that could be used as a subroutine...

D. A. Shockey; W. J. Murri; R. E. Tokheim; C. Young…

1979-01-01T23:59:59.000Z

134

Subsurface connection methods for subsurface heaters  

DOE Patents [OSTI]

A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

2010-12-28T23:59:59.000Z

135

The investigation of fracture aperture effect on shale gas transport using discrete fracture model  

Science Journals Connector (OSTI)

Abstract Discrete fracture model (DFM) numerical simulation is used to investigate the shale gas transports in fractured porous media in this paper. A new seepage flow mathematic model, in which flow in fracture meets “Cubic law” and matrix meets “non-Darcy law”, is adopted and fracture aperture effect on the transport behavior is simulated by solving the nonlinear partial differential equations using finite element analysis (FEA). In this DFM, fluid flows into wellbore which is surrounded by impermeable rock matrix is merely through fractures that connect to it. The model is used to simulate a random generated fractures network to study the flow and transport characteristics in fractured porous media (FPM). Several cases with different fracture aperture in same natural fractured model are given. The preliminary simulation results show that both the natural and hydraulic fracture aperture have a significant impact on shale gas migration and production.

Lidong Mi; Hanqiao Jiang; Junjian Li; Tao Li; Ye Tian

2014-01-01T23:59:59.000Z

136

Subsurface contaminants focus area  

SciTech Connect (OSTI)

The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

NONE

1996-08-01T23:59:59.000Z

137

Microfractures in rocks from two geothermal areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Microfractures in rocks from two geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microfractures in rocks from two geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: Core samples from the Dunes, California, and Raft River, Idaho, geothermal areas show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Sealed fractures can act as barriers to fluid flow. Sealed fractures often mark boundaries between regions of significantly

138

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

139

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

140

Surfactants and subsurface remediation  

SciTech Connect (OSTI)

Because of the limitations of pump-and-treat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the applications, there are significant differences in the objectives of the technologies and the limitations placed on surfactant use. In this article we review environmental studies concerned with the fate and transport of surface-active compounds in the subsurface environment and discuss key issues related to their successful use for in situ aquifer remediation, particularly with respect to nonaqueous-phase liquids.

West, C.C.; Harwell, J.H.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION IN A FRACTURE  

E-Print Network [OSTI]

EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION IN A FRACTURE A REPORT SUBMITTED between heat conduction and heat convection with boiling flow in a rock fracture. An experimental coefficient. This coefficient is the proportionality factor between the heat flux to a fracture surface

Stanford University

142

Fracture surface energy of the Punchbowl fault, San Andreas system  

E-Print Network [OSTI]

Fracture surface energy of the Punchbowl fault, San Andreas system Judith S. Chester1 , Frederick M. Chester1 & Andreas K. Kronenberg1 Fracture energy is a form of latent heat required to create weakening1­3 . Fracture energy has been estimated from seismological and experimental rock deformation data4

Chester, Frederick M.

143

Subsurface Flow and Transport | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

subsurface related to contaminant transport, carbon cycling, enhanced oil recovery and carbon dioxide sequestration. Resources and Techniques Users have access to all the...

144

Subsurface Flow and Transport | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and compare experimental and numerical results to address the nation's most challenging problems in the subsurface related to contaminant transport, carbon cycling, enhanced oil...

145

INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO  

SciTech Connect (OSTI)

This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers is described, (5) Clear Fork fractures are described and geomechanical modeling of fractures is investigated, and (6) most importantly, new statistical methods are developed for scaleup of petrophysical properties from the core to the layer scale and for retaining stratigraphic layering in simulation models.

F. Jerry Lucia

2002-01-31T23:59:59.000Z

146

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems  

SciTech Connect (OSTI)

Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

Stephen L. Karner, Ph.D

2006-06-01T23:59:59.000Z

147

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network [OSTI]

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

Kamenov, Anton

2013-04-11T23:59:59.000Z

148

Fracture characterization of clays and clay-like materials using flattened Brazilian Test  

E-Print Network [OSTI]

Fracture mechanics has been used for many years to study the mechanical behavior of brittle and quasi-brittle materials like concrete, rock, wood, and ceramics. To date, the application of fracture mechanics to soils has ...

Agaiby, Shehab Sherif Wissa

2013-01-01T23:59:59.000Z

149

Thermo-Poroelastic Fracture Propagation Modeling with Displacement Discontinuity Boundary Element Method  

E-Print Network [OSTI]

. The influence of pore pressure and temperature changes on the fracture propagation length and path, as well as on stress and pore pressure distribution near wellbores and fractures, was considered in isotropic and homogeneous rock formations. The BEM used...

Chun, Kwang Hee

2013-08-01T23:59:59.000Z

150

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network [OSTI]

of Fractured Sandstone/Coal Samples Smeulders, D.M.J. ,stress on permeability of coal. Int. J. Rock Mech. Min. Sci.of Fractured Sandstone/Coal Samples under Variable Con?ning

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

151

Hydraulic Fracturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

152

Coupled processes in single fractures, double fractures and fractured porous media  

SciTech Connect (OSTI)

The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed.

Tsang, C.F.

1986-12-01T23:59:59.000Z

153

Submitted to WRR 1 Use of hydraulic tests at different scales to characterize fracture network properties in  

E-Print Network [OSTI]

Submitted to WRR 1 Use of hydraulic tests at different scales to characterize fracture network, hydraulic conductivity, fracture, anisotropy 1. INTRODUCTION Hard rocks and their associated aquifers occur properties in the weathered-fractured layer of a hard rock aquifer J.C. Maréchala,b* , B. Dewandela , K

Boyer, Edmond

154

Maintaining Subsurface Drip Irrigation Systems  

E-Print Network [OSTI]

A subsurface drip irrigation system should last more than 20 years if properly maintained. Important maintenance procedures include cleaning the filters, flushing the lines, adding chlorine and injecting acids. Details of these procedures...

Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy

2004-09-07T23:59:59.000Z

155

Hydraulic Fracturing (Vermont)  

Broader source: Energy.gov [DOE]

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

156

White Rock  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Furnished house for rent in rural White Rock Bright and sunny Ideal for a young family Safe neighborhood 10 min drive to LANL 1300 per month, basic utilities included 1180 sq ft....

157

Rock magnetism  

Science Journals Connector (OSTI)

The past three decades have witnessed a new paradigm, the plate tectonics paradigm, in Earth sciences. The record of the Earth's magnetic field stored in rocks played a major role in the establishment of this par...

Ronald T. Merrill

1989-01-01T23:59:59.000Z

158

Silica Precipitation in Fractures and the Evolution of Permeability in Hydrothermal Upflow Zones  

Science Journals Connector (OSTI)

...MASS-TRANSPORT AND FLUID-ROCK INTERACTION IN A...FRACTURED HOT DRY ROCK - REPLY, JOURNAL...WALDER, J, POROSITY REDUCTION AND CRUSTAL...the evolution of permeability in hydrothermal...expansion of the country rock may be insufficient...permeability precipitation reservoir properties rock...

Robert P. Lowell; Philippe Van Cappellen; Leonid N. Germanovich

1993-04-09T23:59:59.000Z

159

Mapping subsurface fractures by radio-frequency holography: a simulation  

Science Journals Connector (OSTI)

......B. , 1970. Handbook of Electromagnetic...entropy image restoration in astronomy...Aperture and Array System Design, Including...be equal to a power of 2. magnitude...is equal to a power of 2. We assume...B., 1970. Handbook of Electromagnetic...entropy image restoration in astronomy......

Paul Lorrain

1991-08-01T23:59:59.000Z

160

Hot Dry Rock Reservoir Engineering | Open Energy Information  

Open Energy Info (EERE)

hydraulically connect the wells. Water pumped down the injection well and through the fracture system is heated by contact with the hot rock and rises to the production well. This...

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Effect of Heterogeneity on Matrix Acidizing of Carbonate Rocks  

E-Print Network [OSTI]

In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore pressure and fracture...

Keys, Ryan S.

2010-07-14T23:59:59.000Z

162

Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

Not Available

1995-02-01T23:59:59.000Z

163

URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic  

E-Print Network [OSTI]

by 20%. Introduction: Thermal fracturing Injection of cold fluids into reservoir rock, induces thermalURTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid of any part of this paper without the written consent of URTeC is prohibited. Summary Thermal shock

Patzek, Tadeusz W.

164

Hydraulic fracturing in a naturally fractured reservoir  

SciTech Connect (OSTI)

Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

Britt, L.K.; Hager, C.J.; Thompson, J.W.

1994-12-31T23:59:59.000Z

165

Fractured reservoirs: An analysis of coupled elastodynamic and ...  

E-Print Network [OSTI]

Aug 28, 2006 ... In basic terms, this paper discusses seismic monitoring of fractured reser- voirs. .... sume that density does not change with pressure. 3) Assign ..... Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The rock physics handbook:.

Daley, T., Schoenberg, M., Rutqvist, J., and Nihei, K.

2006-08-28T23:59:59.000Z

166

Fracture ow simulation using a nite di erence lattice Boltzmann method I. Kim and W. B. Lindquist  

E-Print Network [OSTI]

Fracture ow simulation using a #12;nite di#11;erence lattice Boltzmann method I. Kim and W. B, 2002) We present numerical computations for single phase ow through 3D digitized rock fractures under. The digitized fracture data sets come from pro#12;led elevations taken on tensile induced fractures in Harcourt

New York at Stoney Brook, State University of

167

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

168

Subsurface Fire Hazards Technical Report  

SciTech Connect (OSTI)

The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated.

Logan, R.C.

1999-09-27T23:59:59.000Z

169

Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,  

E-Print Network [OSTI]

effective stress is tensile near the injection well, illustrating the thermal contraction of the rock, whileThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta, Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured medium

Paris-Sud XI, Université de

170

Fractured: Experts examine the contentious issue of hydraulic fracturing water use  

E-Print Network [OSTI]

shale rock, releasing oil and gas from the rock. Combined with the use of horizontal drilling, fracturing has unlocked large deposits of oil and gas and opened up new oil and gas #30;elds in areas around the country. #31;e majority of hydraulic... years. ?Now what we have found in the last #30;ve or #28;#25; years is that source rocks are still loaded with oil and gas,? he said. Source rocks are usually organic-rich shales in which petroleum forms. ?#31;e energy industry has never had...

Wythe, Kathy

2013-01-01T23:59:59.000Z

171

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

172

Flow focusing in unsaturated fracture networks: A numerical investigation  

SciTech Connect (OSTI)

A numerical modeling study is presented to investigate flow-focusing phenomena in a large-scale fracture network, constructed using field data collected from the unsaturated zone of Yucca Mountain, Nevada, the proposed repository site for high-level nuclear waste. The two-dimensional fracture network for an area of 100 m x 150 m contains more than 20,000 fractures. Steady-state unsaturated flow in the fracture network is investigated for different boundary conditions and rock properties. Simulation results indicate that flow paths are generally vertical, and that horizontal fractures mainly provide pathways between neighboring vertical paths. In addition to fracture properties, flow-focusing phenomena are also affected by rock-matrix permeability, with lower matrix permeability leading to a high degree of flow focusing. The simulation results further indicate that the average spacing between flow paths in a layered system tends to increase and flow tends to becomes more focused, with depth.

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.; Liu, Hui-Hai

2003-04-17T23:59:59.000Z

173

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

174

SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS  

SciTech Connect (OSTI)

The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of difficulty and complexity in determining requirements in adapting existing data communication highways to support the subsurface visual alarm system. These requirements would include such things as added or new communication cables, added Programmable Logic Controller (PLC), Inputs and Outputs (I/O), and communication hardware components, and human machine interfaces and their software operating system. (4) Select the best data communication highway system based on this review of adapting or integrating with existing data communication systems.

D.W. Markman

2001-08-06T23:59:59.000Z

175

Hydraulic fracturing-1  

SciTech Connect (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

176

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

177

Active control of underground stresses through rock pressurization  

SciTech Connect (OSTI)

To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

Vandergrift, T.L.

1995-06-01T23:59:59.000Z

178

Dynamic fracture of granular material under quasi-static loading Amir Sagy,1,2  

E-Print Network [OSTI]

Dynamic fracture of granular material under quasi-static loading Amir Sagy,1,2 Gil Cohen,3 Ze; published 13 April 2006. [1] The dynamics of rapid fracturing of heterogeneous grainy media are studied in laboratory experiments in which artificial rock slabs are fractured under uniaxial tension. By performing

Ze'ev, Reches

179

Compressional and shear velocities of dry and saturated jointed rock: a laboratory study  

Science Journals Connector (OSTI)

......classification of rock mass qualities, Geophys...shallow jointed rock, Int. J...a jointed sandstone, in Mechanical...fracture permeability, Int. J...microcrack porosity. By modelling...and steam reservoirs require...hot-dry-rock method are...evaluating the quality of large...and fluid permeability. Seismic...aperture or porosity. Moos...velocity in a sandstone is independent......

R. M. Stesky

1985-10-01T23:59:59.000Z

180

Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry  

E-Print Network [OSTI]

al., 1998]. [5] Although subsurface ice in Beacon Valley has long been known [Linkletter et al., 1973Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar of rock glaciers in the Beacon Valley sector of the McMurdo Dry Valleys, in East Antarctica, as part

Fountain, Andrew G.

