Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones  

E-Print Network [OSTI]

8 m fault 14 m fault Lonewolf Wadi Araba Carboneras Caletasiltstone, conglomerate Wadi As Sir Limestone gneiss schistFaulkner et al. , 2003], and Wadi Araba [Du Bernard et al. ,

Savage, Heather M.; Brodsky, Emily E.

2011-01-01T23:59:59.000Z

2

E-Print Network 3.0 - active fault zone Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth Structure (2nd Edition), 2004 Summary: 292010 Oceanic Transform Faults and Fracture Zones Transform Fault: Active displacement. Fracture Zone: Fossil... fault, no active...

3

SEISMIC INVESTIGATION OF WRENCH FAULTING AND FRACTURING AT RULISON  

E-Print Network [OSTI]

to gas production at Rulison. Fracture zones are associated with fault trends and areas of deformation networks that help determine gas migration and accumulation. This thesis presents the characterization of the complex wrench fault network at Rulison Field, and its linkage to enhanced natural fracture zones. Rulison

4

The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee  

E-Print Network [OSTI]

Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

Hollon, Dwight Mitchell

1997-01-01T23:59:59.000Z

5

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network [OSTI]

rock interaction, fracture interconnectivity, fault-rockvalues, given the interconnectivity of fractures that are

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

6

Scales Depencence of Fracture Density and Fabric in the Damage Zone of a Large Displacement Continental Transform Fault  

E-Print Network [OSTI]

). . ......... 48 Figure 6. Representative map of transgranular fractures for one petrographic thin section (P1B13-1-2T). (a) Transgranular fractures are shown on top of the plane polarized image (PPL) of the thin section. (b) Cross polarized...

Ayyildiz, Muhammed

2012-08-28T23:59:59.000Z

7

Locating an active fault zone in Coso geothermal field by analyzing...  

Open Energy Info (EERE)

production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault...

8

Development of Characterization Technology for Fault Zone Hydrology  

E-Print Network [OSTI]

TECHNOLOGY FOR FAULT ZONE HYDROLOGY Kenzi Karasaki Lawrencefor characterizing the hydrology of fault zones, recognizingstructure of faults to hydrology, that it still may be

Karasaki, Kenzi

2010-01-01T23:59:59.000Z

9

Textural evidence for recent co-seismic circulation of fluids in the Nojima fault zone, Awaji island, Japan  

E-Print Network [OSTI]

. These carbonate-filled fractures are interpreted as the result of co-seismic hydraulic fracturing and upward very late in the evolution of the fault zone, and may be induced by co-seismic hydraulic fracturing.V. Keywords: Active fault; Co-seismic hydraulic fracturing; Fluid circulation; Carbonate infilling 0040

Demouchy, Sylvie

10

Development of Characterization Technology for Fault Zone Hydrology  

SciTech Connect (OSTI)

Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

2010-08-06T23:59:59.000Z

11

Development of Hydrologic Characterization Technology of Fault Zones  

SciTech Connect (OSTI)

Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two to three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to demonstrate the proposed approach and to examine the flow direction and magnitude on both sides of a suspected fault. We describe a strategy for effective characterization of fault zone hydrology. We recommend conducting a long term pump test followed by a long term buildup test. We do not recommend isolating the borehole into too many intervals. We do recommend ensuring durability and redundancy for long term monitoring.

Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

2008-03-31T23:59:59.000Z

12

Modeling fault-zone guided waves of microearthquakes in a geothermal...  

Open Energy Info (EERE)

the identification and modeling of such guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. Authors Lou, M.;...

13

Development of a Hydrologic Characterization Technology for Fault Zones Final Report  

E-Print Network [OSTI]

Hydrologic Characterization Technology of Fault Zones, Phaseof Characterization Technology for Fault Zones, LBNL-1635E,Characterization on Technology of Fault Zones – Phase II

Karasaki, Kenzi

2014-01-01T23:59:59.000Z

14

Fracture surface energy of the Punchbowl fault, San Andreas system  

E-Print Network [OSTI]

Fracture surface energy of the Punchbowl fault, San Andreas system Judith S. Chester1 , Frederick M. Chester1 & Andreas K. Kronenberg1 Fracture energy is a form of latent heat required to create weakening1­3 . Fracture energy has been estimated from seismological and experimental rock deformation data4

Chester, Frederick M.

15

anatolian fault zone: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

across the Mudurnu segment of the North Anatolian Fault Zone (NAFZ) in northwestern Turkey Ben-Zion, Yehuda 2 Velocity contrast across the 1944 rupture zone of the North...

16

Stress and fault rock controls on fault zone hydrology, Coso...  

Open Energy Info (EERE)

regions of distinct fluid inclusion chemistry and temperature gradient. Distributed fracture networks play only a minor role in fluid flow despite locally high fracture density...

17

Microscopic feather fractures in the faulting process  

E-Print Network [OSTI]

assumptions. Although the problem was not solved in this study, the expected ol trajectories for such a solution are shown in Figure 5 (page 20). Both of these concepts indicate a tendency for the local ol to make an angle with the fault greater than 6..., maximum compressive stress, trajectories to a two dimensional during sliding along (dashed lines) in a cylindrical specimen reduced elastic problem. (b) Expected ol trajectories a fault. crack by shear along the crack surfaces (Bieniawski, 1967...

Conrad, Robert Eugene

1974-01-01T23:59:59.000Z

18

Boullier The fault zone geology 1 Fault zone geology: lessons from drilling through the Nojima and 1  

E-Print Network [OSTI]

drilling through the Nojima and 1 Chelungpu faults 2 3 Anne-Marie Boullier 4-Marie.Boullier@obs.ujf-grenoble.fr 8 9 Abstract 10 Several drilling projects have been conducted through significant topics 32 for future research, one of which was "fault zone drilling

Paris-Sud XI, Université de

19

Boullier The fault zone geology 1 Fault zone geology: lessons from drilling through the Nojima and 1  

E-Print Network [OSTI]

drilling through the Nojima and 1 Chelungpu faults 2 3 Anne-Marie Boullier 4-Marie.Boullier@obs.ujf-grenoble.fr 8 9 Abstract 10 Several drilling projects have been conducted through was "fault zone drilling combined with surface-based 33 geophysical and geological

Boyer, Edmond

20

Variation in sericite composition from fracture zones within...  

Open Energy Info (EERE)

from fracture zones within the Coso Hot Sprints geothermal system Abstract Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs....

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada  

SciTech Connect (OSTI)

As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, S{sub hmin}, is S57{degrees}E. As the Stillwater fault at this location dips S50{degrees}E at {approximately}53{degrees}, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of S{sub hmin} is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of S{sub hmin} is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of S{sub hmin} in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Barton, C.; Zoback, M. [Stanford Univ., CA (United States)] [and others

1997-12-31T23:59:59.000Z

22

Mechanical properties and fabric of the Punchbowl fault zone, California  

E-Print Network [OSTI]

) identification of source rocks and sediment transport directions for sedimentary rock units (Larsen, 1959; Pelka, 1971; Robinson and Woodburne, 1971; Woodburne and Golz, 1972; Farley and Ehlig, 1977; Barrows, 1979), and (3) regional mapping and correlation... at Santa Barbara Chairman of Advisory Committee: John M. Logan Field observations and experimental rock deformation techniques are used to characterize the deformational fabric and relative mechanical properties of a portion of the Punchbowl fault zone...

Chester, Frederick Michael

1983-01-01T23:59:59.000Z

23

Unsaturated flow and transport through a fault embedded in fractured welded tuff  

E-Print Network [OSTI]

-matrix interactions, the nonlinearity of unsat- urated flow, and the heterogenities in the hydrological properties of lithium bromide)) was released along the fault over a period of 9 days, 7 months after the start of water- rated fractured rock (i.e., matrix and fracture flow, and fracture-matrix interactions) is of interest

Hu, Qinhong "Max"

24

Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998  

SciTech Connect (OSTI)

This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

1998-12-01T23:59:59.000Z

25

Radionuclide Transport in Fracture-Granite Interface Zones  

SciTech Connect (OSTI)

In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

Hu, Q; Mori, A

2007-09-12T23:59:59.000Z

26

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model  

E-Print Network [OSTI]

Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model-off dominated. We demonstrate the ability of our cohesive zone model in simulating the hydraulic fracture in all these propagation regimes. Keywords: Hydraulic fracture, Cohesive zone model, Finite element analysis, Hydro

Paris-Sud XI, Université de

27

Deformation of Compliant Fault Zones Induced by Nearby Earthquakes: Theoretical Investigations in Three Dimensions and Applications to The East California Shear Zone  

E-Print Network [OSTI]

primarily examine the plastic strain distribution within the fault zone and the displacement field that characterizes the effects of the presence of the fault zone. I find that when the fault zone rocks are close to failure in the prestress field, plastic...

Kang, Jingqian

2014-02-21T23:59:59.000Z

28

Analysis of the growth of strike-slip faults using effective medium theory  

SciTech Connect (OSTI)

Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

Aydin, A.; Berryman, J.G.

2009-10-15T23:59:59.000Z

29

Hydrogeological aspects of fault zones on various scales in the Roer Valley Rift System  

E-Print Network [OSTI]

for an estimate of the micro-scale variation of the hydraulic properties within a fault zone. Additional core on several scales show a variety of hydro- geological aspects of faults. 2. Examples 2.1. The hydraulic can be studied on micro-scal

Bense, Victor

30

Seismic monitoring of the growth of a hydraulic fracture zone at Fenton Hill, New Mexico  

SciTech Connect (OSTI)

The hydraulic fracturing technique is an important method for enhancing hydrocarbon recovery, geothermal energy extraction, and solid waste disposal. Determination of the geometry and growth process of a hydraulic fracture zone is important for monitoring and assessing subsurface fractures. A relative-source-location approach, based on a waveform correlation and a grid search method, has been developed to estimate relative hypocenter locations for a cluster of 157 microearthquakes induced by hydraulic fracturing at the Los Alamos Hot Dry Rock (HDR) geothermal site. Among the 157 events, 147 microearthquakes occurred in a tight cluster with a dimension of 40 m, roughly defining a vertical hydraulic fracture zone with an orientation of N40{degree}W. The length, height, and width of the hydraulic fracture zone are estimated to be 40, 35, and 5 m, respectively. Analysis of the spatial-temporal pattern of the induced microearthquakes reveals that the fracture zone grew significantly, averaging 0.2m/ minute in a two-hour period toward the northwest along the fracture zone strike.

Li, Y.; Cheng, C.H.; Toksoez, M.N. [Massachusetts Inst. of Tech., Cambridge, MA (United States)] [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1998-01-01T23:59:59.000Z

31

Fracture process zone : microstructure and nanomechanics in quasi-brittle materials  

E-Print Network [OSTI]

Cracks begin (and end) at a crack tip; the "Fracture Process Zone" (FPZ) is a region of damage around the crack tip. The context of this research is the FPZ in quasi-brittle materials, which is characterized by cracking ...

Brooks, Zenzile (Zenzile Z.)

2013-01-01T23:59:59.000Z

32

Seismic reflection data analysis of the Oriente and Swan Fracture Zones bounding the Cayman Trough  

E-Print Network [OSTI]

SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Submitted to the Graduate College of Texas A8 M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geophysics SEISMIC REFLECTION DATA ANALYSIS OF THE ORIENTE AND SWAN FRACTURE ZONES BOUNDING THE CAYMAN TROUGH A Thesis by MARY NORRIS TINKER Approved as to style and content by: D. A. Fa quiet...

Tinker, Mary Norris

2012-06-07T23:59:59.000Z

33

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems  

SciTech Connect (OSTI)

Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

Stephen L. Karner, Ph.D

2006-06-01T23:59:59.000Z

34

Low fault friction in Iran implies localized deformation for the ArabiaEurasia collision zone  

E-Print Network [OSTI]

Low fault friction in Iran implies localized deformation for the Arabia­Eurasia collision zone P velocity field of the present-day deformation in Iran is modeled using a 3-dimensional (3D) finite element of the kinematics in Iran, but the complex velocity field of the surrounding South Caspian basin cannot be fitted

Vernant, Philippe

35

Seismic reflection imaging of the Mount Rose fault zone, Reno, Nevada  

E-Print Network [OSTI]

Seismic reflection imaging of the Mount Rose fault zone, Reno, Nevada Project Award Number: # G09AP expressed or implied, of the U.S. Government. #12;2 Abstract Five new high-resolution seismic reflection00071 Submission date: November 30, 2010 CGISS Technical Report 10-01 Lee M. Liberty Center

Barrash, Warren

36

Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.  

E-Print Network [OSTI]

and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophonesSPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated

37

E-Print Network 3.0 - andreas fault zone Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chester Summary: accommodated along large plate-boundary faults like the San Andreas transform fault in California. These faults... depend in part on the structure of the tabular...

38

Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)  

SciTech Connect (OSTI)

Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore volume of injection at lower rates. However, if oil production can be continued at high water cuts, the discounted cumulative production usually favors higher production rates. The workflow developed during the project was also used to perform multiphase simulations in heterogeneous, fracture-matrix systems. Compositional and thermal-compositional simulators were developed for fractured reservoirs using the generalized framework. The thermal-compositional simulator was based on a novel 'equation-alignment' approach that helped choose the correct variables to solve depending on the number of phases present and the prescribed component partitioning. The simulators were used in steamflooding and in insitu combustion applications. The framework was constructed to be inherently parallel. The partitioning routines employed in the framework allowed generalized partitioning on highly complex fractured reservoirs and in instances when wells (incorporated in these models as line sources) were divided between two or more processors.

Milind Deo; Chung-Kan Huang; Huabing Wang

2008-08-31T23:59:59.000Z

39

Acceleration and evolution of faults: An example from the Hunter MountainPanamint Valley fault zone, Eastern California  

E-Print Network [OSTI]

: R.D. van der Hilst Keywords: geodesy fault evolution InSAR rock mechanics Western United States assumes a monotonic increase in slip rate with time as the fault matures and straightens. The rate. However, before this can be realized, we need to better understand the various sources for discrepancies

Amelung, Falk

40

Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long  

E-Print Network [OSTI]

fracturing (hydrofracturing or ``fracking'') is generally used [BAPE, 2011; EPA, 2012]. Hydraulic fracturing, which returns to the surface [Gregory et al., 2001]. The fracking fluid is commonly composed of $99

McKenzie, Jeffrey M.

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling the Ductile Brittle Fracture Transition in Reactor Pressure Vessel Steels using a Cohesive Zone Model based approach  

SciTech Connect (OSTI)

Fracture properties of Reactor Pressure Vessel (RPV) steels show large variations with changes in temperature and irradiation levels. Brittle behavior is observed at lower temperatures and/or higher irradiation levels whereas ductile mode of failure is predominant at higher temperatures and/or lower irradiation levels. In addition to such temperature and radiation dependent fracture behavior, significant scatter in fracture toughness has also been observed. As a consequence of such variability in fracture behavior, accurate estimates of fracture properties of RPV steels are of utmost importance for safe and reliable operation of reactor pressure vessels. A cohesive zone based approach is being pursued in the present study where an attempt is made to obtain a unified law capturing both stable crack growth (ductile fracture) and unstable failure (cleavage fracture). The parameters of the constitutive model are dependent on both temperature and failure probability. The effect of irradiation has not been considered in the present study. The use of such a cohesive zone based approach would allow the modeling of explicit crack growth at both stable and unstable regimes of fracture. Also it would provide the possibility to incorporate more physical lower length scale models to predict DBT. Such a multi-scale approach would significantly improve the predictive capabilities of the model, which is still largely empirical.

Pritam Chakraborty; S. Bulent Biner

2013-10-01T23:59:59.000Z

42

Finite-difference modeling of faults and fractures Richard T. Coates ...  

E-Print Network [OSTI]

For the purposes of seismic propagation, a slip fault may be regarded as a surface across which the dis- placement caused by a seismic wave is discontinuous.

2010-06-09T23:59:59.000Z

43

Geomechanical effects on CO{sub 2} leakage through fault zones during large-scale underground injection  

SciTech Connect (OSTI)

The importance of geomechanics—including the potential for faults to reactivate during large scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO{sub 2} to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this work extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO{sub 2} to reach the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO{sub 2} injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Consequently, even if some changes in permeability occur, this does not mean that the CO{sub 2} will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.

Rinaldi, A.P.; Rutqvist, J.; Cappa, F.

2013-09-01T23:59:59.000Z

44

Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

1991-06-01T23:59:59.000Z

45

Association of coal metamorphism and hydrothermal mineralization in Rough Creek fault zone and Fluorspar District, Western Kentucky  

SciTech Connect (OSTI)

The ambient coal rank (metamorphism) of the Carboniferous coals in the Western Kentucky coalfield ranges from high volatile A bituminous (vitrinite maximum reflectance up to 0.75% R/sub max/) in the Webster syncline (Webster and southern Union Counties) to high volatile C bituminous (0.45 to 0.60% R/sub max/) over most of the remainder of the area. Anomalous patterns of metamorphism, however, have been noted in coals recovered from cores and mines in fault blocks of the Rough Creek fault zone and Fluorspar District. Coals in Gil-30 borehole (Rough Creek faults, Bordley Quadrangle, Union County) vary with no regard for vertical position, from high volatile C(0.55% R/sub max/) to high volatile A (0.89%R/sub max) bituminous. Examination of the upper Sturgis Formation (Missourian/Virgilian) coals revealed that the higher rank (generally above 0.75% R/sub max/) coals had vein mineral assemblages of sphalerite, twinned calcite, and ferroan dolomite. Lower rank coals had only untwinned calcite. Several sites in Webster County contain various coals (Well (No. 8) to Coiltwon (No. 14)) with vitrinite reflectances up to 0.83% R/sub max/ and associated sphalerite mineralization. Mississippian and Lower Pennsylvanian (Caseyville Formation Gentry coal) coals in the mineralized Fluorspar District have ranks to nearly medium volatile bituminous (1.03% R/sub max/). The regional rank trend exhibited by the fualt zones is generally higher rank than the surrounding areas. Sphalerite mineralization in itself is not unique within Illinois basin coals, but if it was partly responsible for the metamorphism of these coals, then the fluid temperature must have been higher within the above mentioned fault complexes.

Hower, J.C.; Fiene, F.L.; Trinkle, E.J.

1983-09-01T23:59:59.000Z

46

Visualization of microcrack anisotropy in granite affected by afault zone, using confocal laser scanning microscope  

SciTech Connect (OSTI)

Brittle deformation in granite can generate a fracture system with different patterns. Detailed fracture analyses at both macroscopic and microscopic scales, together with physical property data from a drill-core, are used to classify the effects of reverse fault deformation in four domains: (1) undeformed granite, (2) fractured granite with cataclastic seams, (3) fractured granite from the damage zone, and (4) foliated cataclasite from the core of the fault. Intact samples from two orthogonal directions, horizontal (H) and vertical (V), from the four domains indicate a developing fracture anisotropy toward the fault, which is highly developed in the damage zone. As a specific illustration of this phenomenon, resin impregnation, using a confocal laser scanning microscope (CLSM) technique is applied to visualize the fracture anisotropy developed in the Toki Granite, Japan. As a result, microcrack networks have been observed to develop in H sections and elongate open cracks in V sections, suggesting that flow pathways can be determined by deformation.

Onishi, Celia T.; Shimizu, Ichiko

2004-01-02T23:59:59.000Z

47

Structure and tectonics of the Sumatra Fault Zone-Sundra Trench junction  

E-Print Network [OSTI]

. The objective of this study is to determine the structures of the Sunda Strait forearm region, the south - southeast continuation of the Sumatra Fault, and model the tectonic development. All available geophysical data for the Sunda Strait forearm region have...

Handayani, Lina

2012-06-07T23:59:59.000Z

48

Mesoscale fracture fabric and paleostress along the San Andreas fault at SAFOD  

E-Print Network [OSTI]

Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Judith Chester Committee Members, Frederick Chester David Schechter Head of Department... of Advisory Committee: Dr. Judith Chester Spot cores from Phase 1 drilling of the main borehole at the San Andreas Fault Observatory at Depth (SAFOD) were mapped to characterize the mesoscale structure and infer paleostress at depth. Cores were oriented...

Almeida, Rafael Vladimir

2009-05-15T23:59:59.000Z

49

Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures  

E-Print Network [OSTI]

modeling of faults and fractures: Geophysics, 60, 1514-1526.Poroelastic modeling of fracture-seismic wave interaction:by a heterogeneous fracture: J. Acoust. Soc. Am. , 115,

Nakagawa, S.

2010-01-01T23:59:59.000Z

50

Reaction localization and softening of texturally hardened mylonites in a reactivated fault zone, central Argentina  

E-Print Network [OSTI]

, central Argentina S. J. WHITMEYER1 * AND R. P. WINTSCH2 1 Department of Earth Sciences, Boston University, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of replacement reactions in a partially open system. Key words: Argentina; reaction localization; reactivation

Whitmeyer, Steven J.

