Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

2

Relative permeability through fractures  

DOE Green Energy (OSTI)

The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

Diomampo, Gracel, P.

2001-08-01T23:59:59.000Z

3

Relative Permeability of Fractured Rock  

DOE Green Energy (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

4

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

5

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

6

On relative permeability of rough-walled fractures  

DOE Green Energy (OSTI)

This paper presents a conceptual and numerical model of multiphase flow in fractures. The void space of real rough-walled rock fractures is conceptualized as a two-dimensional heterogeneous porous medium, characterized by aperture as a function of position in the fracture plane. Portions of a fracture are occupied by wetting and non-wetting phase, respectively, according to local capillary pressure and accessibility criteria. Phase occupancy and permeability are derived by assuming a parallel-plate approximation for suitably small subregions in the fracture plane. Wetting and non-wetting phase relative permeabilities are calculated by numerically simulating single phase flows separately in the wetted and non-wetted pore spaces. Illustrative examples indicate that relative permeabilities depend sensitively on the nature and range of spatial correlation between apertures. 30 refs., 7 figs., 1 tab.

Pruess, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

7

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

8

Structural Settings Of Hydrothermal Outflow- Fracture Permeability...  

Open Energy Info (EERE)

elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal...

9

Permeability enhancement using high energy gas fracturing  

DOE Green Energy (OSTI)

This paper reports the results of a preliminary study of using High Energy Gas Fracturing (HEGF) techniques for geothermal well stimulation. Experiments conducted in the G-tunnel complex at the Nevada Test Site (NTS) showed that multiple fractures could be created in water-filled boreholes using HEGF. Therefore, the method is potentially useful for geothermal well stimulation. 4 refs., 11 figs.

Chu, T.Y.; Cuderman, J.F.; Jung, J.; Jacobson, R.D.

1986-01-01T23:59:59.000Z

10

High-permeability fracturing: The evolution of a technology  

SciTech Connect

Since its introduction almost 50 years ago, hydraulic fracturing has been the prime engineering tool for improving well productivity either by bypassing near-wellbore damage or by actually stimulating performance. Historically (and in many instances erroneously), the emphasis for propped fracturing was on fracture length, culminating in massive treatments for tight-gas sands with several million pounds of proppant and design lengths in excess of 1,500 ft. More recently, the importance of fracture conductivity has become appreciated. This paper uses field examples to trace the history, development, and application of TSO fracturing to high-permeability formations, including fracturing to increase PI, as well as applications aimed at improving completions in unconsolidated sands. Potential applications of fracturing to bypass the need for sand control are explored. Finally, the use of fracturing as a reservoir-management tool is examined through use of a propped fracture to alter the vertical flow profile of a well to maximize reserves. This particular use of fracturing leads to cases where careful design of both fracture length and conductivity is required; i.e., too much conductivity is as damaging to reservoir management as too little.

Smith, M.B.; Hannah, R.R.

1996-07-01T23:59:59.000Z

11

Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.

Miller, John D.; Allman, David W.

1986-01-21T23:59:59.000Z

12

Dual permeability modeling of flow in a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

Miller, J.D.; Allman, D.W.

1986-01-01T23:59:59.000Z

13

Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface  

E-Print Network (OSTI)

SGP-TR-177 Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase) the liquid-gas relative permeabilities in fractures can be modeled by characterizing the flow structures permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative

Stanford University

14

Hydraulic fracturing of a moderate permeability reservoir, Kuparuk River Unit  

SciTech Connect

Sixty-five percent of the proven reserves in one of the United States' largest oil fields, the Kuparuk River Unit, are contained in the lower of two producing horizons. This zone, commonly referred to as the ''A'' sand, has a permeability of between 30 and 100 md. Unfortunately this interval is easily damaged during drilling and completion operations. Low initial flow efficiencies have been confirmed by numerous pressure transient tests. A program of hydraulic fracturing was initiated in March 1984 to overcome near wellbore damage and provide stimulation to more efficiently tap ''A'' sand reserves. More than 300 fracture stimulations have been completed to date in the arctic setting of the Kuparuk River Unit. These jobs have used a variety of fluids, proppants, and pumping schedules. The current hydraulic fracture design was evolved by continual interpretation of field results and related data from these previous stimulations. Success of the overall program has been impressive. Average post-fracture flow efficiency has been in excess of 100%. Post-fracture rate increase has averaged approximately 300%, accounting for a total rate increase of over 125,000 BOPD (19,900 m/sup 3//d). Based on these results, fracturing will continue to play an important part in future field development. This paper is the first review of the Kuparuk River Unit fracture program. It provides a case history of the development of a standard fracture design. In addition, the findings of this study would be applicable to reservoirs elsewhere with similar characteristics.

Niemeyer, B.L.; Reinart, M.R.

1986-01-01T23:59:59.000Z

15

Fracture Permeability Evolution in Desert Peak Quartz Monzonite  

SciTech Connect

Fracture flow experiments are being conducted on quartz monzonite core from the Desert Peak East EGS site, Churchill County, Nevada. The flow experiments are conducted at temperatures of 167-169 C and 5.5 MPa confining pressure through artificial fractures. Two injection fluids, a saline solution and a silica-bearing solution, have been used to date. Flow rates are typically 0.02 mL/min, but other rates have been used. The fracture surfaces are characterized with a contact profilometer. The profilometry data demonstrate that it is possible to fabricate statistically similar fracture surfaces and enable us to map aperture variations, which we use in numerical simulations. Effluent samples are collected for chemical analysis. The fluid pressure gradient is measured across the specimen and effective hydraulic apertures are calculated. The experiments show a reduction in permeability over time for both injection fluids, but a more rapid loss of permeability was observed for the silica-bearing solution. The calculated hydraulic aperture is observed to decrease by 17% for the saline solution and 75% for the silica-bearing fluid, respectively. Electrical resistivity measurements, which are sensitive to the ionic content of the pore fluid, provide additional evidence of fluid-rock interactions.

Carlson, S R; Roberts, J J; Detwiler, R L; Viani, B E; Roberts, S K

2005-05-10T23:59:59.000Z

16

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments (OSTI)

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

17

A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction  

E-Print Network (OSTI)

L. : Adsorption-induced coal swelling and stress:acid gas sequestration into coal seams. J Geophys. Res. (fracturing on permeability of coal. Min. Sci. Technol. 3,

Liu, Hui-Hai; Rutqvist, Jonny

2010-01-01T23:59:59.000Z

18

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence  

Science Conference Proceedings (OSTI)

The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in low permeability gas reservoirs require a hydraulic fracturing treatment in order to produce ...

Andrei Sergiu Popa / Shahab Mohaghegh

2004-01-01T23:59:59.000Z

19

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

of Fractured Sandstone/Coal Samples Smeulders, D.M.J. ,stress on permeability of coal. Int. J. Rock Mech. Min. Sci.of Fractured Sandstone/Coal Samples under Variable Con?ning

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

20

Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures  

DOE Green Energy (OSTI)

Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.

Persoff, P.; Pruess, K.; Myer, L.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Creating permeable fracture networks for EGS: Engineered systems versus nature  

DOE Green Energy (OSTI)

The United States Department of Energy has set long-term national goals for the development of geothermal energy that are significantly accelerated compared to historical development of the resource. To achieve these goals, it is crucial to evaluate the performance of previous and existing efforts to create enhanced geothermal systems (EGS). Two recently developed EGS sites are evaluated from the standpoint of geomechanics. These sites have been established in significantly different tectonic regimes: 1. compressional Cooper Basin (Australia), and 2. extensional Soultz-sous-Fôrets (France). Mohr-Coulomb analyses of the stimulation procedures employed at these sites, coupled with borehole observations, indicate that pre-existing fractures play a significant role in the generation of permeability networks. While pre-existing fabric can be exploited to produce successful results for geothermal energy development, such fracture networks may not be omnipresent. For mostly undeformed reservoirs, it may be necessary to create new fractures using processes that merge existing technologies or use concepts borrowed from natural hydrofracture examples (e.g. dyke swarms).

Stephen L Karner

2005-10-01T23:59:59.000Z

22

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

23

The Study of Permeability Change of Fractal Under Fracturing Basing on Damage Theory  

Science Conference Proceedings (OSTI)

In order to research the evolution of permeability and damage of fractal rock under hydraulic fracturing, a new damage variable that describing relative reduction of pore amounts as radius is bigger than r any fracturing stage is defined. Assuming the ... Keywords: damagey, fracta, permeabilit

Zhao Wanchun; Ai Chi

2010-08-01T23:59:59.000Z

24

Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures  

DOE Green Energy (OSTI)

This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

2009-03-30T23:59:59.000Z

25

Permeability Estimation From Velocity Anisotropy In Fractured Rock  

E-Print Network (OSTI)

Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed depending on the angle between the fracture normal vectors and the direction of the applied stress. If the prestress fracture orientation ...

Gibson, Richard L., Jr.

1990-01-01T23:59:59.000Z

26

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

27

Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems  

SciTech Connect

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

28

Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field  

Science Conference Proceedings (OSTI)

Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States). Dept. of Geophysics; Hickman, S. [Geological Survey, Menlo Park, CA (United States); Morin, R. [Geological Survey, Denver, CO (United States); Benoit, D. [Oxbow Geothermal Corp., Reno, NV (United States)

1998-08-01T23:59:59.000Z

29

Fracture Permeability and In Situ Stress in the Dixie Valley...  

Open Energy Info (EERE)

Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir...

30

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

31

Determination of permeability of granitic rocks in GT-2 from hydraulic fracturing data  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently conducting a study to determine the feasibility to extract geothermal energy from dry hot rock. The investigated concept calls for the creation of a hydraulic fracture in hot, impermeable rock. Heat will be exchanged subsequently at the fracture surface between the rock and a circulating fluid. The successful creation of hydraulic fractures in the granitic section of exploratory holes GT-1 and GT-2 yielded sufficient data to calculate the average permeability of the rock next to a fracture by means of the mathematical model. The calculated permeabilities were found to be in the microdarcy range and proved the granitic rock penetrated by GT-1 and GT-2 to be sufficiently impermeable to test the above concept. (auth)

Delisle, G.

1975-11-01T23:59:59.000Z

32

Optimal fracture stimulation of a moderate-permeability reservoir; Kuparuk River Unit, Alaska  

SciTech Connect

Sixty-five percent of the reserves of the Kuparuk River field, the second-largest producing oil field in the U.S., is contained in a 20- 80-md-permeability sandstone. This paper provides details of stimulation design advances made over the past 3 years in this formation. The design steps for optimizing fracture treatments in a moderate-permeability formation require primary emphasis on fracture conductivity rather than on treatment size or fracture length. This philosophy was used for the 140 new wells documented in this paper. Treatment size was gradually increased once a commensurate increase in fracture conductivity was obtained. Applying the new design to the refracturing of 88 producing wells in the field resulted in an incremental 40,000 BOPD, a significant portion of the field's 300,000 BOPD.

Pearson, C.M.; Bond, A.J.; Eck, M.E.; Lynch, K.W. (Arco Alaska, Inc. (US))

1992-08-01T23:59:59.000Z

33

Breaker concentrations required to improve the permeability of proppant packs damaged by concentrated linear and borate-crosslinked fracturing fluids  

Science Conference Proceedings (OSTI)

This paper reports on the concentrations of an oxidative breaker required to reduce significantly the proppant-pack permeability damage caused by aqueous hydraulic fracturing fluids. Long-term, proppant-pack permeability testing was used to evaluate linear and borate-crosslinked gels. Results indicate that increasing the breaker concentration can reduce proppant-pack permeability damage very effectively.

Brannon, H. (BJ Services (United States)); Pulsinelli, R.J. (Dowell Schlumberger, Tulsa, OK (United States))

1992-11-01T23:59:59.000Z

34

Fracture Permeability Evolution in Rock from the Desert Peak EGS Site  

DOE Green Energy (OSTI)

Fluid flow experiments are being conducted on core specimens of quartz monzonite retrieved from depths of about 1 km at the Desert Peak East EGS site in Churchill County, Nevada. Our immediate goal is to observe permeability evolution in fractures at pressure and temperature conditions appropriate to the Desert Peak geothermal site. Longer term, we aim to evaluate mechanisms that control the evolution of fracture permeability. In the experiments saline water is flowed through an artificial fracture at a constant rate of 0.02 ml/min over a period of several weeks. The constant flow tests are interrupted at selected times for shorter tests in which flow is either stopped or varied between 0 and 2.0 ml/min. The experiments to date were conducted at a confining pressure of 5.5 MPa, pore pressures of 1.38 MPa or 2.07 MPa and temperatures of 167- 169 C. Measurements include differential pressure and electrical resistance across the specimen. The short-term variable flow rate experiments allow us to calculate the effective hydraulic aperture of the fracture at various times during the experiment. Changes in electrical resistivity provide indirect evidence of ongoing mineral dissolution and precipitation processes that are expected to change fracture permeability over time. The early experiments have shown that electrical resistivity rises during flow and falls during intervals in which flow is stopped.