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EMSL: Science: Terrestrial & Subsurface Ecosystems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial & Subsurface Ecosystems Terrestrial & Subsurface Ecosystems Terrestrial and Subsurface Ecosystems logo Visualization of CFD-simulated fluid velocities within a single pore space between randomly packed spherical grains Visualization of CFD-simulated fluid velocities within a single pore space between randomly packed spherical grains. The Terrestrial and Subsurface Ecosystems Science Theme focuses on the dynamics of nutrients, metabolites, and contaminants at biogeochemical interfaces in heterogeneous environments across multiple scales. By providing a mechanistic understanding of biogeochemical and microbial processes in soils and the subsurface, and linking those processes via pore-scale hydrological models, EMSL can improve strategies for sustainable solutions to contaminant attenuation, remediation and biogeochemical

182

Subsurface Knowledge Reference Page | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Subsurface Knowledge Reference Page Subsurface Knowledge Reference Page Subsurface Knowledge Reference Page The below listing provides additional references related to Subsurface & Groundwater Remediation. The references are categorized by documents types (e.g., Strategic Plans, Groundwater Plume Map Booklets, etc.) and under each "document type", there is a list of documents and/or hyperlinks to a reference. The Subsurface Knowledge Reference Page will continue to reflect additional information as it is identified. Strategic Plans Scientific Opportunities to Reduce Risk in Groundwater and Soil Remediation Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS) Groundwater Plume Map Booklets Groundwater Contamination and Treatment at Department of Energy Sites -

183

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network [OSTI]

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

Xue, Wenxu

2011-02-22T23:59:59.000Z

184

Fundamentals of log analysis. Part 10: Determining rock mechanical property values from log analysis  

SciTech Connect (OSTI)

Correct design and execution of well completions, including hydraulic fracturing, can enhance a reservoir`s productivity. Success in this optimization depends in part on being able to predict how hydraulic fracturing affects performance. Controls on the performance of a hydraulically fractured well are the fracture, reservoir characteristics and the well. This article will cover methods for obtaining values of in-situ stress in a specific rock layer and the in-situ stress profile, and determining Young`s modulus.

Hunt, E.R.; McCain, W.D. Jr. [S.A. Holditch and Associates, Inc., College Station, TX (United States)

1997-10-01T23:59:59.000Z

185

Method of installing subsurface barrier  

DOE Patents [OSTI]

Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

Nickelson, Reva A. (Shelley, ID); Richardson, John G. (Idaho Falls, ID); Kostelnik, Kevin M. (Idaho Falls, ID); Sloan, Paul A. (Rigby, ID)

2007-10-09T23:59:59.000Z

186

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to quantify the distribution of apertures and the nature of the asperities. Low resolution images of fluids in a sample with a shear fracture were performed and they provide the confidence that flow patterns and saturations could be determined in the future. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective is to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-06-15T23:59:59.000Z

187

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

188

Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments  

SciTech Connect (OSTI)

Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

Morgenthaler, L.N. (Shell Development Co., Houston, TX (United States))

1994-02-01T23:59:59.000Z

189

Process of breaking and rendering permeable a subterranean rock mass  

DOE Patents [OSTI]

The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

Lekas, Mitchell A. (Concord, CA)

1980-01-01T23:59:59.000Z

190

Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied by means of experimentally induced water-table fluctuations (Coaraze  

E-Print Network [OSTI]

1 Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied. Keywords: Karst, hydrogeochemistry, fractured rocks, hydraulic properties, France insu-00376151,version1 high and low permeability regions are controlled by the hydraulic head gradient. Past studies have

Boyer, Edmond

191

Hydraulic fracturing and geothermal energy development in Japan  

SciTech Connect (OSTI)

This paper is a review of research and development on geothermal energy extraction in Japan especially on hydraulic fracturing. First recent geothermal developments in Japan are outlined in Part I. An increase in the production rate of geothermal wells may be highly dependent on the geothermal well stimulation technology based on hydraulic fracturing. The hydraulic fracturing technique must be developed also for geothermal energy to be extracted from hot, dry rock masses. In Part II, the research on hydraulic fracturing and field application are reviewed.

Abe, H.; Suyama, J.; Takahashi, H.

1982-09-01T23:59:59.000Z

192

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

193

MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK  

SciTech Connect (OSTI)

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

2006-02-27T23:59:59.000Z

194

Subsurface Synthesis and Characterization of Ag Nanoparticles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synthesis and Characterization of Ag Nanoparticles Embedded in MgO. Subsurface Synthesis and Characterization of Ag Nanoparticles Embedded in MgO. Abstract: Metal nanoparticles...

195

Self-potential observations during hydraulic fracturing  

SciTech Connect (OSTI)

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

196

Characterizing hydraulically fractured reservoirs using induced microearthquakes  

SciTech Connect (OSTI)

Hydraulic fracturing is a common method employed to increase the production of oil and gas fields. Recently, there has been increased interest in monitoring the microearthquakes induced by hydraulic fracturing as a means of obtaining data to characterize reservoir changeS induced by the injection. Two types of microearthquakes have been observed during hydraulic fracturing. Tensile events have been observed and modeled as the parting of the surfaces of a fracture. A majority of the events observed have been shear-slip events, where two sides of a fault plane slip parallel to each other but in opposite directions. The locations of the microearthquakes can be analyzed to determine regions where significant seismic energy was released, which presumably are regions where injected fluid penetrated into the rock along pre-existing fractures or zones of weakness. The spatial patterns in the locations can be analyzed to fine regions where events cluster along planes, which are interpreted to be the dominant fluid flow paths. Imaging methods can also be applied to the travel time and waveform data to obtain direct evidence for the locations of the fractures or fracture zones. 27 refs., 2 figs.

Fehler, M.

1991-01-01T23:59:59.000Z

197

Effect of Extent of Natural Subsurface Bioreduction on Fe-mineralogy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extent of Natural Subsurface Bioreduction on Fe-mineralogy of Subsurface Sediments. Effect of Extent of Natural Subsurface Bioreduction on Fe-mineralogy of Subsurface Sediments....

198

Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

Wilmer, R. [CER Corp., Las Vegas, NV (United States); Warpinski, N.R. [Sandia National Laboratories (United States); Wright, T.B. [Resources Engineering Systems (United States); Branagan, P.T. [Branagan & Associates (United States); Fix, J.E. [Fix & Associates (United States)

1995-06-01T23:59:59.000Z

199

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

200

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

In Situ Characterization of a Single Fracture Hydromechanical Behavior from Hydraulic Pulse Tests coupled to Simultaneous Pressure Normal  

E-Print Network [OSTI]

In Situ Characterization of a Single Fracture Hydromechanical Behavior from Hydraulic Pulse Tests of the other surrounding fractures of the network. 1 INTRODUCTION Hydraulic pulse injection testing in single borehole has previously been applied to determine hydraulic properties of rock fractures, including

Vallée, Martin

202

Dynamic fracture of granular material under quasi-static loading , The Institute of Earth Sciences, The Hebrew University of Jerusalem  

E-Print Network [OSTI]

Dynamic fracture of granular material under quasi-static loading Amir Sagy1 , The Institute;Abstract The dynamics of rapid fracture in heterogeneous grainy media are studied in a series of laboratory experiments in which artificial rock slab is fractured under conditions of uniaxial tension. By performing

Fineberg, Jay

203

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

204

Subsurface Biogeochemical Research (SBR) Contractor-Grantee Workshop--Abstracts  

E-Print Network [OSTI]

Abiotic Reactions in Hanford 300 Area Subsurface Sedimentsin the subsurface at Hanford’s 300 Area. To initially studycore samples from the Hanford 300 Area IFRC site. Uranium

Hazen, Terry C.

2010-01-01T23:59:59.000Z

205

JSR-14-Task-013 Subsurface Characterization Letter Report_09192014...  

Energy Savers [EERE]

of the state of stress of engineered subsurface systems in order to address major energy and security challenges of the nation. In addition to the engineered subsurface being...

206

Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media  

E-Print Network [OSTI]

. Numerical examples in unfractured and fractured media illustrate the efficiency and robustness in gas-condensate reservoirs), hydrology and geochemical engineering (contamination of groundwater field, sharp variations in the rock properties, and high nonlinearity of the multicomponent system due

Firoozabadi, Abbas

207

Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350?C) for development of geothermal systems.

208

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network [OSTI]

argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

209

Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance  

E-Print Network [OSTI]

Conventional waterflooding methods of oil recovery are difficult to apply when reservoirs show evidence of natural fractures, because injected water advances through paths of high permeability, and oil trapped in the rock matrix system...

Hervas Ordonez, Rafael Alejandro

2012-06-07T23:59:59.000Z

210

Influence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network  

SciTech Connect (OSTI)

Calcium carbonate (CaCO3) geochemical reactions exert a fundamental control on the evolution of porosity and permeability in shallow-to-deep subsurface siliciclastic and limestone rock reservoirs. As a result, these carbonate water-rock interactions play a critically important role in research on groundwater remediation, geological carbon sequestration, and hydrocarbon exploration. A study was undertaken to determine the effects of Mg2+ concentration on CaCO3 crystal morphology, precipitation rate, and porosity occlusion under flow and mixing conditions similar to those in subsurface aquifers.

Boyd, Victoria; Yoon, Hongkyu; Zhang, Changyong; Oostrom, Martinus; Hess, Nancy J.; Fouke, Bruce W.; Valocchi, Albert J.; Werth, Charles J.

2014-05-19T23:59:59.000Z

211

Introduction to the GRI/DOE Field Fracturing Multi-Site Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. It is anticipated that the primary benefit of the project experiments will be the development and widespread commercialization of new fracture diagnostics technologies to determine fracture length, height, width and azimuth. Data resulting from these new technologies can then be used to prove and refine the 3D fracture model mechanisms. It is also anticipated that data collected and analyzed in the project will define the correct techniques for determining fracture closure pressure. The overall impact of the research will be to provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response.

Peterson, R.E.; Middlebrook, M.L.; Warpinski, N.R.; Cleary, M.P.; Branagan, P.T.

1993-12-31T23:59:59.000Z

212

Rock magnetism of remagnetized carbonate rocks: another look  

E-Print Network [OSTI]

and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

Jackson, M.; Swanson-Hysell, N. L

2012-01-01T23:59:59.000Z

213

Mathematical modeling of hydraulic fracturing in coal seams  

SciTech Connect (OSTI)

Hydraulic fracturing of coal seam is considered as a process of development of discontinuities in rock mass elements due to change in hydrogeomechanical situation on filtration of fluid under pressure. Failure is associated with excess of the effective stresses over the rock tension strength. The problem on filtration and failure of massif is solved by the finite-element method using the procedure of fictitious nodal forces.

Olovyanny, A.G. [All Russian Science Research Institute for Mine Surveying, St. Petersburg (Russian Federation)

2005-02-01T23:59:59.000Z

214

Making sense of Chalk: a total-rock approach to its Engineering Geology  

Science Journals Connector (OSTI)

...drive (330). In the north portal area the fracturing is more...post-construction rock fall at the north portal in 1994 smashed the brick...when little traffic and no pedestrians were around. A smaller rock fall at the southern portal resulted in chalk blocks...

R. N. Mortimore

215

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in the presence of a fracture, and the interactions between fluid flow in the fracture and the adjacent matrix. Preliminary results demonstrate that the flow patterns are significantly impacted by the presence of the fracture. Bypassing is quantified and we expect to be able to extract from the modeling the distribution of properties in the fracture and the adjacent matrix.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

2002-10-28T23:59:59.000Z

216

Floating insulated conductors for heating subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

Burns, David; Goodwin, Charles R.

2014-07-29T23:59:59.000Z

217

A Comprehensive Study Of Fracture Patterns And Densities In The Geysers  

Open Energy Info (EERE)

Study Of Fracture Patterns And Densities In The Geysers Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: A Comprehensive Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Details Activities (1) Areas (1) Regions (0) Abstract: In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be

218

Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements  

E-Print Network [OSTI]

Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic, France Abstract Hydromechanical coupled processes in a shallow fractured carbonate reservoir rock were of hydraulic loading/unloading of a water reservoir in which fluid flow occurs mainly inside a heterogeneous

Paris-Sud XI, Université de

219

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates  

E-Print Network [OSTI]

Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

Ali, Mohammed

220

Fracture history of the Northern Piceance Creek Basin, Northwestern Colorado  

SciTech Connect (OSTI)

The fracture pattern of the Northern Piceance Creek Basin, in Rio Blanco and Garfield Counties of Northwestern Colorado, evolved during at least four periods of brittle failure in Eocene rocks of the Green River and overlying Uinta Formations. Fractures in these rocks of are interest to hydrologists because matrix permeabilities in both formations are low, due either to poor sorting and interstitial calcite cement (Uinta sandstones) or to low pore volume and growth of authigenic minerals (Green River oil shales). Ground water at shallow to intermediate depths thus circulates mostly through secondary openings such as fractures and through voids created by the dissolution of nahcolite and halite. Fracture-induced permeabilities probably dominate most at shallow depths, where fractures are most abundant, apertures of fracture walls are greates, and solution openings are least common. Shallow, fracture-dominated aquifers are strongly anisotropic. At deeper levels, in leached zones of the ''saline facies'' of the lower part of the Green River Formation, solution openings contribute greatly to fluid flow and permeabilities probably are less direction dependent.

Verbeek, E.R.; Grout, M.A.

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada  

SciTech Connect (OSTI)

This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

Cole, J.C.; Harris, A.G.; Wahl, R.R.

1997-10-02T23:59:59.000Z

222

Poster on Subsurface Technology & Engineering Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the ability to access, characterize, predict and adaptively manipulate fracture and flow processes over scales from nanometers to kilometers. The attached poster...

223

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

224

Seepage forces, important factors in the formation of horizontal hydraulic1 fractures and bedding-parallel fibrous veins ("beef" and "cone-in-cone")2  

E-Print Network [OSTI]

1 Seepage forces, important factors in the formation of horizontal hydraulic1 fractures and bedding24 may lead, either to tensile hydraulic fracturing, or to dilatant shear failure. We suggest that25 Terzaghi's concepts, leads to the conclusion that, for the18 fractures to be horizontal, either the rock

Paris-Sud XI, Université de

225

Hydraulic Fracturing Simulation of Complex Fractures Growth in Naturally Fractured Shale Gas Reservoir  

Science Journals Connector (OSTI)

Hydraulic fracturing is regarded as one of the essential techniques for developing shale reservoirs at present. During fracturing, propagation of multi-fractures and complex fracture network is developed as re...

Wang Song; Zhao Jinzhou; Li Yongming

2014-10-01T23:59:59.000Z

226

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

227

Wave-Based Subsurface Guide Star  

SciTech Connect (OSTI)

Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

Lehman, S K

2011-07-26T23:59:59.000Z

228

Internal Structure of the Green Lake 5 Rock Glacier, Colorado Front Range, USA M. Leopold ,1* M.W. Williams ,2  

E-Print Network [OSTI]

Internal Structure of the Green Lake 5 Rock Glacier, Colorado Front Range, USA M. Leopold ,1* M tomography--were used to develop a detailed subsurface model of the Green Lake 5 rock glacier in the Colorado (Corte, 1976; Clow et al., 2003). Recently, Azo´car and Brenning (2010) and Brenning and Azo´car (2010

Williams, Mark W.