51

Predicting fault damage zones by modeling dynamic rupture propagation and comparison  

E-Print Network [OSTI]

faults observed in the SSC reservoir. The modeling of ruptures propagating as self-sustaining pulses, Stanford University, Stanford, California, USA, 2 Now at Upstream Technology, BP America, Houston, Texas University, Houston, California, USA, 4 ConocoPhillips Technology and Projects, Houston, Texas, USA Abstract

Dunham, Eric M.

52

Protrusion of fore-arc mantle serpentinites together with HP and UHP rocks along major strike-slip fault zones, Northern Subduction Complex, Hispaniola  

E-Print Network [OSTI]

-slip fault zones, Northern Subduction Complex, Hispaniola Benoit-Michel SAUMUR (bsaum014@uottawa.ca), Kéiko H in the Northern Subduction Complex of Hispaniola. We discuss the origins of the serpentinites and implications and inliers exposing Cretaceous to mid-Eocene basement in Northern Hispaniola are highlighted. Arc volcanic

53

Western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington  

E-Print Network [OSTI]

deformation zone. Newly acquired high- resolution seismic reflection and marine magnetic data suggest A.P. Lamb1 , L.M. Liberty1 , R.J. Blakely2 , T.L. Pratt3 , B.L. Sherrod3 , and K. van Wijk1 1

Boise State University

54

Microfracture fabric of the Punchbowl fault zone, San Andreas System, California  

E-Print Network [OSTI]

Cementation III. 46 47 20 Multiple Episode Calcite Cementation. 50 21 The Fabric of Different Types of Microfractures in Sample DP10B. . . . . . . . . 51 22 The Fabric of Different Types of Microfractures in Sample P41A. . . . 23 The Fabric of Different... Composite, Open, and Healed Microfracture Fabrics: Fold Test III. . . . . . . . . 82 40 Composite Microfracture Point Maxima: Fold Test IV. . 41 Summary of Timing Relations. . . . . . . . . . 42 Damaged Zone Microfracture Fabric 86 90 43 Beyond Damaged...

Wilson, Jennifer Elizabeth

1999-01-01T23:59:59.000Z

55

Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications  

SciTech Connect (OSTI)

In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

Gao, Dengliang

2013-03-01T23:59:59.000Z

56

Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada  

SciTech Connect (OSTI)

Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

2002-01-17T23:59:59.000Z

57

The Fabric of Clasts, Veins and Foliations within the Actively Creeping Zones of the San Andreas Fault at SAFOD: Implications for Deformation Processes  

E-Print Network [OSTI]

of Committee, Judith Chester Committee Members, Frederick Chester David Schechter Head of Department, Andreas Kronenberg December 2010 Major Subject: Geology iii ABSTRACT The Fabric of Clasts, Veins and Foliations within the Actively... Creeping Zones of the San Andreas Fault at SAFOD: Implications for Deformation Processes. (December 2010) David Wayne Sills, B.S., Sam Houston State University; M.S., Texas A&M University Chair of Advisory Committee: Dr. Judith Chester Recovered...

Sills, David Wayne

2012-02-14T23:59:59.000Z

58

Fracture toughness of the molten zone of resistance spot welds Florent Krajcarz1,2*  

E-Print Network [OSTI]

). In these tests, the load vs. load line displacement curve is recorded to derive the weld strength (i.e. maximal of the base metal still significantly influences the load vs. displacement curve, yet to a lesser extent than and the crack extension resistance of the molten zone of resistance spot welds under Mode I loading has been

Paris-Sud XI, Université de

59

Internal structure of the Kern Canyon Fault, California: a deeply exhumed strike-slip fault  

E-Print Network [OSTI]

Deformation and mineral alteration adjacent to a 2 km long segment of the Kern Canyon fault near Lake Isabella, California are studied to characterize the internal structure of the fault zone and to understand the development of fault structure...

Neal, Leslie Ann

2002-01-01T23:59:59.000Z

60

New observations of infiltration through fractured alluvium in Yucca Flat, Nevada Test Site: A preliminary field investigation  

SciTech Connect (OSTI)

Regional tectonics coupled with the subsurface detonation of nuclear explosives has caused widespread fracturing of the alluvium of Yucca Flat. Fractures deeper than 30 meters have been observed in boreholes. Some of these fractures are large enough to capture significant amounts of runoff during storm events. Evidence of stream capture by fractures and observations of runoff flowing into open fractures give qualitative evidence of infiltration to depths greater than several meters and possibly to the saturated zone. Our field observations contradict the assumption that little infiltration occurs on Yucca Flat. The larger, hydrologically important fractures are associated with geologic faults or the regional stress field. Additional field studies are needed to investigate the impact of fractures on the transport of contaminants.

Kao, C.S. [California Univ., Berkeley, CA (United States). Dept. of Civil Engineering; Smith, D.K. [Lawrence Livermore National Lab., CA (United States); McKinnis, W.B. [Lawrence Livermore National Lab., Mercury, NV (United States)

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mechanics of Jointed and Faulted Rock, Rossmanith (ed) 0 1995 Balkema, Rotterdam. ISBN 90 54 10 54 7 0 Seismic properties of a general fracture  

E-Print Network [OSTI]

7 0 Seismic properties of a general fracture E. Liu British Geological Survey Edinburgh, UK J Inc., Ponca Cig Okla., USA ABSTRACT: In modelling the wave behaviour through fractured and jointed rocks, different models have been proposed to describe the fractures. A fracture can be modelled (1

Edinburgh, University of

62

Chaotic breccia zones on the Pembroke Peninsula, South Wales: evidence for collapse into voids along dilational faults  

E-Print Network [OSTI]

magmatic heat source in this area, 453 argues against the phreatic brecciation model. 454 455 11.3. Dilational faulting and collapse origin for chaotic breccias and megabreccias? 456 457 ?Tectonic? hypotheses for Pembroke Group breccia formation were... and in the Gower Peninsula?” In 533 section 12.5, we argue that the void-forming event was the Triassic or later extension that 534 formed the Bristol Channel Basin. Southeast Ireland is more remote from such Mesozoic 535 basins, and the western end...

Woodcock, N. H.; Miller, A. V. M.; Woodhouse, C. D.

2014-01-01T23:59:59.000Z

63

Verification of inferred faults by resistivity analysis. Technical progress report, July 17-October 31, 1981  

SciTech Connect (OSTI)

The major purpose of this effort is to detect new faults which may indicate fracture systems with potential for gas production from the black shales. The method is to gather surface geophysical data, principally resistivity, to test Landsat lineaments as faults. A second purpose is to develop an economical method of confirming remotely sensed lineaments as faults or fractures which can be applied in this region and perhaps be extended to the eastern part of the United States. To attain the goal of this work, the planned approach was to use high-powered (3KW) resistivity measurements in a dipole-dipole configuration to penetrate deeply - a rather expensive procedure. Toward this end it was decided to make a preliminary investigation using a scintillation counter in addition to a low-current resistivity measuring instrument. The scintillation counter gave more definite indication of known faults than did the resistivity measurements. The South Graham, North Graham, and the fault at Highways 403-269, Kentucky were all indicated on one traverse by scintillation measurements, but only the North Graham fault was indicated by resistivity, and the resistivities profile was not conclusive. The reason for the inconclusive resistivity result may have been the fact that the fault zones in this region are often thin, sometimes a matter of a few inches.

Jackson, P.L.

1981-01-01T23:59:59.000Z

64

Simulation of fluid flow mechanisms in high permeability zones (Super-K) in a giant naturally fractured carbonate reservoir  

E-Print Network [OSTI]

and fractures were treated as two systems. Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better...

Abu-Hassoun, Amer H.

2009-05-15T23:59:59.000Z

65

Structural Settings Of Hydrothermal Outflow- Fracture Permeability...  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

66

ABSTRACT: Upscaling Fracture Properties in Support of Dual-permeability Simulations  

SciTech Connect (OSTI)

Rainier Mesa (RM) is a tuffaceous, high-elevation plateau on the Nevada Test Site (NTS) that has been subjected to numerous nuclear tests between 1957 and 1992. Unlike other tests on the NTS located within or just above the saturated zone, tests at the RM T-tunnel complex were conducted within a variably saturated sequence of bedded and non-welded vitric and zeolitized tuff units, located approximately 500 m above the regional groundwater flow system. The low permeability and high porosity of the underlying zeolitized tuff units suggest the downward transport of radionuclides released from these tests are minimal through the tuff matrix. However, numerous faults observed to discharge water into tunnel drifts may serve as preferential pathways for radionuclide migration. Data collected from tunnel drifts indicate that faulting within the zeolitized tuff units is sparse with fractal clustering, and that connectivity between adjacent fault clusters is often weak to non-existent. The sparse fault density at RM, in conjunction with the extreme variability in the spatial distribution of faults, poses challenges not readily addressed by existing upscaling methods that upscale fracture properties as equivalent grid tensors. The unique fault statistics at RM has led to the development of a fracture continuum method designed to faithfully preserve flow and transport properties of the sparse fault networks. This method is based on selective mapping and upscaling of fault hydraulic and transport properties onto a continuum grid in support of dual-permeability simulations. Comparisons of global flow and random walk particle breakthrough between two-dimensional discrete fracture network and fracture continuum simulations demonstrate the utility of this method.

Rishi Parashar; Donald M. Reeves

2008-09-15T23:59:59.000Z

67

E-Print Network 3.0 - automated zoning methodology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences 63 Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; Summary: of the Feldbiss Fault Zone (Fig. 1). Methodology Image...

68

Controls on Fault-Hosted Fluid Flow: Preliminary Results from...  

Open Energy Info (EERE)

Results from the Coso Geothermal Field, CA Abstract cap rock, permeability, fault, fracture, clay, Coso Authors Davatzes, N.C.; Hickman and S.H. Published Geothermal Resource...

69

Gravity and fault structures, Long Valley caldera, California  

SciTech Connect (OSTI)

The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

Carle, S.F.; Goldstein, N.E.

1987-07-01T23:59:59.000Z

70

Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal  

SciTech Connect (OSTI)

A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.

Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

2008-07-01T23:59:59.000Z

71

Role of temperature change in micro seismic activity during fluid injections in faulted and fractured zones. Part 1: Updating the thermal modelling in a  

E-Print Network [OSTI]

the primary fossil energy resource and particularly use more renewable resources. This is even more vital the Swiss city of Basel, that stopped the project. This issue of large seismic event is also raised at other Geothermal Conference ARGEO-C3-DJIBOUTI. Exploring and harnessing the renewable and promising geothermal

Paris-Sud XI, Université de

72

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

NONE

1998-09-30T23:59:59.000Z

73

Fracture characteristics and their relationships to producing...  

Open Energy Info (EERE)

area Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River...

74

Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection  

SciTech Connect (OSTI)

Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of smart technologies to monitor safe CO{sub 2} storage and understand CO{sub 2} transport, with limited field instrumentation.

Siriwardane, Hema J.; Gondle, Raj K.; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

75

E-Print Network 3.0 - active fault isolation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and those exhibited by much smaller (L 0.15-2 km) more isolated faults... Post-yield fracture mechanics models for the growth of an isolated fault predict a linear...

76

Fracture Blisters  

E-Print Network [OSTI]

21. McCann S, Gruen G. Fracture Blisters: A Review of thewith Lower Extremity Fracture: Results of a ProspectiveC, Koval K. Treatment of Fracture Blisters: A Prospective

Uebbing, Claire M; Walsh, Mark; Miller, Joseph B; Abraham, Mathew; Arnold, Clifford

2011-01-01T23:59:59.000Z

77

Geomechanical Simulation of Fluid-Driven Fractures  

SciTech Connect (OSTI)

The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

2012-11-30T23:59:59.000Z

78

Challenges in Continuum Modelling of Intergranular Fracture  

E-Print Network [OSTI]

Challenges in Continuum Modelling of Intergranular Fracture V. R. Coffman*, J. P. Sethna , A. R-2501, USA Cornell Fracture Group, Rhodes Hall, Cornell University, Ithaca, NY 14853-2501, USA § Department fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model

Sethna, James P.

79

E-Print Network 3.0 - alteration zones underlying Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to detect radioactive element concentration due to the hydrothermal alteration of fracture zones. However... alteration. The last level (3 in the table 1) includes the fracture...

80

Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.

Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

2009-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fracture model for cemented aggregates  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01T23:59:59.000Z

82

Fractional Diffusion Modeling of Electromagnetic Induction in Fractured Rocks  

E-Print Network [OSTI]

-2 km, a zone where pores and fractures over various length scales are highly complicated. Spatial confinement of fluid or electric charge transport by the fractal geometry gives rise to interesting dynamic processes within the pore space and fractures...

Ge, Jianchao

2014-08-11T23:59:59.000Z

83

Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)  

SciTech Connect (OSTI)

The National Center for Nuclear Security (NCNS), established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site (NNSS; formerly the Nevada Test Site) that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The initial NCNS project is a series of explosive tests, known collectively as the Source Physics Experiment at the NNSS (SPE-N), being conducted in granitic rocks at the Climax stock in northern Yucca Flat. The SPE-N test series is designed to study the generation and propagation of seismic waves. The data will be used to improve the predictive capability of calculational models for detecting and characterizing underground explosions. The first SPE-N test (SPE-N-1) was a “calibration” shot conducted in May 2011, using 100 kilograms (kg) of explosives at the depth of 54.9 meters (m) (180 feet [ft]) in the U-15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m (150 ft) in the same source hole. Following the SPE-N-2 test, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast side, where the core hole penetrated it. The three-dimensional shape and symmetry of the damage zone are unknown at this time. Rather than spherical in shape, the dimensions of the damage zone could be influenced by the natural fracture sets in the vicinity. Geologic characterization of the borehole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories (SNL) for laboratory tests (to be reported by SNL). A significant natural fault zone was encountered in the U-15n#10 angle core hole between the drilled depths of 149 and 155 ft (straight-line distance or range station [RS] from the shot point of 7.5 to 5.7 m). However, several of the fractures observed in the U-15n#10 hole are interpreted as having been caused by the explosion. These fractures are characterized by a “fresh,” mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets. The most distant fracture from the shot point that could be interpreted as having been caused by the explosion was seen at approximately RS 10.0 m. No other possibly explosion-induced fractures are apparent above the fault, but are common starting at RS 5.4 m, which is below the fault. It is unknown how the fault zone might have affected the propagation of seismic waves or how the materials in the fault zone (altered granite, breccia, gouge) were affected by the explosion. From RS 3.3 m to the end of the recovered core at RS 1.6 m, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing.

,

2012-09-18T23:59:59.000Z

84

Seismoelectric Imaging of a Shallow Fault System Employing Fault Guided Waves  

E-Print Network [OSTI]

Independent sets of reflection seismic and seismoelectric data were collected, processed, and interpreted with the aim of generating and studying guided waves within a fault zone. While seismic surveys have recently been utilized to investigate...

Cohrs, Frelynn Joseph Reese

2012-07-16T23:59:59.000Z

85

Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California  

SciTech Connect (OSTI)

Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

Boles, James [Professor

2013-05-24T23:59:59.000Z

86

Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs  

SciTech Connect (OSTI)

Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these interpretations. By presenting a methodology for integrating various types of information, the workflow will

Gary Mavko

2004-11-30T23:59:59.000Z

87

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

88

Characterization of the structure of faults in the Eocene Carrizo Formation near Gause, Milam County, Texas  

E-Print Network [OSTI]

-scale graben accommodating NW-SE extension. The Carrizo Fm. consists primarily of friable to weakly lithified quartz sandstones with several horizons with interbedded siltstones and shales. Five faults and fault zones occur in the quarry with displacements...

Yilmaz, Ramazan

2012-06-07T23:59:59.000Z

89

Thermo-and hydro-mechanical processes along faults during rapid slip  

E-Print Network [OSTI]

Thermo- and hydro-mechanical processes along faults during rapid slip James R. Rice & Eric M micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both have characteristics which

Dunham, Eric M.

90

Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA  

SciTech Connect (OSTI)

Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

1993-07-01T23:59:59.000Z

91

The Owens Valley Fault Zone Eastern California and Surface Faulting...  

Open Energy Info (EERE)

base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain...

92

The Owens Valley Fault Zone Eastern California and Surface Faulting  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the Nature of theMagmatic

93

On modeling the potential impacts of CO2 sequestration on shallow groundwater: Transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers  

E-Print Network [OSTI]

reservoir to shallower formations, for example through fault or fracture zones, or poorly plugged abandoned

Zheng, L.

2014-01-01T23:59:59.000Z

94

Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems  

E-Print Network [OSTI]

reservoir to shallower formations, for example through fault or fracture zones, or poorly plugged abandoned

Zheng, L.

2011-01-01T23:59:59.000Z

95

Hydraulic Fracturing (Vermont)  

Broader source: Energy.gov [DOE]

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

96

Colorado Regional Faults  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Hussein, Khalid

2012-02-01T23:59:59.000Z

97

Pressure test data reveal reservoir barriers/faults  

SciTech Connect (OSTI)

A review of transient pressure test data from an oil reservoir in Libya indicated not only the suspected fault barriers, but also the non-sealing portions of the faults. Extensive seismic data indicated much faulting, and directional trends had been interpreted to be generally northwest-southeast. The reservoir is a heterogeneous dolomite with average permeability of 40 to 50 md and contains neither natural fractures not stratification. Vertical displacement (throw) of each fault block is indicated to be within the range of the dolomite thickness, i.e., 40 to 180 ft. Therefore, when the fault throw is greater than reservoir thickness there is sealing, and when the throw is less than reservoir thickness the faults are non-sealing.

Hurd, J.D.

1984-07-30T23:59:59.000Z

98

Three-Dimensional Radionuclide Transport Through the Unsaturated Zone of the Yucca Mountain Site 3 Colloids  

SciTech Connect (OSTI)

The authors investigated colloid transport in the unsaturated fractured zone by means of three-dimensional site-scale numerical model under present-day climate infiltration, considering varying colloid diameters, kinetic declogging, and filtration. The radionuclide transport model was used to simulate continuous release of colloids into fractures throughout the proposed repository, in which any components of engineered barrier system such as waste package or drip shield were not considered. the results of the study indicate the importance of subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The simulations indicate that (1) colloid transport is not significantly affected by varying the filtration parameters, (2) travel time to the water table decreases with the colloid size, (3) larger colloids show little retardation whereas very small ones are retarded significantly, and (4) fracture filtration can have an impact on transport. Because of uncertainties in the fundamentals of colloid transport and an extremely conservative approach (based on an improbably adverse worst-case scenario), caution should be exercised in the analysis and interpretation of the 3-D simulation results. The results discussed here should be viewed as an attempt to identify and evaluate the mechanisms, processes, and geological features that control colloidal transport.

G. J. Moridis; Y. Seol

2007-01-26T23:59:59.000Z

99

Hydraulic fracturing in a naturally fractured reservoir  

SciTech Connect (OSTI)

Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

Britt, L.K.; Hager, C.J.; Thompson, J.W.

1994-12-31T23:59:59.000Z

100

Controlled-source electromagnetic mapping of a faulted sandstone aquifer in central Texas  

E-Print Network [OSTI]

across a fault (Randolph 1991), due to permeability reduction in the deformation zone, but in some cases can be enhanced along the fault slip plane (Antonellini and Aydin 1994), i. e. parallel to the fault. A knowledge of subsurface fault distributions... the electromagnetic response. Seaborne et al. (1979) interpreted the anomalies as the edge effect of thin horizontal sheets of low resistivity beds, as opposed to the high conductivity response of the material in a fault zone. In a similar study, Hazell er al...

Gorman, Erin Margaret

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization of fracture networks for fluid flow analysis  

SciTech Connect (OSTI)

The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.

Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

1989-06-01T23:59:59.000Z

102

An Analysis of Surface and Subsurface Lineaments and Fractures for Oil and Gas Exploration in the Mid-Continent Region  

SciTech Connect (OSTI)

An extensive literature search was conducted and geological and mathematical analyses were performed to investigate the significance of using surface lineaments and fractures for delineating oil and gas reservoirs in the Mid-Continent region. Tremendous amount of data were acquired including surface lineaments, surface major fracture zones, surface fracture traces, gravity and magnetic lineaments, and Precambrian basement fault systems. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the region. The correlation between surface linear features and subsurface oil and gas traps was assessed, and the implication of using surface lineament and fracture analysis for delineating hydrocarbon reservoirs in the Mid-Continent region discussed. It was observed that the surface linear features were extremely consistent in orientation with the gravity and magnetic lineaments and the basement faults in the Mid-Continent region. They all consist of two major sets bending northeast and northwest, representing, therefore, the basic structural grains of the region. This consistency in orientation between the surface and subsurface linear features suggests that the systematic fault systems at the basement in the Mid-Continent region have probably been reactivated many times and have propagated upward all the way to the surface. They may have acted as the loci for the development of other geological structures, including oil and gas traps. Also observed was a strong association both in orientation and position between the surface linear features and the subsurface reservoirs in various parts of the region. As a result, surface lineament and fracture analysis can be used for delineating additional oil and gas reserves in the Mid-Continent region. The results presented in this paper prove the validity and indicate the significance of using surface linear features for inferring subsurface oil and gas reservoirs in the Mid-Continent region. Any new potential oil and gas reservoirs in the Mid-Continent region, if they exist, will be likely associated with the northeast- and northwest-trending surface lineaments and fracture traces in the region.