Carlson, S R; Roberts, J J; Detwiler, R L; Burton, E A; Robertson-Tait, A; Morris, C; Kasameyer, P

2004-04-08T23:59:59.000Z

35

Combined seismic and hydraulic method of modeling flow in fractured low permeability rocks  

DOE Green Energy (OSTI)

Modeling flow of ground water in hard rocks where a network of fractures provides the dominant flow paths is a major problem. This paper summarizes a program of investigations currently underway in this laboratory to characterize the geometry of fractured rocks and develop methods of handling flow in such systems. Numerical models have been developed to investigate flow behavior in two- and three-dimensional fracture networks. The results demonstrate the insights that can be gained from modeling studies of fractured rocks. A key problem is gathering the necessary data on fracture geometry. Investigations have been started to determine how vertical seismic profiling (VSP) might be improved and applied to this problem. A VSP experiment in The Geysers geothermal field in northern California, where fracture orientation is known, produced shear wave splitting and velocity anisotropy in agreement with theory. The results suggest the potential application of 3-component, multi-source VSP data in determining fracture orientation and average spacing. We believe a combination of seismic and hydraulic methods can greatly enhance an understanding of fluid flow and transport in low permeability rock systems where fractures provide the dominant paths. 40 refs, 16 figs., 4 tabs.

Witherspoon, P.A.; Long, J.C.S.; Majer, E.L.; Myer, L.R.

1987-06-01T23:59:59.000Z

36

CO{sub 2}/sand fracturing in low permeability reservoirs  

Science Conference Proceedings (OSTI)

The objectives of this study are: to demonstrate the effectiveness of a non-damaging liquid, carbon dioxide (CO{sub 2}) in creating sand-propped hydraulic fractures in ``tight`` gas bearing formations within the Appalachian Basin; and to compare and rank the gas production responses from wells treated with liquid CO{sub 2} with other types of treatments (shooting, water based, nitrogen, etc.). The preliminary results are encouraging, and although only a few months of production is available, the rate of gas production from the CO{sub 2} treated candidate wells is greater than that from the control wells. The CO{sub 2}/sand fracs appear to be 56 percent better than the nitrogen fracs in Pike County. In addition, the CO{sub 2}/sand fracs are 4.8 times better than conventional shot wells in the Pike County study area. It should be recognized that these results are from a very limited data set and overall conclusions may change as more control wells are added to the analysis. From a stimulation process achievement viewpoint, the maximum amount of sand pumped is 46,000 pounds at an average concentration of 3.1 pound per gallon. It should be pointed out that additional foam and nitrogen stimulations have recently been performed by the operator in the Pike County area, and subsequent discussions in the future will include additional control wells to the baseline data sets.

Mazza, R.L.; Gehr, J.B.

1993-12-31T23:59:59.000Z

37

A casting and imaging technique for determining void geometry and relative permeability behavior of a single fracture specimen  

DOE Green Energy (OSTI)

A casting technique has been developed for making translucent replicas of the void space of natural rock fractures. Attenuation of light shined through the cast combined with digital image analysis provides a pointwise definition of fracture apertures. The technique has been applied to a fracture specimen from Dixie Valley, Nevada, and the measured void space geometry has been used to develop theoretical predictions of two-phase relative permeability. A strong anisotropy in relative permeabilities has been found, which is caused by highly anisotropic spatial correlations among fracture apertures. 16 refs., 6 figs.

Cox, B.L.; Pruess, K.; Persoff, P.

1990-01-01T23:59:59.000Z

38

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1  

SciTech Connect

Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

Poston, S.W.

1991-12-31T23:59:59.000Z

39

Observation and analysis of a pronounced permeability and porosity scale-effect in unsaturated fractured tuff  

SciTech Connect

Over 270 single-hole (Guzman et d., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-Role tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nonind support scale of about 1 m. The corresponding log permeability data exhibit. spatial behavior characteristic of a random fractal and yield a kriged estimate (Fig. 1) of how these 1-m scale log permeabilities vary in three-dimemional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a thee-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure 1n:ccirds from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach mounts to three-tlimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume (Fig.2). These tomographic images are compwable to those obtained by the kriging of 1-rn scale log permeability data from single-hole tests (Fig. 1). The results reveal a highly pronounced scale effect in permeability and porosity at the ALRS. We analyze the scaling of permeability at the site on ihe basis of a recent theory, which is consistent with our representation of the rack as a random fractal.

Illman, W. A. (Walter A.); Hyun, Y. (Yunjung); Neuman, S. P.; Di Federico, V. (Vittorio); Tartakovsky, D. M. (Daniel M.); Vesselinov, V. V. (Velimir V.)

2001-01-01T23:59:59.000Z

40

Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs  

SciTech Connect

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal depletion of a geothermal reservoir with both fracture and pore permeability  

DOE Green Energy (OSTI)

A method for estimating the useful lifetime of a reservoir in porous rock where the injection and production wells intersect a fracture system is presented. Equations were derived for the pore-fluid and fracture-fluid temperatures averaged over large regions of the geothermal field. Problems such as incomplete areal sweep and interfingering of cool and hot fluids are ignored. Approximate equations relating average temperatures to the heat flowing from rock to fluid were developed, and their use is justified by comparing the results with solutions of the exact equations. The equations for the temperature decline can be solved quickly. In the model, fractures are characterized by three parameters: aperture w, permeability k/sub fr/, and spacings between fractures D. For certain values of these parameters, cool reinjected fluid in fractures may reach the production wells long before all the warm pore fluid has been tapped, shortening the useful lifetime of the field. The traditional (and important) problems of reservoir engineering, flow rate determination, drawdown, sweep patterns, etc. were ignored. Thus the results are most useful in providing a correction factor which can be applied to lifetime estimates obtained from a detailed simulation of a field assuming porous rock. That correction factor is plotted for clean fractures (k/sub fr/ = w/sup 2//12) as a function of w and D for several lifetime ranges. Small-scale fractures seen in cores from the Salton Sea Geothermal Field are too closely spaced to reduce lifetime estimates. However, large-scale fault systems exist within that field, and they are attractive drilling targets because they produce large flow rates. If large scale faults communicate between injection and production wells, they may reduce the useful lifetime of those wells.

Kasameyer, P.W.; Schroeder, R.C.

1976-08-10T23:59:59.000Z

42

Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Zoback, M. [Stanford Univ., CA (United States). Dept. of Geophysics

1998-08-01T23:59:59.000Z

43

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

44

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

SciTech Connect

We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

2008-06-01T23:59:59.000Z

45

Transient gas or liquid flow along a preexisting or hydraulically-induced fracture in a permeable medium  

DOE Green Energy (OSTI)

Similarity solutions are derived for the trasient two-dimensional flow of a gas or liquid along an isolated fracture in a permeable medium. The driving pressure at the fracture inlet is constant, and the confining stress is uniform. Two different cases are considered, pre-existing fractures with uniform aperture as well as hydraulic fractures with a variable aperture proportional to the local overpressure (fluid pressure less confining stress). The evolution of the pressure distribution is described by a set of four asymptotic solutions, each having a self-similar form. At early times the flow in the fracture is turbulent, and Darcian seepage losses into the porous surroundings are negligible. At late times the flow in the fracture is laminar, and seepage losses become a dominant consideration. At intermediate times there are two alternative asymptotes, depending upon physical parameters. The mathematical model also describe the flow along a fracture which is fulled with high-permeability porous material as well as the flow in an assemblage of porous blocks. 19 refs., 10 figs.

Nilson, R.H.; Morrison, F.A. Jr.

1985-05-01T23:59:59.000Z

46

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network (OSTI)

This thesis addresses the problem of removal of Naturally Occurring Radioactive Materials, NORM, and describes an effective alternative to the current treatment method for their removal. High-pen-meability fracturing, recently established in the petroleum industry, is the recommended technique. NORM are found throughout subterranean formations. Whenever fluids from petroleum or water reservoirs are produced NORM are present in varying quantities. NORM can only be sensed with radiation detectors. However, they have proven carcinogens, and the US Environmental Protection Agency has set a limit on the maximum contaminated level of any stream. Until now, the preferred method of treatment was to remove NORM from contaminated waters with specially designed filters, which in turn create a new problem. The same filters that are used to treat the water themselves become highly radioactive with a considerable disposal problem. In the petroleum industry, NORM become concentrated in the scale that is deposited inside the well or surface pipes. When scale is removed, it can be so radioactive that it can only be stored in toxic sites. Additionally, as water is produced along with oil, so are NORM. Until now, for the Gulf of Mexico at least, produced water has been released into the ocean, but the Environmental Protection Agency (EPA) is threatening to change this. In the North Sea the regulations are already stricter. There is then a compelling motivation to remove NORM before they are produced, and thus, eliminate the disposal problem. A high-permeability fracture design is presented which modifies existing petroleum practices by introducing within the proppant pack highly selective radionuclide sorbents. These sorbents, at calculated concentrations, can remove NORM readily for several years from typical flow rates containing typical NORM concentrations.

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

47

Method of optimizing the conductivity of a propped fractured formation  

Science Conference Proceedings (OSTI)

This patent describes a method of reducing viscosity of a fracturing fluid containing proppant, a polymer, a delayed breaker and a nondelayed breaker, it comprises: introducing the fracturing fluid into a subterranean formation to form at least one fracture; depositing the proppant and the polymer in the fracture; determining an after closure polymer viscosity of the deposited polymer in the fracture; selecting a proppant pack permeability in the fracture; calculating an amount of breaker necessary to reduce the after closure viscosity of the deposited polymer to attain the selected permeability of; determining a minimum viscosity of the fracturing fluid which maintains the proppant in suspension in the fluid during pumping in the fracture; and introducing an effective amount of delayed breaker and nondelayed breaker into the fracturing fluid to attain the selected proppant pack permeability while maintaining the minimum viscosity to maintain the proppant in suspension in the fluid during pumping in the fracture.

Brannon, H.D.; Gulbis, J.; King, M.T.; Hawkins, G.W.

1992-04-14T23:59:59.000Z

48

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network (OSTI)

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation.… (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

49

Analytical and Numerical Solutions for the Case of a Horizontal Well with a Radial Power-Law Permeability Distribution--Comparison to the Multi-Fracture Horizontal Case  

E-Print Network (OSTI)

In this work, I present the development of analytical solutions in the Laplace domain for a fully-penetrating, horizontal well producing at a constant flow rate or constant wellbore pressure in the center of a composite, cylindrical reservoir system with an impermeable outer boundary. The composite reservoir consists of two regions. The cylindrical region closest to the wellbore is stimulated, and the permeability within this region follows a power-law function of the radial distance from the wellbore. The unstimulated outer region has homogeneous reservoir properties. The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic fracturing. The process of hydraulic fracturing creates thin, high permeability fractures that propagate deep into the reservoir, increasing the area of the rock matrix that is exposed to this low-resistance flow pathway. The large surface area of the high conductivity fracture is what makes hydraulic fracturing so successful. Unfortunately, hydraulic fracturing is often encumbered by problems such as high capital costs and a need for large volumes of water. Therefore, I investigate a new stimulation concept based upon the alteration of the permeability of a large volume around the producing well assembly from its original regime to that following a power-law function. I evaluate the effectiveness of the new concept by comparing it to conventional multi-stage hydraulic fracturing. The results of this investigation show that the power-law permeability reservoir (PPR) has a performance advantage over the multi-fractured horizontal treatment (MFH) only when the fracture conductivity and fracture half-length are small. Most importantly, the results demonstrate that the PPR can provide respectable flow rates and recovery factors, thus making it a viable stimulation concept for ultra-low permeability reservoirs, especially under conditions that may not be conducive to a conventional MHF treatment.

Broussard, Ryan Sawyer

2013-05-01T23:59:59.000Z

50

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

51

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence.  

E-Print Network (OSTI)

??The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in… (more)

Popa, Sergui Andrei, 1970-

2004-01-01T23:59:59.000Z

52

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

53

On Two-Phase Relative Permeability and Capillary Pressure of Rough-Walled Rock Fractures  

E-Print Network (OSTI)

range of conditions multiphase flows in porous media can befor describing multiphase flow in porous media. Given themultiphase flow is in petroleum reservoirs, many of which are situated in fractured-porous

Pruess ed, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

54

CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS  

Science Conference Proceedings (OSTI)

During the past six months we have adapted our 3-D elastic, anisotropic finite difference code by implementing the rotated staggered grid (RSG) method to more accurately represent large contrasts of elastic moduli between the fractures and surrounding formation, and applying the perfectly matched layer (PML) absorbing boundary condition to minimize boundary reflections. Two approaches for estimating fracture spacing from scattered seismic energy were developed. The first relates notches in the amplitude spectra of the scattered wavefield to the dominant fracture spacing that caused the scattering. The second uses conventional FK filtering to isolate the backscattered signals and then recovers an estimate of the fracture spacing from the dominant wavelength of those signals. Both methods were tested on synthetic data and then applied to the Emilio field data. The spectral notch method estimated the Emilio fracture spacing to be about 30 to 40 m, while the FK method found fracture spacing of about 48 to 53 m. We continue to work on two field data sets from fractured carbonate reservoirs provided by our industry sponsors--the offshore Emilio Field data (provided by ENIAGIP), and an onshore reservoir from the Middle East (provided by Shell). Calibration data in the form of well logs and previous fracture studies are available for both data sets. In previous reports we showed the spatial distribution fractures in the Emilio Field based on our calculated scattering index values. To improve these results we performed a map migration of all the scattering indices. The results of this migration process show a very strong correlation between the spatial distribution and orientation of our estimated fracture distribution and the fault system in the field. We observe that the scattering index clusters tend to congregate around the fault zones, particularly near multiple faults and at fault tips. We have also processed a swath of data from the second data set (the onshore carbonate field). FMI data are available from a number of wells for comparison to our seismic scattering analysis results. The agreement is very good, providing confidence that these methods can be applied to land seismic data that do not have the ideal azimuthal coverage.