229

Subsurface Science (The Molecular Environmental Science Group) |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subsurface Science Subsurface Science BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne arrow Subsurface Science The Molecular Environmental Science Group (MESG) The MESG is part of the Biosciences Division at Argonne National Laboratory. One of the main foci during the creation and growth of the MESG has been the development of an internationally recognized integrated multidisciplinary scientific team focused on the investigation of fundamental biogeochemical questions. Presently, expertise that is represented by members of the MES Group includes x-ray Physics, Environmental Chemistry, Environmental Microbiology, (Bio)geochemistry, and radiolimnology. Additional expertise in electron microscopy, x-ray microscopy, Microbial Ecology, and Bioinformatics often is provided by collaborations with scientists outside of our group.

230

Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir  

Open Energy Info (EERE)

Patterns In The Geysers Geothermal Reservoir Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Details Activities (1) Areas (1) Regions (0) Abstract: The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the

231

Preliminary development of a comprehensive calibrated subsurface pathway simulator for the subsurface disposal area at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The first detailed comprehensive simulation study to evaluate fate and transport of low-level, mixed, and transuranic wastes buried in the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL) has recently been conducted. The study took advantage of pertinent information relating to describing aqueous- and vapor-phase movement of contaminants in the primarily fractured basalt subsurface. The study included spatially and temporally variable infiltration, barometric pressure changes, positive down-hole air pressure during well drilling, vapor-vacuum extraction, and regional hydraulic gradients. Use of the TETRAD simulation code allowed all the pertinent information to be included into a single comprehensive model of the SDA subsurface. An overview of the model implementation and comparisons of calibrated model results to the observed vadose zone water distribution, volatile organic vapor concentrations, and aqueous concentrations of volatile organics and nitrate are presented. Additionally, comparisons between simulated and observed concentrations for other contaminants which were not used for model calibration are made. As part of this modeling exercise, inadequacies in the available data relating to characterization of non-sorbing aqueous-phase transport have been identified. Even with the identified data inadequacies, the comparisons between simulated and observed contaminants along with the calibration results give confidence that the model is a conservative representation of flow and transport in the subsurface at the SDA. The results from this modeling study are being used to guide additional data collection activities at the SDA for purposes of increasing confidence in the appropriateness of model predictions.

Magnuson, S.; Sondrup, J.; Becker, B.

1998-03-01T23:59:59.000Z

232

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.

233

Induction heaters used to heat subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

2012-04-24T23:59:59.000Z

234

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

235

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

236

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

237

Hydraulic fracture mechanism in unconsolidated formations.  

E-Print Network [OSTI]

??Most models developed for hydraulic fracturing in unconsolidated sands are based on Linear Elastic Fracture Mechanics (LEFM) and tensile fracture (Mode I fracture). However, in… (more)

Hosseini, Seyed Mehran

2012-01-01T23:59:59.000Z

238

Multiple-point statistical prediction on fracture networks at Yucca Mountain  

SciTech Connect (OSTI)

In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

2009-05-01T23:59:59.000Z

239

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

240

Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock  

SciTech Connect (OSTI)

This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

2006-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures  

E-Print Network [OSTI]

are further influenced by stresses in the host rock. To quantitatively explore these coupled processes, we-water reactions. For example, subsurface CO2 sequestration in depleted oil and gas reservoirs or deep saline 1 August 2008. [1] Problems such as CO2 sequestration, petroleum production and nuclear waste

Detwiler, Russell

242

Flow dynamics and solute transport in unsaturated rock fractures  

E-Print Network [OSTI]

Experiment 2.3, n-dodecane and PCE, were dyed with 0.5 gILfluoroscein dye n-Dodecane(c) PCE(c) (a) 1.002 x 10- 3 1.002seepage of (a) n-dodecane and (b) PCE into the initially dry

Su, G.W.

2011-01-01T23:59:59.000Z

243

Light, radiofrequency emission and ionization effects associated with rock fracture  

Science Journals Connector (OSTI)

......record of the 2 kHz channel in a similar...the presence of plasma. A flux of the...the optical and plasma observations...frequencies (in kHz) for each trace...Using a helium atmosphere, they detect...the surrounding atmosphere (Brady & Rowell...the recombining plasma and individual......

G. Martelli; P. N. Smith; A. J. Woodward

1989-08-01T23:59:59.000Z

244

Flow dynamics and solute transport in unsaturated rock fractures  

E-Print Network [OSTI]

respectively (CRC Handbook and Chemistry and Physics). Thefrom CRC Handbook of Cherrnstry and PhYSICS (b)measured withwater (CRC Handbook of Chemistry and Physics). Using these

Su, G.W.

2011-01-01T23:59:59.000Z

245

Methods for forming long subsurface heaters  

DOE Patents [OSTI]

A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

Kim, Dong Sub

2013-09-17T23:59:59.000Z

246

Carbon Tetrachloride Flow and Transport in the Subsurface of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench at the Hanford Site. Carbon Tetrachloride Flow and Transport in the Subsurface of the 216-Z-9 Trench...

247

THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. The Lisburne in the main axis of the Brooks Range is characteristically deformed into imbricate thrust sheets with asymmetrical hanging wall anticlines and footwall synclines. In contrast, the Lisburne in the northeastern Brooks Range is characterized by symmetrical detachment folds. The focus of our 2000 field studies was at the boundary between these structural styles in the vicinity of Porcupine Lake, in the Arctic National Wildlife Refuge. The northern edge of thrust-truncated folds in Lisburne is marked by a local range front that likely represents an eastward continuation of the central Brooks Range front. This is bounded to the north by a gently dipping panel of Lisburne with local asymmetrical folds. The leading edge of the flat panel is thrust over Permian to Cretaceous rocks in a synclinal depression. These younger rocks overlie symmetrically detachment-folded Lisburne, as is extensively exposed to the north. Six partial sections were measured in the Lisburne of the flat panel and local range front. The Lisburne here is about 700 m thick and is interpreted to consist primarily of the Wachsmuth and Alapah Limestones, with only a thin veneer of Wahoo Limestone. The Wachsmuth (200 m) is gradational between the underlying Missippian Kayak Shale and the overlying Mississippian Alapah, and increases in resistance upward. The Alapah consists of a lower resistant member (100 m) of alternating limestone and chert, a middle recessive member (100 m), and an upper resistant member (260 m) that is similar to Wahoo in the northeastern Brooks Range. The Wahoo is recessive and is thin (30 m) due either to non-deposition or erosion beneath the sub-Permian unconformity. The Lisburne of the area records two major episodes of transgression and shallowing-upward on a carbonate ramp. Thicknesses and facies vary along depositional strike. Asymmetrical folds, mostly truncated by thrust faults, were studied in and south of the local range front. Fold geometry was documented by surveys of four thrust-truncated folds and two folds not visibly cut by thrusts. A portion of the local range front was mapped to document changes in fold geometry along strike in three dimensions. The folds typically display a long, non-folded gently to moderately dipping backlimbs and steep to overturned forelimbs, commonly including parasitic anticline-syncline pairs. Thrusts commonly cut through the anticlinal forelimb or the forward synclinal hinge. These folds probably originated as detachment folds based on their mechanical stratigraphy and the transition to detachment folds to the north. Their geometry indicates that they were asymmetrical prior to thrust truncation. This asymmetry may have favored accommodation of increasing shortening by thrust breakthrough rather than continued folding. Fracture patterns were documented in the gently dipping panel of Lisburne and the asymmetrical folds within it. Four sets of steeply dipping extension fractures were identified, with strikes to the (1) N, (2) E, (3) N to NW, and (4) NE. The relative timing of these fracture sets is complex and unclear. En echelon sets of fractures are common, and display normal or strike-slip sense. Mesoscopic and penetrative structures are locally well developed, and indicate bed-parallel shear within the flat panel and strain within folds. Three sets of normal faults are well developed in the area, and are unusual

Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen; Michael T. Whalen

2002-01-01T23:59:59.000Z

248

Rock Magnetism To-Day  

Science Journals Connector (OSTI)

... ROCK magnetism is that branch of geophysics that deals with the origin of magnetization in rocks and ... that deals with the origin of magnetization in rocks and its stability. Workers in rock magnetism are also interested in the phenomenon of self-reversal, that is, a rock acquiring ...

SUBIR K. BANERJEE

1966-02-12T23:59:59.000Z

249

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

250

Simulation of Hydraulic Fractures and their Interactions with Natural Fractures  

E-Print Network [OSTI]

Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

Sesetty, Varahanaresh

2012-10-19T23:59:59.000Z

251

Fracture characterization from attenuation of Stoneley waves across a fracture  

E-Print Network [OSTI]

Fractures contribute significantly to the permeability of a formation. It is important to understand the fracture distribution and fluid transmissivity. Though traditional well logs can image fractures intersecting the ...

Bakku, Sudhish Kumar

2012-01-01T23:59:59.000Z

252

Session: Hard Rock Penetration  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

1992-01-01T23:59:59.000Z

253

Modeling Mud-Filtrate Invasion Effects on Resistivity Logs to Estimate Permeability of Vuggy and Fractured Carbonate Formations  

E-Print Network [OSTI]

to diagnose and estimate secondary porosity and absolute permeability of fractured and vuggy carbonate in the Barinas-Apure Basin in southwest Venezuela. The latter reservoir behaves as a triple-porosity-connected) and fractured porosity, all embedded in a tight matrix. Rock-core data and wellbore resistivity images indicate

Torres-Verdín, Carlos

254

Strontium isotopic study of subsurface brines from Illinois basin  

SciTech Connect (OSTI)

The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /sup 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.

hetherington, E.A.; Stueber, A.M.; Pushkar, P.

1986-05-01T23:59:59.000Z

255

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference...

256

A Rare Isolated Trapezoid Fracture  

E-Print Network [OSTI]

wrist in suggested scaphoid fracture. Acta Radiol. 1988;29:Rare isolated trapezoid fracture: a case report. Hand. 2008;suspect and diagnose this fracture. 2,8 REFERENCES 1. Papp

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

257

Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays  

SciTech Connect (OSTI)

The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper.

Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

2004-06-20T23:59:59.000Z

258

Multi-Phase Fracture-Matrix Interactions Under Stress Changes  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering. A group of Shear fractures were studied, with layers perpendicular and parallel to the main axis of the sample. The structures of the fractures as well as their impact on absolute permeability and on oil displacement by water were evaluated. Shear fractures perpendicular to the layers lead to a wide distribution of pores and to an overall increase in absolute permeability. Shear fractures parallel to the layers lead to an overall increase in absolute permeability, but a decrease in displacement efficiency. This DoE project funded or partially funded three Ph.D. and four M.Sc. students at the Pennsylvania State University. The results from the research have yielded several abstracts, presentations and papers. Much of the work is still in the process of being published.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-12-07T23:59:59.000Z

259

Source rock screening studies of Ordovician Maquoketa shale in western Illinois  

SciTech Connect (OSTI)

Rock-Eval (pyrolysis) studies of Ordovician Maquoketa Shale samples (cuttings and cores) from the shallow subsurface (500-800 ft deep) in western Illinois indicate that facies within the Maquoketa have potential as hydrocarbon source rocks. Dark, presumably organic-rich zones within the Maquoketa Shale were selected and analyzed for total organic carbon (TOC), Rock-Eval (pyrolysis), and bulk and clay mineralogy using x-ray diffraction. Preliminary results from six samples from Schuyler, McDonough, and Fulton Counties show TOC values ranging from 4.70% to as high as 12.90%. Rock-Eval parameters, measured by heating organic matter in an inert atmosphere, indicate source rock maturity and petroleum-generative potential. Screening studies, using the Rock-Eval process, describe very good source rock potential in facies of the Maquoketa Shale. Further studies at the Illinois State Geological Survey will expand on these preliminary results. This study complements a proposed exploration model in western Illinois and further suggests the possibility of source rocks on the flanks of the Illinois basin. Long-distance migration from more deeply buried effective source rocks in southern Illinois has been the traditional mechanism proposed for petroleum in basin-flank reservoirs. Localized source rocks can be an alternative to long-distance migration, and can expand the possibilities of basin-flank reservoirs, encouraging further exploration in these areas.

Autrey, A.; Crockett, J.E.; Dickerson, D.R.; Oltz, D.F.; Seyler, B.J.; Warren, R.

1987-09-01T23:59:59.000Z

260

Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah  

SciTech Connect (OSTI)

Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, and sandstones of the Frontier Formation along the western edge of the Green River basin in southwestern Wyoming), show that although each fracture domain may contain consistently oriented fractures, the orientations and patterns of the fractures vary considerably from domain to domain. Most of the fracture patterns in the brittle sandstones are related to local stresses created by subtle, irregular flexures resulting from mobility of the associated, interbedded ductile strata (halite or shale). Sequential episodes of evaporite dissolution and/or mobility in different directions can result in multiple, superimposed fracture sets in the associated sandstones. Multiple sets of superimposed fractures create reservoir-quality fracture interconnectivity within restricted localities of a formation. However, it is difficult to predict the orientations and characteristics of this type of fracturing in the subsurface. This is primarily because the orientations and characteristics of these fractures typically have little relationship to the regional tectonic stresses that might be used to predict fracture characteristics prior to drilling. Nevertheless, the high probability of numerous, intersecting fractures in such settings attests to the importance of determining fracture orientations in these types of fractured reservoirs.

LORENZ, JOHN C.; COOPER, SCOTT P.

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Organic solvent alteration of hydraulic properties of sedimentary rocks of low permeability: a review  

SciTech Connect (OSTI)

A review of the current literature on hydrophysical interactions of organic solutes with sedimentary rocks of low permeability is presented. The motivation was the premise that low permeability rocks may act as secondary (aquifer) barriers for the containment of hazardous organic wastes, thus preventing these wastes from contaminating the groundwater. However, this premise may be incorrect if organic wastes can affect the hydraulic conductivity of these rocks. The results indicate that very little work has been done concerning interactions of organics with consolidated subsurface materials. Available information on three related topics was summarized: the effect of organic compounds on the hydrophysical properties of clays, case studies concerning the interactions of organic compounds with clays and sedimentary rocks, and the effect of shales on inorganic transport. These studies give an indication of some research areas that need to be explored with regard to the effect of organic compounds on the hydrophysical properties of sedimentary rocks; these research needs are briefly summarized. 42 refs.