Guo, Genliang; and George, S.A.

1999-04-08T23:59:59.000Z

103

Hydraulic fracturing-1  

SciTech Connect (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

104

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

105

A synergistic approach to optimizing hydraulic fracturing  

SciTech Connect (OSTI)

Combining measurement, simulation, and imaging technologies into an integrated program can help operators achieve the best hydraulic fracture treatment possible. Hydrocarbon production can be significantly increased when fractures are extended to the planned length, and fracturing fluid is retained within the zone of interest. Fractures that break out of zone increase the risk of excess water production with the hydrocarbon. Consequently, the ability to select suitable operational parameters for hydraulic fracturing is critical to job success. An evaluation of formation properties and potential barriers to hydraulic fracturing can be made with three-dimensional (3D) simulation to integrate data taken from wireline logs, waveform sonic logs, and microfrac measurements. In-situ stress orientation is determined by use of a downhole extensometer, oriented cores, anelastic strain recovery (ASR) measurements, and borehole imaging logs. Sidewall cores can be taken perpendicular to wellbore walls without distorting the borehole or the core taken; orientation of the cores can be determined with imaging logs run after coring. Natural fractures can be viewed with a downhole video camera lowered into the well on fiberoptic cable. Effectiveness of fracture treatments may be evaluated with various gamma ray logging techniques production logs comparing expected production to actual zonal contribution. Refined procedures that result from after-frac analysis can be used to plain field development for optimal reservoir drainage.

Kessler, C.; Venditto, J.; McMechan, D.; Edwards, P.

1994-12-31T23:59:59.000Z

106

Crack Propagation Fracture Toughness of Several Wood Species Elijah Wilson, Meisam Shir Mohammadi, and John A. Nairn  

E-Print Network [OSTI]

1 Crack Propagation Fracture Toughness of Several Wood Species Elijah Wilson, Meisam Shir Mohammadi In materials with process zones, such as fiber bridging zones in wood, it is crucial to characterize fracture toughness as a function of crack growth, known as the material's R curve. Here, a new fracture testing

Nairn, John A.

107

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network [OSTI]

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

Xue, Wenxu

2011-02-22T23:59:59.000Z

108

12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault. The current sequence started with the 1939 earthquake and has progressed westwards towards Istanbul.  

E-Print Network [OSTI]

that to the amount of energy being stored on the fault. Finally, the modelling team will link these observations12 PLANET EARTH Summer 2014 Earthquake progression with time along the North Anatolian Fault in the world: the North Anatolian Fault. This is a system of large fractures within the Earth on which energy

Brierley, Andrew

109

Fracture Detection and Water Sweep Characterization Using Single-well Imaging, Vertical Seismic Profiling and Cross-dipole Methods in Tight and Super-k Zones, Haradh II, Saudi Arabia  

E-Print Network [OSTI]

sustain the targeted oil production rates and they die much sooner than expected when water enters the wells. The study attempted to identify fracture systems and their role in the irregular water sweep. Single-well acoustic migration imaging (SWI...

Aljeshi, Hussain Abdulhadi A.

2012-07-16T23:59:59.000Z

110

"ch01" --2009/7/4 --4:33 --page 3 --#3 Thermo-and hydro-mechanical processes along faults during rapid slip  

E-Print Network [OSTI]

"ch01" -- 2009/7/4 -- 4:33 -- page 3 -- #3 Thermo- and hydro-mechanical processes along faults at highly stressed frictional micro-contacts, and (2) Thermal pressurization of fault-zone pore fluid. Both

111

Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998  

SciTech Connect (OSTI)

Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

1998-09-01T23:59:59.000Z

112

Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa  

E-Print Network [OSTI]

Tona Mine, South Africa V. HEESAKKERS,1,2 S. MURPHY,1,3 and Z. RECHES 1 Abstract--We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently, South Africa 2011, this volume). Key words: Brittle faulting, fault reactivation, earthquake mechanics

Ze'ev, Reches

113

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

SciTech Connect (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

114

Impact fracture behavior of model system modified polypropylene  

E-Print Network [OSTI]

-edge-notched three-point-bend tests were performed to obtain the values of fracture toughness. A correlation exists between the Izod impact values and the size of the damage zone after fracture. Damage analysis using the double-notch four-point-bend Charpy impact...

Estrada, Albert Jesse

2000-01-01T23:59:59.000Z

115

AGU Monograph, Plate Boundary Zones, in press. Page 1 Crustal Block Rotations and Plate Coupling  

E-Print Network [OSTI]

AGU Monograph, Plate Boundary Zones, in press. Page 1 Crustal Block Rotations and Plate Coupling that considering both block rotations and fault locking significantly improves the fit to the data over models by locking on #12;AGU Monograph, Plate Boundary Zones, in press. Page 2 block-bounding faults and apply

McCaffrey, Robert

116

Influence of faults on groundwater flow and transport at YuccaMountain, Nevada  

SciTech Connect (OSTI)

Numerical simulations of groundwater flow at Yucca Mountain, Nevada are used to investigate how faults influence groundwater flow pathways and regional-scale macrodispersion. The 3-D model has a unique grid block discretization that facilitates the accurate representation of the complex geologic structure present in faulted formations. Each hydrogeologic layer is discretized into a single layer of irregular and dipping grid blocks, and faults are discretized such that they are laterally continuous and varied in displacement varies along strike. In addition, the presence of altered fault zones is explicitly modeled, as appropriate. Simulations show that upward head gradients can be readily explained by the geometry of hydrogeologic layers, the variability of layer permeabilities, and the presence of permeable fault zones or faults with displacement only, not necessarily by upwelling from a deep aquifer. Large-scale macrodispersion results from the vertical and lateral diversion of flow near the contact of high- and low-permeability layers at faults, and from upward flow within high-permeability fault zones. Conversely, large-scale channeling can occur as a result of groundwater flow into areas with minimal fault displacement. Contaminants originating at the water table can flow in a direction significantly different from that of the water table gradient, and isolated zones of contaminants can occur at the water table downgradient. By conducting both 2-D and 3-D simulations, we show that the 2-D cross-sectional models traditionally used to examine flow in faulted formations may not be appropriate. In addition, the influence of a particular type of fault cannot be generalized; depending on the location where contaminants enter the saturated zone, faults may either enhance or inhibit vertical dispersion.

Cohen, Andrew J.B.; Sitar, Nicholas

1999-10-07T23:59:59.000Z

117

Permeability characterization of shear zones in the Hickory sandstone member, Riley Formation, Texas  

E-Print Network [OSTI]

. The main objectives of this work are to (1) characterize the geometry and permeability of deformation elements within shear zones; (2) determine permeability anisotropy in shear zones according to fault characteristics and host lithology; and (3) develop... I INTRODUCTION .............................................................................................1 II HICKORY SHEAR ZONES AND DEFORMATION ELEMENTS..............11 2.1 Shear Zones in Hickory Sandstone Member...

Nieto Camargo, Jorge Enrique

2005-02-17T23:59:59.000Z

118

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

119

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

120

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Austin chalk fracture mapping using frequency data derived from seismic data  

E-Print Network [OSTI]

good correlation with the faults interpreted on the top of Austin Chalk reflector. Production data in Burleson County (Giddings Field) is a proxy for fracturing. Values of t* mapped on the 2D data have a good correlation with the cumulative... ATTENUATION OF AMPLITUDES: A FRACTURE INDICATOR ?t*????????????????????... .21 Procedure???????????????????????????22 Discussion of Noise in the Data??????????????????. 26 Discussion of t* Attribute Values (Fracture Indicator)???. ?????? 27...

Najmuddin, Ilyas Juzer

2004-09-30T23:59:59.000Z

122

Multi-scale approach to invasion percolation of rock fracture networks  

E-Print Network [OSTI]

A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

Ali N. Ebrahimi; Falk K. Wittel; Nuno A. M. Araújo; Hans J. Herrmann

2014-08-12T23:59:59.000Z

123

Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas  

SciTech Connect (OSTI)

Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

2012-09-15T23:59:59.000Z

124

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network [OSTI]

that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could for development. Hydraulic fracturing (fracking, the industry term for the operation; Kramer 2011) loosens

125

Self-potential observations during hydraulic fracturing  

SciTech Connect (OSTI)

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

126

AltaRock Energy Announces Successful Multiple-Zone Stimulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

water in the wellbore found the next weak point and began the stimulation of a second fracture zone. At Newberry, this process was repeated three times, and then the valve on top...

127

Experimental wrench faulting at confining pressure  

E-Print Network [OSTI]

-peak, peak, post-peak, pre-residual, and residual shear force (modified from Tchalenko, 1970, Fig. 3) . . . . . . . . . . . . . . . . . . . . . . . . . 14 Example of shear stress/shear d1splacement curve for spec1men 978, deformed at 50 MPa confin1ng... thin sect1ons of 0. 5 cm Indiana 11mestone veneer, deformed at 50 MPa confining pres- sure, and taken to 0. 54 cm shear d1splacement (spe- cimen 978). . . . . . . . . . . . . . . . . - . - . ~ 26 29 32 35 10. Shear zone fracture map sketched...

Bartlett, Wendy Louise

2012-06-07T23:59:59.000Z

128

Localization instability and the origin of regularly-spaced faults in planetary lithospheres  

E-Print Network [OSTI]

Brittle deformation is not distributed uniformly in planetary lithospheres but is instead localized on faults and ductile shear zones. In some regions such as the Central Indian Basin or martian ridged plains, localized ...

Montési, Laurent Gilbert Joseph, 1973-

2002-01-01T23:59:59.000Z

129

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding and lithostratigraphy on fracture patterns, (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics, and (4) The influence of lithostratigraphy and deformation on fluid flow.

Wallace, W.K.; Hanks, C.L.; Whalen, M.T.; Jensen, J.; Atkinson, P.K.; Brinton, J.S.

2001-01-09T23:59:59.000Z

130

Oil and Gas CDT Predicting fault permeability at depth: incorporating natural  

E-Print Network [OSTI]

Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

Henderson, Gideon

131

Solar system fault detection  

DOE Patents [OSTI]

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, R.B.; Pruett, J.C. Jr.

1984-05-14T23:59:59.000Z

132

Solar system fault detection  

DOE Patents [OSTI]

A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

Farrington, Robert B. (Wheatridge, CO); Pruett, Jr., James C. (Lakewood, CO)

1986-01-01T23:59:59.000Z

133

Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock  

E-Print Network [OSTI]

influence of effective fracture aperture, Water Resourcesa system of parallel fractures, Water Resources Research,solutions for a single fractures, Water Resources Research,

Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

2008-01-01T23:59:59.000Z

134

Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998  

SciTech Connect (OSTI)

An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

Forster, C.B.; Nielson, D.L.; Deo, M.

1998-12-01T23:59:59.000Z

135

Flow focusing in unsaturated fracture networks: A numerical investigation  

SciTech Connect (OSTI)

A numerical modeling study is presented to investigate flow-focusing phenomena in a large-scale fracture network, constructed using field data collected from the unsaturated zone of Yucca Mountain, Nevada, the proposed repository site for high-level nuclear waste. The two-dimensional fracture network for an area of 100 m x 150 m contains more than 20,000 fractures. Steady-state unsaturated flow in the fracture network is investigated for different boundary conditions and rock properties. Simulation results indicate that flow paths are generally vertical, and that horizontal fractures mainly provide pathways between neighboring vertical paths. In addition to fracture properties, flow-focusing phenomena are also affected by rock-matrix permeability, with lower matrix permeability leading to a high degree of flow focusing. The simulation results further indicate that the average spacing between flow paths in a layered system tends to increase and flow tends to becomes more focused, with depth.

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.; Liu, Hui-Hai

2003-04-17T23:59:59.000Z

136

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

137

Motion and evolution of the Chaochou Fault, Southern Taiwan  

E-Print Network [OSTI]

has been called the Chuchi Transfer Fault Zone (Lacombe et al., 2001). This boundary represents a major change in the character of seismicity in Taiwan. Although the nature of this boundary is not known, it may represent the southern extent of direct...

Hassler, Lauren E.

2005-11-01T23:59:59.000Z

138

Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin  

SciTech Connect (OSTI)

For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan rift faults have been episodically reactivated, and a few of these faults extend through the entire stratigraphic section. The ENE-trending faults and N-striking transfer zones controlled the development of the T/BR grabens. In both the Seneca Lake and Cayuga Lake regions, we found more FIDs than Landsat lineaments, both in terms of individual FIDs and trends of FIDs. Our fused Landsat/ASTER image provided more lineaments, but the structural framework inferred from these lineaments is incomplete even for the fused image. Individual lineaments may not predict surface FIDs (within 500m). However, an individual lineament that has been groundtruthed by outcrop FIDs can be used as a proxy for the trend of intense fracturing. Aeromagnetics and seismic reflection data across the discovery fields west of Keuka Lake demonstrate that the fields terminate on the east against northerly-striking faults that extend from Precambrian basement to, in some cases, the surface; the fields terminate in the west at N- and NW-striking faults. Seismic and well log data show that the fields must be compartmentalized, since different parts of the same field show different histories of development. T/BR fields south of the research area also terminate (on the east) against northerly-trending lineaments which we suggest mark faults. Phase II, completed in 2006, consisted of collection and analysis of an oriented, horizontal core retrieved from one of the T/BR fields in a graben south of the field area. The field is located along ENE-trending EarthSat (1997) lineaments, similar to that hypothesized for the study area. The horizontal core shows much evidence for reactivation along the ENE-trending faults, with multiple events of vein development and both horizontal and vertical stylolite growth. Horizontal veins that post- and pre-date other vein sets indicate that at least two orogenic phases (separated by unloading) affected vein development. Many of the veins and releasing bend features (rhombochasms) are consistent with strike-slip motion (oblique) along ENE-striking faults as a result

Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

2007-03-31T23:59:59.000Z

139

Saturated Zone Colloid Transport  

SciTech Connect (OSTI)

This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

H. S. Viswanathan

2004-10-07T23:59:59.000Z

140

Three-dimensional numerical modeling of the influence of faults on groundwater flow at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Numerical simulations of groundwater flow at Yucca Mountain, Nevada are used to investigate how the faulted hydrogeologic structure influences groundwater flow from a proposed high-level nuclear waste repository. Simulations are performed using a 3-D model that has a unique grid block discretization to accurately represent the faulted geologic units, which have variable thicknesses and orientations. Irregular grid blocks enable explicit representation of these features. Each hydrogeologic layer is discretized into a single layer of irregular and dipping grid blocks, and faults are discretized such that they are laterally continuous and displacement varies along strike. In addition, the presence of altered fault zones is explicitly modeled, as appropriate. The model has 23 layers and 11 faults, and approximately 57,000 grid blocks and 200,000 grid block connections. In the past, field measurement of upward vertical head gradients and high water table temperatures near faults were interpreted as indicators of upwelling from a deep carbonate aquifer. Simulations show, however, that these features can be readily explained by the geometry of hydrogeologic layers, the variability of layer permeabilities and thermal conductivities, and by the presence of permeable fault zones or faults with displacement only. In addition, a moderate water table gradient can result from fault displacement or a laterally continuous low permeability fault zone, but not from a high permeability fault zone, as others postulated earlier. Large-scale macrodispersion results from the vertical and lateral diversion of flow near the contact of high and low permeability layers at faults, and from upward flow within high permeability fault zones. Conversely, large-scale channeling can occur due to groundwater flow into areas with minimal fault displacement. Contaminants originating at the water table can flow in a direction significantly different than that of the water table gradient, and isolated zones of contaminants will occur at the water table downgradient. This behavior is not predicted by traditional models of contaminant transport. In addition, the influence of a particular type of fault cannot be generalized; depending on the location where contaminants enter the saturated zone, faults may either enhance of inhibit vertical dispersion.

Cohen, Andrew J.B.

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain...  

Open Energy Info (EERE)

associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two prominent west-dipping normal...

142

Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...  

Open Energy Info (EERE)

associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two prominent west-dipping normal...

143

Dorchester County- Renewable Zoning  

Broader source: Energy.gov [DOE]

Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

144

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

145

Low permeability gas reservoir production using large hydraulic fractures  

E-Print Network [OSTI]

extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

Holditch, Stephen A

1970-01-01T23:59:59.000Z

146

Observations of long period earthquakes accompanying hydraulic fracturing  

SciTech Connect (OSTI)

Waveforms of most seismic events accompanying hydraulic fracturing have been reported to contain clear P and S waves and have fault plane solutions consistent with shear displacement across a fault. This observation is surprising since classical hydraulic fracturing theory predicts the creation of a tensile opening of a cavity in response to fluid pressure. Very small long period events, similar to long period earthquakes observed at volcanoes, were found to occur during four hydraulic fracturing experiments carried out at Fenton Hill, New Mexico. Since the long period earthquakes occur in the same region as the shear type events, it is concluded that the unusual character of the long period earthquake waveforms is due to a source effect and not a path effect. The occurrence of long period earthquakes during hydraulic fracturing could indicate tensile fracturing. Many waveforms of these events are identical, which implies that these events represent repeated activation of a given source. A proposed source for these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of each crack. From the frequencies at which spectral peaks occur, crack lengths are estimated to be between 3 and 20m.

Bame, D.; Fehler, M.

1986-02-01T23:59:59.000Z

147

Characterization of EGS Fracture Network Lifecycles  

SciTech Connect (OSTI)

Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field, in order to enhance productivity there. Task 3 was to interpret the results jointly with other geological information in order to provide a consistent physical model. All of the original goals of the project have been achieved. An existing program for calculating accurate relative earthquake locations has been enhanced by a technique to improve the accuracy of earthquake arrival-time measurements using waveform cross-correlation. Error analysis has been added to pre-existing moment tensor software. New seismic tomography software has been written to calculate changes in structure that could be due, for example, to reservoir depletion. Data processing procedures have been streamlined and web tools developed for rapid dissemination of the results, e.g., to on-site operations staff. Application of the new analysis tools to the Coso geothermal field has demonstrated the effective use of the techniques and provided important case histories to guide the style of future applications. Changes in reservoir structure with time are imaged throughout the upper 3 km, identifying the areas where large volumes of fluid are being extracted. EGS hydrofracturing experiments in two wells stimulated a nearby fault to the south that ruptured from south to north. The position of this fault could be precisely mapped and its existence was confirmed by surface mapping and data from a borehole televiewer log. No earthquakes occurred far north of the injection wells, suggesting that the wells lie near the northern boundary of the region of critically stressed faults. Minor en-echelon faults were also activated. Significant across-strike fluid flow occurred. The faults activated had significant crack-opening components, indicating that the hydraulic fracturing created open cavities at depth. The fluid injection changed the local stress field orientation and thus the mode of failure was different from the normal background. Initial indications are that the injections modulated stress release, seismicity and natural fracture system evolution for periods of up to months. The research demon

Gillian R. Foulger

2008-03-31T23:59:59.000Z

148

The nature of the Heart Mountain fault in the vicinity of Dead Indian Hill, Park County, Wyoming  

E-Print Network [OSTI]

Mountain thrust blocks consti- tuted a very limited strat1graphic interval, consisting of Ordovician B1ghorn Dolomite, undifferentiated dolomi tes, 1 1mestones and shales of Devonian age (Jefferson-Three Forks Formations) and the Mississippian Madison... of the thrust the transgress1ve fault zone and reports the slope of the transgressive fault to be approximately 10 degrees. A field study was conducted in the area of the transgressive fault in an attempt to better understand the mechanics of how...

Sungy, Eugene Donald

1977-01-01T23:59:59.000Z

149

Transition-fault test generation  

E-Print Network [OSTI]

. One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

Cobb, Bradley Douglas

2013-02-22T23:59:59.000Z

150

Optimal fault location  

E-Print Network [OSTI]

for the pre-selected time out to pass and initiate reclosing again. If after selected number of attempts of reclosing, fault is still present, breaker lockout is taking place. There will be no more attempts to reclose automatically the breaker again....2: Trip and reclose sequences on a single breaker In the case of breaker lockout the assumption taken by the operators is that fault is permanent. Special order is issued to the maintenance for the breaker to be closed back in 4 again once...