Daniel R. Burns; M. Nafi Toksoz

2005-08-01T23:59:59.000Z

55

X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction  

Science Conference Proceedings (OSTI)

The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

Siegrist, R.L. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); [Colorado School of Mines, Golden, CO (United States). Environmental Science and Engineering Div.; Lowe, K.S. [Oak Ridge National Lab., Grand Junction, CO (United States). Life Sciences Div.] [Oak Ridge National Lab., Grand Junction, CO (United States). Life Sciences Div.; Murdoch, L.D. [FRx, Inc., Cincinnati, OH (United States)] [FRx, Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Slack, W.W. [FRx, Inc., Cincinnati, OH (United States)] [FRx, Inc., Cincinnati, OH (United States); Houk, T.C. [Lockheed Martin Energy Systems, Piketon, OH (United States)] [Lockheed Martin Energy Systems, Piketon, OH (United States)

1998-03-01T23:59:59.000Z

56

Hydraulic fracture optimization using hydraulic fracture and reservoir modeling in the Piceance Basin, Colorado.  

E-Print Network (OSTI)

??Hydraulic fracturing is an important stimulation method for producing unconventional gas reserves. Natural fractures are present in many low-permeability gas environments and often provide important… (more)

Reynolds, Harris Allen

2012-01-01T23:59:59.000Z

57

Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report  

SciTech Connect

A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

Howrie, I.; Dauben, D.

1994-03-01T23:59:59.000Z

58

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

Science Conference Proceedings (OSTI)

The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Not Available

1992-11-01T23:59:59.000Z

59

Geothermal Permeability Enhancement - Final Report  

Science Conference Proceedings (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

60

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Open Energy Info (EERE)

low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter...

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Characterizing Fractures in Geysers Geothermal Field by Micro...  

Open Energy Info (EERE)

water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the...

62

Method for directional hydraulic fracturing  

DOE Patents (OSTI)

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

63

Pore-scale imaging and lattice Boltzmann modeling of single- and multi-phase flow in fractured and mixed-wet permeable media.  

E-Print Network (OSTI)

??Three investigations of pore-scale single-phase and multiphase flow in fractured porous media and mixed-wet porous media are presented here. With an emphasis on validating and… (more)

Landry, Christopher

2013-01-01T23:59:59.000Z

64

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...  

Open Energy Info (EERE)

to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic...

65

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect

The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

Not Available

1991-10-01T23:59:59.000Z

66

Analysis of thermally induced permeability enhancement in geothermal injection wells  

DOE Green Energy (OSTI)

Reinjection of spent geothermal brine is a common means of disposing of geothermal effluents and maintaining reservoir pressures. Contrary to the predictions of two-fluid models (two-viscosity) of nonisothermal injection, an increase of injectivity, with continued injection, is often observed. Injectivity enhancement and thermally-affected pressure transients are particularly apparent in short-term injection tests at the Los Azufres Geothermal Field, Mexico. During an injection test, it is not uncommon to observe that after an initial pressure increase, the pressure decreases with time. As this typically occurs far below the pressure at which hydraulic fracturing is expected, some other mechanism for increasing the near-bore permeability must explain the observed behavior. This paper focuses on calculating the magnitude of the nearbore permeability changes observed in several nonisothermal injection tests conducted at the Los Azufres Geothermal Field.

Benson, S.M.; Daggett, J.S.; Iglesias, E.; Arellano, V.; Ortiz-Ramirez, J.

1987-02-01T23:59:59.000Z

67

Water Injection into a Low-Permeability Rock - 1: Hydrofracture Growth  

Science Conference Proceedings (OSTI)

In this paper, we model water injection through a growing vertical hydrofracture penetrating a low-permeability reservoir. The results are useful in oilfield waterflood applications and in liquid waste disposal through reinjection. Using Duhamel's principle, we extend the Gordeyev and Entov (1997) self-similar 2D solution of pressure diffusion from a growing fracture to the case of variable injection pressure. The flow of water injected into a low-permeability rock is almost perpendicular to the fracture for a time sufficiently long to be of practical interest. We revisit Carter's model of 1D fluid injection (Howard and Fast, 1957) and extend it to the case of variable injection pressure. We express the cumulative injection through the injection pressure and effective fracture area. Maintaining fluid injection above a reasonable minimal value leads inevitably to fracture growth regardless of the injector design and the injection policy. The average rate of fracture growth can be predicted from early injection. A smart injection controller that can prevent rapid fracture growth is needed.

Patzek, Tad W.; Silin, Dmitriy B.

1999-07-27T23:59:59.000Z

68

Fracture characterization of multilayered reservoirs  

Science Conference Proceedings (OSTI)

Fracture treatment optimization techniques have been developed using Long-Spaced-Digital-Sonic (LSDS) log, pumpin-flowback, mini-frac, and downhole treating pressure data. These analysis techniques have been successfully applied in massive hydraulic fracturing (MHF) of ''tight gas'' wells. Massive hydraulic fracture stimulations have been used to make many tight gas reservoirs commercially attractive. However, studies have shown that short highly conductive fractures are optimum for the successful stimulation of wells in moderate permeability reservoirs. As a result, the ability to design and place optimal fractures in these reservoirs is critical. This paper illustrates the application of fracture analysis techniques to a moderate permeability multi-layered reservoir. These techniques were used to identify large zonal variations in rock properties and pore pressure which result from the complex geology. The inclusion of geologic factors in fracture treatment design allowed the placement of short highly conductive fractures which were used to improve injectivity and vertical sweep, and therefore, ultimate recovery.

Britt, L.K.; Larsen, M.J.

1986-01-01T23:59:59.000Z

69

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network (OSTI)

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may be shorter due to fracture growth out of zone, improper proppant settling, or proppant flowback, short calculated fracture lengths can also result from incorrect analysis techniques. It is known that fracturing fluid that remains in the fracture and formation after a hydraulic fracture treatment can decrease the productivity of a gas well by reducing the relative permeability to gas in the region invaded by this fluid. However, the relationships between fracture fluid cleanup, effective fracture length, and well productivity are not fully understood. In this work I used reservoir simulation to determine the relationship between fracture conductivity, fracture fluid production, effective fracture length, and well productivity. I simulated water saturation and pressure profiles around a propped fracture, tracked gas production along the length of the propped fracture, and quantified the effective fracture length (i.e., the fracture length under single-phase flow conditions that gives similar performance as for multiphase flow conditions), the "cleanup" fracture length (i.e., the fracture length corresponding to 90% cumulative gas flow rate into the fracture), and the "apparent" fracture length (i.e., the fracture length where the ratio of multiphase to single-phase gas entry rate profiles is unity). This study shows that the proppant pack is generally cleaned up and the cleanup lengths are close to designed lengths in relatively short times. Although gas is entering along entire fracture, fracturing fluid remains in the formation near the fracture. The water saturation distribution affects the gas entry rate profile, which determines the effective fracture length. Subtle changes in the gas rate entry profile can result in significant changes in effective fracture length. The results I derived from this work are consistent with prior work, namely that greater fracture conductivity results in more effective well cleanup and longer effective fracture lengths versus time. This study provides better explanation of mechanisms that affect fracturing fluid cleanup, effective fracture length, and well productivity than previous work.

Lolon, Elyezer P.

2004-12-01T23:59:59.000Z

70

Enhancing in situ bioremediation with pneumatic fracturing  

Science Conference Proceedings (OSTI)

A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing.

Anderson, D.B.; Peyton, B.M.; Liskowitz, J.L.; Fitzgerald, C.; Schuring, J.R.

1994-04-01T23:59:59.000Z

71

Unsteady Flow Model for Fractured Gas Reservoirs  

Science Conference Proceedings (OSTI)

Developing low permeability reservoirs is currently a big challenge to the industry. Because low permeability reservoirs are of low quality and are easily damaged, production from a single well is low, and there is unlikely to be any primary recovery. ... Keywords: Low permeability, Fractured well, Orthogonal transformation, Unsteady, Productivity

Li Yongming; Zhao Jinzhou; Gong Yang; Yao Fengsheng; Jiang Youshi

2010-12-01T23:59:59.000Z

72

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

73

Evaluating Permeability Enchancement Using Electrical Techniques  

DOE Green Energy (OSTI)

Enhanced Geothermal Systems (EGS) development projects involve the artificial stimulation of relatively impermeable high-temperature underground regions (at depths of 2-4 kilometers or more) to create sufficient permeability to permit underground fluid circulation, so that hot water can be withdrawn from production wells and used to generate electric power. Several major research projects of this general type have been undertaken in the past in New Mexico (Fenton Hill), Europe, Japan and Australia. Recent U.S. activities along these lines focus mainly on stimulating peripheral areas of existing operating hydrothermal fields rather than on fresh 'greenfield' sites, but the long-term objective of the Department of Energy's EGS program is the development of large-scale power projects based on EGS technology (MIT, 2006; NREL, 2008). Usually, stimulation is accomplished by injecting water into a well at high pressure, enhancing permeability by the creation and propagation of fractures in the surrounding rock (a process known as 'hydrofracturing'). Beyond just a motivation, low initial system permeability is also an essential prerequisite to hydrofracturing. If the formation permeability is too high, excessive fluid losses will preclude the buildup of sufficient pressure to fracture rock. In practical situations, the actual result of injection is frequently to re-open pre-existing hydrothermally-mineralized fractures, rather than to create completely new fractures by rupturing intact rock. Pre-existing fractures can often be opened using injection pressures in the range 5-20 MPa. Creation of completely new fractures will usually require pressures that are several times higher. It is preferable to undertake development projects of this type in regions where tectonic conditions are conducive to shear failure, so that when pre-existing fractures are pressurized they will fail by shearing laterally. If this happens, the fracture will often stay open afterwards even if injection subsequently ceases. The principal barrier to EGS utilization for electricity generation is project economics. Costs for geothermal electricity obtained from conventional hydrothermal systems are just marginally competitive. Unless and until the costs of routinely and reliably creating and exploiting artificial subterranean fracture networks that can deliver useful quantities of hot fluid to production wells for long periods of time (years) are reduced to levels comparable to those of a conventional geothermal development project, EGS will be of little interest to the electrical power industry. A significant obstacle to progress in projects of this general type is the difficulty of appraising the properties (geometry, fluid transmissivity, etc.) of the fracture(s) created/re-opened by injection. Sustainability of power production is critically dependent upon reservoir thermal sweep efficiency, which depends in turn on the geometry of the fracture network and its interconnections with the various production and injection wells used to circulate fluid underground. If no permeable connections are created between the wells, fluid flow will be too slow for practical utility. If the connections are too good, however (such as a production/injection well pair connected by a single very permeable fracture), production wellhead temperatures will decline rapidly. Unless the permeable fractures created by hydrofracturing can be accurately mapped, the cost of subsequent trial-and-error drilling to try to establish a suitable fluid circulation system is likely to dominate project economics and render EGS impractical.

John W. Pritchett

2008-09-01T23:59:59.000Z

74

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

Science Conference Proceedings (OSTI)

Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective ... Keywords: Fractal dimension, Global sensitivity, Hydraulic fracturing, Optimization, Surrogate model

Mingjie Chen, Yunwei Sun, Pengcheng Fu, Charles R. Carrigan, Zhiming Lu, Charles H. Tong, Thomas A. Buscheck

2013-08-01T23:59:59.000Z

75

Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report  

DOE Green Energy (OSTI)

Pore-fluid chemical interactions on both short and long time scales can significantly change the permeability of a rock. Measurement of the permeability variations requires adaption and modification on standard measurement systems, with special attention given to pore-fluid flow rates and metal corrosion of system components. In this report, system requirements and capabilities are reviewed, analyzed, and recommendations made. Special attention is given to the choice of corrosion resistant metals, fluid-flow systems, back-pressure systems, jacketing materials, and flow-rate measurement. On the basis of this study, an economical, highly flexible, permeability system was designed and built. The system allows measurement of permeability over the darcy to nanodarcy range, using geologically meaningful, chemically reactive, pore fluids under constant volume flow rates as small as 0.2 ml/day at temperatures in excess of 300C, fluid pressures to 20 MPa, and confining pressures to 100 MPa. 7 refs., 3 figs., 1 tab.

Johnson, B.

1985-11-01T23:59:59.000Z

76

Correlation of hydrothermal sericite composition with permeability and  

Open Energy Info (EERE)

Correlation of hydrothermal sericite composition with permeability and Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

77

Fluid transport properties of rock fractures at high pressure and temperature. Progress report, July 1, 1976--June 30, 1977  

DOE Green Energy (OSTI)

Initial stages of a study on the fluid transport properties of rock at high pressure and temperature are reported. Emphasis is placed on the mechanical hydraulic interactions, in an attempt to clarify the process of fracture closure and its influence on fracture permeability. To determine the fluid transport properties of a fracture, the effect of surface roughness, geometry, and filling on fracture permeability was investigated. Permeability of these fractures was measured at various effective normal stresses at room temperature. The law of effective stress appears valid for fractures without filling but permeability of filled fractures is more sensitive to confining pressure than pore pressure. Permeability of smooth surfaces varied 5 to 0.5 darcys over a range of effective stresses from 0 to 3000 bars. Filled fractures were an order of magnitude more permeable.