Sklarew, D.S.

1985-05-01T23:59:59.000Z

262

Constitutive relationships for elastic deformation of clay rock: Data Analysis  

SciTech Connect (OSTI)

Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

2011-04-15T23:59:59.000Z

263

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network [OSTI]

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

Lolon, Elyezer P.

2006-04-12T23:59:59.000Z

264

Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones  

SciTech Connect (OSTI)

Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

Haase, C.S.; King, H.L.

1986-01-01T23:59:59.000Z

265

Radionuclide Sensors for Subsurface Water Monitoring  

SciTech Connect (OSTI)

Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

Timothy DeVol

2006-06-30T23:59:59.000Z

266

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well  

Open Energy Info (EERE)

Macroscopic Fractures In Granite In The Hdr Geothermal Well Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Details Activities (0) Areas (0) Regions (0) Abstract: An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Forets, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are

267

Numerical modelling of sandstone uniaxial compression test using a mix-mode cohesive fracture model  

E-Print Network [OSTI]

A mix-mode cohesive fracture model considering tension, compression and shear material behaviour is presented, which has wide applications to geotechnical problems. The model considers both elastic and inelastic displacements. Inelastic displacement comprises fracture and plastic displacements. The norm of inelastic displacement is used to control the fracture behaviour. Meantime, a failure function describing the fracture strength is proposed. Using the internal programming FISH, the cohesive fracture model is programmed into a hybrid distinct element algorithm as encoded in Universal Distinct Element Code (UDEC). The model is verified through uniaxial tension and direct shear tests. The developed model is then applied to model the behaviour of a uniaxial compression test on Gosford sandstone. The modelling results indicate that the proposed cohesive fracture model is capable of simulating combined failure behaviour applicable to rock.

Gui, Yilin; Kodikara, Jayantha

2015-01-01T23:59:59.000Z

268

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

269

EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT  

SciTech Connect (OSTI)

The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

Riha, B

2005-10-31T23:59:59.000Z

270

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

271

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

272

Suspensions in hydraulic fracturing  

SciTech Connect (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

273

Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry  

SciTech Connect (OSTI)

For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

Berryman, J.G.

2010-05-15T23:59:59.000Z

274

Fractured reservoir discrete feature network technologies. Annual report, March 7, 1996--February 28, 1997  

SciTech Connect (OSTI)

This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.

Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.

1998-01-01T23:59:59.000Z

275

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

276

Method for obtaining gelled hydrocarbon compositions, the compositions according to said method and their application in the hydraulic fracturing of underground formations  

SciTech Connect (OSTI)

The invention relates to a method for obtaining gelled hydrocarbon compositions, and their application in the hydraulic fracturing of rocks. The gelling method according to the invention uses as an activator a partially neutralized aluminum acid salt.

Daccord, G.; Lemanczyk, R.; Vercaemer, C.

1985-03-26T23:59:59.000Z

277

Characterisation of hydraulic fractures in limestones using X-ray microtomography  

E-Print Network [OSTI]

Hydraulic tension fractures were produced in porous limestones using a specially designed hydraulic cell. The 3D geometry of the samples was imaged using X-ray computed microtomography before and after fracturation. Using these data, it was possible to estimate the permeability tensor of the core samples, extract the path of the rupture and compare it to the heterogeneities initially present in the rock.

Renard, Francois; Desrues, Jacques; Plougonven, Erwan; Ougier-Simonin, Audrey

2006-01-01T23:59:59.000Z

278

Migration of Water Pulse Through Fractured Porous Media  

SciTech Connect (OSTI)

Contaminant transport from waste-disposal sites is strongly affected by the presence of fractures and the degree of fracture-matrix interaction. Characterization of potential contaminant plumes at such sites is difficult, both experimentally and numerically. Simulations of water flow through fractured rock were performed to examine the penetration depth of a large pulse of water entering such a system. Construction water traced with lithium bromide was released during the excavation of a tunnel at Yucca Mountain, Nevada, which is located in an unsaturated fractured tuff formation. Modeling of construction-water migration is qualitatively compared with bromide-to-chloride (Br/CI) ratio data for pore-water salts extracted from drillcores. The influences of local heterogeneities in the fracture network and variations in hydrogeologic parameters were examined by sensitivity analyses and Monte Carlo simulations. The simulation results are qualitatively consistent with the observed Br/CI signals, although these data may only indicate a minimum penetration depth, and water may have migrated further through the fracture network.

S. Finsterle; J. T. Fabryka-Martin; J. S. Y. Wang

2001-06-06T23:59:59.000Z

279

Probable hydrologic effects of subsurface mining  

SciTech Connect (OSTI)

This case history provides information on the ground-water system and presents the results of an analysis of present and future hydrologic effects of coal mining in the Appalachian coal basin. Although emphasis is on the probable hydrologic effects due to subsurface mining, examples and discussions are equally applicable to surface mine problems. The case history is based on an ongoing study in Greene County which will be completed in 1983. Cooperators in this project were the Pennsylvania Geologic and Topographic Survey and the Greene County Commissioners. The study stemmed from local interest in the rural water supply of the county which is predominantly groundwater.

Stoner, J.D.

1983-01-01T23:59:59.000Z

280

Parallel heater system for subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

Harris, Christopher Kelvin (Houston, TX); Karanikas, John Michael (Houston, TX); Nguyen, Scott Vinh (Houston, TX)

2011-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Low temperature monitoring system for subsurface barriers  

DOE Patents [OSTI]

A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

Vinegar, Harold J. (Bellaire, TX); McKinzie, II. Billy John (Houston, TX)

2009-08-18T23:59:59.000Z

282

The importance of in-situ-stress profiles in hydraulic-fracturing applications  

SciTech Connect (OSTI)

In-situ stresses define the local forces acting on lithologic layers in the subsurface. Knowledge of these stresses is important in drilling, wellbore-stability, and, especially, hydraulic-fracturing applications. The measurement of in-situ stress is not straightforward and, therefore, often goes unmeasured. As such, one often assumes values of in-situ stress or estimate in-situ stresses from logging parameters. This article illustrates the importance of in-situ-stress estimates as they relate to hydraulic fracturing and outlines several techniques for estimating in-situ-stress magnitudes.

Hopkins, C.W. [S.A. Holditch and Associates, Inc., Houston, TX (United States). Houston Div.

1997-09-01T23:59:59.000Z

283

Continuous time random walk analysis of solute transport in fractured porous media  

SciTech Connect (OSTI)

The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

2008-06-01T23:59:59.000Z

284

Grand Challenges: Request for Information on the Subsurface ...  

Office of Environmental Management (EM)

resources while mitigating impacts of their use constitute major technical and socio-political challenges and opportunities. Next generation advances in subsurface technologies...

285

Attenuation-Based Remedies in the Subsurface Applied Field Research...  

Broader source: Energy.gov (indexed) [DOE]

setting for researchers in both applied and basic science fields. A wealth of subsurface data is available to support research activities and remedial decision making. Led by the...

286

On the fracture toughness of advanced materials  

E-Print Network [OSTI]

occurs when the materials resistance to fracture ceases toall classes of materials, the fracture resistance does notthese biological materials derive their fracture resistance

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

287

Hydraulic Fracturing Poster | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

288

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

289

Geothermal Ultrasonic Fracture Imager | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Ultrasonic Fracture Imager Geothermal Ultrasonic Fracture Imager Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to...

290

Ultrasound-Confirmed Frontal Bone Fracture  

E-Print Network [OSTI]

table--frontal sinus fractures. Facial Plast Surg Clin NorthConfirmed Frontal Bone Fracture Jeremy N. Johnson, DO Danielan isolated comminuted fracture of the left frontal sinus

Johnson, Jeremy N; Crandall, Stephen; Kang, Christopher S

2009-01-01T23:59:59.000Z

291

Fracture, aging and disease in bone  

E-Print Network [OSTI]

separate during bone fracture. Nature Materials 4, 612 (on nonagenarians with hip fractures? Injury 30, 169 (1999).bone mass as predictors of fracture in a prospective study.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

292

Observations of the Release of Non-methane Hydrocarbons from Fractured Shale  

Science Journals Connector (OSTI)

The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing (“fracking”). ... These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the “fracking” process, improving gas yields and reducing environmental impacts. ... This technique, termed hydraulic fracturing (commonly known as “fracking”), consists of drilling a well in the prospective shale units and injecting water under high pressure mixed with sand (?5%) and chemical additives (?0.2%) to fracture the rock and stimulate the release of hydrocarbons. ...

Roberto Sommariva; Robert S. Blake; Robert J. Cuss; Rebecca L. Cordell; Jon F. Harrington; Iain R. White; Paul S. Monks

2014-06-30T23:59:59.000Z

293

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

294

Fracture mechanics investigation of oil shale to aid in understanding the explosive fragmentation process. Final technical report, January 1983-July 1984  

SciTech Connect (OSTI)

This report summarizes goals and findings achieved in developing technologies to improve the overall efficiency of oil shale recovery processes. The objectives are to (a) develop theoretical fracture mechanics tools that are applicable to transversely isotropic materials such as sedimentary rock, more particularly oil shale; and (b) develop a fracture mechanics test procedure that can be conveniently used for rock specimens. Such a test procedure would: utilize the geometry of a typical rock core for the test; require a minimum amount of specimen machining; and provide meaningful, reproducible data that corresponds well to test data obtained from conventional fracture mechanics tests. Critical review of the state-of-the-art of fracture mechanics on layered rocks has been completed. Recommendations are made for innovative and promising methods for oil shale fracture mechanics. Numerical and analytical studies of mixed mode fracture mechanics are investigated. Transversely isotropic properties of oil shale are input using isoparametric finite elements with singular elements at the crack tip. The model is a plate with an edge crack whose angle with the edge varies to study the effect of mixed mode fracture under various conditions. The three-dimensional plate is in tension, and stress, energy methods are used in the fracture analysis. Precracked disks of oil shale cored perpendicular to bedding planes are analyzed numerically. Stress intensity factors are determined by (i) strain energy method, and (ii) elliptic simulation method. 47 refs., 12 figs., 1 tab.

Chong, K.P.

1984-09-01T23:59:59.000Z

295

Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado  

Science Journals Connector (OSTI)

...cores were collected from a borehole that was drilled from an elevation...Harrison Mountain (Fig. 1). Drilling was by a diamond core rig drilling method using wireline and an inner tube core barrel, with a borehole diameter of 96 mm and a recovered...

Jason W. Sahl; Raleigh Schmidt; Elizabeth D. Swanner; Kevin W. Mandernack; Alexis S. Templeton; Thomas L. Kieft; Richard L. Smith; William E. Sanford; Robert L. Callaghan; Jeffry B. Mitton; John R. Spear

2007-11-02T23:59:59.000Z

296

The effects of cultural noise on controlled source electromagnetic resonses of subsurface fractures in resistive terrain  

E-Print Network [OSTI]

to study the effect of varying parameters such as target conductivity, transmitter location and shape of a target on the mutual inductance. In each case, the secondary Hz field is calculated for a model with two slabs, and two models with individual slabs...

Fernandes, Roland Anthony Savio

2009-05-15T23:59:59.000Z

297

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network [OSTI]

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

Ahmed, Ibraheem 1987-

2012-11-30T23:59:59.000Z

298

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

299

Annual Logging Symposium, June 22-26, 2013 DETECTION AND QUANTIFICATION OF ROCK PHYSICS  

E-Print Network [OSTI]

PHYSICS PROPERTIES FOR IMPROVED HYDRAULIC FRACTURING IN HYDROCARBON-BEARING SHALE Antoine Montaut, Paul and hydraulic stimulation make hydrocarbon production from organic-rich shales economically viable factors. The objective of this paper is to quantify rock fabric properties of hydrocarbon-bearing shales

Torres-Verdín, Carlos

300

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

E-Print Network [OSTI]

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday for producing both strength of materials and fracture mechanics data H H HH H H d/dt > 0 strength of materials: UTS, YS, f, RA H2 H2H2 H2 H2 H2 H2 H2 HH H H H H H H H H d/dt 0 fracture mechanics: KIH, KTH

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

302

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

conductivity is influenced by several variables including fracture surface roughness, fracture closure stress, proppant size, and proppant concentration. The proppant concentration within a fracture can significantly affect the magnitude of fracture...

Guzek, James J

2014-07-25T23:59:59.000Z

303

Technologies Provide High-Resolution Subsurface Imaging of Vadose Zone  

Broader source: Energy.gov (indexed) [DOE]

Technologies Provide High-Resolution Subsurface Imaging of Vadose Technologies Provide High-Resolution Subsurface Imaging of Vadose Zone Contamination at Hanford Site Technologies Provide High-Resolution Subsurface Imaging of Vadose Zone Contamination at Hanford Site May 17, 2012 - 12:00pm Addthis Shown here are high-resolution, three-dimensional ERT images of contaminant distribution Shown here are high-resolution, three-dimensional ERT images of contaminant distribution RICHLAND, Wash. - Cold War waste disposal practices resulted in both planned and unplanned releases of large amounts of radionuclide and heavy metal contamination into the subsurface throughout the DOE complex. Characterizing the distribution of the resulting environmental contamination remains one of the single most significant challenges limiting subsurface remediation and closure, particularly for the

304

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

305

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

306

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

307

Optimal joule heating of the subsurface  

DOE Patents [OSTI]

A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

Berryman, J.G.; Daily, W.D.

1994-07-05T23:59:59.000Z

308

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

309

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

310

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments [OSTI]

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

311

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and fault rock controls on fault zone hydrology, Coso geothermal field, CA Details Activities (1) Areas (1) Regions (0) Abstract: In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability. At reservoir depths, borehole image, temperature, and mud logs indicate fluid flow is concentrated in extensively fractured damage zones of large faults well-oriented for slip.

312

Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER)  

Broader source: Energy.gov [DOE]

A new DOE Subsurface Crosscut, known as SubTER, coalesces energy technologies that use the subsurface for energy production, storage, and waste management.