Knezev, Maja

2009-05-15T23:59:59.000Z

151

Optimal fault location  

E-Print Network [OSTI]

for the pre-selected time out to pass and initiate reclosing again. If after selected number of attempts of reclosing, fault is still present, breaker lockout is taking place. There will be no more attempts to reclose automatically the breaker again....2: Trip and reclose sequences on a single breaker In the case of breaker lockout the assumption taken by the operators is that fault is permanent. Special order is issued to the maintenance for the breaker to be closed back in 4 again once...

Knezev, Maja

2008-10-10T23:59:59.000Z

152

Computer hardware fault administration  

DOE Patents [OSTI]

Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

Archer, Charles J. (Rochester, MN); Megerian, Mark G. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2010-09-14T23:59:59.000Z

153

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

154

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

155

Hydraulic fracture mechanism in unconsolidated formations.  

E-Print Network [OSTI]

??Most models developed for hydraulic fracturing in unconsolidated sands are based on Linear Elastic Fracture Mechanics (LEFM) and tensile fracture (Mode I fracture). However, in… (more)

Hosseini, Seyed Mehran

2012-01-01T23:59:59.000Z

156

Design and Implementation of Energized Fracture Treatment in Tight Gas Sands  

SciTech Connect (OSTI)

Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

Mukul Sharma; Kyle Friehauf

2009-12-31T23:59:59.000Z

157

Row fault detection system  

DOE Patents [OSTI]

An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

Archer, Charles Jens (Rochester, MN); Pinnow, Kurt Walter (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian Edward (Rochester, MN)

2012-02-07T23:59:59.000Z

158

Renewable Energy Renaissance Zones  

Broader source: Energy.gov [DOE]

In 2006, Michigan enacted legislation allowing for the creation of Renewable Energy Renaissance Zones (RERZ). Renaissance zones -- renewable energy renaissance zones are just one type -- offer...

159

Enterprise Zone Program (Georgia)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program provides various tax incentives to businesses within designated underdeveloped zones in rural or urban areas. The State Enterprise Zone program intends to improve...

160

An algorithm for faulted phase and feeder selection under high impedance fault conditions  

E-Print Network [OSTI]

. Summary SUMMARY AND CONCLUSIONS REFERENCES . SUPPLEMENTAL SOURCES CONSULTED APPENDIX A VITA 57 58 59 59 60 62 68 70 vn LIST OF TABLES Table II. Ihh Comparison of fault-generated phases during arcing fault test Comparison of fault...-generated phases during arcing fault test Comparison of fault-generated phases during arcing fault test activity on activity on activity on faulted and unfaulted Page 45 faulted and unfaulted 46 faulted and unfaulted 47 vu1 LIST OF FIGURES Figure l...

Benner, Carl Lee

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Simulation of Hydraulic Fractures and their Interactions with Natural Fractures  

E-Print Network [OSTI]

Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

Sesetty, Varahanaresh

2012-10-19T23:59:59.000Z

162

Fracture characterization from attenuation of Stoneley waves across a fracture  

E-Print Network [OSTI]

Fractures contribute significantly to the permeability of a formation. It is important to understand the fracture distribution and fluid transmissivity. Though traditional well logs can image fractures intersecting the ...

Bakku, Sudhish Kumar

2012-01-01T23:59:59.000Z

163

EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT  

SciTech Connect (OSTI)

The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

Riha, B

2005-10-31T23:59:59.000Z

164

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect (OSTI)

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

165

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference...

166

A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area  

SciTech Connect (OSTI)

Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

1997-01-30T23:59:59.000Z

167

A Rare Isolated Trapezoid Fracture  

E-Print Network [OSTI]

wrist in suggested scaphoid fracture. Acta Radiol. 1988;29:Rare isolated trapezoid fracture: a case report. Hand. 2008;suspect and diagnose this fracture. 2,8 REFERENCES 1. Papp

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

168

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network [OSTI]

R.A. Everitt, C.D. Martin, P.M. Thompson) AECL-10560,COG-94- AECL, 1994b. Environmental Impact Statement on thes Nuclear Fuel Waste. AECL -10711, COG-93-1, 496p. Anderson,

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

169

Thermal Waters Along The Konocti Bay Fault Zone, Lake County...  

Open Energy Info (EERE)

thermal waters along the KBFZ contain >100 mgl Mg. High concentrations of dissolved magnesium are usually indicative of relatively cool hydrothermal systems. Dissolution of...

170

Over the past 10 years, there has been a consistent increase in using 3D P-wave data to characterize fractures, which is  

E-Print Network [OSTI]

to characterize fractures, which is critical for ensuring economic oil and gas production in tight formations of otherwise low permeability. Here, we pre- sent a case study of fracture detection using 3D P-wave seismic, of zones of high fracture density that are residual-oil-charged. A major aspect of this study is to compare

Edinburgh, University of

171

Initial results from VC-1, First Continental Scientific Drilling...  

Open Energy Info (EERE)

to obtain structural and stratigraphie information near the intersection of the ring fracture zone and the precaldera Jemez fault zone, arid to core the youngest volcanic unit...

172

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network [OSTI]

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

Lolon, Elyezer P.

2006-04-12T23:59:59.000Z

173

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to over 10,000,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intended to investigate, map and characterize field fracture patterns and the reservoir conduit system. In the first phase of the project, state of the art borehole imaging technologies including FMI, dipole sonic, interference tests and production logs were employed to characterize fractures and micro faults. These data along with the existing database were used in the construction of a new geologic model of the fracture network. An innovative fracture network reservoir simulator was developed to better understand and manage the aquifer’s role in pressure maintenance and water production. In the second phase of this project, simulation models were used to plan the redevelopment of the field using high angle wells. Correct placement of the wells is critical to intersect the best-developed fracture zones and to avoid producing large volumes of water from the water leg. Particula r attention was paid to those areas of the field that have not been adequately developed with the existing producers. In cooperation with the DOE and the PTTC, the new data and the new fracture simulation model were shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during Budget Periods I and II. Venoco elected to terminate the project after Budget Period II and not to proceed with the activities planned for Budget Period III.

Horner, Steve; Ershaghi, Iraj

2006-06-30T23:59:59.000Z

174

A Unified Cohesive Zone Approach to Model Ductile Brittle Transition in Reactor Pressure Vessel Steels  

SciTech Connect (OSTI)

In this study, a unified cohesive zone model has been proposed to predict, Ductile to Brittle Transition, DBT, in Reactor Pressure Vessel, RPV, steels. A general procedure is described to obtain the Cohesive Zone Model, CZM, parameters for the different temperatures and fracture probabilities. In order to establish the full master-curve, the procedure requires three calibration points with one at the upper-shelf for ductile fracture and two for the fracture probabilities, Pf, of 5% and 95% at the lower-shelf. In the current study, these calibrations were carried out by utilizing the experimental fracture toughness values and flow curves. After the calibration procedure, the simulations of fracture behavior (ranging from completely unstable to stable crack extension behavior) in one inch thick compact tension specimens at different temperatures yielded values that were comparable to the experimental fracture toughness values, indicating the viability of such unified modeling approach.

Pritam Chakraborty; S. Bulent Biner

2014-08-01T23:59:59.000Z

175

Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2  

E-Print Network [OSTI]

reservoir, and migrates upward through improperly abandonedreservoir and migrating towards the land surface (through faults, fractures, or improperly abandonedreservoir and migrates upwards along localized preferential pathways, such as faults and fracture zones, or improperly abandoned

Pruess, K.

2012-01-01T23:59:59.000Z

176

Fracture simulation for zirconia toughened alumina microstructure  

E-Print Network [OSTI]

Purpose - The purpose of this paper is to describe finite element modelling for fracture and fatigue behaviour of zirconia toughened alumina microstructures. Design/methodology/approach - A two-dimensional finite element model is developed with an actual $Al{_2}O{_3}$ - 10 vol% $ZrO{_2}$ microstructure. A bilinear, time-independent cohesive zone law is implemented for describing fracture behaviour of grain boundaries. Simulation conditions are similar to those found at contact between a head and a cup of hip prosthesis. Residual stresses arisen from the mismatch of thermal coefficient between grains are determined. Then, effects of a micro-void and contact stress magnitude are investigated with models containing residual stresses. For the purpose of simulating fatigue behaviour, cyclic loadings are applied to the models. Findings - Results show that crack density is gradually increased with increasing magnitude of contact stress or number of fatigue cycles. It is also identified that a micro-void brings about...

Kim, Kyungmok; Forest, Bernard

2013-01-01T23:59:59.000Z

177

Stress and fault rock controls on fault zone hydrology, Coso geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpen Energy InformationStonyMonitoringfrom

178

Fault current limiter  

DOE Patents [OSTI]

A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

Darmann, Francis Anthony

2013-10-08T23:59:59.000Z

179

The Influence of Fold and Fracture Development on Reservoir Behavior of the Lisburne Group of Northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively underformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults, (2) The influence of folding on fracture patterns, (3) The influence of deformation on fluid flow, and (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics.

Wallace, Wesley K.; Hanks, Catherine L.; Whalen, Michael T.; Jensen1, Jerry; Shackleton, J. Ryan; Jadamec, Margarete A.; McGee, Michelle M.; Karpov1, Alexandre V.

2001-07-23T23:59:59.000Z

180

Suspensions in hydraulic fracturing  

SciTech Connect (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

182

Neo-tectonic fracturing after emplacement of quaternary granitic pluton in the Kakkonda geothermal field, Japan  

SciTech Connect (OSTI)

The fracture which occurs in the Kakkonda geothermal system was formed by neo-tectonic stress after the emplacement of the neo-granite (Quaternary Kakkonda Granite) at middle Pleistocene to recent. The characteristic contrast in permeability at ca.1.5 km is strongly controlled by the contact metamorphic zone, especially cordierite and higher grade metamorphic zones, in which the high temperature (320{degrees}C<) and low permeable deep reservoir was created. The five geothermal wells 2.5-3.0 km deep have clarified that a microearthquake zone below -1.0 km shows high permeability especially at the margin of the Kakkonda Granite, and low permeability outside of a microearthquake zone. The Kakkonda Granite is a composite pluton which has very few fractures inside of it. Thus, neo-tectonic fracturing has developed in the non-metamorphosed Tertiary formations and the margin of the Kakkonda Granite.

Doi, N.; Kato, O. [JMC Goethermal Eng. Co., Ltd., Iwate-ken (Japan); Kanisawa, S.; Ishikawa, K. [Tohoku Univ., Sendai (Japan)

1995-12-31T23:59:59.000Z

183

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

184

Observer-based fault detection for nuclear reactors  

E-Print Network [OSTI]

This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

Li, Qing, 1972-

2001-01-01T23:59:59.000Z

185

Synchronized sampling improves fault location  

SciTech Connect (OSTI)

Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

1995-04-01T23:59:59.000Z

186

Ultrasound-Confirmed Frontal Bone Fracture  

E-Print Network [OSTI]

table--frontal sinus fractures. Facial Plast Surg Clin NorthConfirmed Frontal Bone Fracture Jeremy N. Johnson, DO Danielan isolated comminuted fracture of the left frontal sinus

Johnson, Jeremy N; Crandall, Stephen; Kang, Christopher S

2009-01-01T23:59:59.000Z

187

Fracture, aging and disease in bone  

E-Print Network [OSTI]

separate during bone fracture. Nature Materials 4, 612 (on nonagenarians with hip fractures? Injury 30, 169 (1999).bone mass as predictors of fracture in a prospective study.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

188

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

189

Technology Zones (Virginia)  

Broader source: Energy.gov [DOE]

Virginia’s 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

190

Enterprise Zone Incentives (Florida)  

Broader source: Energy.gov [DOE]

Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for...

191

Enterprise Zone Program (Alabama)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level...

192

Unsaturated Zone and Saturated Zone Transport Properties (U0100)  

SciTech Connect (OSTI)

This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

J. Conca

2000-12-20T23:59:59.000Z

193

Thrust faulting in Temblor Range, Kern County, California  

SciTech Connect (OSTI)

Surface and subsurface studies confirm the presence of overthrusting in the Temblor Range between Gonyer Canyon and Recruit Pass. In the subsurface, three wells have penetrated the Cree fault, the Hudbay Cree' No. 1 (7,300 ft), the Frantzen Oil Company Cree' No. 1 (5,865 ft) and the Arco Cree Fee' 1A well (5,915 ft). Below the fault, 25 to 35{degree} of westerly dips on the west flank of the sub-thrust Phelps anticline are encountered. The McDonald section below the fault is comprised of siliceous fractured shale which contains live oil and gas showings. A drill-stem test of the interval from 8,247 to 8,510 ft in the Frantzen well resulted in a recovery of 1,200 ft clean 34{degree} oil and 40 MCF per day gas. The shut in pressure was 3,430 lb, which is a normal hydrostatic pressure common to the producing structures in the southern San Joaquin Valley. The equivalent of this interval has produced over 7,000 bbl of oil in the Arco Cree' 1A well. The Arco Cree Fee' No. 1A well crossed the axis of the Phelps Anticline as indicated by good dipmeter and bottomed in Lower Zemorrian at 14,512 ft total depth. This well was not drilled deep enough to reach the Point of Rocks Sand and did not test the gas showings in the lower Miocene section. In the Gonyer Canyon area, subsurface evidence indicated conditions are similar to those in the Cree area because a large structure is present below a thrust fault. It is believed that significant accumulations will be found beneath thrust faults in the eastern part of the Temblor Range where conditions are similar to those that were instrumental in forming fields such as the Elk Hills, B. V. Hills, Belgian Anticline and others.

Simonson, R.R.

1991-02-01T23:59:59.000Z

194

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

195

Identifying fracture zones in the Austin Chalk using seismic attributes  

E-Print Network [OSTI]

varies with time and in areas of known production. Areas of production were identified from gas flares documented on the mud logs and drilling reports. These locations were measured from the end of the lateral and were then placed on the seismic grid... flares Strong correlations were found between gas flares and both raw amplitude and instantaneous reflection magnitude of the base of the Austin Chalk. In order to prove that these correlations were not in response to noise, the seismic data...

Bafia, Daniel Joseph

1998-01-01T23:59:59.000Z

196

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlixMapFileFostoria,Chapel,Foyil, Oklahoma:Fracturewells,

197

Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland  

SciTech Connect (OSTI)

Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

Martel, S.J.; Peterson, J.E. Jr. (Lawrence Berkeley Lab., CA (USA))

1990-05-01T23:59:59.000Z

198

Arc fault detection system  

DOE Patents [OSTI]

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

Jha, Kamal N. (Bethel Park, PA)

1999-01-01T23:59:59.000Z

199

Arc fault detection system  

DOE Patents [OSTI]

An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

Jha, K.N.

1999-05-18T23:59:59.000Z

200

Uniform and Preferential Flow Mechanisms in the Vadose Zone  

E-Print Network [OSTI]

flow and chemical leaching. The objectives of this paper are to describe and classify flow mechanisms on measurement techniques for preferential flow and with guidelines for the formu- lation of conceptual models. All rights reserved. Conceptual Models of Flow and Transport in the Fractured Vadose Zone http

Flury, Markus

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network [OSTI]

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

Ahmed, Ibraheem 1987-

2012-11-30T23:59:59.000Z

202

Hot Pot Detail - Evidence of Quaternary Faulting  

SciTech Connect (OSTI)

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

2013-06-27T23:59:59.000Z

203

Hot Pot Detail - Evidence of Quaternary Faulting  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

Lane, Michael

204

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

E-Print Network [OSTI]

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday for producing both strength of materials and fracture mechanics data H H HH H H d/dt > 0 strength of materials: UTS, YS, f, RA H2 H2H2 H2 H2 H2 H2 H2 HH H H H H H H H H d/dt 0 fracture mechanics: KIH, KTH

205

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

206

Not Excavated (still on site) As All data Zone 1 Zone 2 Zone 3 Zone 4  

E-Print Network [OSTI]

.12 11.68 10.29 AL: 50 xrf_allzones_20060810 Page 1 of 174notx summary #12;Mo All data Zone 1 Zone 2 Zone.35 2.36 2.37 U95: 57.95 62.41 60.56 51.63 70.50 U99: 58.98 64.27 62.34 52.75 74.38 AL: 550 xrf99: 12.48 AL: xrf_allzones_20060810 Page 3 of 174x summary #12;Mo All data Zone 1 Zone 2 Zone 3 Zone

207

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

208

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

209

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

210

Modeling interfacial fracture in Sierra.  

SciTech Connect (OSTI)

This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

2013-09-01T23:59:59.000Z

211

Fault-tolerant rotary actuator  

DOE Patents [OSTI]

A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

Tesar, Delbert

2006-10-17T23:59:59.000Z

212

Passive fault current limiting device  

DOE Patents [OSTI]

A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

Evans, D.J.; Cha, Y.S.

1999-04-06T23:59:59.000Z

213

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

214

CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over regular, discrete, vertical fracture systems. The model contains a series of point scatterers delineating the top tip and bottom tip of each vertical fracture. When the shot record is located in the middle of the fractured zone and oriented normal to the direction of fracturing, a complicated series of beating is observed in the back scattered energy. When the shot record is oriented parallel to the fracturing, ringing wavetrains are observed with moveouts similar to reflections from many horizontal layers. These results are consistent with the full 3D elastic modeling results. An AVOA analysis method was refined and applied to a field data set. An iterative, nonlinear least squares inversion that uses the Gauss-Newton method and analyzes the full range of azimuths simultaneously was employed. Resulting fracture location and strike orientation estimates are consistent with other fracture information from the area. Two modeling approaches for estimating permeability values from seismically derived fracture parameters have been investigated. The first is a statistical method that calculates the permeability tensor for a given distribution of fractures. A possible workflow using this method was tested on fracture distributions obtained from the Transfer Function-Scattering Index analysis method. Fracture aperture and length estimates are needed for this method. The second method is a direct flow model of discrete fractures and fracture networks using a computational fluid dynamics code. This tool provides a means of visualizing flow in fracture networks and comparing expressions for equivalent fracture aperture flow to the actual flow. A series of two dimensional models of fractures and fracture networks, as well as a 3-D model of a single rough fracture, were tested.

Daniel R. Burns; M. Nafi Toksoz

2004-07-19T23:59:59.000Z

215

Development of secondary faults between en echelon, oblique-slip faults: examples from basement controlled, small-fault systems in the Llano Uplift of central Texas  

E-Print Network [OSTI]

between and oriented oblique to the bounding faults. With increasing displacement on the bounding faults, the system of secondary faults evolves from an Elementary to a Compound, to an Advanced geometry, which includes the formation of secondary... to the primary faults. Synthetic faults form interior to and ahead of the bounding faults, increasing the effective overlap. Displacements on antithetic faults are directly related to changes in displacement on associated bounding faults. Additionally...

Hedgcoxe, Howard Reiffert

2012-06-07T23:59:59.000Z

216

Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping  

SciTech Connect (OSTI)

The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).

Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

2011-02-01T23:59:59.000Z

217

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

SciTech Connect (OSTI)

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

218

Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report  

SciTech Connect (OSTI)

The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

Zoback, M.D.

1998-08-30T23:59:59.000Z

219

Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)  

SciTech Connect (OSTI)

The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE-N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE-N-1) test was conducted in May 2011, using 100 kg of explosives at the depth of 54.9 m in the U 15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m in the same source hole. The SPE-N-3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE-N-2, and at the same depth as SPE-N-2, within the damage zone created by the SPE-N-2 explosion to investigate damage effects on seismic wave propagation. Following the SPE-N-2 shot and prior to the SPE-N-3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The objective was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE-N-2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories (SNL) for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a “fresh,” mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing.

Townsend, M. J.; Huckins-Gang, H. E.; Prothro, L. B.; Reed, D. N.

2012-12-01T23:59:59.000Z

220

Reinvestment Zones (Texas)  

Broader source: Energy.gov [DOE]

Reinvestment Zones a local economic development tool used by municipalities and counties throughout the state of Texas. These zones can be created for the purpose of granting local businesses ad...

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enterprise Zone Program (Illinois)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program provides eligible businesses that relocate or expand to a designated zone with tax incentives such as: 1) an investment tax credit; 2) a job tax credit for each job...

222

Enhanced Enterprise Zones (Missouri)  

Broader source: Energy.gov [DOE]

Enhanced Enterprise Zones aim at attracting new businesses or promoting an expansion of existing business in Missouri Enhanced Enterprise Zone. Tax credits will be an amount authorized by DED,...

223

Alternative Energy Zone (Ohio)  

Broader source: Energy.gov [DOE]

Ohio's Alternative Energy Zones are made possible through Ohio's Senate Bill 232, which reduced taxes on alternative energy projects. The Alternative Energy Zones are designated on a county-by...