Engelder, T.; Scholz, C.

1977-03-01T23:59:59.000Z

78

Domain Decomposition for Flow in Porous Media with Fractures  

E-Print Network (OSTI)

this article. The fractures that we are concerned with are filled with debris so we consider them as porous media. The permeability in the fracture is large in comparison with that in the surrounding rock, so the fluid circulates faster in the fracture. Thus we have a highly heterogeneous porous medium. One idea that has been used to take this into account is to treat the fracture as an interface and to assume that the fluid that flows into the fracture stays in the fracture. In fact, in many models the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected. However, here we are concerned with the situation in which the exchange between the fracture and the rest of the domain is significant. To deal with this case we need to model both what happens in the fracture and what happens outside the fracture. One

Clarisse Alboin; Jerome Jaffre; Jean Roberts; Christophe Serres

1999-01-01T23:59:59.000Z

79

Hydraulic fracturing and propping tests at Yakedake field in Japan  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments have been conducted at Yakedake field in Gifu prefecture, Japan. From the data obtained during the fracturing operation, the open-hole section permeability was estimated of the wellbore, the minimum pressure required to propagate the fracture, the impedances before and after the propping, and the earth stress normal to the fracture plane. The final fracture plane was also mapped with the microseismic events.

Yamaguchi, Tsutomu; Seo, Kunio; Suga, Shoto; Itoh, Toshinobu; Kuriyagawa, Michio

1984-01-01T23:59:59.000Z

80

Lisburne Formation fracture characterization and flow modeling  

E-Print Network (OSTI)

Evaluation of fractured reservoirs for fluid flow and optimal well placement is often very complicated. In general, fractures enhance permeability and increase access to matrix surface, but their random aspects create difficulties for analysis and performance prediction. Each reservoir has unique aspects which require individual assessment. This study examined fracture properties in a part of the Carboniferous Lisburne Formation. Field study of outcrops yielded information on two sets of large-scale fractures (NNW and ENE orientations) from the lower Wahoo Limestone in the eastern Sadlerochit Mountains. Several statistical methods were used on these data to find appropriate models describing the megafracture properties. For NNW fracture height and ENE fracture spacing, the gamma model appears to adequately describe the distribution. NNW fracture spacing and ENE fracture height are lognormally distributed. Results of the statistical analyses were used as input for fracture set generation and modeling using "FracMan". Modeling different borehole orientations in the fractured domain revealed that horizontal wells with 60? azimuth have an optimal trajectory, resulting in the maximum number and area of fracture connections. The orientation maximizing the number of fracture connections did not necessarily give the maximum area. Conductivity analysis showed that the fracture network is weakly anisotropic and above the percolation threshold. The fracture conductance is strongly dependent on the NNW fracture set; larger fractures influence fluid flow more than smaller fractures. Fracture strike and dip variability increased the system interconnectivity, but did not affect the optimal wellbore orientation. Incorporating ENE fracture termination against the NNW fractures decreased the system conductance and shifted the optimal wellbore trajectory towards the direction perpendicular to the NNW set. Reservoir engineering implications of this study include: guidelines for optimal wellbore orientations, the relative placement of injectors and producers along the bisectors between the two fracture sets, and the importance of including fracture terminations. Further work should investigate the influence of variations in fracture aperture and transmissivities, and drainage area, and extend the analysis to additional units of the Lisburne Group.

Karpov, Alexandre Valerievich

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Measuring the permeability of Eleana argillite from area 17, Nevada Test Site, using the transient method  

SciTech Connect

Using the transient method, we determine the permeability of high-quartz Eleana argillite from the Nevada Test Site as a function of effective pressure. By comparing calculated and observed pressure decay in the upstream reservoir, we have determined the permeability of intact and fractured specimens at effective pressures ranging from 1.0 to 24.0 MPa. Over this pressure range, Eleana argillite has a low permeability (10{sup -16} to 10{sup -19} cm{sup 2}) when intact and a higher permeability (10{sup -12} to 10{sup -17} cm{sup 2}) with one induced through-going fracture.

Lin, W.

1978-12-11T23:59:59.000Z

82

Fracture analysis of the upper devonian antrim shale, Michigan basin  

Science Conference Proceedings (OSTI)

The Antrim Shale is a fractured, unconventional gas reservoir in the northern Michigan basin. Controls on gas production are poorly constrained but must depend on the fracture framework. Analyses of fracture geometry (orientation, spacing, and aperture width) were undertaken to better evaluate reservoir permeability and, hence, pathways for fluid migration. Measurements from nearly 600 fractures were made from outcrop, core, and Formation MicroScanner logs covering three members of the Antrim Shale (Norwood, Paxton, Lachine) and the Ellsworth Shale. Fracture analyses indicate pronounced reservoir anisotropy among the members. Together related with lithologic variations, this leads to unique reservoir characteristics within each member. There are two dominant fracture sets, northeast-southwest and northwest-southeast. Fracture density varies among stratigraphic intervals but always is lowest in the northwest-southeast fracture set and is greatest in the northeast-southwest fracture set. While aperture width decreases markedly with depth, subsurface variation in mean aperture width is significant. Based on fracture density and mean aperture width, the Norwood member has the largest intrinsic permeability and the Ellsworth Shale the lowest intrinsic permeability. The highest intrinsic fracture permeability in all intervals is associated with the northeast-southwest fracture set. The Norwood and Lachine members thus exhibit the best reservoir character. This information is useful in developing exploration strategies and completion practices in the Antrim Shale gas play.

Richards, J.A.; Budai, J.M.; Walter, L.M.; Abriola, L.M. (Univ. of Michigan, Ann Arbor, MI (United States))

1994-08-01T23:59:59.000Z

83

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network (OSTI)

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

84

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

85

Reliability and maintainability program  

SciTech Connect

The program's goals are to accelerate the adoption of active solar energy systems in building applications by improving the reliability and maintainability of installed systems. The project is designed to accomplish this by providing the latest information; by assisting the industry in improving reliability and maintainability; by assisting in design, manufacture, installation and maintenance of reliable and durable systems; and by assisting in the development of codes and standards. Work and accomplishments in these areas are enumerated. (LEW)

Eden, A.

1981-05-01T23:59:59.000Z

86

Does hydraulic-fracturing theory work in jointed rock masses  

DOE Green Energy (OSTI)

The hypocenter locations of micro-earthquakes (acoustic emissions) generated during fracturing typically are distributed three-dimensionally suggesting that fracturing stimulates a volumetric region, rather than the planar fracture theoretically expected. The hypocenter maps generated at six operating, or potential, HDR reservoirs in the US, Europe and Japan are examined in detail and the fracture dimensions are correlated with fracture injection volumes and formation permeability. Depsite the volumetric appearance of the maps we infer that the induced fractures are mainly planar and may propagate aseismically. The induced seismicity stems from nearby joints, which are not opened significantly by fracturing, but are caused to shear-slip because of local pore pressure.

Murphy, H.D.; Keppler, H.; Dash, Z.V.

1983-01-01T23:59:59.000Z

87

HYDRAULIC FRACTURING  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDRAULIC FRACTURING In addition to the recovery processes featured in this series of drawings, hydraulic fracturing is included as an example of technologies that contribute to...

88

Hydraulic-fracture stimulation treatments at East Mesa, Well 58-30. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

East Mesa Well 58-30 was selected for two stimulation treatments: a conventional hydraulic fracture in a deep, low permeability interval, and a dendritic fracture in a shallow, high permeability interval of completion. The well selection, pre-stimulation evaluation, fracture treatment design, and post-stimulation evaluation are presented.

Not Available

1981-02-01T23:59:59.000Z

89

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

90

Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model  

SciTech Connect

Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

Huang, Hai; Plummer, Mitchell; Podgorney, Robert

2013-02-01T23:59:59.000Z

91

Maintaining body temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

Maintaining body temperature Maintaining body temperature Name: Jeff Location: N/A Country: N/A Date: N/A Question: What keeps the human body at a constant temperature of 98.6? Replies: Maintaining body temperature is very complex. It also takes a lot of energy. About 80% of the energy from the food you eat goes to maintaining body temperature. Basically, the chemical reactions of metabolism of stored food, especially fats, generate heat as a by product. This heat warms the body. The brain reads temperature and controls to some extent the rate of this metabolism. There are also many other mechanisms triggered by the brain to keep the core of your body warm, even if the periphery (skin) is cold. Blood vessels to the fingers and toes constrict, so that the cold air doesn't cool the blood too much, so that cooled blood doesn't cool down the heart and brain when it returns. In severe cases, your body will sacrifice a finger or a toe to keep you from dying of cold core temperature (frostbite: it saves your life!). Also the brain can order a lot of muscles to contract rapidly. This generates a lot of heat quickly, a response called shivering. There's much more to this exciting field of research.

92

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network (OSTI)

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability. Petroleum geologists suggest that observed steep declining rates may involve pressure-dependent permeability (PDP). This study accounts for PDP in three potential shale media: the shale matrix, the existing natural fractures, and the created hydraulic fractures. Sensitivity studies comparing expected long-term rate and pressure production behavior with and without PDP show that these two are distinct when presented as a sequence of coupled build-up rate-normalized pressure (BU-RNP) and its logarithmic derivative, making PDP a recognizable trend. Pressure and rate field data demonstrate evidence of PDP only in Horn River and Haynesville but not in Fayetteville shale. While the presence of PDP did not seem to impact the long term recovery forecast, it is possible to determine whether the observed behavior relates to change in hydraulic fracture conductivity or to change in fracture network permeability. As well, it provides insight on whether apparent fracture networks relate to an existing natural fracture network in the shale or to a fracture network induced during hydraulic fracturing.

Vera Rosales, Fabian 1986-

2012-12-01T23:59:59.000Z

93

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

94

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network (OSTI)

The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250oF) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory “dynamic fracture conductivity” tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150oF. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Marpaung, Fivman

2007-12-01T23:59:59.000Z

95

Enhancing permeability in oil shale and applications to tar sands  

SciTech Connect

Explosive fracturing and rubblization are used to enhance oil shale permeability. Blasting strategy and results are discussed, in particular the Geokinetics blasting. The field data desired are listed. Comments are offered on the extension of the blasting techniques to tar sands. (DLC)

Schamaun, J.T.

1980-01-01T23:59:59.000Z

96

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach to evaluate horizontal well performance for fractured or unfractured gas wells and a sensitivity study of gas well performance in a low permeability formation. A newly developed Distributed Volumetric Sources (DVS) method was used to calculate dimensionless productivity index for a defined source in a box-shaped domain. The unique features of the DVS method are that it can be applied to transient flow and pseudo-steady state flow with a smooth transition between the boundary conditions. In this study, I conducted well performance studies by applying the DVS method to typical tight sandstone gas wells in the US basins. The objective is to determine the best practice to produce horizontal gas wells. For fractured wells, well performance of a single fracture and multiple fractures are compared, and the effect of the number of fractures on productivity of the well is presented based on the well productivity. The results from this study show that every basin has a unique ideal set of fracture number and fracture length. Permeability plays an important role on dictating the location and the dimension of the fractures. This study indicated that in order to achieve optimum production, the lower the permeability of the formation, the higher the number of fractures.

Magalhaes, Fellipe Vieira

2007-08-01T23:59:59.000Z

97

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network (OSTI)

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

98

Flow and transport in unsaturated fractured rock: effects of multiscale heterogeneity of  

E-Print Network (OSTI)

.g., porosity, permeability, and capillary parameters for rock matrix). Additionally, pneumatic pres- sure of calibration of fracture permeability, using pneumatic pressure data. The advective­diffusive equation., 1998). This model is based mainly on the hypothesis that only a portion of connected fractures

Zhou, Quanlin

99

Method for enhancement of sequential hydraulic fracturing using control pulse fracturing  

Science Conference Proceedings (OSTI)

A method is described for creating multiple sequential hydraulic fractures via hydraulic fracturing combined with controlled pulse fracturing where two wells are utilized comprising: (a) drilling and completing a first and second well so that the wells will be in fluid communication with each other after subsequent fracturing in each well; (b) creating more than two simultaneous multiple vertical fractures via a controlled pulse fracturing method in the second well; (c) thereafter hydraulically fracturing the reservoir via the first well thereby creating fractures in the reservoir and afterwards shutting-in the first well without any induced pressure; (d) applying thereafter hydraulic pressure to the reservoir via the second well in an amount sufficient to fracture the reservoir thereby forming a first hydraulic fracture perpendicular to the least principal in-situ stress; (e) maintaining the hydraulic pressure on the reservoir while pumping via the second well alternate slugs of a thin-fluid spacer and a temporary blocking agent having a proppant therein whereupon a second hydraulic fracture is initiated; (f) maintaining the hydraulic pressure on the second well while pumping alternate slugs of spacer and blocking agent into the second hydraulic fracture thereby causing the second hydraulic fracture to propagate away from the first hydraulic fracture in step (e) in a curved trajectory which intersects a fracture created in the first well; (g) maintaining the hydraulic pressure while pumping as in step (f) whereupon another hydraulic fracture initiates causing another curved fracture trajectory to form and intersect the fracture created in the first well; and (h) repeated steps (f) and (g) until a desired number of hydraulic fractures are created which allows a substantial improvement in removing a natural resource from the reservoir.