313

Unsaturated flow and transport through a fault embedded in fractured welded tuff  

E-Print Network [OSTI]

at Yucca Mountain, Nevada. This experiment involved the release of $82,000 L of water over a period of 17 at Yucca Mountain is the transport of radio- nuclides through unsaturated fractured rock that lies between-per- meability domains. [3] Field investigations and numerical studies of Yucca Mountain have been conducted over

Hu, Qinhong "Max"

314

Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons.

Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

1995-05-01T23:59:59.000Z

315

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

Murdoch, L. [FRx Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

1997-12-31T23:59:59.000Z

316

Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration  

SciTech Connect (OSTI)

In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins where natural fractures play an important role in reservoir permeability. Potential uses for these learnings and tools range from rank exploration to field-development portfolio management. Early incorporation of the permeability development concepts presented here can improve basin assessment and direct focus to the high potential areas within basins. Insight into production variability inherent in tight naturally fractured reservoirs leads to improved wellbore evaluation and reduces the incidence of premature exits from high potential plays. A significant conclusion of this project is that natural fractures, while often an important, overlooked aspect of reservoir geology, represent only one aspect of the overall reservoir fabric. A balanced perspective encompassing all aspects of reservoir geology will have the greatest impact on exploration and development in the low permeability gas setting.

R. L. Billingsley; V. Kuuskraa

2006-03-31T23:59:59.000Z

317

Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures  

E-Print Network [OSTI]

modeling of faults and fractures: Geophysics, 60, 1514-1526.Poroelastic modeling of fracture-seismic wave interaction:by a heterogeneous fracture: J. Acoust. Soc. Am. , 115,

Nakagawa, S.

2010-01-01T23:59:59.000Z

318

Upscaling solute transport in naturally fractured porous media with the continuous time random walk method  

SciTech Connect (OSTI)

Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

Geiger, S.; Cortis, A.; Birkholzer, J.T.

2010-04-01T23:59:59.000Z

319

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Nanosensors for Fractured Reservoir Characterization. 2. Characterization of Fracture Properties using Production Data. 3. Fracture Characterization by Resistivity...

320

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming  

SciTech Connect (OSTI)

Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface...

322

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

323

PNNL: Biological Sciences - A Subsurface Science Scientific Focus Area -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Role of Microenvironments and Transition Zones in Subsurface Reactive Role of Microenvironments and Transition Zones in Subsurface Reactive Contaminant Transport Subsurface Science Scientific Focus Area (SFA) The Subsurface Science Scientific Focus Area (SFA) is funded by the U.S. Department of Energy's Office of Biological and Environmental Research. The SFA team is performing integrated, multidisciplinary, science-theme-focused research on the role of microenvironments and transition zones in the reactive transport of technetium (Tc), uranium (U), and plutonium (Pu). The primary environmental system being studied is the groundwater-river interaction zone in the 300 area of the Hanford Site in southeastern Washington State. Ringold Sediments Redox boundary in Ringold sediments about 2.5 m below the Hanford-Ringold contact. The boundary is the point where oxygen and other terminal electron

324

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using  

Open Energy Info (EERE)

Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Electrical Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Abstract Extended logging and surface-to-borehole electromagnetic induction measurements were performed at the Dixie Valley Geothermal Field as part of an ongoing effort to employ electromagnetic induction logging to geothermal reservoir characterization. The principal goal of this effort is to discern subsurface features useful in geothermal production, such as larger scale mapping of geothermal reservoirs and smaller scale mapping of producing

325

High-resolution subsurface water-ice distributions on Mars  

Science Journals Connector (OSTI)

... Theoretical models indicate that water ice is stable in the shallow subsurface (depths of water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has ...

Joshua L. Bandfield

2007-05-03T23:59:59.000Z

326

2014 JASON Report: State of Stress in Engineered Subsurface Systems  

Broader source: Energy.gov [DOE]

A new report by an independent panel recommends that the Energy Department take a leading role in understanding subsurface systems to better address the nation’s energy and security issues. JASON –...

327

DOE Solicits Feedback on Subsurface Characterization to Commercialize Viable EGS  

Broader source: Energy.gov [DOE]

To better engineer commercially viable EGS technologies, the Energy Department is soliciting information to more accurately measure and quantify vital subsurface parameters in EGS settings and how they change throughout EGS development phases.

328

On the use of drogues for measuring subsurface ocean currents  

Science Journals Connector (OSTI)

Drogues are frequently used to measure ocean currents. Wind drag and subsurface drag on the ... , as well as non-linear effects of current velocity gradients, can cause slippage past the ... must be considered wh...

Dr. David A. Booth

1981-01-01T23:59:59.000Z

329

Installing a Subsurface Drip Irrigation System for Row Crops  

E-Print Network [OSTI]

This publication describes the components of a subsurface drip irrigation system and the procedure for installing such a system. Each step is outlined and illustrated. Steps include tape injection, trenching, connecting drip lines, back-filling...

Enciso, Juan

2004-09-07T23:59:59.000Z

330

Channel erosion due to subsurface flow Braunen Smith,1  

E-Print Network [OSTI]

Channel erosion due to subsurface flow Braunen Smith,1 Arshad Kudrolli,1 Alexander E. Lobkovsky,2, and D. H. Rothman, J. Fluid Mech. 503, 357 2004 . 2 A. E. Lobkovsky, B. Smith, A. Kudrolli, D. C. Mohrig

Kudrolli, Arshad

331

BOD5 removal in subsurface flow constructed wetlands  

E-Print Network [OSTI]

The frequency of on-site systems for treatment of domestic wastewater is increasing with new residential development in both rural and low-density suburban areas. Subsurface flow constructed wetlands (SFCW) have emerged as a viable option to achieve...

Melton, Rebecca Hobbs

2005-08-29T23:59:59.000Z

332

Laboratory simulation of subsurface airflow beneath a building  

E-Print Network [OSTI]

Vapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for ...

Corsello, Joseph William

2014-01-01T23:59:59.000Z

333

Overview - Hard Rock Penetration  

SciTech Connect (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, James C.

1992-03-24T23:59:59.000Z

334

Overview: Hard Rock Penetration  

SciTech Connect (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-08-01T23:59:59.000Z

335

Rock Properties Model  

SciTech Connect (OSTI)

The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

C. Lum

2004-09-16T23:59:59.000Z

336

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

2001-07-23T23:59:59.000Z

337

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents [OSTI]

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

338

Long-term hydraulic properties of subsurface flow constructed wetlands  

E-Print Network [OSTI]

LONG-TERM HYDRAULIC PROPERTIES OF SUBSURFACE FLOW CONSTRUCTED WETLANDS A Thesis by GLENN ALLEN TURNER Submitted to the Office of Graduate studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1994 Major Subject: Agricultural Engineering LONG-TERM HYDRAULIC PROPERTIES OF SUBSURFACE FLOW CONSTRUCTED WETLANDS by GLENN ALLEN TURNER Submitted to Texas A&M University in partial fulfdlment of the requirements for the degree...

Turner, Glenn Allen

2012-06-07T23:59:59.000Z

339

Subsurface distributions of petroleum from an offshore well blowout. The Ixtoc I blowout, Bay of Campeche  

Science Journals Connector (OSTI)

Subsurface distributions of petroleum from an offshore well blowout. ... Photochemistry of Deepwater Horizon Oil ...

Paul D. Boehm; David L. Fiest

1982-02-01T23:59:59.000Z

340

Physical characteristics of the performance and increase of the reliability of functioning of overflow dams with a {open_quotes}second limit state{close_quotes} of the rock foundation  

SciTech Connect (OSTI)

The main danger for the stability of high-head overflow dams having large safety factors is related to unfavorable processes in two zones of the foundation - near the upstream and downstream sides of the dam - due to fracturing of the rock foundation next to the dam by flood discharges. Fracturing of the toe of a dam, especially a gravity-arch dam, is accompanied by an increase of shear stresses in the rock under it to values exceeding the design values, and owing to fracturing of the rock below the dam foundation deformation movements of the dam toward the lower pool increase markedly, moreover, the greater amount, the more considerable the depth of fracturing below the dam foundation. As a result the tensile stresses in the rock in front of the dam increase to values exceeding the allowable, which intensifies cracking of this rock zone to a greater depth, the deeper the fracturing of the rock beyond the dam. Owing to this, the stress state of the foundation directly under the dam, accompanied by a decrease of the bearing capacity of the rock and increase of its deformation with loss of the required seepage strength, worsens.

Khlopenkov, P.R.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Brittle Fracture Ductile to Brittle transition  

E-Print Network [OSTI]

FRACTURE Brittle Fracture Ductile to Brittle transition Fracture Mechanics T.L. Anderson CRC sulphur in steel Residual stress Continuity of the structure Microcracks #12;Fracture Brittle Ductile Factors affecting fracture Strain rate State of stress Temperature #12;Behaviour described Terms Used

Subramaniam, Anandh

342

Simulations of Fracture and Fragmentation of Geologic Materials using Combined FEM/DEM Analysis  

SciTech Connect (OSTI)

Results are presented from a study investigating the effect of explosive and impact loading on geological media using the Livermore Distinct Element Code (LDEC). LDEC was initially developed to simulate tunnels and other structures in jointed rock masses with large numbers of intact polyhedral blocks. However, underground structures in jointed rock subjected to explosive loading can fail due to both rock motion along preexisting interfaces and fracture of the intact rock mass itself. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model these types of problems, we have implemented Cosserat point theory and cohesive element formulations into the current version of LDEC, thereby allowing for dynamic fracture and combined finite element/discrete element simulations. Results of a large-scale LLNL simulation of an explosive shock wave impacting an elaborate underground facility are also discussed. It is confirmed that persistent joints lead to an underestimation of the impact energy needed to fill the tunnel systems with rubble. Non-persistent joint patterns, which are typical of real geologies, inhibit shear within the surrounding rock mass and significantly increase the load required to collapse a tunnel.

Morris, J P; Rubin, M B; Block, G I; Bonner, M P

2005-05-26T23:59:59.000Z

343

Variation in sericite composition from fracture zones within the Coso Hot  

Open Energy Info (EERE)

Variation in sericite composition from fracture zones within the Coso Hot Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Details Activities (1) Areas (1) Regions (0) Abstract: Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs. Low-permeability zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150°C is characterized by abundant finegrained sericite in association with secondary calcite and quartz and unaltered relict microcline. In this hydrothermal sericite there

344

Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology Of The Fenton Hill, New Mexico, Hot Dry Rock Site Details Activities (4) Areas (1) Regions (0) Abstract: The Phase I prototype hot dry rock (HDR) geothermal system was developed in Precambrian basement rocks at Fenton Hill, New Mexico. Core and cuttings samples from the four deep wells indicate that the reservoir of this Phase I HDR system lies within a homogeneous biotite granodiorite body of very low permeability. Natural fractures, although present, are

345

The thermal conductivity of rock under hydrothermal conditions: measurements and applications  

SciTech Connect (OSTI)

The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

Williams, Colin F.; Sass, John H.

1996-01-24T23:59:59.000Z

346

NETL Releases Hydraulic Fracturing Study  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory has released a technical report on the results of a limited field study that monitored a hydraulic fracturing operation in Greene County, PA.

347

Fracture model for cemented aggregates  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01T23:59:59.000Z

348

Complications in Ankle Fracture Surgery.  

E-Print Network [OSTI]

??Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki,… (more)

Ovaska, Mikko

2014-01-01T23:59:59.000Z

349

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

350

The influence of fracture properties on ground-water flow at the Bunker Hill Mine, Kellogg, Idaho  

SciTech Connect (OSTI)

The Bunker Hill Mine in northern Idaho is a large underground lead-zinc mine located in Precambrian metaquartzite rocks with virtually no primary porosity. Ground-water flow through these types of rocks is largely dependent upon the properties of fractures such as joints, faults and relict bedding planes. Ground water that flows into the mine via the fractures is contaminated by heavy metals and by the production of acid water, which results in a severe acid mine drainage problem. A more complete understanding of how the fractures influence the ground-water flow system is a prerequisite to the evaluation of reclamation alternatives to reduce acid drainage from the mine. Fracture mapping techniques were used to obtain detailed information on the fracture properties observed in the New East Reed drift of the Bunker Hill Mine. The data obtained include: (a) fracture type, (b) orientation, (c) trace length, (d) the number of visible terminations, (e) roughness (small-scale asperities), (f) waviness (larger-scale undulations), (g) infilling material, and (h) a qualitative measure of the amount of water flowing through each fracture.

Lachmar, T.E. [Utah State Univ., Logan, UT (United States). Dept. of Geology

1993-12-01T23:59:59.000Z

351

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

352

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

1978. An Approach to the Fracture Hydrology at Stripa:Shanley. 1972. Analysis of Fracture Orientations for InputHydraulic Pro erties of Fractures by P. A. Witherspoon, C.

Olkiewicz, O.

2010-01-01T23:59:59.000Z

353

Intercellular Genomics of Subsurface Microbial Colonies  

SciTech Connect (OSTI)

This report summarizes progress in the second year of this project. The objective is to develop methods and software to predict the spatial configuration, properties and temporal evolution of microbial colonies in the subsurface. To accomplish this, we integrate models of intracellular processes, cell-host medium exchange and reaction-transport dynamics on the colony scale. At the conclusion of the project, we aim to have the foundations of a predictive mathematical model and software that captures the three scales of these systems – the intracellular, pore, and colony wide spatial scales. In the second year of the project, we refined our transcriptional regulatory network discovery (TRND) approach that utilizes gene expression data along with phylogenic similarity and gene ontology analyses and applied it successfully to E.coli, human B cells, and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one of DOE’s high priority microbes. Our developments are designed such that the frameworks for the TRND and GeoGen can readily be used for other microbes of interest to the DOE. In the context of modeling a single bacterium, we are actively pursuing both steady-state and kinetic approaches. The steady-state approach is based on a flux balance that uses maximizing biomass growth rate as its objective, subjected to various biochemical constraints, for the optimal values of reaction rates and uptake/release of metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by us for an earlier DOE grant and the DARPA BioSPICE Project. We are also investigating the interplay between bacterial colonies and environment at both pore and macroscopic scales. The pore scale models use detailed representations for realistic porous media accounting for the distribution of grain size whereas the macroscopic models employ the Darcy-type flow equations and up-scaled advective-diffusive transport equations for chemical species. We are rigorously testing the relationship between these two scales by evaluating macroscopic parameters using the volume averaging methodology applied to pore scale model results.