224

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Nanosensors for Fractured Reservoir Characterization. 2. Characterization of Fracture Properties using Production Data. 3. Fracture Characterization by Resistivity...

225

FRACTURE ENHANCED SOIL VAPOR EXTRACTION TECHNOLOGY DEMONSTRATION AT THE A-014 OUTFALL  

SciTech Connect (OSTI)

Data collected during this study show that the performance of hydraulically fractured wells (with respect to mass removal rates) may tend to decrease with time following precipitation events. These effects are due to temporary increases in water saturation in the formation within the vicinity of the fractures, therefore, the wells should tend to rebound during subsequent dry periods. The data available for fractured well versus conventional well performance (with respect to flow rate versus vacuum pressure) are limited in this study. However, the data that we have to draw from suggest that, with the possible exception of a few extreme examples, hydraulically fractured wells tend to perform better than conventional wells during soil vapor extraction (SVE) operation at the A-14 Outfall. The pancake like geometry associated with hydraulic fractures also leads to a significant increase in zone of influence (ZOI), as compared to conventional wells. The increase in ZOI is due to the radially extending, horizontal, high-permeability conduit nature of the hydraulic fracture, however, air-flow into the fracture is predominately vertical (occurring at right angles to the fracture plane). Flow rates from above and below the fracture will tend to be equivalent when the formation is homogeneous, however, in the case of directionally fining depositional sequences flow rates will be greater from the direction of increasing permeability. The Upland Unit is a fining upward sequence, therefore flow rates (and contaminant mass flow rates) will tend to be higher below the fracture. This suggests that emplacing the fractures slightly above the source zone is an important strategy for accelerating contaminant removal at the A-014 Outfall site and in the Upland Unit at the SRS. However, due to the multitude of previous borings at the A-014 Outfall site, the shallower fractures failed. More than 2500 lbs of chlorinated volatile organic compounds (cVOCs) were removed during approximately 6 months of fractured well SVE operation at the A-014 field site. Plotting total mass removed over this time period shows a roughly linear relationship Figure 7. This occurs because the mass removal rate remains fairly constant with time. When mass removal comes predominately from cVOCs stored in the vapor phase there is a marked decline in mass removal rate over a short period of time due to the limiting nature of diffusion. Constant mass removal rates suggest that a source zone has been directly targeted and, therefore, is providing a constant supply of cVOC that partitions into the vapor phase and is removed through the well. Directly targeting and removing source zones is the most efficient approach to remediating contaminated sites. Results of this study show that utilization of hydraulic fractures during SVE is an effective approach for increasing remediation efficiency at the A-014 Outfall field site and in the Upland Unit at the SRS. Hydraulically fractured wells tend to produce greater flow rates and create larger ZOI's than do conventional wells. These attributes allow fractured wells to effectively treat larger volumes of formation. The unique sand-emplacement geometry associated with hydraulically fractured wells also allows direct targeting of multiple zones located at similar elevations within a fairly large radius of the well. The ability to directly target source zones significantly decreases diffusion pathways, therefore, significantly decreasing the time required to reach remediation goals.

Riha, B; Warren Hyde, W; Richard Hall (NOEMAIL), R

2008-03-12T23:59:59.000Z

226

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface...

227

Modeling the Fracture of Ice Sheets on Parallel Computers  

SciTech Connect (OSTI)

The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

Waisman, Haim [Columbia University] [Columbia University; Tuminaro, Ray [Sandia National Labs] [Sandia National Labs

2013-10-10T23:59:59.000Z

228

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents [OSTI]

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

229

Naturally fractured tight gas reservoir detection optimization. Final report  

SciTech Connect (OSTI)

This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

NONE

1997-11-19T23:59:59.000Z

230

Automated Fault Location In Smart Distribution Systems  

E-Print Network [OSTI]

of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs...

Lotfifard, Saeed

2012-10-19T23:59:59.000Z

231

A Rectilinear-Monotone Polygonal Fault Block Model for Fault-Tolerant Minimal Routing  

E-Print Network [OSTI]

]. In rectangular model, all faulty nodes are grouped in dis- jointed, rectangular areas, called fault blocksA Rectilinear-Monotone Polygonal Fault Block Model for Fault-Tolerant Minimal Routing in Mesh Dajin Wang, Member, IEEE Abstract--We propose a new fault block model, Minimal-Connected-Component (MCC

Wang, Dajin

232

Modeling brittle fracture, slip weakening, and variable friction in geomaterials with an embedded strong discontinuity finite element.  

SciTech Connect (OSTI)

Localized shear deformation plays an important role in a number of geotechnical and geological processes. Slope failures, the formation and propagation of faults, cracking in concrete dams, and shear fractures in subsiding hydrocarbon reservoirs are examples of important effects of shear localization. Traditional engineering analyses of these phenomena, such as limit equilibrium techniques, make certain assumptions on the shape of the failure surface as well as other simplifications. While these methods may be adequate for the applications for which they were designed, it is difficult to extrapolate the results to more general scenarios. An alternative approach is to use a numerical modeling technique, such as the finite element method, to predict localization. While standard finite elements can model a wide variety of loading situations and geometries quite well, for numerical reasons they have difficulty capturing the softening and anisotropic damage that accompanies localization. By introducing an enhancement to the element in the form of a fracture surface at an arbitrary position and orientation in the element, we can regularize the solution, model the weakening response, and track the relative motion of the surfaces. To properly model the slip along these surfaces, the traction-displacement response must be properly captured. This report focuses on the development of a constitutive model appropriate to localizing geomaterials, and the embedding of this model into the enhanced finite element framework. This modeling covers two distinct phases. The first, usually brief, phase is the weakening response as the material transitions from intact continuum to a body with a cohesionless fractured surface. Once the cohesion has been eliminated, the response along the surface is completely frictional. We have focused on a rate- and state-dependent frictional model that captures stable and unstable slip along the surface. This model is embedded numerically into the element using a generalized trapezoidal formulation. While the focus is on the constitutive model of interest, the framework is also developed for a general surface response. This report summarizes the major research and development accomplishments for the LDRD project titled 'Cohesive Zone Modeling of Failure in Geomaterials: Formulation and Implementation of a Strong Discontinuity Model Incorporating the Effect of Slip Speed on Frictional Resistance'. This project supported a strategic partnership between Sandia National Laboratories and Stanford University by providing funding for the lead author, Craig Foster, during his doctoral research.

Regueiro, Richard A. (University of Colorado, Boulder, CO); Borja, R. I. (Stanford University, Stanford, CA); Foster, C. D. (Stanford University, Stanford, CA)

2006-10-01T23:59:59.000Z

233

Review article Induced seismicity and hydraulic fracturing for the recovery of  

E-Print Network [OSTI]

of gas and oil from low-permeability sedimentary rocks (M 1.0e3.8). Reactivation of faults and resultant seismicity linked to the hydraulic fracturing of low-permeability sedimentary rocks such as `tight' sandston and magnitudes are (a) mining (M 1.6e5.6); (b) oil and gas field depletion (M 1.0e7.3); (c) water injection

Foulger, G. R.

234

Brittle Fracture Ductile to Brittle transition  

E-Print Network [OSTI]

FRACTURE Brittle Fracture Ductile to Brittle transition Fracture Mechanics T.L. Anderson CRC sulphur in steel Residual stress Continuity of the structure Microcracks #12;Fracture Brittle Ductile Factors affecting fracture Strain rate State of stress Temperature #12;Behaviour described Terms Used

Subramaniam, Anandh

235

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

236

High temperature superconducting fault current limiter  

DOE Patents [OSTI]

A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

Hull, J.R.

1997-02-04T23:59:59.000Z

237

Technical Work Plan for: Fracture and Lithophysal Studies  

SciTech Connect (OSTI)

The primary objective of the work scope described in this technical work plan (TWP) is to enhance the descriptions of fracture and lithophysal parameters for the repository host horizon (RHH) over the repository footprint utilizing a predictive model. This work is planned to address U.S. Nuclear Regulatory Commission (NRC) additional information needs (AINs) associated with the Structural Deformation and Seismicity (SDS) Key Technical Issues (KTI) agreement SDS 3.03 (Schlueter 2000 [DIRS 166615]). The results of the planned work are expected to enhance the technical basis and confirm the results of the fracture analyses presented in ''Drift Degradation Analysis'' (BSC 2004 [DIRS 166107], Section 6.1.6). This model is not intended to provide an alternative for the unsaturated zone and saturated zone flow and transport models currently used by the Yucca Mountain Project (YMP). Nor are the outputs of this model intended to address the SDS 3.03 AINs related to the unsaturated zone and saturated zone flow and transport models.

n

2006-09-11T23:59:59.000Z

238

Complications in Ankle Fracture Surgery.  

E-Print Network [OSTI]

??Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki,… (more)

Ovaska, Mikko

2014-01-01T23:59:59.000Z

239

Seismic anisotropy of fractured rock  

E-Print Network [OSTI]

A comparison of the theory with recent ultra- sonic experiments on a simulated fractured medium .... Note that Poisson's ratio and Young's modulus for the.

M. Schoenberg, C. M. Sayers

2000-02-18T23:59:59.000Z

240

Software Fault Diagnosis Peter Zoeteweij  

E-Print Network [OSTI]

Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University-to-day basis is constantly growing. Combined with a practically constant rate of faults per line of code in the software development cycle, which aim at exposing such discrepancies. In this context, automated diagnosis

Zoeteweij, Peter

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing  

SciTech Connect (OSTI)

Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J. [University of Oklahoma, Norman, OK (United States)

2009-08-15T23:59:59.000Z

242

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

Poliannikov, Oleg V.

2011-05-19T23:59:59.000Z

243

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

Poliannikov, Oleg V.

244

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

245

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

1978. An Approach to the Fracture Hydrology at Stripa:Shanley. 1972. Analysis of Fracture Orientations for InputHydraulic Pro erties of Fractures by P. A. Witherspoon, C.

Olkiewicz, O.

2010-01-01T23:59:59.000Z

246

E-Print Network 3.0 - aquicludes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8(4), 742750 (2004) EGU Summary: layers and serve as an aquiclude. No major fault fractured zones are known in the vicinity Source: Ecole Polytechnique, Centre de...

247

High Precision Geophysics & Detailed Structural Exploration ...  

Open Energy Info (EERE)

fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with...

248

Renaissance Zones (North Dakota)  

Broader source: Energy.gov [DOE]

Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

249

Enterprise Zones (Iowa)  

Broader source: Energy.gov [DOE]

The Enterprise Zones Program is an incentive for business expansion designed to stimulate development by targeting economically distressed areas in Iowa. Through state and local tax incentives,...

250

Exploring the physicochemical processes that govern hydraulic fracture through laboratory  

E-Print Network [OSTI]

) containing model boreholes as an analog to hydraulic fracturing with various fracture-driving fluids. The

Belmonte A; Connelly P

251

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

252

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

SciTech Connect (OSTI)

Leakage of CO{sub 2} and brine along faults at geologic carbon sequestration (GCS) sites is a primary concern for storage integrity. The focus of this study is on the estimation of the probability of leakage along faults or fractures. This leakage probability is controlled by the probability of a connected network of conduits existing at a given site, the probability of this network encountering the CO{sub 2} plume, and the probability of this network intersecting environmental resources that may be impacted by leakage. This work is designed to fit into a risk assessment and certification framework that uses compartments to represent vulnerable resources such as potable groundwater, health and safety, and the near-surface environment. The method we propose includes using percolation theory to estimate the connectivity of the faults, and generating fuzzy rules from discrete fracture network simulations to estimate leakage probability. By this approach, the probability of CO{sub 2} escaping into a compartment for a given system can be inferred from the fuzzy rules. The proposed method provides a quick way of estimating the probability of CO{sub 2} or brine leaking into a compartment. In addition, it provides the uncertainty range of the estimated probability.

Zhang, Yingqi; Oldenburg, Curt; Finsterle, Stefan; Jordan, Preston; Zhang, Keni

2008-11-01T23:59:59.000Z

253

INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-06-30T23:59:59.000Z

254

An unknown active fault revealed by microseismicity in the south-east Francoise Courboulex, Christophe Larroque, Anne Deschamps, Celine Gelis,  

E-Print Network [OSTI]

oceanic basin (Figure 1). The southern French Alps are part of the broad plate boundary zone between in the south-east of France in December 2000, about 15 km north of the densely populated cities of the French between the southern French Alps and the Ligurian Basin, several faults are supposed to be seismogenic (e

Vallée, Martin

255

Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range  

SciTech Connect (OSTI)

Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses` ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain.

Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Wernicke, B.P. [California Inst. of Tech., Pasadena, CA (United States). Div. of Geological and Planetary Sciences

1996-03-01T23:59:59.000Z

256

Relative Permeability of Fractured Rock  

SciTech Connect (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

257

SATURATED ZONE IN-SITU TESTING  

SciTech Connect (OSTI)

The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

P.W. REIMUS

2004-11-08T23:59:59.000Z

258

Drill-back studies examine fractured, heated rock  

SciTech Connect (OSTI)

To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.

Wollenberg, H.A.; Flexser, S.; Myer, L.R.

1990-01-01T23:59:59.000Z

259

The effects of lithology and initial fault angle in physical models of fault-propagation folds  

E-Print Network [OSTI]

Experimentally deformed physical rock models are used to examine the effects of changing mechanical stratigraphy and initial fault angle on the development of fault-propagation folds over a flat-ramp-flat thrust geometry. This study also...

McLain, Christopher Thomas

2001-01-01T23:59:59.000Z

260

A fault location approach for fuzzy fault section estimation on radial distribution feeders  

E-Print Network [OSTI]

measured at feeder substations and the fault distance algorithm was tested using data obtained by staging faults on a model of an overhead feeder using EMTP/ATP simulation. The results obtained from the tests were promising. A simple illustration...

Andoh, Kwame Sarpong

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fracture of synthetic diamond M. D. Droty  

E-Print Network [OSTI]

Fracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California 1995) The fracture behavior of synthetic diamond has been investigated using indentation methods and by the tensile testing of pre-notched fracture-mechanics type samples. Specifically, the fracture toughness

Ritchie, Robert

262

Microstructure-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture  

E-Print Network [OSTI]

-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture 27-301 Fall, 2007 Prof. A. D. Rollett the fracture resistance of materials to their microstructure. · Both ceramics and metals exhibit strongly microstructure dependent fracture resistance. · This section focuses on basic theory of brittle fracture

Rollett, Anthony D.

263

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and  

E-Print Network [OSTI]

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf fracture stress and stress modified fracture strain models are utilized to describe the variation of lower and upper shelf fracture toughness with temperature and strain rate for two alloy steels used

Ritchie, Robert

264

Journal of Biomechanics 38 (2005) 15171525 Fracture in human cortical bone: local fracture criteria and  

E-Print Network [OSTI]

Journal of Biomechanics 38 (2005) 1517­1525 Fracture in human cortical bone: local fracture, Livermore, CA 94550 Accepted 19 July 2004 Abstract Micromechanical models for fracture initiation such micromechanical models have been developed for the fracture of bone. In fact, although the fracture event

Ritchie, Robert O.

265

The detection of high impedance faults using random fault behavior  

E-Print Network [OSTI]

the energy 120 100 80 O& 60 C Lu 40 20 100 200 300 400 500 600 700 800 900 1000 1100 Cycle Number Figure 1. Typical lugh frequency energy per cycle for an arcing fault. 23 . 055 . 050 . 025 Ol . 020 . 01 5 . 010 . 005 25 50 75 100 125... 150 175 200 225 250 275 500 Cycle Number Figure 2. Typical high frequency energy per cycle for a normal system. 24 3 Vl c uj 2 100 200 300 400 500 600 700 800 900 '1000 1100 Cycle Number Figure 3. Typical high frequency energy per cycle for a...

Carswell, Patrick Wayne

1988-01-01T23:59:59.000Z

266

Detachment Faulting & Geothermal Resources - Pearl Hot Spring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

267

Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain  

E-Print Network [OSTI]

presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle mechanism (transition strategy) at sensor fault occurrence. Index Terms--Electric vehicle, induction motor-tolerant AC motor drives in industrial applications [9-10- 41]. II. ELECTRIC VEHICLE POWERTRAIN COMPONENTS

Brest, Université de

268

Towards Fault-Tolerant Digital Microfluidic Lab-on-Chip: Defects, Fault Modeling, Testing, and Reconfiguration  

E-Print Network [OSTI]

Towards Fault-Tolerant Digital Microfluidic Lab-on-Chip: Defects, Fault Modeling, Testing, NC 27708, USA Abstract Dependability is an important attribute for microfluidic lab-on-chip devices microfluidic lab-on-chip systems. Defects are related to logical fault models that can be viewed not only

Chakrabarty, Krishnendu

269

Contribution of Identified Active Faults to Near Fault Seismic Hazard in the Flinders Ranges  

E-Print Network [OSTI]

Somerville1 , Peggy Quijada1 , Hong Kie Thio1 , Mike Sandiford2 and Mark Quigley2 1. URS Corporation estimates of fault slip rate from Quigley et al. (2006) to quantify the seismic activity rate on the faults of these models was used in conjunction with the active fault model. Quigley et al. (2006) identified a system

Sandiford, Mike

270

Sensitivity analysis of fracture scattering  

E-Print Network [OSTI]

We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

Fang, Xinding, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

271

Optimization of fracture treatment designs  

E-Print Network [OSTI]

length and fracture conductivity, and well spacing to optimize methane recovery and project economics of coalbed methane reservoirs. Anderson and Philflps g examined several methods of optimizing proppant selection. Proppant selection is very important...

Rueda, Jose Ignacio

2012-06-07T23:59:59.000Z

272

Fracture of aluminum naval structures  

E-Print Network [OSTI]

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

273

Fracture-Induced Anisotropic Attenuation  

E-Print Network [OSTI]

simplicity. The expanded fracture compliance matrix of each set is. Sf ¼ s11 s12. 0 ..... ?59?. (in MPa), where q = 2,300 kg/m3, e.g., c11 = 23 GPa . We assume a ...

2012-03-23T23:59:59.000Z

274

Queen Anne's County- Solar Zoning  

Broader source: Energy.gov [DOE]

Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

275

Opportunity and Enterprise Zones (Oklahoma)  

Broader source: Energy.gov [DOE]

Opportunity and Enterprise Zones provide enhanced financial incentives for businesses located in such zones aimed at stimulating economic expansion in rural and disadvantaged communities...

276

Keystone Opportunity Zones (Pennsylvania)  

Broader source: Energy.gov [DOE]

Keystone Opportunity Zones allows businesses located within designated areas to qualify for a tax exemption, deduction, credit, or abatement of state and local taxes such as sales and use tax,...

277

Development Opportunity Zone Credit  

Broader source: Energy.gov [DOE]

The Development Opportunity Zone Credits incent new and expanding businesses in the Cities of Beloit, Janesville and Kenosha by providing non-refundable tax credits to assist with the creation and...

278

Enterprise Zone Program (Texas)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program eligible projects to apply for state sales and use tax refunds on purchases of all taxable items purchased for use at qualified business sites related to the project or...

279

Enterprise Zone Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Enterprise Zone Program is a jobs incentive program providing Louisiana income and franchise tax credits to businesses hiring at least 35% of net, new jobs from targeted groups. Enterprise...

280

Streamside Management Zones (Montana)  

Broader source: Energy.gov [DOE]

This chapter sets streamside management zones as encompassing a strip at least 50 feet wide on each side of a stream, lake, or other body of water, measured from the ordinary high-water mark, and...

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Earthquake behavior and structure of oceanic transform faults  

E-Print Network [OSTI]

Oceanic transform faults that accommodate strain at mid-ocean ridge offsets represent a unique environment for studying fault mechanics. Here, I use seismic observations and models to explore how fault structure affects ...

Roland, Emily Carlson

2012-01-01T23:59:59.000Z

282

Low-cost motor drive embedded fault diagnosis systems  

E-Print Network [OSTI]

Electric motors are used widely in industrial manufacturing plants. Bearing faults, insulation faults, and rotor faults are the major causes of electric motor failures. Based on the line current analysis, this dissertation mainly deals with the low...

Akin, Bilal

2009-05-15T23:59:59.000Z

283

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

284

Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole  

E-Print Network [OSTI]

Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

Bakku, Sudhish Kumar

2011-01-01T23:59:59.000Z

285

Magic angles and cross-hatching instability in hydrogel fracture  

E-Print Network [OSTI]

The full 2D analysis of roughness profiles of fracture surfaces resulting from quasi-static crack propagation in gelatin gels reveals an original behavior characterized by (i) strong anisotropy with maximum roughness at $V$-independent symmetry-preserving angles, (ii) a sub-critical instability leading, below a critical velocity, to a cross-hatched regime due to straight macrosteps drifting at the same magic angles and nucleated on crack-pinning network inhomogeneities. Step height values are determined by the width of the strain-hardened zone, governed by the elastic crack blunting characteristic of soft solids with breaking stresses much larger that low strain moduli.