Jennings, A.R. Jr.; Strubhar, M.K.

1993-07-20T23:59:59.000Z

100

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network (OSTI)

Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of “dynamical fracture conductivity test”, were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Correa Castro, Juan

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Studies of Transport Properties of Fractures: Final Report  

DOE Green Energy (OSTI)

We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

Stephen R. Brown

2006-06-30T23:59:59.000Z

102

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

103

Maintaining plant safety margins  

SciTech Connect

The Final Safety Analysis Report Forms the basis of demonstrating that the plant can operate safely and meet all applicable acceptance criteria. In order to assure that this continues through each operating cycle, the safety analysis is reexamined for each reload core. Operating limits are set for each reload core to assure that safety limits and applicable acceptance criteria are not exceeded for postulated events within the design basis. These operating limits form the basis for plant operation, providing barriers on various measurable parameters. The barriers are refereed to as limiting conditions for operation (LCO). The operating limits, being influenced by many factors, can change significantly from cycle to cycle. In order to be successful in demonstrating safe operation for each reload core (with adequate operating margin), it is necessary to continue to focus on ways to maintain/improve existing safety margins. Existing safety margins are a function of the plant type (boiling water reactor/pressurized water reactor (BWR/PWR)), nuclear system supply (NSSS) vendor, operating license date, core design features, plant design features, licensing history, and analytical methods used in the safety analysis. This paper summarizes the experience at Yankee Atomic Electric Company (YAEC) in its efforts to provide adequate operating margin for the plants that it supports.

Bergeron, P.A.

1989-01-01T23:59:59.000Z

104

Pressure measurements in low permeability formations  

DOE Green Energy (OSTI)

This paper examines the performance requirements and identifies candidate hardware implementations for pressure instrumentation that is needed to provide well test data in low permeability formations. Low permeability values are typically defined to be less than 1 microdarcy and are usually encountered in hard rock formations, such as granite, that are of interest in hot dry rock geothermal, deep exploration drilling, and fluid waste disposal. Groundwater flow in these tight formations has been shown to be dominated by flow-through fractures rather than through the formation's intrinsic permeability. In these cases, we cannot use Darcy's law or the usual dimensionless coefficients to estimate the expected scale factors and dynamic responses necessary to properly select and setup the wellbore pressure instrument. This paper shows that the expected instrument responses can be estimated using some recent work by Wang, Narasimhan, and Witherspoon. This paper further describes the minimum electronic capability that the downhole pressure instrument must have in order to provide the required measurement resolution, dynamic range, and transient response. Three specific hardware implementations are presented based on the following transducers: a quartz resonator, a capacitance gauge, and a resistance strain gauge.

Veneruso, A.F.; McConnell, T.D.

1980-01-01T23:59:59.000Z

105

Liquid-permeable electrode  

SciTech Connect

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, G.R.

1980-03-18T23:59:59.000Z

106

Liquid-permeable electrode  

DOE Patents (OSTI)

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, George R. (Lower Burrell, PA)

1980-01-01T23:59:59.000Z

107

Fluid Flow Within Fractured Porous Media  

Science Conference Proceedings (OSTI)

Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

Crandall, D.M.; Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.; Bromhal, G.S.

2006-10-01T23:59:59.000Z

108

Hydrodynamics of a vertical hydraulic fracture  

DOE Green Energy (OSTI)

We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.

Narasimhan, T.N.

1987-03-24T23:59:59.000Z

109

Hydraulic Fracturing (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

110

Hydraulic Fracturing Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

111

Effective fracture geometry obtained with large water sand ratio  

E-Print Network (OSTI)

Shale gas formation exhibits some unusual reservoir characteristics: nano-darcy matrix permeability, presence of natural fractures and gas storage on the matrix surface that makes it unique in many ways. It’s difficult to design an optimum fracture treatment for such formation and even more difficult is to describe production behavior using a reservoir model. So far homogeneous, two wing fracture, and natural fracture models have been used for this purpose without much success. Micro seismic mapping technique is used to measure the fracture propagation in real time. This measurement in naturally fractured shale formation suggests a growth of fracture network instead of a traditional two wing fractures. There is an industry wise consensus that fracture network plays an important role in determining the well productivity of such formations. A well with high density of fracture networks supposed to have better productivity. Shale formations have also exhibited production pattern which is very different from conventional or tight gas reservoir. Initial flow period is marked by steep decline in production while the late time production exhibits a slow decline. One of the arguments put for this behavior is linear flow from a bi-wing fractured well at early time and contribution of adsorbed gas in production at late time. However, bi-wing fracture geometry is not supported by the micro-seismic observation. A realistic model should include both the fracture network and adsorbed gas property. In this research we have proposed a new Power Law Permability model to simulate fluid flow from hydraulically fractured Shale formation. This model was first described by Valko & Fnu (2002) and used for analyzing acid treatment jobs. The key idea of this model is to use a power law permeability function that varies with the radial distance from well bore. Scaling exponent of this power law function has been named power law index. The permeability function has also been termed as secondary permeability. This work introduces the method of Laplace solution to solve the problem of transient and pseudo steady-state flow in a fracture network. Development and validation of this method and its extension to predict the pressure (and production) behaviour of fracture network were made using a novel technic. Pressure solution was then combined with material balance through productivity index to make production forecast. Reservoir rock volume affected by the fracture stimulation treatment that contributes in the production is called effective stimulated volume. This represents the extent of fracture network in this case. Barnett shale formation is a naturally fractured shale reservoir in Fort Worth basin. Several production wells from this formation was analysed using Power Law Model and it was found that wells productivity are highly dependent on stimulated volume. Apparently the wells flow under pseudo steady state for most part of their producing life and the effect of boundary on production is evident in as soon as one months of production. Due to short period of transient flow production from Barnett formations is expected to be largely independent of the relative distribution of permeability and highly dependent on the stimulated area and induced secondary permeability. However, an indirect relationship between permeability distribution and production rate is observed. A well with low power law index shows a better (more even) secondary permeability distribution in spatial direction, larger stimulated volume and better production. A comparative analysis between the new model and traditional fracture model was made. It was found that both models can be used successfully for history matching and production forecasting from hydraulically fractured shale gas formation.

Kumar, Amrendra

2008-12-01T23:59:59.000Z

112

A New Definition on Fractal Porous Rock Damage Variable and Study on Evolution Characteristics of Porosity-permeability  

Science Conference Proceedings (OSTI)

Considered the fractal characteristic of rock with porosity structure, a rock damage variable which describes rock damage of the reservoir of fractal structure with hydraulic fracturing is defined, and this damage variable that describes the state of ... Keywords: hydraulic fracturing, damage variable, fractal, porosity pore structure, permeability evolving

Zhaowan Chun; Wang Tingting; Ai Chi; Sun Chengyan

2010-05-01T23:59:59.000Z

113

Proppant Fracture Conductivity with High Proppant Loading and High Closure Stress  

E-Print Network (OSTI)

Ultra-deepwater reservoirs are important unconventional reservoirs that hold the potential to produce billions of barrels of hydrocarbons, but also present major challenges. This type of reservoir is usually high pressure and high temperature (HPHT) and has a relatively high permeability. Hydraulic fracturing high permeability reservoirs are different from the hydraulic fracturing technology used in low permeability formations. The main purpose of hydraulic fracturing in low permeability reservoirs is to create a long, highly conductive path, whereas in high permeability formations hydraulic fracturing is used predominantly to bypass near wellbore formation damage, control sand production and reduce near wellbore pressure drop. Hydraulically fracturing these types of wells requires short fractures packed with high proppant concentrations. In addition, fracturing in high permeability reservoirs aims at achieving enough fracture length to increase productivity, especially when the viscosity of the reservoir fluid is high. In order to pump such a job and ensure long term productivity from the fracture, understanding the behavior of the fracture fluid and proppant is critical. A series of laboratory experiments have been conducted to study conductivity and fracture width with high proppant loading, high temperature and high pressure. Proppant was manually placed in the fracture and fracture fluid was pumped through the pack. Conductivity was measured by pumping oil to simulate reservoir conditions. Proppant performance and fracture fluids, which carry the proppant into the fracture, and their subsequent clean-up during production, were studied. High strength proppant is ideal for deep fracture stimulations and in this study different proppant loadings at different stresses were tested to see the impact of crushing and fracture width reduction on fracture conductivity. The preliminary test results indicated that oil at reservoir conditions improves clean-up of fracture fluid left in the proppant pack compared with using water at ambient temperature. Increasing the proppant concentration in the fracture showed higher conductivity values in some cases even at high closure stress. The increase in effective closure stress with high temperature resulted in a significant loss in conductivity. Additionally, the fracture width decreased with time and increased effective closure stress. Tests were also run to study the effect of cyclic loading which is expected to further decrease conductivity.

Rivers, Matthew Charles

2010-05-01T23:59:59.000Z

114

Explosive fracturing method  

SciTech Connect

A method of inducing a fracture system and multiple cavities in earthen formations is described. A first explosive, preferably nuclear, is buried at a sufficient depth so that its subsequent detonation is fully contained within the earth. Thereafter a second explosive, also preferably nuclear, is buried a predetermined distance from the situs of the first explosive. After detonation of the first explosive, time is allowed to elapse during which the cavity formed by the first explosive collapses to form a rubblized chimney. Thereafter, the second explosive is detonated to create a second chimney parallel to that of the first explosive together with a zone of enhanced permeability between the first and second. (10 claims)

Boardman, C.R.; Knutson, C.F.

1973-12-11T23:59:59.000Z

115

Enthalpy transients in fractured two-phase geothermal systems  

DOE Green Energy (OSTI)

Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

1985-03-01T23:59:59.000Z

116

Virtual Rapid Chloride Permeability Test  

Science Conference Proceedings (OSTI)

... final temperature can be manually copied to the final temperature in the test conditions box ... Type of software: Virtual testing of chloride permeability. ...

2013-06-11T23:59:59.000Z

117

Advanced hydraulic fracturing methods to create in situ reactive barriers  

Science Conference Proceedings (OSTI)

This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

1997-12-31T23:59:59.000Z

118

Geomechanical Development of Fractured Reservoirs During Gas Production  

E-Print Network (OSTI)

Within fractured reservoirs, such as tight gas reservoir, coupled processes between matrix deformation and fluid flow are very important for predicting reservoir behavior, pore pressure evolution and fracture closure. To study the coupling between gas desorption and rock matrix/fracture deformation, a poroelastic constitutive relation is developed and used for deformation of gas shale. Local continuity equation of dry gas model is developed by considering the mass conservation of gas, including both free and absorbed phases. The absorbed gas content and the sorption-induced volumetric strain are described through a Langmiur-type equation. A general porosity model that differs from other empirical correlations in the literature is developed and utilized in a finite element model to coupled gas diffusion and rock mass deformation. The dual permeability method (DPM) is implemented into the Finite Element Model (FEM) to investigate fracture deformation and closure and its impact on gas flow in naturally fractured reservoir. Within the framework of DPM, the fractured reservoir is treated as dual continuum. Two independent but overlapping meshes (or elements) are used to represent these kinds of reservoirs: one is the matrix elements used for deformation and fluid flow within matrix domain; while the other is the fracture element simulating the fluid flow only through the fractures. Both matrix and fractures are assumed to be permeable and can accomodate fluid transported. A quasi steady-state function is used to quantify the flow that is transferred between rock mass and fractures. By implementing the idea of equivalent fracture permeability and shape-factor within the transfer function into DPM, the fracture geometry and orientation are numerically considered and the complexity of the problem is well reduced. Both the normal deformation and shear dilation of fractures are considered and the stress-dependent fracture aperture can be updated in time. Further, a non-linear numerical model is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir. The viscoelastic effect is addressed in both deviatoric and symmetric effective stresses to emphasize the effect of shear strain localization on fracture shear dilation. The new mechanical model is first verified with an analytical solution in a simple wellbore creep problem and then compared with the poroelastic solution in both wellbore and field cases.

Huang, Jian

2013-05-01T23:59:59.000Z

119

Fracture detection and mapping  

DOE Green Energy (OSTI)

Because the costs of drilling, completing, and testing a well can be extremely high, it is important to develop better tools and methods for locating high permeability zones prior to drilling, and to develop better tools and methods for identifying and characterizing major fracture zones during the drilling and well testing stages. At the recommendation of the LBL Industry Review Panel on Geothermal Reservoir Technology, we organized and convened a one-day workshop this past July to discuss various aspects of DOE's current and planned activities in fracture detection, to review the geothermal industry's near-term and long-term research needs, to determine the priority of those needs, to disseminate to industry the status of research in progress, and to discuss the possibility of future joint research between industry and DOE. In this paper we present a brief overview of the workshop from the perspective of those who participated in it and provided us with written comments to a questionnaire that was distributed.

Goldstein, N.E.; Iovenitti, J.L.

1986-03-01T23:59:59.000Z

120

Remediation of DNAPLs in Low Permeability Soils. Innovative Technology Summary Report  

Science Conference Proceedings (OSTI)

Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U. S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.

None

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Safety System Obsolescence and Maintainability  

Science Conference Proceedings (OSTI)

The nuclear power industry is currently facing increasing obsolescence issues with original instrumentation and control (I&C) equipment, particularly in safety system applications. These systems, often more than thirty years old, are based on analog technology, relays, and other discrete components, which are becoming difficult to maintain and replace with like equipment. This report helps utilities understand their options and choose the most cost-effective strategies for maintaining and replacing obsol...