Ortoleva, Peter; Tuncay, Kagan; Gannon, Dennis; Meile, Christof

2007-02-14T23:59:59.000Z

354

Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field  

SciTech Connect (OSTI)

In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted.

Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

1985-01-01T23:59:59.000Z

355

Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff  

SciTech Connect (OSTI)

Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-02-01T23:59:59.000Z

356

Microearthquake Technology for EGS Fracture Characterization  

Broader source: Energy.gov [DOE]

Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks.

357

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

358

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

359

Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994  

SciTech Connect (OSTI)

This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

NONE

1994-10-01T23:59:59.000Z

360

Life Under Rocks Grade Level: First  

E-Print Network [OSTI]

. Procedure: Find a small and large rock (rock should be on a solid surface and not sunk in sand or muck

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Shotgun cartridge rock breaker  

DOE Patents [OSTI]

A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

1995-01-01T23:59:59.000Z

362

Subsurface Stratigraphy, Structure, and Alteration in the Senator Thermal  

Open Energy Info (EERE)

Subsurface Stratigraphy, Structure, and Alteration in the Senator Thermal Subsurface Stratigraphy, Structure, and Alteration in the Senator Thermal Area, Northern Dixie Valley Geothermal Field, Nevada-Initial Results from Injection Well 38-32, and a New Structural Scenario for the Stillwater Escarpment Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Subsurface Stratigraphy, Structure, and Alteration in the Senator Thermal Area, Northern Dixie Valley Geothermal Field, Nevada-Initial Results from Injection Well 38-32, and a New Structural Scenario for the Stillwater Escarpment Abstract Two injection wells (DV 38-32 and DV 27-32) in the Senator thermal area of the northern Dixie Valley geothermal field supply all the injectate reaching the field's northernmost group of production wells. These injectors are also the only wells in the field drilled between the surface

363

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

SciTech Connect (OSTI)

The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

Cotte, F.P.; Doughty, C.; Birkholzer, J.

2010-11-01T23:59:59.000Z

364

Fracturing Fluid Characterization Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

365

Post Rock | Open Energy Information  

Open Energy Info (EERE)

Rock Rock Jump to: navigation, search Name Post Rock Facility Post Rock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Westar Energy Location Ellsworth KS Coordinates 38.87269233°, -98.33059788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.87269233,"lon":-98.33059788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

367

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara, a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock; and the Frontier, a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. This was the tenth quarter of the contract. During this quarter the investigators (1) continued processing the seismic data, and (2) continued modeling some of the P-wave amplitude anomalies that we see in the data.

Mavko, G.; Nur, A.

1994-04-29T23:59:59.000Z

368

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This was the ninth quarter of the contract. During this quarter we (1) continued processing the seismic data, (2) collected additional logs to aid in the interpretation, and (3)began modeling some of the P-wave amplitude anomalies that we see in the data. The study area is located at the southern end of the powder river Basin in Converse county in east-central Wyoming. It is a low permeability fractured site, with both has and oil present. Reservoirs are highly compartmentalized due tot he low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara; a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier, a tight sandstone lying directly below the Niobrara, brought into contract with it by an unconformity.

Mavko, G.; Nur, A.

1994-01-29T23:59:59.000Z

369

GEOL 103 Writing Assignment 3. Sedimentary Rocks Name _______________________  

E-Print Network [OSTI]

.g., kaolinite), halite (rock salt), gypsum, occasionally micas (muscovite, biotite). Sed rocks can also contain

Kirby, Carl S.

370

SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION  

National Nuclear Security Administration (NNSA)

SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION IN NATURAL URANIUM IN NATURAL URANIUM UNDER SHOCK UNDER SHOCK - - WAVE LOADING WAVE LOADING O.A. O.A. Tyupanova Tyupanova , S.S. , S.S. Nadezhin Nadezhin , A.N. , A.N. Malyshev Malyshev , , O.N. O.N. Ignatova Ignatova , V.I. , V.I. Skokov Skokov , V.N. , V.N. Knyazev Knyazev , , V.A. V.A. Raevsky Raevsky , N.A. , N.A. Yukina Yukina Russian Federal Nuclear Center Russian Federal Nuclear Center - - VNIIEF, VNIIEF, Sarov Sarov , Russia , Russia Introduction Introduction  Nucleation and growth of defects inside a solid under pulse tensile stresses signify a necessity to consider it as a damaged medium.  A certain volume of experimental data, obtained in correct tests, which are sensitive to a characteristic under study, is necessary

371

Statistical Properties of Fracture Precursors  

Science Journals Connector (OSTI)

We present the data of a mode-I fracture experiment. The samples are broken under imposed pressure. The acoustic emission of microfractures before the breakup of the sample is registered. From the acoustic signals, the position of microfractures and the energy released are calculated. A measure of the clustering of microfractures yields information about the critical load. The statistics from energy measurements strongly suggest that the fracture can be viewed as a critical phenomenon; energy events are distributed in magnitude as a power law, and a critical exponent is found for the energy near fracture.

A. Garcimartín; A. Guarino; L. Bellon; S. Ciliberto

1997-10-27T23:59:59.000Z

372

Fracture of synthetic diamond M. D. Droty  

E-Print Network [OSTI]

Fracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California 1995) The fracture behavior of synthetic diamond has been investigated using indentation methods and by the tensile testing of pre-notched fracture-mechanics type samples. Specifically, the fracture toughness

Ritchie, Robert

373

Microstructure-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture  

E-Print Network [OSTI]

-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture 27-301 Fall, 2007 Prof. A. D. Rollett the fracture resistance of materials to their microstructure. · Both ceramics and metals exhibit strongly microstructure dependent fracture resistance. · This section focuses on basic theory of brittle fracture

Rollett, Anthony D.

374

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and  

E-Print Network [OSTI]

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf fracture stress and stress modified fracture strain models are utilized to describe the variation of lower and upper shelf fracture toughness with temperature and strain rate for two alloy steels used

Ritchie, Robert

375

Journal of Biomechanics 38 (2005) 15171525 Fracture in human cortical bone: local fracture criteria and  

E-Print Network [OSTI]

Journal of Biomechanics 38 (2005) 1517­1525 Fracture in human cortical bone: local fracture, Livermore, CA 94550 Accepted 19 July 2004 Abstract Micromechanical models for fracture initiation such micromechanical models have been developed for the fracture of bone. In fact, although the fracture event

Ritchie, Robert O.

376

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

377

Heating subsurface formations by oxidizing fuel on a fuel carrier  

DOE Patents [OSTI]

A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

Costello, Michael; Vinegar, Harold J.

2012-10-02T23:59:59.000Z

378

Temporary Sealing of Fractures | Open Energy Information  

Open Energy Info (EERE)

Temporary Sealing of Fractures Temporary Sealing of Fractures Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Temporary Sealing of Fractures 2 Geothermal ARRA Funded Projects for Temporary Sealing of Fractures Geothermal Lab Call Projects for Temporary Sealing of Fractures Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

379

Sensitivity analysis of fracture scattering  

E-Print Network [OSTI]

We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

Fang, Xinding, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

380

Environmental Impacts of Hydraulic Fracturing  

Science Journals Connector (OSTI)

...their environmental impacts, which has been published...the hydrogeological impacts of oil and gas development...Chafin, 1994), not fracking. Watson and Bachu...Frontiers Ecology Environment. 2011. 9( 9): 503...R. Environmental Impacts of Hydraulic Fracturing...

Richard Jackson

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fracture of aluminum naval structures  

E-Print Network [OSTI]

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

382

Numerical simulation of hydraulic fracturing  

E-Print Network [OSTI]

NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...: Petroleum Engineering NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Approved as to style and content by: S. A. Holditch (Chairman of Committee) D. D. Van Fleet (member) J. E. Russell (m be ) W. D. Von onten ( ead...

Warner, Joseph Barnes

2012-06-07T23:59:59.000Z

383

Comparison of Discrete Fracture and Effective Media Representation of Fractures on Azimuthal AVO  

E-Print Network [OSTI]

In fractured reservoir development, azimuthal AVO (AVOaz) properties of reflected PP waves from reservoir tops are often used to infer fracture properties. The fracture parameter inversion is based on either an effective ...

Zhang, Yang

2005-01-01T23:59:59.000Z

384

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

385

Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks  

Science Journals Connector (OSTI)

We study a fractional time derivative generalization of a previous Natale-Salusti model about nonlinear temperature and pressure waves, propagating in fluid-saturated porous rocks. Their analytic solutions, i.e., solitary shock waves characterized by a sharp front, are here generalized, introducing a formalism that allows memory mechanisms. In realistic wave propagation in porous media we must take into account spatial or temporal variability of permeability, diffusivity, and other coefficients due to the system “history.” Such a rock fracturing or fine particulate migration could affect the rock and its pores. We therefore take into account these phenomena by introducing a fractional time derivative to simulate a memory-conserving formalism. We also discuss this generalized model in relation to the theory of dynamic permeability and tortuosity in fluid-saturated porous media. In such a realistic model we obtain exact solutions of Burgers’ equation with time fractional derivatives in the inviscid case.

Roberto Garra

2011-09-26T23:59:59.000Z

386

Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Area (Frank, 1995) Mt Ranier Area (Frank, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Mt Ranier Area (Frank, 1995) Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies primarily on minerals, gases, and water found in surficial deposits to construct a conceptual model for Mount Rainier that considers the following factors: - Locations of hydrothermal leakage at the surface; - Structures that provide permeable paths of fluid egress to the surface; - Amount of excess heat discharge; - Composition of surficial thermal fluids; - Composition, guided by mineralogy, of subsurface thermal fluids. Analytical data used as a basis for the model are from samples

387

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

Mike L. Laue

1997-05-30T23:59:59.000Z

388

INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA  

E-Print Network [OSTI]

Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

389

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...  

Open Energy Info (EERE)

between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets...

390

Fracture Evolution Following a Hydraulic Stimulation within an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution...

391

Aging and Fracture of Human Cortical Bone and Tooth Dentin  

E-Print Network [OSTI]

Mechanistic aspects of fracture and R-curve behavior inof failure of solid biomaterials and bone: `fracture' and `pre- fracture' toughness. Materials Science and Engineering:

Ager III, Joel W.

2008-01-01T23:59:59.000Z

392

Poroelastic modeling of seismic boundary conditions across a fracture  

E-Print Network [OSTI]

on poroelasticity of fractures. Both authors would like toYork. Figure 3: For a high permeability fracture, the fluidpressure across the fracture is continuous, which can be

Schoenberg, M.A.; Nakagawa, S.

2006-01-01T23:59:59.000Z

393

Updated fracture incidence rates for the US version of FRAX®  

E-Print Network [OSTI]

presenting with non-vertebral fractures. Osteoporos Int 18:2006) Epidemiology of vertebral fractures: implications forORIGINAL ARTICLE Updated fracture incidence rates for the US

Ettinger, B.; Black, D. M.; Dawson-Hughes, B.; Pressman, A. R.; Melton, L. J.

2010-01-01T23:59:59.000Z

394

Transphyseal Fracture of the Distal Humerus in a Neonate  

E-Print Network [OSTI]

M edicine Transphyseal Fracture of the Distal Humerus in aalignment without osseous fracture and a moderate joint2] revealed a transverse fracture through the distal left

Baker, Annalee M; Methratta, Sosamma T.; Choudhary, Arabinda K

2011-01-01T23:59:59.000Z

395

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

396

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1  

SciTech Connect (OSTI)

Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

Poston, S.W.

1991-12-31T23:59:59.000Z

397

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network [OSTI]

reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

398

Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

1993-05-01T23:59:59.000Z

399

Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions  

SciTech Connect (OSTI)

Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2013-01-01T23:59:59.000Z

400

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen-Assisted Fracture: Materials Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to high-pressure H 2 gas * Six-year program in 1970s focused on feasibility of using natural gas pipeline network for H 2 gas - Materials testing in high-pressure H 2 gas using laboratory specimens and model pipeline - Examined fusion zone and heat affected zones of welds * Active SNL staff have authored 70+ papers and organized 6

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

402

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

403

Issues surrounding fracturing of geothermal systems - predicting thermal conductivity of reservoir rocks and evaluating performance of fracture proppants.  

E-Print Network [OSTI]

??Traditional geothermal systems have been limited to geologic systems in which elevated temperatures, abundant water, and high porosity and permeability are found. Engineered geothermal systems… (more)

Brinton, Daniel

2011-01-01T23:59:59.000Z

404

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network [OSTI]

Flow calculations for Yucca Mountain groundwater travelunsaturated model of Yucca Mountain, Nevada, Journal ofinto drifts at Yucca Mountain, Journal of Contaminant

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

405

Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic Mapping Of The Subsurface Structure At The Ryepatch Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: In 1998 a 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada) to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The results

406

U.S. Department of Energy Subsurface Biogeochemical Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subsurface Biogeochemical Research. Click to return to home page. Subsurface Biogeochemical Research. Click to return to home page. Department of Energy Office of Science. Click to visit main DOE SC site. About the Program Research User Facilities PI Meeting Site Map Contact Us About SBR Overview Impact of SBR Research Bibliography Research Abstracts Reports and Documents Document Archive Timeline Related DOE Programs Related Meetings Calendar Contact Information David Lesmes Paul Bayer All SBR Contacts Office of Biological and Environmental Research U.S. Department of Energy Office of Science Simulation of Pore-Scale Fluid Flow Research Snapshot Approach Bibliography Research Abstracts Research Highlights Performance Measures and Milestones Archive Calls for Proposals Announcements Major Programmatic Components National Laboratory SFAs University-Led Projects

407

Using electrical impedance tomography to map subsurface hydraulic conductivity  

DOE Patents [OSTI]

The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

Berryman, James G. (Danville, CA); Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Roberts, Jeffery J. (Livermore, CA)

2000-01-01T23:59:59.000Z

408

Subsurface Flow and Contaminant Transport Documentation and User's Guide  

SciTech Connect (OSTI)

This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

Aleman, S.E.