Tristan Baumberger; Christiane Caroli; David Martina; Olivier Ronsin

2008-02-29T23:59:59.000Z

286

INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA  

E-Print Network [OSTI]

Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

287

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...  

Open Energy Info (EERE)

between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets...

288

Fracture Evolution Following a Hydraulic Stimulation within an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution...

289

Aging and Fracture of Human Cortical Bone and Tooth Dentin  

E-Print Network [OSTI]

Mechanistic aspects of fracture and R-curve behavior inof failure of solid biomaterials and bone: `fracture' and `pre- fracture' toughness. Materials Science and Engineering:

Ager III, Joel W.

2008-01-01T23:59:59.000Z

290

Poroelastic modeling of seismic boundary conditions across a fracture  

E-Print Network [OSTI]

on poroelasticity of fractures. Both authors would like toYork. Figure 3: For a high permeability fracture, the fluidpressure across the fracture is continuous, which can be

Schoenberg, M.A.; Nakagawa, S.

2006-01-01T23:59:59.000Z

291

DNAPL invasion into a partially saturated dead-end fracture  

E-Print Network [OSTI]

Mobilization in Rock Fractures, Water Resources Research,of DNAPL trapped in dead-end fractures, Geophysical Researchpartially saturated dead-end fracture and a DNAPL lens above

Su, Grace W.; Javandel, Iraj

2008-01-01T23:59:59.000Z

292

Updated fracture incidence rates for the US version of FRAX®  

E-Print Network [OSTI]

presenting with non-vertebral fractures. Osteoporos Int 18:2006) Epidemiology of vertebral fractures: implications forORIGINAL ARTICLE Updated fracture incidence rates for the US

Ettinger, B.; Black, D. M.; Dawson-Hughes, B.; Pressman, A. R.; Melton, L. J.

2010-01-01T23:59:59.000Z

293

Transphyseal Fracture of the Distal Humerus in a Neonate  

E-Print Network [OSTI]

M edicine Transphyseal Fracture of the Distal Humerus in aalignment without osseous fracture and a moderate joint2] revealed a transverse fracture through the distal left

Baker, Annalee M; Methratta, Sosamma T.; Choudhary, Arabinda K

2011-01-01T23:59:59.000Z

294

active fault segments: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fault activation Kuzmanov, Georgi 140 Early stage evolution of growth faults: 3D seismic insights from the Levant Basin, Eastern Mediterranean Materials Science Websites...

295

Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems  

E-Print Network [OSTI]

in Fault Diagnostics for HVAC Systems Massieh Najafi 1 ,tools for determining HVAC diagnostics, methods todetect faults in HVAC systems are still generally

Najafi, Massieh

2010-01-01T23:59:59.000Z

296

Sensor Fault Diagnosis Using Principal Component Analysis  

E-Print Network [OSTI]

The purpose of this research is to address the problem of fault diagnosis of sensors which measure a set of direct redundant variables. This study proposes: 1. A method for linear senor fault diagnosis 2. An analysis of isolability and detectability...

Sharifi, Mahmoudreza

2010-07-14T23:59:59.000Z

297

Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

1992-01-01T23:59:59.000Z

298

Self-triggering superconducting fault current limiter  

DOE Patents [OSTI]

A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

Yuan, Xing (Albany, NY); Tekletsadik, Kasegn (Rexford, NY)

2008-10-21T23:59:59.000Z

299

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network [OSTI]

reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

300

Phase I (Year 1) Summary of Research--Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin  

SciTech Connect (OSTI)

This topical report covers the first 12 months of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). Phase I tasks, including Developing a Reservoir Catalog for selected dolomite reservoirs in the Michigan Basin, Characterization of Dolomite Reservoirs in Representative Fields and Technology Transfer have all been initiated and progress is consistent with our original scheduling. The development of a reservoir catalog for the 3 subject formations in the Michigan Basin has been a primary focus of our efforts during Phase I. As part of this effort, we currently have scanned some 13,000 wireline logs, and compiled in excess of 940 key references and 275 reprints that cover reservoir aspects of the 3 intervals in the Michigan Basin. A summary evaluation of the data in these publications is currently ongoing, with the Silurian Niagara Group being handled as a first priority. In addition, full production and reservoir parameter data bases obtained from available data sources have been developed for the 3 intervals in Excel and Microsoft Access data bases. We currently have an excess of 25 million cells of data for wells in the Basin. All Task 2 objectives are on time and on target for Phase I per our original proposal. Our mapping efforts to date, which have focused in large part on the Devonian Dundee Formation, have important implications for both new exploration plays and improved enhanced recovery methods in the Dundee ''play'' in Michigan--i.e. the interpreted fracture-related dolomitization control on the distribution of hydrocarbon reservoirs. In an exploration context, high-resolution structure mapping using quality-controlled well data should provide leads to convergence zones of fault/fracture trends that are not necessarily related to structural elevation. Further work in Phase II will be focused on delineating the relative contribution to fracture-only dolomitization to that which occurs in conjunction with primary facies and/or sequence stratigraphic framework.

G. Michael Grammer

2005-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Structural analysis of an Inverted half-graben: Implications for fracture distribution and reservior quality in Point Arguello oil field  

SciTech Connect (OSTI)

Analysis of 3-D seismic and well data suggests that the present-day Point Arguello anticline contains part of a northward-elongate Miocene-Pliocene half graben that was compressionally inverted to a northwest-trending double-plunging anticline during the Pliocene-Pleistocene. Upper Sisquoc and Foxen sedimentation postdated the normal faulting event so the shape of the fold at these stratigraphic levels is relatively simple, being the product of only the late, compressional event. Refolding of the earlier rift structure resulted, however, in a relatively complicted saddle-shaped anticline at lower Sisquoc and Monterey reservoir levels. Nevertheless, we observe that several distinct homolinal-dipping panels of rock (kink bands) define the fold shape at reservoir level. We perform a structural analysis using fault-related fold theory and the new technique of Axial Surface Mapping to map kink bands at Monterey reservoir level. Although both folding events produced kink bands, open permeable fractures are associated with the late compression, whereas filled, crenulated fractures likely formed earlier by compaction of syntextensional sediments. Therefore, we predict a greater fracture density within kink bands formed during the late folding event. We also predict better reservoir quality within kink bands within the plunging ends of the structure which show structural thinning and more numerous small faults in seismic profiles than in non-thinned fold limbs. Qualitative predictions of fracture density and reservoir quality based on the fold history and geometry of individual kink bands compare favorably with fracture measurements in core and drill-stem test results.

Genovese, P.G.; Suppe, J. (Princeton Univ., NJ (United States))

1994-04-01T23:59:59.000Z

302

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

303

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

304

Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models  

E-Print Network [OSTI]

Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

Kim, Tae Hyung

2009-05-15T23:59:59.000Z

305

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND  

E-Print Network [OSTI]

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND FRAGMENTATION OF BRITTLE element simulations of dynamic fracture and fragmentation of brittle solids are presented. Fracture the results of massively parallel numerical simulations of dynamic fracture and fragmentation in brittle

Barr, Al

306

Intergranular fracture in UO{sub 2}: derivation of traction-separation law from atomistic simulations  

SciTech Connect (OSTI)

In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt ?5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)

Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.; Bai, Xian-Ming; Biner, S.B. [Fuels Modeling and Simulation Department, Idaho National Laboratory - INL, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

307

Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations  

SciTech Connect (OSTI)

In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

2013-10-01T23:59:59.000Z

308

Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota  

SciTech Connect (OSTI)

Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

Freisatz, W.B.

1988-07-01T23:59:59.000Z

309

Method for directional hydraulic fracturing  

DOE Patents [OSTI]

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

310

Inversion of Scattered Waves for Material Properties in Fractured Rock  

SciTech Connect (OSTI)

The authors apply a recently developed low-frequency, non-linear inversion method which includes near and far field terms to a crosshole data set to determine the bulk and shear modulus, as well as the density for a fractured zone in a granitic rock mass. The method uses the scattered elastic wavefield which is extracted from the recorded data before the inversion is performed. The inversion result is appraised by investigating the resolution and standard deviation of the model estimates. The sensitivity of the three parameters to different features of the medium is revealed. While the bulk modulus appears to be sensitive to voids and welded contacts, the density is mostly affected by fractured zones. The shear modulus is least constrained due to the absence of S wave anisotropy information. It is shown that the three medium parameters are generally sensitive to other medium features than those determined by velocity inversions. Thus this method is viewed as a complimentary approach to travel time tomography which provides more insight into the material properties of inhomogeneous media.

Gritto, Roland; Korneev, Valeri A.; Johnson, Lane R.

1999-07-01T23:59:59.000Z

311

Nonplanar fracture propagation from a horizontal wellbore: Experimental study  

SciTech Connect (OSTI)

This paper presents experimental results related to hydraulic fracturing of a horizontal well, specifically the nonplanar fracture geometries resulting from fracture initiation and propagation. Experiments were designed to investigate nonplanar fracture geometries. This paper discusses how these nonplanar fractures can be responsible for premature screenout and excessive treatment pressure when a horizontal well is hydraulically fractured. Reasons for unsuccessful hydraulic fracturing treatments of a horizontal well are presented and recommendations to ensure clear communication channels between the wellbore and the fracture are given.

Abass, H.H.; Hedayati, S.; Meadows, D.L.

1996-08-01T23:59:59.000Z

312

Harmonic experiments to model fracture induced anisotropy KAUST ...  

E-Print Network [OSTI]

May 9, 2012 ... hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks. Harmonic experiments to model fracture induced anisotropy ...

santos,,,

313

Tracer Methods for Characterizing Fracture Stimulation in Engineered...  

Broader source: Energy.gov (indexed) [DOE]

Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS) Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal...

314

Three Models for Water ooding in a Naturally Fractured Petroleum ...  

E-Print Network [OSTI]

THREE MODELS FOR WATERFLOODING IN A NATURALLY. FRACTURED ... 1. Introduction. For the purposes of this paper a naturally fractured reservoir.

315

Modeling of Acid Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

Al Jawad, Murtada s

2014-06-05T23:59:59.000Z

316

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

during hydraulic fracturing Moore and Glaser, in press JGR,press JGR, B – 2006JB004373 where m is the average hydraulichydraulic fracturing with water. Moore and Glaser, in press

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

317

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network [OSTI]

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

318

Fluid Flow Simulation in Fractured Reservoirs  

E-Print Network [OSTI]

The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

Sarkar, Sudipta

2002-01-01T23:59:59.000Z

319

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

E-Print Network [OSTI]

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

Lu, Zhiming

320

A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling  

E-Print Network [OSTI]

A model of fracture nucleation, growth and arrest, and consequences for fracture density; accepted 1 February 2013; published 25 April 2013. [1] In order to improve discrete fracture network (DFN a new DFN modeling based on the evolution of fracture network formation--nucleation, growth, and arrest

Boyer, Edmond

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of  

E-Print Network [OSTI]

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of Deformation and Fracture in Polycrystalline -TiAl + 2-Ti3Al Single Crystals #12;Use of -TiAl + 2-Ti3Al Alloys-Temperature Ductility ·Low Ambient-Temperature Fracture Toughness (KIC

Grujicic, Mica

322

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and  

E-Print Network [OSTI]

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous; accepted 23 January 2002 Abstract Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by Weibull statistics. This nonlocal fracture model allows

Ritchie, Robert

323

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials  

E-Print Network [OSTI]

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials H.D. Espinosa* and B. Peng ABSTRACT This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film

Espinosa, Horacio D.

324

Mechanical Models of Fault-Related Folding  

SciTech Connect (OSTI)

The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

Johnson, A. M.

2003-01-09T23:59:59.000Z

325

Unsaturated Zone I. Overview  

E-Print Network [OSTI]

Chapter 2 Unsaturated Zone I. Overview If the Yucca Mountain site is deemed suitable for re of the extent of welding, the tuffs within the UZ at Yucca Mountain are grouped informally into hydrogeologic Yucca Mountain is illustrated in Figure 2-1 on page 14. A. Why UZ Was Chosen Initial studies of Yucca

326

Discrete fracture modeling for fractured reservoirs using Voronoi grid blocks  

E-Print Network [OSTI]

or pseudofracture groups modeled in their own grid blocks. Discrete Fracture Modeling (DFN) is still a relatively new field, and most research on it up to this point has been done with Delaunay tessellations. This research investigates an alternative approach using...

Gross, Matthew Edward

2007-09-17T23:59:59.000Z

327

Neural net application to transmission line fault detection and classification  

E-Print Network [OSTI]

, is to perform fault analysis by expert operators using their knowledge about the power systems and experience with past faults. Because of the time required to deal with complex fault situations, detailed fault analysis can not be performed by human operators...

Rikalo, Igor

1994-01-01T23:59:59.000Z

328

Wave Propagation in Fractured Poroelastic Media  

E-Print Network [OSTI]

Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

329

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

SciTech Connect (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

330

Acoustic-emission monitoring during hydraulic fracturing  

SciTech Connect (OSTI)

This paper reports that microseismic events or acoustic emissions associated with hydraulic fracturing are recorded with a borehole seismic tool in a deviated well during multirate injection, shut-in, and flowback. The event locations indicate that fracture orientation, length, and height are compatible with regional stress directions and estimates of the fracture size that are based on pressure decline.

Stewart, L. (Schlumberger-Doll Research (US)); Cassell, B.R. (Schlumberger Wireline Services (US)); Bol, G.M. (Nederlanse Aardolie Mij. B.V. (NL))

1992-06-01T23:59:59.000Z

331

Hydraulic Fracturing in Michigan Integrated Assessment  

E-Print Network [OSTI]

Hydraulic Fracturing in Michigan Integrated Assessment #12;Agenda · Welcome and introduction and timeline · Panel presentation and discussion · Facilitated Q & A · Closing remarks #12;Hydraulic Fracturing · Leverages resources IA BENEFITS Benefits of Integrated Assessment #12;Key Points: · Hydraulic Fracturing (HF

Kamat, Vineet R.

332

Regulation of Hydraulic Fracturing in California  

E-Print Network [OSTI]

APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

Kammen, Daniel M.

333

Fractured shale reservoirs: Towards a realistic model  

SciTech Connect (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

334

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation  

E-Print Network [OSTI]

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation Presented to the Faculty of the Graduate School by Ashivni Shekhawat May 2013 #12;c 2013 Ashivni Shekhawat ALL RIGHTS RESERVED #12;FRACTURE IN DISORDERED- lem of brittle fracture in disordered media. Chapters 2 and 4 are concerned with various aspects

Sethna, James P.

335

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES  

E-Print Network [OSTI]

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES DURING CRACK PROPAGATION Noah Matsumoto Structural, USA * Corresponding author: John.Nairn@oregonstate.edu SWST member #12;Fracture Toughness of Wood and Wood Composites During Crack Propagation ABSTRACT The mode I fracture toughness as a function of crack

Nairn, John A.

336

Models for MetaVCeramic Interface Fracture  

E-Print Network [OSTI]

ChaDter 12 Models for MetaVCeramic Interface Fracture ZHIGANG SUO C. FONG SHIH Metal shortcomingthat haslimited their wide- spread use-their tendency to fracture easily. In many systems, the low on interface fracture are reviewed in this chapter. With few exceptions, attention is limited to continuum

Suo, Zhigang

337

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Interferometric hydrofracture microseism localization using neighboring fracture Oleg V. Poliannikov1 , Alison E. Malcolm1 , Hugues Djikpesse2 , and Michael Prange2 ABSTRACT Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir

Malcolm, Alison

338

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

Peirce, Anthony

339

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

Peirce, Anthony

340

Introduction That fracture is governed by processes  

E-Print Network [OSTI]

Introduction That fracture is governed by processes occurring over a wide range of length scales has been recognized since the earli- est developments of modern fracture me- chanics. Griffith's study by several decades the first at- tempts to apply atomistically grounded traction-separation laws to fracture

Beltz, Glenn E.

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LA-13194-MS Fracture Characterization of the  

E-Print Network [OSTI]

LA-13194-MS Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41) LosN A T I technical correctness. #12;Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41 Los Alamos, New Mexico 87545 #12;1 Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2

342

THE INFLUENCE OF FOLD AND FRACTURE DEVELOPMENT ON RESERVOIR BEHAVIOR OF THE LISBURNE GROUP OF NORTHERN ALASKA  

SciTech Connect (OSTI)

The Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is detachment folded where it is exposed throughout the northeastern Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study are to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of detachment folds and their truncation by thrust faults. (2) The influence of folding and lithostratigraphy on fracture patterns. (3) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. (4) The influence of lithostratigraphy and deformation on fluid flow. The results of field work during the summer of 1999 offer some preliminary insights: The Lisburne Limestone displays a range of symmetrical detachment fold geometries throughout the northeastern Brooks Range. The variation in fold geometry suggests a generalized progression in fold geometry with increasing shortening: Straight-limbed, narrow-crested folds at low shortening, box folds at intermediate shortening, and folds with a large height-to-width ratio and thickened hinges at high shortening. This sequence is interpreted to represent a progressive change in the dominant shortening mechanism from flexural-slip at low shortening to bulk strain at higher shortening. Structural variations in bed thickness occur throughout this progression. Parasitic folding accommodates structural thickening at low shortening and is gradually succeeded by penetrative strain as shortening increases. The amount of structural thickening at low to intermediate shortening may be inversely related to the local amount of structural thickening of the Kayak Shale, the incompetent unit that underlies the Lisburne. The Lisburne Limestone displays a different structural style in the south, across the boundary between the northeastern Brooks Range and the main axis of the Brooks Range fold-and-thrust belt. The steep forelimbs of angular asymmetrical folds typically have been cut and displaced by thrust faults, resulting in superposition of a fault-bend fold geometry on the truncated folds. Remnant uncut folds within trains of thrust-truncated folds and the predominance of detachment folds to the north suggest that these folds originated as detachment folds. Fold asymmetry and a more uniformly competent Lisburne Limestone may have favored accommodation of a significant proportion of shortening by thrust faulting, in contrast with the dominance of fold shortening to the north. Two dominant sets of fractures are present in the least deformed Lisburne Limestone: Early extension fractures normal to the regional fold trend and late extension and shear fractures parallel to the regional fold trend. These two major fracture sets remain as deformation increases, but they are more variable in orientation, character, and relative age. Compared to fold limbs, the fold hinges display greater density and extent of fractures, more conjugate and shear fractures, and more evidence of penetrative strain. This suggests that hinges remained fixed during fold growth. Late extension fractures normal to the fold axis are common even where penetrative strain is greatest. Fracture density is greater in fine-grained carbonates than in coarse-grained carbonates over the entire spectrum of deformation.

Wesley K. Wallace; Catherine L. Hanks; Michael T. Whalen; Jerry Jensen; Paul K. Atkinson; Joseph S. Brinton

2000-05-01T23:59:59.000Z

343

Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs  

SciTech Connect (OSTI)

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

344

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

345

EnginEEring ZonE "The Engineering Zone  

E-Print Network [OSTI]

EnginEEring ZonE "The Engineering Zone will push the limits in collaborative learning and research, and empower people to change the world. "Winthrop Professor John Dell Dean, Faculty of Engineering, Computing and Mathematics #12;2 | nEw CEntury Campaign ­ EnginEEring ZonE #12;nEw CEntury Campaign ­ EnginEEring ZonE | 3

Tobar, Michael

346

Capillary fracture of soft gels  

E-Print Network [OSTI]

A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact-line in a starburst pattern. In this paper, we characterize i) the initiation process in which the number of arms in the starburst is controlled by the ratio of surface tension contrast to the gel's elastic modulus and ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law $L\\propto t^{3/4}$. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid/solid wetting forces. The elastic solution shows that both the location and magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an impo...

Bostwick, Joshua B

2013-01-01T23:59:59.000Z

347

Relative Permeability of Fractured Rock  

E-Print Network [OSTI]

, and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;#12;v Abstract fractures and various fluids have yielded different relative permeability-saturation relations. This study

Stanford University

348

Fault Tolerant Control using Cartesian Genetic Programming  

E-Print Network [OSTI]

Fault Tolerant Control using Cartesian Genetic Programming Yoshikazu Hirayama University of York]: Robotics-- Sensors; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems General Terms Algorithms, Reliability Keywords cartesian genetic programming, evolutionary

Fernandez, Thomas

349

www.VadoseZoneJournal.org Vadose Zone Journal  

E-Print Network [OSTI]

and internationally. The high proportion of scholarly submissions from international scien- tists outsidewww.VadoseZoneJournal.org Vadose Zone Journal: The First Ten Years We proudly present a special section inspired by the 10-year anniversary of Vadose Zone Journal. From the outset, the journal

Vrugt, Jasper A.