2001-05-02T23:59:59.000Z

122

Hydraulic fracturing-1  

Science Conference Proceedings (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

123

Gas permeability of carbon aerogels  

SciTech Connect

Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1993-12-01T23:59:59.000Z

124

Optimizing reservoir management through fracture modeling  

DOE Green Energy (OSTI)

Fracture flow will become increasingly important to optimal reservoir management as exploration of geothermal reservoirs continues and as injection of spent fluid increases. The Department of Energy conducts research focused on locating and characterizing fractures, modeling the effects of fractures on movement of fluid, solutes, and heat throughout a reservoir, and determining the effects of injection on long-term reservoir production characteristics in order to increase the ability to predict with greater certainty the long-term performance of geothermal reservoirs. Improvements in interpreting and modeling geophysical techniques such as gravity, self potential, and aeromagnetics are yielding new information for the delineation of active major conduits for fluid flow. Vertical seismic profiling and cross-borehole electromagnetic techniques also show promise for delineating fracture zones. DOE funds several efforts for simulating geothermal reservoirs. Lawrence Berkeley Laboratory has adopted a continuum treatment for reservoirs with a fracture component. Idaho National Engineering Laboratory has developed simulation techniques which utilize discrete fractures and interchange of fluid between permeable matrix and fractures. Results of these research projects will be presented to industry through publications and appropriate public meetings. 9 refs.

Renner, J.L.

1988-01-01T23:59:59.000Z

125

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

126

Modeling of fluid and heat flow in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

Pruess, K.

1988-08-01T23:59:59.000Z

127

Intrusion Margins and Associated Fractures | Open Energy Information  

Open Energy Info (EERE)

Intrusion Margins and Associated Fractures Intrusion Margins and Associated Fractures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Intrusion Margins and Associated Fractures Dictionary.png Intrusion Margins and Associated Fractures: No definition has been provided for this term. Add a Definition Controlling Structures List of controlling structures typically associated with geothermal systems: Major Normal Fault Termination of a Major Normal Fault Stepover or Relay Ramp in Normal Fault Zones Apex or Salient of Normal Fault Fault Intersection Accommodation Zone Displacement Transfer Zone Pull-Apart in Strike-Slip Fault Zone Intrusion Margins and Associated Fractures Stratigraphic Boundaries Fissure Swarms Caldera Rim Margins Lithologically Controlled Fractures caused by igneous activity creates permeability, allowing water

128

In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998  

Science Conference Proceedings (OSTI)

Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

1998-09-01T23:59:59.000Z

129

Using Chemicals to Optimize Conformance Control in Fractured Reservoirs  

SciTech Connect

The objectives of this project are: (1) to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas, (2) to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems, and (3) to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. Work was directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

Seright, Randall; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Anand; Wavrik, Kathryn

2001-09-07T23:59:59.000Z

130

Self-potential observations during hydraulic fracturing  

SciTech Connect

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

131

Corporation Commission Hydraulic FracturingHydraulic Fracturing  

E-Print Network (OSTI)

Corporation Commission Hydraulic FracturingHydraulic Fracturing Joint Committee on Energy Commission What is Hydraulic Fracturing d H D It W k?and How Does It Work? · Stimulates a well to increase by Stanolind Oil Company. 2 #12;Kansas Corporation Commission Are Hydraulic Fracture Jobs Performed in Kansas

Peterson, Blake R.

132

Constant-pressure measurement of steam-water relative permeability  

DOE Green Energy (OSTI)

A series of steady-state experiments have established relative permeability curves for two-phase flow of water in a porous medium. These experiments have minimized uncertainty in pressure, heat loss, and saturation. By attempting to maintain a constant pressure gradient, the experiments have provided a baseline from which to determine the effect of temperature on relative permeability. The use of a flexible heater with an automatic control system made it possible to assume negligible phase change for the mobile fluid. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954) for the simultaneous flow of nitrogen and water. Close agreement between the curves by Satik (1998), Mahiya (1999), and this study establishes the reliability of the experimental method and instrumentation adopted in these experiments, though some differences may bear further investigation. In particular, the steam phase relative permeability appears to vary much more linearly with saturation than does the water phase relative permeability.

O'Connor, Peter A.

2001-06-01T23:59:59.000Z

133

Boiling radial flow in fractures of varying wall porosity  

DOE Green Energy (OSTI)

The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

Barnitt, Robb Allan

2000-06-01T23:59:59.000Z

134

Characterization of Small Scale Heterogeneity for Prediction of Acid Fracture Performance  

E-Print Network (OSTI)

Recently developed models of the acid fracturing process have shown that the differential etching necessary to create lasting fracture conductivity is caused by the heterogeneous distributions of permeability and mineralogy along the fracture faces. To predict the conductivity that can be created by acid in a particular formation, the models require information about these formation properties. This research aims to quantify correlation lengths using a geostatistical description of small scale heterogeneity to ascertain the distribution of permeability and mineralogy in a carbonate formation. The correlation length parameters are a first step in being able to couple acid transport and rock dissolution models at reservoir scale with a model of fracture conductivity based on channels and roughness features caused by small scale heterogeneity. Geostatistical parameters of small scale heterogeneity affecting wells in the Hugoton Field are developed. Data leading to their derivation are obtained from a combination of well logs and cores. The permeability of slabbed core is measured to yield vertical correlation length. Well logs are used to estimate permeability via an empirical relationship between core plug permeability and well log data for calculation of horizontal correlation length. A fracture simulator computes the acid etched fracture width for known treatment conditions. The resulting geostatistical parameters and acid etched width are used to predict acid fracture performance for a well in the Hugoton Field. Application of new model conductivity correlations results in a unique prediction for the acid fracture case study that differs from the industry standard. Improvements in low cost stimulation treatments such as acid fracturing are the key to revitalizing production in mature carbonate reservoirs like the Hugoton Field. Planning and development of new wells in any carbonate formation necessarily must consider acid fracturing as a production stimulation technique. Reliable models that accurately predict acid fracture conductivity can be used to make an informed investment decision.

Beatty, Cassandra Vonne

2010-08-01T23:59:59.000Z

135

The Development of Optimization System of Fracturing about CBM's Vertical Wells  

Science Conference Proceedings (OSTI)

The reasonable fracturing pumping parameters are the keys to improve the conductivity of the coal reservoir, save costs and improve gas production. According to the characteristics of coal reservoir, a coal reservoir propping agent evaluation system ... Keywords: coalbed methane, fracturing, optimization system, permeability Introduction

Xiaoming Ni; Peng Chen

2010-10-01T23:59:59.000Z

136

Indonesian drilling maintains steady pace  

SciTech Connect

Offshore drilling activity in Indonesia increased nominally the first quarter of 1985 to an average 29 rigs. Barring any further problems with oil prices and markets, operators are expected to maintain essentially the current general level of appraisal/development work for the rest of this year. There are still a number of prospective regions to be explored in Southeast Asia. Regional developments are described for the South China Sea area, the Java Sea, South Sumatra, Kalimantan, Irian Jaya and the Malacca Strait.

Not Available

1985-05-01T23:59:59.000Z

137

EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT  

Science Conference Proceedings (OSTI)

The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

Riha, B

2005-10-31T23:59:59.000Z

138

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

139

Fracture characterization study  

DOE Green Energy (OSTI)

First, the origin, nature, and significance of fractures in general are discussed. Next, discussions are directed toward the designation and classification of fractures. Some typical fracture measurement techniques are discussed. Finally, geothermal fracture systems are investigated and correlations made to determine which fracture technologies from oil field work are applicable to geothermal systems. (MHR)

Kehrman, R.F.

1978-04-01T23:59:59.000Z

140

Characterization of EGS Fracture Network Lifecycles  

DOE Green Energy (OSTI)

Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field, in order to enhance productivity there. Task 3 was to interpret the results jointly with other geological information in order to provide a consistent physical model. All of the original goals of the project have been achieved. An existing program for calculating accurate relative earthquake locations has been enhanced by a technique to improve the accuracy of earthquake arrival-time measurements using waveform cross-correlation. Error analysis has been added to pre-existing moment tensor software. New seismic tomography software has been written to calculate changes in structure that could be due, for example, to reservoir depletion. Data processing procedures have been streamlined and web tools developed for rapid dissemination of the results, e.g., to on-site operations staff. Application of the new analysis tools to the Coso geothermal field has demonstrated the effective use of the techniques and provided important case histories to guide the style of future applications. Changes in reservoir structure with time are imaged throughout the upper 3 km, identifying the areas where large volumes of fluid are being extracted. EGS hydrofracturing experiments in two wells stimulated a nearby fault to the south that ruptured from south to north. The position of this fault could be precisely mapped and its existence was confirmed by surface mapping and data from a borehole televiewer log. No earthquakes occurred far north of the injection wells, suggesting that the wells lie near the northern boundary of the region of critically stressed faults. Minor en-echelon faults were also activated. Significant across-strike fluid flow occurred. The faults activated had significant crack-opening components, indicating that the hydraulic fracturing created open cavities at depth. The fluid injection changed the local stress field orientation and thus the mode of failure was different from the normal background. Initial indications are that the injections modulated stress release, seismicity and natural fracture system evolution for periods of up to months. The research demon

Gillian R. Foulger

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir  

DOE Green Energy (OSTI)

Field experiments using fluorescent dye and radioactive tracers (Br{sup 82} and I{sup 131}) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data.

Tester, J.W.; Potter, R.M.; Bivins, R.L.

1979-01-01T23:59:59.000Z

142

Using Chemicals to Optimize Conformance Control in Fractured Reservoirs  

SciTech Connect

This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs.

Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

2001-10-29T23:59:59.000Z

143

Simulating Injectate/Rock Chemical Interaction In Fractured Desert Peak Quartz Monzonite  

DOE Green Energy (OSTI)

Simulations of the interactions of injected fluids with minerals within an engineered fracture in a sample of Desert Peak quartz monzonite were compared with experimental observations of fluid chemistry and fracture permeability. The observed decrease in permeability and effective hydraulic aperture was much more rapid ({approx}1.0 {micro}m/day) for a core injected with a mixed salt solution containing dissolved silica (near-saturation injectate), compared to cores injected with NaCl (far-from-saturation injectate) ({approx}0.1 {micro}m/day). Simulations were in qualitative agreement with these observations. Near-saturation injectate is predicted to result in net precipitation of secondary phases in the fracture ({approx}0.12 {micro}m/day), compared to a net dissolution of the rock for the far-from-saturation injectate ({approx}0.3 {micro}m/day). Permeability loss for the near-saturation-injectate is ascribed to precipitation in the fracture as well as potential dissolution of primary mineral asperities. Permeability loss for the far-from-saturation fluid is ascribed to dissolution of asperities and smoothing of the fracture. Post-test analysis of the fracture surface will be necessary to verify the processes occurring. The simplified geochemical models used do not account for mineral heterogeneity or for distributions of fluid residence times which could be important controls on permeability evolution. Further analysis is planned to explicitly account for these phenomena.

Viani, B; Roberts, J; Detwiler, R; Roberts, S; Carlson, S

2005-06-02T23:59:59.000Z

144

Measuring and Modeling Flow in Welded Fractured Tuffs  

SciTech Connect

We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field.

R. Salve; C. Doughty; J.S. Wang

2001-10-03T23:59:59.000Z

145

Linear Elastic Fracture Mechanics  

Science Conference Proceedings (OSTI)

..., ASM International, 1996, p 371â??380ASM Handbook, Vol 19, Fatigue And FractureS.D. Antolovich and B.F. Antolovich, An Introduction to Fracture

146

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network (OSTI)

In the coming decades, the world will require additional supplies of natural gas to meet the demand for energy. Tight gas reservoirs can be defined as reservoirs where the formation permeability is so low (flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective fracture permeability and porosity, reduce the effective fracture half-length, and limit the well productivity. Our ability to mathematically model the fundamental physical processes governing fluid recovery in hydraulic fractures in the past has been limited. In this research, fracture fluid damage mechanisms have been investigated, and mathematical models and computer codes have been developed to better characterize the cleanup process. The codes have been linked to a 3D, 3-phase simulator to model and quantify the fracture fluid cleanup process and its effect on long-term gas production performances. Then, a comprehensive systematic simulation study has been carried out by varying formation permeability, reservoir pressure, fracture length, fracture conductivity, yield stress, and pressure drawdown. On the basis of simulation results and analyses, new ways to improve fracture fluid cleanup have been provided. This new progress help engineers better understand fracture fluid cleanup, improve fracture treatment design, and increase gas recovery from tight sand reservoirs, which can be extremely important as more tight gas reservoirs are developed around the world.

Wang, Yilin

2008-12-01T23:59:59.000Z

147

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network (OSTI)

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In this study a semi-analytical method is used to investigate these effects with particular reference to shale stimulation. Using simplifying assumptions, equations are derived for stress distribution around the wellbore's walls. The model is then used to study the fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried out on the impact of Young's modulus and Poisson's ration, on the fracture initiation pressure. The results are useful in designing hydraulic fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale.