1999-07-28T23:59:59.000Z

409

Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain  

SciTech Connect (OSTI)

This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

2006-02-14T23:59:59.000Z

410

Oriented perforations -- A rock mechanics view  

SciTech Connect (OSTI)

Hydraulic fracture initiation dictates the communication path between the wellbore and fracture plane. Nonplanar fracture geometries such as multiple, T-Shaped, and reoriented fractures are not advantageous and they adversely affect the potential to achieve a desired stimulation treatment. Oriented perforations can be the solution to initiate a single wide fracture in vertical and deviated wells. Also oriented perforations may be used to create stable tunnels in poorly consolidated formations thus avoiding sand failure and consequently preventing sand production. This paper presents laboratory experimental results related to oriented perforations for hydraulic fracturing. It also discusses the use of oriented perforation for sand control. Experiments were designed to investigate the effect of perforation orientation in vertical and horizontal wells on hydraulic fracturing treatment.

Abass, H.H.; Meadows, D.L.; Brumley, J.L.; Hedayati, S.; Venditto, J.J.

1995-11-01T23:59:59.000Z

411

Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models  

E-Print Network [OSTI]

Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

Kim, Tae Hyung

2009-05-15T23:59:59.000Z

412

A VSP transformation technique for the determination of subsurface structure  

E-Print Network [OSTI]

is the dominant wavelength. With the surface reflection profiling technique, resolution typically ranges from tens to hundreds of meters. With this degree of resolution, a detailed understanding of the subsurface is hard to achieve, In a vertical seismic... Chairman of Advisory Committee: Dr. Terry W. Spencer An algorithm was developed which transforms a vertical seismic profile (VSP) from the time-depth domain into the offset-time domain. The procedure operates by calculating the dips of the reflectors...

Malloy, Jeffrey Edward

2012-06-07T23:59:59.000Z

413

Chitinozoans in the subsurface Lower Paleozoic of West Texas  

E-Print Network [OSTI]

THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS October 22, 1971 Paper 54 CHITINOZOANS IN THE SUBSURFACE LOWER PALEOZOIC OF WEST TEXAS A. E. KAUFFMAN Humble Oil & Refining Company, Midland, Texas ABSTRACT Studies based on both comprehensive... with known lithologie in- tervals and electric logs. These fossils were re- covered from most lithologies. Chert, including novaculite and tripolitic types, and dark micritic 4 The University of Kansas Paleontological Contributions—Paper 54 limestone yield...

Kauffman, A. E.

1971-10-22T23:59:59.000Z

414

Interdependency of Subsurface Carbon Distribution and Graphene-Catalyst Interaction  

E-Print Network [OSTI]

Interdependency of Subsurface Carbon Distribution and Graphene? Catalyst Interaction Robert S. Weatherup,*,† Hakim Amara,‡ Raoul Blume,§ Bruno Dlubak,?,? Bernhard C. Bayer,† Mamadou Diarra,?,# Mounib Bahri,‡ Andrea Cabrero-Vilatela,† Sabina Caneva... , France * S Supporting Information ABSTRACT: The dynamics of the graphene?catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth- resolved X-ray photoelectron spectroscopy, and complementary grand canonical...

Weatherup, Robert S.; Amara, Hakim; Blume, Raoul; Dlubak, Bruno; Bayer, Bernhard C.; Diarra, Mamadou; Bahri, Mounib; Cabrero-Vilatela, Andrea; Caneva, Sabina; Kidambi, Piran R.; Martin, Marie-Blandine; Deranlot, Cyrile; Seneor, Pierre; Schloegl, Robert; Ducastelle, François; Bichara, Christophe; Hofmann, Stephan

2014-09-04T23:59:59.000Z

415

Chapter 28 - Nanotechnology for Contaminated Subsurface Remediation: Possibilities and Challenges  

Science Journals Connector (OSTI)

Groundwater represents a significant source of potable and industrial process water throughout the world. With population growth the availability of this precise resource is becoming increasingly scarce. Historically, the subsurface was thought to act as a natural filter of wastes injected into the ground. The potential for these wastes to persist in the subsurface for decades, potentially contaminating drinking water sources was ignored. Not only do toxic compounds have significant detrimental impacts on the environment and human health, there are also economic and social costs associated with contaminated groundwater. Due to increased demands on groundwater resources and historical contamination there is a need to remediate contaminated groundwater to meet current and future demands. At many hazardous sites, however, current remediation technologies routinely defy attempts at satisfactory restoration. As a result new, innovative remediation technologies are required. Nanomaterials are receiving widespread interest in a variety of fields due to their unique, beneficial chemical, physical, and mechanical properties. They have recently been proposed to address a number of environmental problems including the remediation of the contaminated subsurface. A wide variety of nanoparticles, such as metallic (e.g., zero valent iron or bimetallic nanoparticles) and carbon based nanoparticles (e.g., C60 nanoparticles) have been investigated to assess their potential for contaminated site remediation. Studies suggest that nanoparticles have the ability to convert or sequester a wide variety of subsurface contaminants (e.g., chlorinated solvents and heavy metals). In addition they are more reactive than similar, larger sized, reactive materials. The majority of these studies have, however, been conducted at the batch scale. Considerable work is necessary prior to the application of nanotechnology for contaminated site remediation. One problem, for example, is the delivery of reactive nanometals to the contaminated source zone where they will react. This chapter will summarize the use of nanoparticles for contaminated site remediation and highlight some of the challenges that remain unresolved.

Denis M. O’Carroll

2014-01-01T23:59:59.000Z

416

Evaluation of the application uniformity of subsurface drip distribution systems  

E-Print Network [OSTI]

. .......................................................................................13 Table 3. Recommended acid concentration to treat water (Netafim, 2000a)................15 Table 4. Methods of comparison of statistical uniformity (ASAE, 1999). ...................19 Table 5. Evaluation of type Y emitter flow rates... is This thesis is written to conform to the style of Transactions of the ASAE. 2 essential for proper treatment of wastewater. Subsurface drip distribution systems can be used in these areas, but the effects of different site conditions and drip emitter...

Weynand, Vance Leo

2004-09-30T23:59:59.000Z

417

Downhole burner systems and methods for heating subsurface formations  

DOE Patents [OSTI]

A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

2011-05-31T23:59:59.000Z

418

Multi-step heater deployment in a subsurface formation  

DOE Patents [OSTI]

A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

Mason, Stanley Leroy (Allen, TX)

2012-04-03T23:59:59.000Z

419

CLASSIFICATION OF THE MGR SUBSURFACE DEVELOPMENT TRANSPORTATION SYSTEM  

SciTech Connect (OSTI)

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface development transportation structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

R. Garrett

1999-08-31T23:59:59.000Z

420

Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure  

SciTech Connect (OSTI)

The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

Scheibe, Timothy D.

2011-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Methods and system for subsurface stabilization using jet grouting  

DOE Patents [OSTI]

Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

Loomis, Guy G. (Idaho Falls, ID); Weidner, Jerry R. (Iona, ID); Farnsworth, Richard K. (Idaho Falls, ID); Gardner, Bradley M. (Idaho Falls, ID); Jessmore, James J. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

422

Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation  

E-Print Network [OSTI]

in integrating fracture propagation, acid transport and dissolution, and well performance models in a seamless fashion for acid fracturing design. In this new approach, the fracture geometry data of a hydraulic fracture is first obtained from commercial models...

Wu, Xi

2014-06-23T23:59:59.000Z

423

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND  

E-Print Network [OSTI]

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND FRAGMENTATION OF BRITTLE element simulations of dynamic fracture and fragmentation of brittle solids are presented. Fracture the results of massively parallel numerical simulations of dynamic fracture and fragmentation in brittle

Barr, Al

424

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

425

Method for directional hydraulic fracturing  

DOE Patents [OSTI]

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

426

PARKER-HEADGATE ROCK & PARKER-GILA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 1. Project Location Project Location j PARKER-HEADGATE ROCK &...

427

Nonplanar fracture propagation from a horizontal wellbore: Experimental study  

SciTech Connect (OSTI)

This paper presents experimental results related to hydraulic fracturing of a horizontal well, specifically the nonplanar fracture geometries resulting from fracture initiation and propagation. Experiments were designed to investigate nonplanar fracture geometries. This paper discusses how these nonplanar fractures can be responsible for premature screenout and excessive treatment pressure when a horizontal well is hydraulically fractured. Reasons for unsuccessful hydraulic fracturing treatments of a horizontal well are presented and recommendations to ensure clear communication channels between the wellbore and the fracture are given.

Abass, H.H.; Hedayati, S.; Meadows, D.L.

1996-08-01T23:59:59.000Z

428

Tracer Methods for Characterizing Fracture Stimulation in Engineered...  

Broader source: Energy.gov (indexed) [DOE]

Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS) Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal...

429

Fracture, aging and disease in bone  

E-Print Network [OSTI]

by enhancing the materials resistance to microstructuralgrowth resistance of microcracking brittle materials. J. Am.resistance to fracture of the Page 4 Fracture, Aging and Disease in Bone underlying material.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

430

Modeling of Acid Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

Al Jawad, Murtada s

2014-06-05T23:59:59.000Z

431

Statistical Modeling of Fracture Toughness Data.  

E-Print Network [OSTI]

??The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in reactor. Fracture… (more)

Prakash, Guru

2007-01-01T23:59:59.000Z

432

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, April 1, 1993--June 31, 1993  

SciTech Connect (OSTI)

This was the seventh quarter of the contract. During this quarter we (1) continued the large task of processing the seismic data, (2) collected additional geological information to aid in the interpretation, (3) tied the well log data to the seismic via generation of synthetic seismograms, (4) began integrating regional structural information and fracture trends with our observations of structure in the study area, (5) began constructing a velocity model for time-to-depth conversion and subsequent AVO and raytrace modeling experiments, and (6) completed formulation of some theoretical tools for relating fracture density to observed elastic anisotropy. The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. A basemap is presented with the seismic lines being analyzed for this project plus locations of 13 wells that we are using to supplement the analysis. The arrows point to two wells for which we have constructed synthetic seismograms.

Mavko, G.; Nur, A.

1993-07-26T23:59:59.000Z

433

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

SciTech Connect (OSTI)

This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain.

Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

2008-06-01T23:59:59.000Z

434

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

E-Print Network [OSTI]

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

Lu, Zhiming

435

A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling  

E-Print Network [OSTI]

A model of fracture nucleation, growth and arrest, and consequences for fracture density; accepted 1 February 2013; published 25 April 2013. [1] In order to improve discrete fracture network (DFN a new DFN modeling based on the evolution of fracture network formation--nucleation, growth, and arrest

Boyer, Edmond

436

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of  

E-Print Network [OSTI]

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of Deformation and Fracture in Polycrystalline -TiAl + 2-Ti3Al Single Crystals #12;Use of -TiAl + 2-Ti3Al Alloys-Temperature Ductility ·Low Ambient-Temperature Fracture Toughness (KIC

Grujicic, Mica

437

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and  

E-Print Network [OSTI]

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous; accepted 23 January 2002 Abstract Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by Weibull statistics. This nonlocal fracture model allows

Ritchie, Robert

438

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials  

E-Print Network [OSTI]

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials H.D. Espinosa* and B. Peng ABSTRACT This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film

Espinosa, Horacio D.

439

Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Peigui Yin; Shaochang Wo

2006-12-08T23:59:59.000Z

440

Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action, and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Zhengxin Tong; Evren Unsal; Siluni Wickramathilaka; Shaochang Wo; Peigui Yin

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Jason Zhengxin Tong; Peigui Yin; Shaochang Wo

2006-06-08T23:59:59.000Z

442

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

SciTech Connect (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

443

Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL  

E-Print Network [OSTI]

Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

Swanson-Hysell, Nicholas

444

Acoustic-emission monitoring during hydraulic fracturing  

SciTech Connect (OSTI)

This paper reports that microseismic events or acoustic emissions associated with hydraulic fracturing are recorded with a borehole seismic tool in a deviated well during multirate injection, shut-in, and flowback. The event locations indicate that fracture orientation, length, and height are compatible with regional stress directions and estimates of the fracture size that are based on pressure decline.

Stewart, L. (Schlumberger-Doll Research (US)); Cassell, B.R. (Schlumberger Wireline Services (US)); Bol, G.M. (Nederlanse Aardolie Mij. B.V. (NL))

1992-06-01T23:59:59.000Z

445

Hydraulic Fracturing in Michigan Integrated Assessment  

E-Print Network [OSTI]

Hydraulic Fracturing in Michigan Integrated Assessment #12;Agenda · Welcome and introduction and timeline · Panel presentation and discussion · Facilitated Q & A · Closing remarks #12;Hydraulic Fracturing · Leverages resources IA BENEFITS Benefits of Integrated Assessment #12;Key Points: · Hydraulic Fracturing (HF

Kamat, Vineet R.

446

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

Peirce, Anthony

447

Regulation of Hydraulic Fracturing in California  

E-Print Network [OSTI]

APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

Kammen, Daniel M.

448

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

Peirce, Anthony

449

Challenges in Continuum Modelling of Intergranular Fracture  

E-Print Network [OSTI]

Challenges in Continuum Modelling of Intergranular Fracture V. R. Coffman*, J. P. Sethna , A. R-2501, USA Cornell Fracture Group, Rhodes Hall, Cornell University, Ithaca, NY 14853-2501, USA § Department fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model

Sethna, James P.

450

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation  

E-Print Network [OSTI]

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation Presented to the Faculty of the Graduate School by Ashivni Shekhawat May 2013 #12;c 2013 Ashivni Shekhawat ALL RIGHTS RESERVED #12;FRACTURE IN DISORDERED- lem of brittle fracture in disordered media. Chapters 2 and 4 are concerned with various aspects

Sethna, James P.

451

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES  

E-Print Network [OSTI]

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES DURING CRACK PROPAGATION Noah Matsumoto Structural, USA * Corresponding author: John.Nairn@oregonstate.edu SWST member #12;Fracture Toughness of Wood and Wood Composites During Crack Propagation ABSTRACT The mode I fracture toughness as a function of crack

Nairn, John A.

452

Models for MetaVCeramic Interface Fracture  

E-Print Network [OSTI]

ChaDter 12 Models for MetaVCeramic Interface Fracture ZHIGANG SUO C. FONG SHIH Metal shortcomingthat haslimited their wide- spread use-their tendency to fracture easily. In many systems, the low on interface fracture are reviewed in this chapter. With few exceptions, attention is limited to continuum

Suo, Zhigang

453

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Interferometric hydrofracture microseism localization using neighboring fracture Oleg V. Poliannikov1 , Alison E. Malcolm1 , Hugues Djikpesse2 , and Michael Prange2 ABSTRACT Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir

Malcolm, Alison

454

Introduction That fracture is governed by processes  

E-Print Network [OSTI]

Introduction That fracture is governed by processes occurring over a wide range of length scales has been recognized since the earli- est developments of modern fracture me- chanics. Griffith's study by several decades the first at- tempts to apply atomistically grounded traction-separation laws to fracture

Beltz, Glenn E.