350

Radiant zone heated particulate filter  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

Gonze, Eugene V [Pinckney, MI

2011-12-27T23:59:59.000Z

351

City of Austin- Zoning Code  

Broader source: Energy.gov [DOE]

The Zoning Code (Chapter 25-2) of the Austin City Code provides a height limitation exemption for solar installations. Solar installations may exceed the zoning district height limit by 15% or the...

352

The Enterprise Zone (Rhode Island)  

Broader source: Energy.gov [DOE]

The Enterprise Zone offers tax incentives to business expanding their workforce by 5% at facilities in designated enterprise zones. The tax credit is equal to 50% of the annual wages paid to a new...

353

Empowerment Zone Tax Credit (Montana)  

Broader source: Energy.gov [DOE]

The Empowerment Zone Tax Credit allows for eligible businesses located in such zones a $500 credit against income tax liability for each qualifying employee the first year, $1,000 for the second...

354

CONSTRAINT EFFECT IN FRACTURE WHAT IS IT  

SciTech Connect (OSTI)

The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.

Lam, P; Prof. Yuh J. Chao, P

2008-10-29T23:59:59.000Z

355

Vadose zone water fluxmeter  

DOE Patents [OSTI]

A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

Faybishenko, Boris A.

2005-10-25T23:59:59.000Z

356

RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

Abbas Firoozabadi

2002-04-12T23:59:59.000Z

357

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network [OSTI]

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

358

Experience proves forced fracture closure works  

SciTech Connect (OSTI)

Forced closure, or perhaps better-named ``reverse gravel packing,`` of fractures immediately following hydraulic fracturing with proppant and gelled fluids is a technique which, with rare exception, can be extremely beneficial to the success of almost every hydraulic fracture treatment. By proper planning of the rig-up to allow immediate flow-back, substantial quantities of polymer and load fluid can be removed while simultaneously negating undesirable proppant settling within fractures in the near wellbore area. Fracture smearing (dilution of proppant into an extending fracture) after shutdown can be negated. And in most cases, proppant production from the formation can be reduced. Discussions in the article explain why Ely and Associates has the confidence to make these claims after extensive hydraulic fracturing experience in many geographical areas.

Ely, J.W. [John Ely and Associates, Inc., Houston, TX (United States)

1996-01-01T23:59:59.000Z

359

Alberta Health Services, Calgary Zone  

E-Print Network [OSTI]

Organizational Chart ­ AHS, Calgary Zone, Community, Rural and Mental Health Page 12 Organizational Chart ­ AHS, Calgary Zone, Addiction and Mental Health Page 13 Organizational Chart ­ AHS, Calgary Zone, Clinical specialty care clinics. 3) Increasing efficiency in our specialty clinics. 4) Standardizing care

Habib, Ayman

360

Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures  

SciTech Connect (OSTI)

Schoenberg's Linear-slip Interface (LSI) model for single, compliant, viscoelastic fractures has been extended to poroelastic fractures for predicting seismic wave scattering. However, this extended model results in no impact of the in-plane fracture permeability on the scattering. Recently, we proposed a variant of the LSI model considering the heterogeneity in the in-plane fracture properties. This modified model considers wave-induced, fracture-parallel fluid flow induced by passing seismic waves. The research discussed in this paper applies this new LSI model to heterogeneous fractures to examine when and how the permeability of a fracture is reflected in the scattering of seismic waves. From numerical simulations, we conclude that the heterogeneity in the fracture properties is essential for the scattering of seismic waves to be sensitive to the permeability of a fracture.

Nakagawa, S.; Myer, L.R.

2009-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Acid Fracture and Fracture Conductivity Study of Field Rock Samples  

E-Print Network [OSTI]

(Black and Hower 1965). Clays consist of negatively charged aluminosilicate layers kept together by cations. The most characteristic property is their ability to adsorb water between the layers, resulting in strong repulsive forces and clay expansion... chemicals used in water fracturing such as friction reducers, fluid-loss additives, and surfactants (Black and Hower 1965). The samples used in this study had significant clay-like content. To prevent swelling, a 2% KCl solution was used throughout...

Underwood, Jarrod

2013-11-15T23:59:59.000Z

362

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network [OSTI]

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

363

Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation  

SciTech Connect (OSTI)

Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

2011-05-15T23:59:59.000Z

364

Laboratory Study to Identify the Impact of Fracture Design Parameters over the Final Fracture Conductivity Using the Dynamic Fracture Conductivity Test Procedure  

E-Print Network [OSTI]

such as closure stress, and temperature and fracture fluid parameters such as proppant loading over the final conductivity of a hydraulic fracture treatment. With the purpose of estimating the relation between fracture conductivity and the design parameters, two...

Pieve La Rosa, Andres Eduardo

2011-08-08T23:59:59.000Z

365

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

366

Fault Locating, Prediction and Protection (FLPPS)  

SciTech Connect (OSTI)

One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

2010-09-30T23:59:59.000Z

367

Hydraulic fracturing: A proven N.O.R.M. disposal method  

SciTech Connect (OSTI)

Since the discovery that many drill cuttings, scales, sludges, and platings contain elevated amounts of naturally occurring radioactive material (NORM), many companies and regulating authorities have discussed the merits of various disposal methods. This paper covers a process that disposes of NORM and provides isolation of the material from the environment. Disposal of NORM slurry through fracturing an existing depleted sandstone requires careful analysis to optimize a safe and effective design. A radioactivity assay was performed on the NORM before and after slurrification to determine activity concentrations. Tests were conducted on the NORM to proved parameters for the fracture design. The process consists of slurrying the material and keeping the particles suspended in solution until time for well injection. Well injection takes the form of hydraulic fracturing with the material into a deplete zone in the reservoir. Fracturing with the NORM was preceded with a Mini-Frac as a safety precaution to confirm downhole parameters. In conclusion, the philosophy of the process is to take the NORM generated through the exploration and production of oil and gas and place it back into the reservoir from which it came through hydraulic fracturing. This technique is one that helps protect the environment from the possible hazards associated with mismanaged NORM.

Young, S.C. [Halliburton Energy Services, New Orleans, LA (United States); Chambers, D.G. [Halliburton Energy Services, Lafayette, LA (United States); Woods, S.E.; Abernathy, S.E. [Halliburton Energy Services, Duncan, OK (United States)

1995-10-01T23:59:59.000Z

368

Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.  

SciTech Connect (OSTI)

In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components have also been evaluated.

Chopra, O. K.; Shack, W. J.

2008-01-21T23:59:59.000Z

369

Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994  

SciTech Connect (OSTI)

This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

NONE

1994-10-01T23:59:59.000Z

370

Liquid zone seal  

DOE Patents [OSTI]

A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

Klebanoff, Leonard E. (Dublin, CA)

2001-01-01T23:59:59.000Z

371

Geothermal: Educational Zone  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATEDOEFinal REducational Zone

372

Using seismic tomography to characterize fracture systems induced by hydraulic fracturing  

SciTech Connect (OSTI)

Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

Fehler, M.; Rutledge, J.

1995-01-01T23:59:59.000Z

373

The paragenesis of alteration associated with the P2 fault in the basement rocks of the Athabasca Basin E. E. Adlakha , K. Hattori , University of Ottawa: adla028@uottawa.ca, khattori@uOttawa.ca  

E-Print Network [OSTI]

.7 m MC-344 EOH 661 m 0 50 150100 meters SS WS 0.031% U O / 0.3 m3 8 0 50 150100 meters ~Start of Green Graphitic Pelitic Gneiss P2 Fault zone 0.911% U O / 22.8 m3 8 L 260+00 E NW SE NW SE 0 25 meters Zone 2 Mc 1, nine from Zone 2 (main ore body), and one from Zone 3. in August, 2012, Fair Point Smart Read

374

Fracture induced anisotropy in viscoelastic UNLP, 11 Octubre de 2012  

E-Print Network [OSTI]

Fracture induced anisotropy in viscoelastic media UNLP, 11 Octubre de 2012 . Fracture induced anisotropy in viscoelastic media ­ p. #12;Fractured media. I Fractures are common in the earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused

Santos, Juan

375

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

376

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

377

The Influence of fold and fracture development on reservoir behavior of the Lisburne Group of northern Alaska  

SciTech Connect (OSTI)

The Carboniferous Lisburne Group is a major carbonate reservoir unit in northern Alaska. The Lisburne is folded and thrust faulted where it is exposed throughout the Brooks Range, but is relatively undeformed in areas of current production in the subsurface of the North Slope. The objectives of this study were to develop a better understanding of four major aspects of the Lisburne: (1) The geometry and kinematics of folds and their truncation by thrust faults. (2) The influence of folding on fracture patterns. (3) The influence of deformation on fluid flow. (4) Lithostratigraphy and its influence on folding, faulting, fracturing, and reservoir characteristics. Symmetrical detachment folds characterize the Lisburne in the northeastern Brooks Range. In contrast, Lisburne in the main axis of the Brooks Range is deformed into imbricate thrust sheets with asymmetrical hangingwall anticlines and footwall synclines. The Continental Divide thrust front separates these different structural styles in the Lisburne and also marks the southern boundary of the northeastern Brooks Range. Field studies were conducted for this project during 1999 to 2001 in various locations in the northeastern Brooks Range and in the vicinity of Porcupine Lake, immediately south of the Continental Divide thrust front. Results are summarized below for the four main subject areas of the study.

Wesley K. Wallace; Catherine L. Hanks; Jerry Jensen: Michael T. Whalen; Paul Atkinson; Joseph Brinton; Thang Bui; Margarete Jadamec; Alexandre Karpov; John Lorenz; Michelle M. McGee; T.M. Parris; Ryan Shackleton

2004-07-01T23:59:59.000Z

378

VCSEL fault location apparatus and method  

DOE Patents [OSTI]

An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

2007-05-15T23:59:59.000Z

379

Hydraulic fracturing in tight, fissured media  

SciTech Connect (OSTI)

Large volumes of natural gas are found in tight, fissured reservoirs. Hydraulic fracturing can enhance recovery, but many complications, such as pressure-sensitive or accelerated leakoff, damage, and complex fracturing, arise during treatment of such reservoirs. This paper reports that special procedures generally should be considered during breakdown and fracturing of these reservoirs. In addition, the use of alternative stimulation strategies may be beneficial.

Warpinski, N.R. (Sandia National Lab., Albuquerque, NM (US))

1991-02-01T23:59:59.000Z

380

Synthesis and evaluation of fault-tolerant quantum computer architectures  

E-Print Network [OSTI]

Fault-tolerance is the cornerstone of practical, large-scale quantum computing, pushed into its prominent position with heroic theoretical efforts. The fault-tolerance threshold, which is the component failure probability ...

Cross, Andrew W. (Andrew William), 1979-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Observations on the capability of the Criner fault, southern Oklahoma  

E-Print Network [OSTI]

Results of previous investigations have indicated the possibility that recent deformation has occurred on the Criner fault of southern Oklahoma. The Criner fault is located in Carter and Love Counties, Oklahoma, approximately 100 kilometers...

Williamson, Shawn Collin

2012-06-07T23:59:59.000Z

382

Scalable, Fault-tolerant Management in a Service Oriented Architecture  

E-Print Network [OSTI]

Scalable, Fault-tolerant Management in a Service Oriented Architecture Harshawardhan Gadgil: Scalable, Fault-tolerance, Service Oriented Management, Architecture 1. Introduction With the explosion. The service-oriented architecture provides a simple and flexible framework for building sophisticated

383

FEATURE BASED HANDLING OF SURFACE FAULTS IN COMPACT DISC PLAYERS  

E-Print Network [OSTI]

two photo detectors. The distances are the distance from the actual position of the OPU such surface faults. The core idea is not to rely on sensor information during the fault. The sensor signals

Wickerhauser, M. Victor

384

New approach to the fault location problem using synchronized sampling  

E-Print Network [OSTI]

This thesis presents a new approach to solving the problem of fault location on a transmission line using synchronized data from both ends of the line. The synchronized phase voltage and current samples taken during the fault transient are used...

Mrkic, Jasna

2012-06-07T23:59:59.000Z

385

Frictional properties of faults: from observation on the  

E-Print Network [OSTI]

Frictional properties of faults: from observation on the Longitudinal Valley Fault, Taiwan myself lucky to do what I love and to wake up every day, happy and excited about the day to come

Winfree, Erik

386

Robust model-based fault diagnosis for chemical process systems  

E-Print Network [OSTI]

diagnosis systems, which use limited information about the process model to robustly detect, discriminate, and reconstruct instrumentation faults. Broadly, the proposed method consists of a novel nonlinear state and parameter estimator coupled with a fault...

Rajaraman, Srinivasan

2006-08-16T23:59:59.000Z

387

Wave Propagation in Fractured Poroelastic Media  

E-Print Network [OSTI]

Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,

2014-06-22T23:59:59.000Z

388

Fracture permeability and seismic wave scattering ŒPoroelastic ...  

E-Print Network [OSTI]

Jun 18, 2010 ... The new model contains fracture permeability in the plan-parallel direction. ... Division of Chemical Sciences of the U.S. Department of Energy ...

Seiji Nakagawa

2010-02-03T23:59:59.000Z

389

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

390

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

391

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

392

Microseismic Tracer Particles for Hydraulic Fracturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can be discriminateddetected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow...

393

Regional Analysis And Characterization Of Fractured Aquifers...  

Open Energy Info (EERE)

geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available...

394

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

1 4.5.1 Microearthquake Technology for EGS Fracture Characterization Presentation Number: 021 Investigator: Foulger, Gillian (Foulger Consulting) Objectives: To understand how EGS...

395

Development of a bridge fault extractor tool  

E-Print Network [OSTI]

are tools that analyze chip layouts and produce a realistic list of bridging faults within that chip. FedEx, previously developed at Texas A&M University, extracts all two-node intralayer bridges of any given chip layout and optionally extracts all two...) for this tool which aids in more effectively visualizing the bridge faults across the chip. The final aim of this thesis was to perform FedEx output analysis to understand the nature of the defects, such as variation of critical area (the area where...

Bhat, Nandan D.

2005-02-17T23:59:59.000Z

396

Geometrical and transport properties of single fractures: influence of the roughness of the fracture  

E-Print Network [OSTI]

Geometrical and transport properties of single fractures: influence of the roughness of the fracture walls H. Auradou Univ Pierre et Marie Curie-Paris6, Univ Paris-Sud, CNRS, F-91405. Lab FAST, Bat reviews the main features of the transport properties of single fractures. A particular attention paid

Paris-Sud XI, Université de

397

Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources  

SciTech Connect (OSTI)

This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

Keller, J.; Kroposki, B.

2010-01-01T23:59:59.000Z

398

Western Renewable Energy Zones (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

Hein, J.

2011-06-01T23:59:59.000Z

399

Mandatory Shoreland Zoning Act (Maine)  

Broader source: Energy.gov [DOE]

The Mandatory Shoreline Zoning Act functions as a directive for municipalities, who are required to adopt, administer, and enforce local ordinances that regulate land use activities in the...

400

Breathing zone air sampler  

SciTech Connect (OSTI)

A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, John (Bethel Park, PA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Breathing zone air sampler  

SciTech Connect (OSTI)

A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

Tobin, J.

1989-08-22T23:59:59.000Z

402

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

Murdoch, L. [FRx Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

1997-12-31T23:59:59.000Z

403

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network [OSTI]

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

404

A Parametric Spectral Estimator for Faults Detection in Induction Machines  

E-Print Network [OSTI]

for fault diagnosis in electrical machines. Current spectral estimation is usually performed using classical and productivity of electrical drives. For electrical motors and generators, fault detection is usually performedA Parametric Spectral Estimator for Faults Detection in Induction Machines El Houssin El Bouchikhi

Boyer, Edmond

405

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

Boyer, Edmond

406

Diverse neural net solutions to a fault diagnosis problem \\Lambda  

E-Print Network [OSTI]

Abstract The development of a neural net system for fault diagnosis in a mar­ ine diesel engine system solution to a problem of fault diagnosis in a four­stroke marine diesel engine; that of early to recognise faults in simulated data from a diesel engine; specifically to classify combustion condition

Sharkey, Amanda

407

Laboratory-scale fracture conductivity created by acid etching  

E-Print Network [OSTI]

Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

Pournik, Maysam

2009-05-15T23:59:59.000Z

408

FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES  

E-Print Network [OSTI]

FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES JOHN A. NAIRN INTRODUCTION damage following complex loading conditions. This chapter describes a fracture mechanics approach to the microcracking problem. A complicating feature of composite fracture mechanics analysis is that laminates often

Nairn, John A.

409

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

410

Ductile fracture modeling : theory, experimental investigation and numerical verification  

E-Print Network [OSTI]

The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

Xue, Liang, 1973-

2007-01-01T23:59:59.000Z

411

Numerical simulation of hydraulic fracturing  

E-Print Network [OSTI]

of Eq. 21, in its present form, is unstable. The change in fracture cell volume over the time step, BV/At, must be known to calculate pressures at the new time level. Since the value of the AV/At term is dependent on the pressure being solved for... is unconditionally stable and, therefore, guarantees a solution for any time step size~s. To implicitly expand the AV/At term, the pressure change component Ap /At must be extracted so that pex(t+At) can be placed ex on the left hand side of Eq. 21. The AV...

Warner, Joseph Barnes

1987-01-01T23:59:59.000Z

412

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network [OSTI]

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

413

Visualization of microcrack anisotropy in granite affected by a fault zone, using confocal laser scanning microscope  

E-Print Network [OSTI]

1996. Permeability in anisotropic granite under hydrostaticP. , 1995. Microfractography of granite rocks under confocalIllinois UHP3 drillhole granite and a comparison with other

Onishi, Celia T.; Shimizu, Ichiko

2004-01-01T23:59:59.000Z

414

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarListLiveFuels Inc Jump to:White

415

FEDMAP FY 2011 Projects 3D/4D Mapping of the San Andreas Fault Zone (Graymer)  

E-Print Network [OSTI]

of surface and groundwater sustainability, land-use planning, ecosystem health, climate change, and sea level Basin and Range Province. Location: Nevada Strategic Direction: Energy and Minerals, Natural Hazards: Colorado, New Mexico Website: http://crustal.cr.usgs.gov/projects/rgb Strategic Direction: Water Issues

416

Trapping capacity of fault zones, downdip Yegua Formation, Texas Gulf Coast basin  

E-Print Network [OSTI]

, Pittman's method gave the most reliable results for predicting capillary pressure and therefore the height of the oil column. However, all methods for predicting capillary pressure worked well for samples with porosities above 20% and permeabilities above...

Hintz, Jena Christine

2001-01-01T23:59:59.000Z

417

Modeling fault-zone guided waves of microearthquakes in a geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to: navigation, search

418

Pull-Apart in Strike-Slip Fault Zone | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky: Energy Resources Jump to:

419

Stepover or Relay Ramp in Normal Fault Zones | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen, Minnesota: Energy Resources JumpStepover or Relay Ramp in Normal

420

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open Energy InformationRe-Evaluation |

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Late Tertiary paleomagnetic data from Leyte, Philippines: implications for Philippine fault zone motion  

E-Print Network [OSTI]

= 20. 1' (oss ? 6. 6', le ? 29. 9) and a paleomagnetic pole A ? 89. 0" N, P ? 10. 4'E (Ass ? 4. 8', K ? 55. 3). Eight early Neogene sites (3 normal polarity and 5 reversed polarity) give a mean direction D = 23. 2', I = 13. 9' (oss ? 9. 3', k = 36.... 2) and a paleomagnetic pole A = 66. 5'N, 6 = 220. 5'E (Ass ? 7. 1', It = 62. 0). The late Veogene pole is indistinguishable at the 95% confidence level from published Plio-Pleistocene poles from the entire Philippines and the late Miocene pole...

Cole, Jay Timothy

1988-01-01T23:59:59.000Z

422

Fault Tolerant CORBASpecification, OMG document: ptc/20000404  

E-Print Network [OSTI]

Fault Tolerant CORBASpecification, V1.0 OMG document: ptc/2000­04­04 replaces draft adopted specification ptc/2000­03­04 and submission document orbos/00­01­19 This document is an OMG Final Adopted in the finalization phase. Comments on the content of this document are welcomed, and should be directed to issues

Roma "La Sapienza", Università di

423

Global Trajectory Planning for Fault Tolerant Manipulators  

E-Print Network [OSTI]

. Khosla Department of Electrical and Computer Engineering and The Robotics Institute, Carnegie Mellon attribute of robot manipulators in a growing range of applications such as space missions, nuclear waste retrieval, and medical robot­ ics. This trend has spawned a research effort in fault toler­ ant robotics

424

Fault-tolerant, Universal Adiabatic Quantum Computation  

E-Print Network [OSTI]

Quantum computation has revolutionary potential for speeding computational tasks such as factoring and simulating quantum systems, but the task of constructing a quantum computer is daunting. Adiabatic quantum computation and other ``hands-off" approaches relieve the need for rapid, precise pulsing to control the system, inspiring at least one high-profile effort to realize a hands-off quantum computing device. But is hands-off incompatible with fault-tolerant? Concerted effort and many innovative ideas have not resolved this question but have instead deepened it, linking it to fundamental problems in quantum complexity theory. Here we present a hands-off approach that is provably (a) capable of scalable universal quantum computation in a non-degenerate ground state and (b) fault-tolerant against an analogue of the usual local stochastic fault model. A satisfying physical and numerical argument indicates that (c) it is also fault-tolerant against thermal excitation below a threshold temperature independent of the computation size.