Serajian, Vahid

2011-08-01T23:59:59.000Z

148

Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration  

SciTech Connect

In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins where natural fractures play an important role in reservoir permeability. Potential uses for these learnings and tools range from rank exploration to field-development portfolio management. Early incorporation of the permeability development concepts presented here can improve basin assessment and direct focus to the high potential areas within basins. Insight into production variability inherent in tight naturally fractured reservoirs leads to improved wellbore evaluation and reduces the incidence of premature exits from high potential plays. A significant conclusion of this project is that natural fractures, while often an important, overlooked aspect of reservoir geology, represent only one aspect of the overall reservoir fabric. A balanced perspective encompassing all aspects of reservoir geology will have the greatest impact on exploration and development in the low permeability gas setting.

R. L. Billingsley; V. Kuuskraa

2006-03-31T23:59:59.000Z

149

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network (OSTI)

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase the surface area of the formation that is connected to the wellbore. These highly conductive fractures significantly increase the production rates of petroleum fluids. During the process of hydraulic fracturing proppant is pumped and distributed in the fractures to keep them open after closure. Economic considerations have driven the industry to find ways to determine the optimal type, size and concentration of proppant that would enhance fracture conductivity and improve well performance. Therefore, direct laboratory conductivity measurements using real shale samples under realistic experimental conditions are needed for reliable hydraulic fracturing design optimization. A series of laboratory experiments was conducted to measure the conductivity of propped and unpropped fractures of Barnett shale using a modified API conductivity cell at room temperature for both natural fractures and induced fractures. The induced fractures were artificially created along the bedding plane to account for the effect of fracture face roughness on conductivity. The cementing material present on the surface of the natural fractures was preserved only for the initial unpropped conductivity tests. Natural proppants of difference sizes were manually placed and evenly distributed along the fracture face. The effect of proppant monolayer was also studied.

Kamenov, Anton

2013-05-01T23:59:59.000Z

150

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

151

Review of potential subsurface permeable barrier emplacement and monitoring technologies  

SciTech Connect

This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.

Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M. [Ebasco Environmental, Richland, WA (United States); Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States); Phillips, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

1994-02-01T23:59:59.000Z

152

Inexpensive, Environmentally Friendly and High Permeable Lignin ...  

home \\ technologies \\ lignin based ion exchangers. Technologies: Ready-to-Sign Licenses: Software: Patents: Inexpensive, Environmentally Friendly and High Permeable ...

153

Novel additives to retard permeable flow  

Science Conference Proceedings (OSTI)

Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

Golombok, Michael [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Department of Mechanical Engineering, Technische Universiteit Eindhoven, 5600 MB Eindhoven (Netherlands); Crane, Carel; Ineke, Erik; Welling, Marco [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Harris, Jon [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Shell UK Ltd., North Anderson Drive, Aberdeen, AB15 6BL (United Kingdom)

2008-09-15T23:59:59.000Z

154

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION  

E-Print Network (OSTI)

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

Stanford University

155

Subterranean formation permeability contrast correction methods  

SciTech Connect

This patent describes a method of correcting the permeability contrast in a subterranean formation penetrated by a well bore to improve the sweep efficiency of waterflooding operations carried out therein, the formation containing at least one high permeability zone lying adjacent to at least one low permeability zone, which zones are in fluid communication with one another at the boundary therebetween. It comprises isolating the high permeability zone from the low permeability zone; injecting a crosslinkable aqueous polymer solution into the high permeability zone in an amount sufficient to substantially fill some the zone therewith, the crosslinkable aqueous polymer solution being capable of plugging the high permeability zone when crosslinked; isolating the low permeability zone from the high permeability zone; injecting into the low permeability zone an aqueous liquid containing a crosslinking agent which upon contact with the aqueous polymer solution causes the solution to form a crosslinked gel; and displacing the aqueous liquid containing the crosslinking agent through the low permeability zone so that the crosslinking agent contact the aqueous polymer solution and forms a crosslinked gel at least at the boundary between the zones whereby fluid communication between the zones is reduced and subsequently injected flood water is substantially confined to the low permeability zone.

Beardmore, D.H.

1991-12-31T23:59:59.000Z

156

Interactive fracture design model  

DOE Green Energy (OSTI)

A computer program is described that can be used to design a fracture stimulation treatment for a geothermal reservoir. The program uses state-of-the-art methods to calculate the temperature of the fracture fluid as a function of time and distance in the fracture. This information is used to determine the temperature dependent properties of the fracture fluid. These fluid properties are utilized to calculate the fracture geometry as a function of time. The fracture geometry and temperature distribution of the fracture fluid are coupled so the subroutines that calculate these distributions have been made interactive.

Not Available

1980-05-01T23:59:59.000Z

157

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

158

Porosity and permeability of Eastern Devonian gas shale  

SciTech Connect

High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

Soeder, D.J.

1988-03-01T23:59:59.000Z

159

An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers  

Science Conference Proceedings (OSTI)

Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures ... Keywords: Fuzzy clustering, Geothermal reservoirs, Microseismic, Shear wave splitting, Tomographic inversion, Unconventional hydrocarbon reservoirs

Fred Aminzadeh, Tayeb A. Tafti, Debotyam Maity

2013-04-01T23:59:59.000Z

160

Pressure testing of a high temperature naturally fractured reservoir  

DOE Green Energy (OSTI)

Los Alamos National Laboratory has conducted a number of pumping and flow-through tests at the Hot Dry Rock (HDR) test site at Fenton Hill, New Mexico. These tests consisted of injecting fresh water at controlled rates up to 12 BPM (32 l/s) and surface pressures up to 7000 psi (48 MPa) into the HDR formation at depths from 10,000 to 13,180 feet (3050 to 4000 m). The formation is a naturally fractured granite at temperatures of about 250/sup 0/C. The matrix porosity is <1% and permeability is on the order of 1 nD. Hence most of the injected fluid is believed to move through fractures. There has been no evidence of fracture breakdown phenomena, and hence it is believed that preexisting joints in the formation are opened by fluid injection. Water losses during pumping are significant, most likely resulting from flow into secondary fractures intersecting the main fluid conducting paths. The pressure-time response observed in these tests can be interpreted in terms of non-isothermal, fracture-dominated flow. As the fluid pressure increases from small values to those comparable to fracturing pressures, the formation response changes from linear fracture flow to the highly nonlinear situation where fracture lift-off occurs. A numerical heat and mass flow model was used to match the observed pressure response. Good matches were obtained for pressure buildup and shut-in data by assigning pressure dependent fracture and leak-off permeabilities. 12 refs., 5 figs., 2 tabs.

Kelkar, S.M.; Zyvoloski, G.A.; Dash, Z.V.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Numerical modeling of boiling due to production in a fractured reservoir and its field application  

Science Conference Proceedings (OSTI)

Numerical simulations were carried out to characterize the behaviors of fractured reservoirs under production which causes in-situ boiling. A radial flow model with a single production well, and a two-dimensional geothermal reservoir model with several production and injection wells were used to study the two-phase reservoir behavior. The behavior can be characterized mainly by the parameters such as the fracture spacing and matrix permeability. However, heterogeneous distribution of the steam saturation in the fracture and matrix regions brings about another complicated feature to problems of fractured two-phase reservoirs.

Yusaku Yano; Tsuneo Ishido

1995-01-26T23:59:59.000Z

162

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

163

Hydraulic fracture experiments in GT-1 and GT-2  

DOE Green Energy (OSTI)

Hydraulic fracturing experiments were conducted in granite rock, at temperatures near 100 and 150/sup 0/C, in two wells 0.785 km (2575 ft) and 1.98 km (6500 ft) deep near Los Alamos, New Mexico. No unusual difficulty was observed in fracturing crystalline rock hydraulically. The apparent surface energy (energy required to create new fracture surface by breaking the rock) was measured as 100 J/m/sup 2/. Orientation of the deeper fracture was measured as N35/sup 0/E (+-5/sup 0/). The fraction of fluid injected into the rock that could be recovered at hydrostatic surface pressure was measured. The efficiency of recovery was as high as 92 percent after the fracture impedance was lowered by ''propping'' the fracture with sand. Permeability of the rock over the face of the fracture was compatible with laboratory measurements (10/sup -7/ to 10/sup -8/ darcys). Downhole pressures required to extend the fractures were about 150 and 340 bars (2175 and 4900 psi), respectively.

Aamodt, R.L.

1977-02-01T23:59:59.000Z

164

Physical model studies of dispersion in fracture systems  

DOE Green Energy (OSTI)

The purposes of the laboratory-scale fracture network experiments are to study mechanisms controlling solute transport under conditions of known fracture parameters, to evaluate injection-backflow test procedures under conditions of known reservoir parameters, and to acquire data for validation of numerical models. Validation of computer codes against laboratory data collected under controlled conditions provides reassurance that the codes deal with important processes in a realistic manner. Preliminary simulations of the dual-permeability physical model have been made using the FRACSL reservoir code. These simulations permit locating electrodes and piezometers in the most advantageous positions to record tracer migration and pressure response. Much of the physical modeling effort this year was oriented towards validating the particle tracking algorithm used in FRACSL, and developing a better theoretical understanding of transport processes in fractures. Experiments were conducted in single fractures and single fracture junctions, and data on tracer migration collected. The Prickett, Naymik, and Lonnquist Random Walk aquifer simulation program has been modfied to simulate flow in single fractures. The particle tracking algorithm was also used to simulate infinite parallel plates under conditions where analytical solutions to the transport equation could be derived. The first case is for zero diffusion in the fracture, and transport based on a parabolic velocity profile. The second case is for diffusion homogenizing the tracer solution across the fracture. The particle tracking algorithm matched both analytical solutions quite well, with the same grid for both simulations. 48 refs., 41 figs., 2 tabs.

Hull, L.C.

1985-04-01T23:59:59.000Z

165

Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids  

SciTech Connect

Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

2005-02-09T23:59:59.000Z

166

Mechanisms and impact of damage resulting from hydraulic fracturing. Topical report, May 1995-July 1996  

Science Conference Proceedings (OSTI)

This topical report documents the mechanisms of formation damage following hydraulic fracturing and their impact upon gas well productivity. The categories of damage reviewed include absolute or matrix permeability damage, relative permeability alterations, the damage of natural fracture permeability mechanisms and proppant conductivity impairment. Case studies are reviewed in which attempts are made to mitigate each of the damage types. Industry surveys have been conducted to determine the perceptions of the industry on the topic of formation damage following hydraulic fracturing and to identify key formations in which formation damage is a problem. From this information, technical hurdles and new technology needs are identified and estimates are made of the benefits of developing and applying minimum formation damage technology.

Penny, G.S.; Conway, M.W.; Almond, S.W.; Himes, R.; Nick, K.E.

1996-08-01T23:59:59.000Z

167

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

168

Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses  

Science Conference Proceedings (OSTI)

The flow parameters of a natural fracture were estimated by modeling in situ pressure pulses. The pulses were generated in two horizontal boreholes spaced 1 m apart vertically and intersecting a near-vertical highly permeable fracture located within a shallow fractured carbonate reservoir. Fracture hydromechanical response was monitored using specialized fiber-optic borehole equipment that could simultaneously measure fluid pressure and fracture displacements. Measurements indicated a significant time lag between the pressure peak at the injection point and the one at the second measuring point, located 1 m away. The pressure pulse dilated and contracted the fracture. Field data were analyzed through hydraulic and coupled hydromechanical simulations using different governing flow laws. In matching the time lag between the pressure peaks at the two measuring points, our hydraulic models indicated that (1) flow was channeled in the fracture, (2) the hydraulic conductivity tensor was highly anisotropic, and (3) the radius of pulse influence was asymmetric, in that the pulse travelled faster vertically than horizontally. Moreover, our parametric study demonstrated that the fluid pressure diffusion through the fracture was quite sensitive to the spacing and orientation of channels, hydraulic aperture, storativity and hydraulic conductivity. Comparison between hydraulic and hydromechanical models showed that the deformation significantly affected fracture permeability and storativity, and consequently, the fluid pressure propagation, suggesting that the simultaneous measurements of pressure and mechanical displacement signals could substantially improve the interpretation of pulse tests during reservoir characterization.

Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C.-F.; Thoraval, A.

2008-03-16T23:59:59.000Z

169

High velocity impact fracture  

E-Print Network (OSTI)

An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture ...

Teng, Xiaoqing

2005-01-01T23:59:59.000Z

170

ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING  

Science Conference Proceedings (OSTI)

This report summarizes the work carried out during the period of September 29, 2000 to January 15, 2004 under DOE Research Contract No. DE-FC26-00BC15308. High temperatures and reactive fluids in sedimentary basins dictate that interplay and feedback between mechanical and geochemical processes significantly influence evolving rock and fracture properties. Not only does diagenetic mineralization fill in once open fractures either partially or completely, it modifies the rock mechanics properties that can control the mechanical aperture of natural fractures. In this study, we have evolved an integrated methodology of fractured reservoir characterization and we have demonstrated how it can be incorporated into fluid flow simulation. The research encompassed a wide range of work from geological characterization methods to rock mechanics analysis to reservoir simulation. With regard to the characterization of mineral infilling of natural fractures, the strong interplay between diagenetic and mechanical processes is documented and shown to be of vital importance to the behavior of many types of fractured reservoirs. Although most recent literature emphasizes Earth stress orientation, cementation in fractures is likely a critically important control on porosity, fluid flow attributes, and even sensitivity to effective stress changes. The diagenetic processes of dissolution and partial cementation are key controls on the creation and distribution of open natural fractures within hydrocarbon reservoirs. The continuity of fracture-porosity is fundamental to how fractures conduct fluids. In this study, we have made a number of important discoveries regarding fundamental properties of fractures, in particular related to the prevalence of kinematically significant structures (crack-seal texture) within otherwise porous, opening-mode fractures, and the presence of an aperture size threshold below which fractures are completely filled and above which porosity is preserved. These observations can be linked to models of quartz cementation. Significant progress has been made as well in theoretical fracture mechanics and geomechanical modeling, allowing prediction of spatial distributions of fractures that mimic patterns observed in nature. Geomechanical modeling shows the spatial arrangement of opening mode fractures (joints and veins) is controlled by the subcritical fracture index of the material. In particular, we have been able to identify mechanisms that control the clustering of fractures in slightly deformed rocks. Fracture mechanics testing of a wide range of clastic rocks shows that the subcritical index is sensitive to diagenetic factors. We show geomechanical simulations of fracture aperture development can be linked to diagenetic models, modifying fracture porosity as fractures grow, and affect the dynamics of fracture propagation. Fluid flow simulation of representative fracture pattern realizations shows how integrated modeling can give new insight into permeability assessment in the subsurface. Using realistic, geomechanically generated fracture patterns, we propose a methodology for permeability estimation in nonpercolating networks.