455

LA-13194-MS Fracture Characterization of the  

E-Print Network [OSTI]

LA-13194-MS Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41) LosN A T I technical correctness. #12;Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41 Los Alamos, New Mexico 87545 #12;1 Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2

456

Capillary fracture of soft gels  

E-Print Network [OSTI]

A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact-line in a starburst pattern. In this paper, we characterize i) the initiation process in which the number of arms in the starburst is controlled by the ratio of surface tension contrast to the gel's elastic modulus and ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law $L\\propto t^{3/4}$. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid/solid wetting forces. The elastic solution shows that both the location and magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an impo...

Bostwick, Joshua B

2013-01-01T23:59:59.000Z

457

Tracer Penetration into Welded Tuff Matrix from Flowing Fractures Qinhong Hu,* Timothy J. Kneafsey, Robert C. Trautz, and Joseph S. Y. Wang  

E-Print Network [OSTI]

imbibition and penetration into unsaturated, fractured rock matrix at Yucca Mountain, Nevada. Field. The objective of a direct application to radionuclide transport at Yucca Mountain, and this study Facility (ESF), an under- evidence, however, points to the occurrence of fast and ground tunnel at Yucca

Hu, Qinhong "Max"

458

Dispersivity as an oil reservoir rock characteristic  

SciTech Connect (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

459

A comparison of two heat transfer models for estimating thermal drawdown in Hot Dry Rock reservoirs  

SciTech Connect (OSTI)

Estimates of thermal drawdown in Hot Dry Rock geothermal systems have been made with two different models of heat transfer from hydraulically fractured reservoir rock blocks to water circulated through the fracture permeability. One model is based on deconvolution of experimental tracer response curves into a network of flowpaths connected in parallel with heat transfer calculated individually in each flowpath. The second model is based on one-dimensional flow through the rock with a block size distribution described as a group of equivalent-radius spheres for which the heat transfer equations can be solved analytically. The two models were applied to the planned Phase II long-term thermal drawdown experiment at Fenton Hill, NM. The results show good agreement between the two models, with estimates of temperature cooldown from 240ºC to 150ºC in a few years depending on selected operation parameters, but with somewhat differing cooldown curve characteristic shapes. Data from the long-term experiment will be helpful in improving the two models.

Robinson, Bruce A.; Kruger, Paul

1988-01-01T23:59:59.000Z

460

CONSTRAINT EFFECT IN FRACTURE WHAT IS IT  

SciTech Connect (OSTI)

The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.

Lam, P; Prof. Yuh J. Chao, P

2008-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "fractured subsurface rock" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

462

The UK geothermal hot dry rock R&D programme  

SciTech Connect (OSTI)

The UK hot dry rock research and development programme is funded by the Department of Energy and aims to demonstrate the feasibility of commercial exploitation of HDR in the UK. The philosophy of the UK programme has been to proceed to a full-scale prototype HDR power station via a number of stages: Phase 1--Experiments at shallow depth (300 m) to assess the feasibility of enhancing the permeability of the rock. Phase 2--Studies at intermediate depth (2500 m) to determine the feasibility of creating a viable HDR subsurface heat exchanger. Phase 3--Establishment of an HDR prototype at commercial depth. The programme has run over a 15 year period, and has been formally reviewed at stages throughout its progress. The 1987 review towards the end of Phase 2 identified a number of technical objectives for continuing research and proposed that the initial design stage of the deep HDR prototype should start. Phase 3A is now complete. It addressed: the feasibility of creating an underground HDR heat exchanger suitable for commercial operation; techniques for improving hydraulic performance and correcting short circuits in HDR systems; modeling of the performance, resource size and economic aspects of HDR systems. The work has been conducted by a number of contractors, including Cambome School of Mines, Sunderland and Sheffield City Polytechnics and RTZ Consultants Limited. This paper focuses upon the experimental work at Rosemanowes in Cornwall and the recently completed conceptual design of a prototype HDR power station. The economics of HDR-generated electricity are also discussed and the conclusions of a 1990 program review are presented. Details of the HDR program to 1994, as announced by the UK Department of Energy in February 1991, are included.

MacDonald, Paul; Stedman, Ann; Symons, Geoff

1992-01-01T23:59:59.000Z

463

Microseismic Tracer Particles for Hydraulic Fracturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

464

Experience proves forced fracture closure works  

SciTech Connect (OSTI)

Forced closure, or perhaps better-named ``reverse gravel packing,`` of fractures immediately following hydraulic fracturing with proppant and gelled fluids is a technique which, with rare exception, can be extremely beneficial to the success of almost every hydraulic fracture treatment. By proper planning of the rig-up to allow immediate flow-back, substantial quantities of polymer and load fluid can be removed while simultaneously negating undesirable proppant settling within fractures in the near wellbore area. Fracture smearing (dilution of proppant into an extending fracture) after shutdown can be negated. And in most cases, proppant production from the formation can be reduced. Discussions in the article explain why Ely and Associates has the confidence to make these claims after extensive hydraulic fracturing experience in many geographical areas.

Ely, J.W. [John Ely and Associates, Inc., Houston, TX (United States)

1996-01-01T23:59:59.000Z

465

Subsurface barrier design alternatives for confinement and controlled advection flow  

SciTech Connect (OSTI)

Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described.

Phillips, S.J.; Stewart, W.E.; Alexander, R.G. [Westinghouse Hanford Co., Richland, WA (United States); Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States); McLaughlin, T.J. [Bovay Northwest Inc., Richland, WA (United States)

1994-02-01T23:59:59.000Z

466

Subsurface Facies Analysis of the Devonian Berea Sandstone in Southeastern Ohio.  

E-Print Network [OSTI]

??James Evans, AdvisorThe Devonian Berea Sandstone is an internally complex, heterogeneous unit that appears prominently both in outcrop and subsurface in Ohio. While the unit… (more)

Garnes, William Thomas

2014-01-01T23:59:59.000Z

467

Dissemination and visualisation of earth system models for the Dutch subsurface  

Science Journals Connector (OSTI)

For more than a century, geological surveys have gathered a great amount of subsurface data. Within the last decade, major technological advancements have revolutionised geoscience interpretations. Multidiscip...

Jan-Diederik van Wees; Rob Versseput…

2003-01-01T23:59:59.000Z

468

Influence of Mg2+ on CaCO3 precipitation during subsurface reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

under flow and mixing conditions similar to those in subsurface aquifers. Citation: Boyd V, H Yoon, C Zhang, M Oostrom, NJ Hess, BW Fouke, AJ Valocchi, and CJ...

469

Geological characterization and statistical comparison of outcrop and subsurface facies: Shannon shelf sand ridges: Topical report  

SciTech Connect (OSTI)

The primary objective of this research is to develop a methodology for constructing accurate quantitative models of reservoir heterogeneities. The resulting models are expected to improve predictions of flow patterns, spatial distribution of residual oil after secondary and tertiary recovery operations, and ultimate oil recovery. The purpose of this study is to provide preliminary evaluation of the usefulness of outcrop information in characterizing analogous reservoirs and to develop research techniques necessary for model development. The Shannon Sandstone, a shelf sand ridge deposit in the Powder River Basin, Wyoming, was studied. Sedimentologic and petrophysical features of an outcrop exposure of the High-Energy Ridge-Margin facies (HERM) within the Shannon were compared with those from a Shannon sandstone reservoir in Teapot Dome field. Comparisons of outcrop and subsurface permeability and porosity histograms, cumulative distribution functions, correlation lengths and natural logarithm of permeability versus porosity plots indicate a strong similarity between Shannon outcrop and Teapot Dome HERM facies petrophysical properties. Permeability classes found in outcrop samples can be related to crossbedded zones and shaley, rippled, and bioturbated zones. Similar permeability classes related to similar sedimentologic features were found in Teapot Dome field. The similarities of outcrop and Teapot Dome petrophysical properties, which are from the same geologic facies but from different depositional episodes, suggest that rocks deposited under similar depositional processes within a given deposystem have similar reservoir properties. The results of the study indicate that the use of quantitative outcrop information in characterizing reservoirs may provide a significant improvement in reservoir characterization. 17 refs., 5 tabs.

Jackson, S.; Szpakiewicz, M.; Tomutsa, L.

1987-09-01T23:59:59.000Z

470

Modeling subsurface contaminant reactions and transport at the watershed scale  

SciTech Connect (OSTI)

The objectives of this research are: (1) to numerically examine the multiscale effects of physical and chemical mass transfer processes on watershed scale, variably saturated subsurface contaminant transport, and (2) to conduct numerical simulations on watershed scale reactive solute transport and evaluate their implications to uncertainty characterization and cost benefit analysis. Concurrent physical and chemical nonequilibrium caused by inter aggregate gradients of pressure head and solute concentration and intra-aggregate geochemical and microbiological processes, respectively, may arise at various scales and flowpaths. To this date, experimental investigations of these complex processes at watershed scale remain a challenge and numerical studies are often needed for guidance of water resources management and decision making. This research integrates the knowledge bases developed during previous experimental and numerical investigations at a proposed waste disposal site at the Oak Ridge National Laboratory to study the concurrent effects of physical and chemical nonequilibrium. Comparison of numerical results with field data indicates that: (1) multiregion, preferential flow and solute transport exist under partially saturated condition and can be confirmed theoretically, and that (2) mass transfer between pore regions is an important process influencing contaminant movement in the subsurface. Simulations of watershed scale, multi species reactive solute transport suggest that dominance of geochemistry and hydrodynamics may occur simultaneously at different locales and influence the movement of one species relative to another. Execution times on the simulations of the reactive solute transport model also indicate that the model is ready to assist the selection of important parameters for site characterization.

Gwo, J.P.; Jardine, P.M.; D`Azevedo, E.F. [Oak Ridge National Lab., TN (United States); Wilson, G.V. [Desert Research Inst., Las Vegas, NV (United States). Water Resources Center

1997-12-01T23:59:59.000Z

471

Colloid migration in fractured media  

SciTech Connect (OSTI)

Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs.

Hunt, J.R. (California Univ., Berkeley, CA (USA). Dept. of Civil Engineering)

1989-09-15T23:59:59.000Z

472

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

473

Fracture of irradiated zircaloy-2  

Science Journals Connector (OSTI)

This paper summarizes the results of a series of investigations to evaluate the fracture behavior of Zircaloy-2 as influenced by BWR and PWR conditions. The results show that the response of the fracture toughness of Zircaloy-2 to various combinations of cold work, hydrogen content and neutron fluence in hot pressurized water is characterized by embrittlement to a point where saturation in the fracture toughness is attained. Further in-reactor exposure beyond this saturation point appears to have no effect on toughness although other mechanical properties such as flow stress continue to change. In addition, anisotropy in the toughness of rolled plate material, evident in the unirradiated condition, is retained during in-reactor exposure and after increases in hydrogen content. Several processes are thought to be contributing to the toughness of Zircaloy-2 during irradiation. The reduction in toughness at low exposures must result from defect interactions with the deformation modes and the formation of the brittle hydride phase. However, the occurrence of saturation is not explained by these mechanisms in view of data on other mechanical properties and corrosion rates. It is suggested that the difference in the conditions for initiation of slip and twinning would indicate that the twinning component of deformation is not reduced by irradiation damage as much as the slip component. Saturation is, therefore, interprétable on the basis that twinning plays a major role in the crack tip plastic zone after irradiation. Additional study of the importance of twinning in determining the toughness of Zircaloy-2 was attempted by examining the relationship between texture and the anisotropy in fracture toughness. A correlation is shown to exist between the crack tip shear stresses resolved on the 1121 twin system and the toughness anisotropy.

R.G. Hoagland; R.G. Rowe

1969-01-01T23:59:59.000Z

474

Big Bang Day : Physics Rocks  

ScienceCinema (OSTI)

Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

None

2011-04-25T23:59:59.000Z

475

Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming  

SciTech Connect (OSTI)

In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

1997-08-01T23:59:59.000Z

476

Influences of salt structures on reservoir rocks in block L-2, Dutch continental shelf  

SciTech Connect (OSTI)

In the subsurface of the Netherlands Continental Shelf, thick layers of Zechstein salt have developed into salt domes and ridges that pierce through the overlying formations. To measure the range of lateral influence of the salt in these structures on the sandstone reservoir rocks of the Mesozoic sequence, a cementation model was developed. The target area, Block L-2, was chosen for the presence of salt domes, wells, and reservoir rocks. The L-2 case study has been performed on two Triassic sandstone intervals. The lower, Volpriehausen, sandstone showed halite cementation in one well, located within several 100 m from a salt dome. Four other wells, located more than 1.5 km from a salt structure, did not show any signs of halite cementation. Therefore, the lateral influence of salt domes on the surrounding reservoir rock is, in this case, limited to less than 1.5 km at 3-4 km depth. A slightly shallower Triassic sandstone (Detfurth) shows more frequent halite cementation. This cementation can be attributed to early seepage from overlying Rot salt brines.Triassic Rot salt is present above depletion areas of the Zechstein salt structures, and in such a way the seepage can be seen as an indirect influence of the salt structures.

Dronkert, H. (Delft Univ. of Technology, Delft (Netherlands)); Remmelts, G. (Geological Survey of the Netherlands, Haarlem (Netherlands))

1993-09-01T23:59:59.000Z

477

Stress and fault rock controls on fault zone hydrology, Coso...  

Open Energy Info (EERE)

regions of distinct fluid inclusion chemistry and temperature gradient. Distributed fracture networks play only a minor role in fluid flow despite locally high fracture density...

478

Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine  

SciTech Connect (OSTI)

A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. this report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implications of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone.

Martel, S.J.

1992-04-01T23:59:59.000Z

479

Rock Energy Cooperative (Illinois) | Open Energy Information  

Open Energy Info (EERE)

Energy Cooperative (Illinois) Jump to: navigation, search Name: Rock Energy Cooperative Place: Illinois References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...