Ari Mizel

2014-03-30T23:59:59.000Z

425

All row, planar fault detection system  

DOE Patents [OSTI]

An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

2013-07-23T23:59:59.000Z

426

FPGA Interconnect Delay Fault Testing Erik Chmelar  

E-Print Network [OSTI]

A satisfactory FPGA testing method meets several crite- ria. First, the routing resources must be explicitlyFPGA Interconnect Delay Fault Testing Erik Chmelar Center for Reliable Computing Stanford is a scalable manufactur- ing test method for all SRAM-based FPGAs, able to detect multiple interconnect delay

Stanford University

427

Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method.  

E-Print Network [OSTI]

finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation...

Tao, Qingfeng

2010-07-14T23:59:59.000Z

428

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network [OSTI]

program. The main contributions of this work are: An optimal fracture design methodology called unified fracture design (UFD) is presented and damage effects are considered in the optimal design calculation. As a by-product of UFD, a fracture evaluation...

Wang, Wenxin

2006-04-12T23:59:59.000Z

429

Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine  

E-Print Network [OSTI]

injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

Rutqvist, J.

2011-01-01T23:59:59.000Z

430

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

E-Print Network [OSTI]

exchange process. Hydraulic fracturing, or hydrofracking, ismore detail below. Hydraulic fracturing, or hydrofracking,

Cotte, F.P.

2012-01-01T23:59:59.000Z

431

E-Print Network 3.0 - apophyseal ring fracture Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fracture Search Powered by Explorit Topic List Advanced Search Sample search results for: apophyseal ring fracture...

432

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

433

The Role of Geochemistry and Stress on Fracture Development and...  

Broader source: Energy.gov (indexed) [DOE]

The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs The Role of Geochemistry and Stress on Fracture Development and Proppant...

434

Detecting Fractures Using Technology at High Temperatures and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

435

Tracer Methods for Characterizing Fracture Creation in Enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

436

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir...

437

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

438

Detecting Fractures Using Technology at High Temperatures and...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug (Baker Hughes...

439

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS...

440

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Lianjie Huang Los Alamos National Lab Seismicity and Reservoir Fracture Characterization...

442

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

443

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

444

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

445

Joint inversion of electrical and seismic data for Fracture char...  

Broader source: Energy.gov (indexed) [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

446

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir DOE Geothermal Peer Review...

447

Poroelastic modeling of seismic boundary conditions across a fracture  

E-Print Network [OSTI]

Permeability of a fracture can affect how the fracture interacts with seismic waves. ... characteristic parameters that control the seismic response of single ...

2007-07-20T23:59:59.000Z

448

Finite Conductivity Fractures in Elliptical Coordinates  

E-Print Network [OSTI]

TO THE DEPARTMENT OF PETROLEUM ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL well performance. Indeed, a large number of wells, which could not otherwise be operated economically, it is important that means be available to evaluate fracture effectiveness. The most widely used tool in fracture

Stanford University

449

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

such as the Eagle Ford Shale. This work investigates the fracture conductivities of seven Eagle Ford Shale samples collected from an outcrop of facies B. Rough fractures were induced in the samples and laboratory experiments that closely followed the API RP-61...

Guzek, James J

2014-07-25T23:59:59.000Z

450

Accounting for Remaining Injected Fracturing Fluid  

E-Print Network [OSTI]

The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

Zhang, Yannan

2013-12-06T23:59:59.000Z

451

Fracture mechanics of cellular glass  

SciTech Connect (OSTI)

Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

Zwissler, J.G.; Adams, M.A.

1981-02-01T23:59:59.000Z

452

Coordinated Fault Tolerance for High-Performance Computing  

SciTech Connect (OSTI)

Our work to meet our goal of end-to-end fault tolerance has focused on two areas: (1) improving fault tolerance in various software currently available and widely used throughout the HEC domain and (2) using fault information exchange and coordination to achieve holistic, systemwide fault tolerance and understanding how to design and implement interfaces for integrating fault tolerance features for multiple layers of the software stack—from the application, math libraries, and programming language runtime to other common system software such as jobs schedulers, resource managers, and monitoring tools.

Dongarra, Jack; Bosilca, George; et al.

2013-04-08T23:59:59.000Z

453

Probabilistic model of fault detection in quantum circuits  

E-Print Network [OSTI]

It is shown that the fault testing for quantum circuits does not follow conventional classical techniques. If probabilistic gate like Hadamard gate is included in a circuit then the classical notion of test vector is shown to fail. We have reported several new and distinguishing features of quantum fault and also presented a general methodology for detection of functional faults in a quantum circuit. The technique can generate test vectors for detection of different kinds of fault. Specific examples are given and time complexity of the proposed quantum fault detection algorithm is reported.

Anindita Banerjee; Anirban Pathak

2009-05-12T23:59:59.000Z

454

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

455

Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine  

SciTech Connect (OSTI)

A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. this report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implications of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone.

Martel, S.J.

1992-04-01T23:59:59.000Z

456

A Comprehensive Study of Fracture Patterns and Densities in The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography  

SciTech Connect (OSTI)

In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.

Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland

2004-02-24T23:59:59.000Z

457

MICRO-SEISMICITY, FAULT STRUCTURE AND HYDRAULIC COMPARTMENTALIZATION...  

Open Energy Info (EERE)

locations and subsurface velocity structure provide potential insights into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal...

458

Fracture-resistant lanthanide scintillators  

DOE Patents [OSTI]

Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

Doty, F. Patrick (Livermore, CA)

2011-01-04T23:59:59.000Z

459

High Energy Gas Fracturing Test  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

Schulte, R.

2001-02-27T23:59:59.000Z

460

Saturated Zone In-Situ Testing  

SciTech Connect (OSTI)

The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from both the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from NC-EWDP-19D1 (one of the wells at the ATC) so that a comparison of laboratory- and field-derived sorption parameters can be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

P. W. Reimus; M. J. Umari

2003-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Completing fault models for abductive diagnosis  

SciTech Connect (OSTI)

In logic-based diagnosis, the consistency-based method is used to determine the possible sets of faulty devices. If the fault models of the devices are incomplete or nondeterministic, then this method does not necessarily yield abductive explanations of system behavior. Such explanations give additional information about faulty behavior and can be used for prediction. Unfortunately, system descriptions for the consistency-based method are often not suitable for abductive diagnosis. Methods for completing the fault models for abductive diagnosis have been suggested informally by Poole and by Cox et al. Here we formalize these methods by introducing a standard form for system descriptions. The properties of these methods are determined in relation to consistency-based diagnosis and compared to other ideas for integrating consistency-based and abductive diagnosis.

Knill, E. (Los Alamos National Lab., NM (United States)); Cox, P.T.; Pietrzykowski, T. (Technical Univ., NS (Canada))

1992-11-05T23:59:59.000Z

462

Calculating the probability of injected carbon dioxide plumes encountering faults  

SciTech Connect (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

463

Modeling Hydrogeological and Geomenchanical Processes Related to CO2 Injection in a Faulted Multilayer System  

E-Print Network [OSTI]

that could induce hydraulic fracturing or (2) the criticalpressure for onset of hydraulic fracturing of shear slip,

Rutqvist, Jonny; Birkholzer, Jens; Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

464

Testing sand used in hydraulic fracturing operations  

SciTech Connect (OSTI)

Recommended practices for testing sand used in hydraulic fracturing operations are outlined as developed by the Task Group on Evaluation of Hydraulic Fracturing Sand under the API Subcommittee on Evaluation of Well Completion Materials. The tests recommended were developed to improve the quality of frac sand delivered to the well site, and are for use in evaluating certain physical properties of sand used in hydraulic fracturing operations. The tests suggested enable users to compare physical characteristics of various sands and to select materials most useful for such applications. Parameters to be tested include turbidity, clay and soft particle content, crush resistance, and mineralogic analysis.

Not Available

1983-03-01T23:59:59.000Z

465

Stuck-at-fault test set compaction  

E-Print Network [OSTI]

. Test set size under pattern score based dynamic compaction . . . 13 . . . 17 Figure 7. Pattern Score distribution v:ith pattern metric dynamic compaction. . . . . . . . . . . . . . I g LIST OF TABLES Page Table l. l. nuit Target Sclcction Methods.... Fault Target Selection Methods Random Minimum Detection Count Circuit Name c432 c499 c880 c1355 c1908 G2670 Excitation Balance 0. 136296 0. 191652 0. 170293 0. 173310 0. 187486 0. 190484 Pattern Count 1152 873 2693 1394 1708 5148...

Vanfickell, Jason Michael

2013-02-22T23:59:59.000Z

466

Envelope of Fracture Density Dragana Todorovic-Marinic*  

E-Print Network [OSTI]

Envelope of Fracture Density Dragana Todorovic-Marinic* Veritas DGC Ltd., Calgary, Alberta, Canada that interpretation of fractures can be improved by using the envelope of the fracture density. It has been shown that open, fluid (or gas) filled fractures can be identified through the use of the AVAZ method (Gray et. al

Santos, Juan

467

Use of Tracers to Characterize Fractures in Engineered Geothermal Systems  

Broader source: Energy.gov [DOE]

Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

468

Coupling schemes for modeling hydraulic fracture propagation using the XFEM  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

Peirce, Anthony

469

Calibration of hydraulic and tracer tests in fractured media  

E-Print Network [OSTI]

Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

Politècnica de Catalunya, Universitat

470

Estimating the fracture density of small-scale vertical fractures when large-scale vertical fractures are present  

E-Print Network [OSTI]

When fractures are vertical, aligned and their dimensions are small relative to the seismic wavelength, the medium can be considered to be an equivalent Horizontal Transverse Isotropic (HTI) medium. However, geophysical ...

Liu, Yuwei

2013-01-01T23:59:59.000Z

471

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network [OSTI]

make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a...

Correa Castro, Juan

2011-08-08T23:59:59.000Z

472

Enterprise Zone Tax Credits (Wisconsin)  

Broader source: Energy.gov [DOE]

The purpose for the Enterprise Zone Tax Credits is to incent projects involving major expansion of existing Wisconsin businesses or relocation of major business operations from other states to...

473

Unsaturated Zone Hydrology Jasper Vrugt  

E-Print Network [OSTI]

CEE 271 Unsaturated Zone Hydrology Instructor Jasper Vrugt Engineering Tower #834E / #536 (LAB) Tel.: 505-231-2698 jasper @uci.edu Office Hours: By Appointment Lecture, 1 hour; discussion, 20 minutes: ICS

Vrugt, Jasper A.

474

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect (OSTI)

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.; Welch, J.; /SLAC; ,

2010-11-17T23:59:59.000Z

475

Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN)  

E-Print Network [OSTI]

Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN) J.-R. de Dreuzy,1,2 Y. Méheust,2 and G. Pichot3 Received 18 May 2012; revised 28 of fractured media has been so far studied independently at the fracture- and network- scales, we propose

Paris-Sud XI, Université de

476

Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found.  

E-Print Network [OSTI]

· Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found. · Assumptions are made to estimate the crack area based on the fracture mode seen in the SEM. · The total crack length is assumed to be 3 times the contact radius, , at the fracture depth. · To find

Collins, Gary S.

477

A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From Superelastic Nitinol Tube  

E-Print Network [OSTI]

A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From: 10.1002/jbm.b.30840 Abstract: Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue

Ritchie, Robert

478

SITE-SCALE SATURATED ZONE TRANSPORT  

SciTech Connect (OSTI)

This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical analysis (FEHM) computer code, (FEHM V2.20, STN: 10086-2.20-00) (LANL 2003 [DIRS 161725]) and is described in Section 6.4 of this report. FEHM is a three-dimensional (3-D), finite-volume, finite-element, heat and mass flow-and-transport code. This report documents the features and capabilities of the site-scale transport model for calculating radionuclide transport in the SZ at Yucca Mountain in support of the TSPA-LA. Correlative flow-model calculations using FEHM are carried out and documented in the model report ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). The velocity fields are calculated by the flow model independent of the transport processes and supplied as a part of the output package from the flow model, which is then used as inputs to the transport model. Several SZ analysis model reports provide information and data needed as feed-ins for this report, and this report in turn provides technical product outputs that feed into other SZ reports. The details of inputs to the site-scale transport model are provided in Section 4.

S. KELLER

2004-11-03T23:59:59.000Z

479

3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs  

SciTech Connect (OSTI)

Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

1997-08-01T23:59:59.000Z

480

Percutaneous Vertebroplasty for Osteoporotic Compression Fracture: Multivariate Study of Predictors of New Vertebral Body Fracture  

SciTech Connect (OSTI)

Purpose. To investigate the risk factors and relative risk of new compression fractures following vertebroplasty. Methods. Initially, we enrolled 104 consecutive patients with vertebral compression fractures caused by osteoporosis. A total of 83 of the 104 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. Logistic regression analysis of the data obtained from these 83 patients was used to determine relative risks of recurrent compression fractures, using 13 different factors. Results. We identified 59 new fractures in 30 of the 83 patients: 41 new fractures in vertebrae adjacent to treated vertebrae; and 18 new fractures in vertebrae not adjacent to treated vertebrae. New fractures occurred in vertebrae adjacent to treated vertebrae significantly more frequently than in vertebrae not adjacent to treated vertebrae. Only cement leakage into the disk was a significant predictor of new vertebral body fracture after vertebroplasty (odds ratio = 4.633). None of the following covariates were associated with increased risk of new fracture: age, gender, bone mineral density, the number of vertebroplasty procedures, the number of vertebrae treated per procedure, the cumulative number of vertebrae treated, the presence of a single untreated vertebra between treated vertebrae, the presence of multiple untreated vertebrae between treated vertebrae, the amount of bone cement injected per procedure, the cumulative amount of bone cement injected, cement leakage into the soft tissue around the vertebra, and cement leakage into the vein.

Komemushi, Atsushi, E-mail: kome64@yo.rim.or.jp; Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo [Kansai Medical University, Department of Radiology (Japan); Komemushi, Sadao [Kinki University, Schoool of Agriculture (Japan); Sawada, Satoshi [Kansai Medical University, Department of Radiology (Japan)

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "fracture zones faults" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

482

Multiphase flow in fractured porous media  

SciTech Connect (OSTI)

The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

Firoozabadi, A.

1995-02-01T23:59:59.000Z

483

Hydraulic fractur ing--also called hy  

E-Print Network [OSTI]

Hydraulic fractur ing--also called hy drofracking or frack ing--is a process where large volumes) is an aquatic invasive spe cies listed on the USDA's federal noxious weeds list (http:// www.aphis.usda.gov/plant_health

Goodman, Robert M.

484

Dynamic Fracture Toughness of Polymer Composites  

E-Print Network [OSTI]

that of defense or transport. In this project, the focus is on determining dynamic fracture toughness property of fiber reinforced polymer composites by using a combined numerical- experimental methodology. Impact tests are conducted on Split-Hopkinson pressure...

Harmeet Kaur

2012-02-14T23:59:59.000Z

485

Anomalous transport through porous and fractured media  

E-Print Network [OSTI]

Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

Kang, Peter Kyungchul

2014-01-01T23:59:59.000Z

486

Geomechanical review of hydraulic fracturing technology  

E-Print Network [OSTI]

Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

487

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

488

Similarity Matching Techniques for Fault Diagnosis in Automotive Infotainment Electronics  

E-Print Network [OSTI]

Fault diagnosis has become a very important area of research during the last decade due to the advancement of mechanical and electrical systems in industries. The automobile is a crucial field where fault diagnosis is given a special attention. Due to the increasing complexity and newly added features in vehicles, a comprehensive study has to be performed in order to achieve an appropriate diagnosis model. A diagnosis system is capable of identifying the faults of a system by investigating the observable effects (or symptoms). The system categorizes the fault into a diagnosis class and identifies a probable cause based on the supplied fault symptoms. Fault categorization and identification are done using similarity matching techniques. The development of diagnosis classes is done by making use of previous experience, knowledge or information within an application area. The necessary information used may come from several sources of knowledge, such as from system analysis. In this paper similarity matching tec...

Kabir, Mashud

2009-01-01T23:59:59.000Z

489

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

490

Fracture of Thermosetting Polymers: Experiments and Modeling  

E-Print Network [OSTI]

for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by BRAD EVIN BURGESS FRACTURE OF THERMOSETTING POLYMERS: EXPERIMENTS AND MODELING Approved by: Research Advisor: Amine Benzerga Associate Dean for Undergraduate... Scholars Thesis by BRAD EVIN BURGESS iii ABSTRACT Fracture of Thermosetting Polymers: Experiments and Modeling. (April 2009) Brad Evin Burgess Department of Aerospace Engineering Texas A&M University Research Advisor: Dr. Amine Benzerga...

Benzerga, Amine; Burgess, Brad

2011-08-04T23:59:59.000Z

491

FRACTURE TOUGHNESS VARIABILITY IN F82H  

SciTech Connect (OSTI)

The fracture toughness database for F82H displays some anomalous behavior. Metallographic examination reveals banding in the center of 25 mm thick F82H plate, which is more evident in transverse section. The banding is shown to arise because some grains are etched on a very fine scale whereas the remainder is etched more strongly and better delineates the martensite lath structure. However, the banding found does not provide explanation for the anomalous fracture toughness behavior.

Gelles, David S.; Sokolov, M.

2003-09-03T23:59:59.000Z

492

TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS  

SciTech Connect (OSTI)

The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

Morgan, M; Michael Tosten, M; Scott West, S

2006-07-17T23:59:59.000Z

493

A Turing Machine Resisting Isolated Bursts Of Faults  

E-Print Network [OSTI]

We consider computations of a Turing machine under noise that causes consecutive violations of the machine's transition function. Given a constant upper bound B on the size of bursts of faults, we construct a Turing machine M(B) subject to faults that can simulate any fault-free machine under the condition that bursts are not closer to each other than V for an appropriate V = O(B^2).

Capuni, Ilir

2012-01-01T23:59:59.000Z

494

Fault Detection and Diagnosis Method for VAV Terminal Units  

E-Print Network [OSTI]

: Air density [kg/m3] NOMENCLATURE REFERENCES 1) IEA Annex 25, Building Optimization and Fault Diagnosis Source Book, Eds. J. Hyvarinen and S. Karki, Technical Research Center of Finland, 1996 2) Harunori Yoshida: Typical Faults of Air Conditioning..., IEA Annex 34 ?Detection and Diagnosis Methods in Real Building?, Eds. A. Dexter and J. Pakanen, Section C.2, pp.143-148, 2001 6) Harunori Yoshida, Sanjay Kumar, Yasunori Morita: Online Fault Detection and Diagnosis in VAV Air Handling Unit by RARX...

Miyata, M.; Yoshida, H.; Asada, M.; Wang, F.; Hashiguchi, S.

2004-01-01T23:59:59.000Z

495

Production-systems analysis for fractured wells  

SciTech Connect (OSTI)

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

496

On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone  

SciTech Connect (OSTI)

In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

2010-01-10T23:59:59.000Z

497

PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PHOTOVOLTAIC DC ARC FAULT DETECTOR TESTING AT SANDIA NATIONAL LABORATORIES Jay Johnson 1 , Birger Pahl 2 , Charles Luebke 2 , Tom Pier 2 , Theodore Miller 3 , Jason Strauch 1 ,...

498

automatic fault management: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Fault Diagnosis by Exploiting Application Signatures Xiaoning Ding - The Ohio - The Ohio State University ABSTRACT Application problem diagnosis in complex...

499

Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...  

Open Energy Info (EERE)

the level of unrecognized active faults present in these areas. Analysis of low-sun-angle aerial photography acquired over the Needle Rocks, Astor Pass, Empire, and Lee...

500

Fault-tolerant distributed transactions for partitioned OLTP databases  

E-Print Network [OSTI]

This thesis presents Dtxn, a fault-tolerant distributed transaction system designed specifically for building online transaction processing (OLTP) databases. Databases have traditionally been designed as general purpose ...

Jones, Evan P. C. (Evan Philip Charles), 1981-

2012-01-01T23:59:59.000Z