Jon E. Olson; Larry W. Lake; Steve E. Laubach

2004-11-01T23:59:59.000Z

171

Spatial statistics for predicting flow through a rock fracture  

Science Conference Proceedings (OSTI)

Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

Coakley, K.J.

1989-03-01T23:59:59.000Z

172

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing from a gas condensate reservoir. Questions were raised about whether flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. In the most recent work done by Adedeji Ayoola Adeyeye, this subject was studied when the effects of reservoir depletion were minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. He also used an infinite conductivity hydraulic fracture along with a linear model as an adequate analogy. He concluded that the skin due to liquid build-up is not enough to prevent lower flowing bottomhole pressures from producing more gas. This current study investigated the condensate damage at the face of the hydraulic fracture in transient and boundary dominated periods when the effects of reservoir depletion are taken into account. As a first step, simulation of liquid flow into the fracture was performed using a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Reza, Rostami Ravari

2004-08-01T23:59:59.000Z

173

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network (OSTI)

The petroleum engineering literature clearly shows that large proppant volumes and concentrations are required to effectively stimulate low-permeability gas sands. To pump large proppant concentrations, one must use a viscous fluid. However, many operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment sizes in the Cotton Valley sands of the East Texas basin. This study shows that large proppant volumes and viscous fluids are necessary to optimally stimulate tight gas sand reservoirs. When large proppant volumes and viscous fluids are not successful in stimulating tight sands, it is typically because the fracture fluids have not been optimal for the reservoir conditions. This study shows that waterfracs do produce comparable results to conventional large treatments in the Cotton Valley sands of the East Texas basin, but we believe it is because the conventional treatments have not been optimized. This is most likely because the fluids used in conventional treatments are not appropriate or have not been used appropriately for Cotton Valley conditions.

Tschirhart, Nicholas Ray

2005-08-01T23:59:59.000Z

174

Inexpensive, Environmentally Friendly and Highly Permeable ...  

For more than 10 years, a partnership between Kazakh and US researchers has led to the synthesis and testing of highly permeable ion-exchangers.

175

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Energy.gov (U.S. Department of Energy (DOE))

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

176

Correlating Spatial Heterogeneities in Porosity and Permeability...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference...

177

Magma energy and geothermal permeability enhancement programs  

DOE Green Energy (OSTI)

Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

Dunn, J.C.

1985-01-01T23:59:59.000Z

178

Fracturing fluid high-temperature breaker for improving well performance  

Science Conference Proceedings (OSTI)

Oxidative breakers are currently being used in fracturing treatments to reduce polymeric gel damage in high-temperature reservoirs. Dissolved high-temperature oxidative breakers are very reactive at high temperatures (275 to 350 F), typically requiring less than 0.25 lbm/1,000 gal of fluid. Recent introduction of a new nonpersulfate oxidative high-temperature encapsulated breaker (HTEB) provides controlled degradation of the fracturing fluid polymers. Laboratory tests show viscosity reduction and delayed release of active oxidizer breaker. HTEB conductivity data show a two-fold increase in retained permeability at 300 F in a borate-crosslinked fluid system.

McConnell, B.

1994-05-01T23:59:59.000Z

179

Real-time and post-frac' 3-D analysis of hydraulic fracture treatments in geothermal reservoirs  

SciTech Connect

Economic power production from Hot Dry Rock (HDR) requires the establishment of an efficient circulation system between wellbores in reservoir rock with extremely low matrix permeability. Hydraulic fracturing is employed to establish the necessary circulation system. Hydraulic fracturing has also been performed to increase production from hydrothermal reservoirs by enhancing the communication with the reservoir's natural fracture system. Optimal implementation of these hydraulic fracturing applications, as with any engineering application, requires the use of credible physical models and the reconciliation of the physical models with treatment data gathered in the field. Analysis of the collected data has shown that 2-D models and 'conventional' 3-D models of the hydraulic fracturing process apply very poorly to hydraulic fracturing in geothermal reservoirs. Engineering decisions based on these more 'conventional' fracture modeling techniques lead to serious errors in predicting the performance of hydraulic fracture treatments. These errors can lead to inappropriate fracture treatment design as well as grave errors in well placement for hydrothermal reservoirs or HDR reservoirs. This paper outlines the reasons why conventional modeling approaches fall short, and what types of physical models are needed to credibly estimate created hydraulic fracture geometry. The methodology of analyzing actual measured fracture treatment data and matching the observed net fracturing pressure (in realtime as well as after the treatment) is demonstrated at two separate field sites. Results from an extensive Acoustic Emission (AE) fracture diagnostic survey are also presented for the first case study aS an independent measure of the actual created hydraulic fracture geometry.

Wright, C.A.; Tanigawa, J.J.; Hyodo, Masami; Takasugi, Shinji

1994-01-20T23:59:59.000Z

180

Fracturing results in diatomaceous earth formations, South Belridge Field, California  

SciTech Connect

Fracturing significantly increases light oil production rates at South Belridge making this an economically successful technique for exploitation of the Reef Ridge reservoir. No fracturing mechanics problems were encountered in any of the treatments. The loosely consolidated formations behaved mechanically much like brittle, elastic rocks. Net oil and gross production is typified by initial high rates and an early rapid decline. The major cause of this early rapid decline is the transient flow effect. This behavior is typical of low permeability oil and gas production. Fractures are vertical, as shown by gamma ray and temperature logs run following several treatments. The fractures grow slightly out of the perforated intervals (10 to 15 feet). Loss of fracture conductivity due to fines migration, scale deposition, and/or fracture healing (imbedment) is not a serious problem. Oil viscosity can vary as much as ten-fold. Some wells produce significant amounts of gas--100 to 200 MCFPD initially. The formation is primarily diatomaceous earth which is very fine particle size siliceous material composed of whole or fragmented diatom tests (skeletons). There is no evidence that clay swelling or dispersion is a problem. Field and laboratory data support this conclusion. Aqueous fracturing fluids were successfully used which confirmed laboratory tests on cores.

Strubhar, M.K.; Medin, W.L.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Characterisation of hydraulic fractures in limestones using X-ray microtomography  

E-Print Network (OSTI)

Hydraulic tension fractures were produced in porous limestones using a specially designed hydraulic cell. The 3D geometry of the samples was imaged using X-ray computed microtomography before and after fracturation. Using these data, it was possible to estimate the permeability tensor of the core samples, extract the path of the rupture and compare it to the heterogeneities initially present in the rock.

Renard, Francois; Desrues, Jacques; Plougonven, Erwan; Ougier-Simonin, Audrey

2006-01-01T23:59:59.000Z

182

Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems  

Science Conference Proceedings (OSTI)

Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

Liou, T.S.

1999-12-01T23:59:59.000Z

183

Effect of Dead Algae on Soil Permeability  

SciTech Connect

Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

Harvey, R.S.

2003-02-21T23:59:59.000Z

184

Evaluation of fracture treatments using a layered-reservoir description: Field examples  

Science Conference Proceedings (OSTI)

This paper presents a practical analysis technique to determine actual fracture geometry and proppant profile using a three-dimensional (3D) hydraulic-fracturing simulator. The hydraulic-fracturing model used in this study considers the variation of in-situ stress, Young`s modulus, Poisson`s ratio, and net pay thickness in the productive interval. When the method is applied, the results from the fracture propagation model conform well with the results the authors obtain from pressure-buildup and production-data analyses. This study analyzed hydraulic-fracturing treatments from several wells in the Vicksburg formation of the McAllen Ranch area in south Texas. The authors have provided guidelines to properly describe the treatment interval, how to use this information in the analysis of such fracture treatments, and how to confirm the results using pressure-transient tests and production-data analyses. This paper presents examples illustrating that a detailed description of the reservoir layers is essential to properly evaluate hydraulic-fracture treatments. For the example wells presented in this paper, post-fracture-production and pressure-transient data were available. The authors have analyzed production and pressure-transient data to estimate permeability and fracture half-length. The values of fracture half-length used to analyze the production data matched closely with those predicted by the fracture model.

Rahim, Z.; Holditch, S.A.; Zuber, M.D. [Holditch and Associates Inc., College Station, TX (United States); Buehring, D.R.

1998-02-01T23:59:59.000Z

185

Permeable Reactive Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado DOE installed a PRB in October 1995 to treat ground water from a uranium mill tailings disposal site at Durango, Colorado Read more Cañon City, Colorado ESL personnel conduct tests and help evaluate performance at other PRB sites, such as Cotter Corporation's Cañon City site in Colorado. Read more Monticello, Utah Installation of a PRB hydraulically downgradient of the Monticello, Utah, millsite was completed June 30, 1999, as an Interim Remedial Action. Read more A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive

186

Maintaining DOE Technical Standards, TSPP-7  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-2013 7-2013 DOE TECHNICAL STANDARDS September 2013 PROGRAM PROCEDURES MAINTAINING DOE TECHNICAL STANDARDS U.S. Department of Energy Office of Nuclear Safety Washington, D.C. 20585 DOE-TSPP-7-2013 Maintaining September 2013 DOE Technical Standards Program CONTENTS 1. SCOPE ............................................................................................................................................ 1 1.1 Purpose ....................................................................................................................... 1 1.2 Applicability ................................................................................................................. 1 2. DOCUMENT MAINTENANCE ....................................................................................................... 1

187

Encapsulation method for maintaining biodecontamination activity  

DOE Patents (OSTI)

A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

Rogers, Robert D. (Idaho Falls, ID); Hamilton, Melinda A. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Benson, Jennifer (Cockermouth, GB); Green, Martin J. (Wooton, GB); Milner, Timothy N. (Centerville, VA)

2002-01-01T23:59:59.000Z

188

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

189

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical

190

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

191

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

192

Human Engineering Design Guidelines for Maintainability  

Science Conference Proceedings (OSTI)

Utility managers, designers, and engineers can now systematically incorporate appropriate human factors engineering principles and criteria for maintainability into new plant designs or existing plant modifications. Using these guidelines can also result in increased productivity, safety, and plant availability.

1985-12-01T23:59:59.000Z

193

Maintaining Your Air Conditioner | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maintaining Your Air Conditioner Maintaining Your Air Conditioner Maintaining Your Air Conditioner June 18, 2013 - 6:20pm Addthis Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. Replacing or cleaning air conditioner filters is a critical maintenance task. | Photo courtesy of ©iStockphoto/firemanYU. What does this mean for me? Regular maintenance keeps your air conditioner running as efficiently as possible. Maintaining your air conditioner will save you money by extending the unit's life. An air conditioner's filters, coils, and fins require regular maintenance for the unit to function effectively and efficiently throughout its years of service. Neglecting necessary maintenance ensures a steady decline in air conditioning performance while energy use steadily increases.

194

Using Chemicals to Optimize Conformance Control in Fractured Reservoirs  

SciTech Connect

This report describes work performed during the first year of the project, ''Using Chemicals to Optimize Conformance Control in Fractured Reservoirs.'' This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. Our work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Liu, Jin; Wavrik, Kathryn

1999-09-27T23:59:59.000Z

195

Development, setup and testing of a dynamic hydraulic fracture conductivity apparatus  

E-Print Network (OSTI)

One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.

Pongthunya, Potcharaporn

2007-08-01T23:59:59.000Z

196

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.

197

A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass  

DOE Green Energy (OSTI)

Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

Bower, K.M.

1996-06-01T23:59:59.000Z

198

Single fracture aperture patterns: Characterization by slit-island fractal analysis  

Science Conference Proceedings (OSTI)

Single fracture measurements are difficult to obtain, but they are the only means we have to observe and study natural fracture morphology. The character of the fracture openings (apertures) is often one of the primary factors controlling fluid flow in the fracture. In particular, the shape, distribution, and connectivity of contact areas and flow channels can affect the relative permeability of wetting and non-wetting fluid phases in unsaturated systems. In this paper we use three methods of fractal analysis (the slit-island, the divider, and the variogram) as well as statistical and geostatistical analysis to characterize the geometry of measured fracture apertures obtained from two different fractured rock specimens from the field. One of these is a granitic fracture (crack) of homogeneous lithology and no displacement, the other is a fracture (fault) obtained from a highly altered fault zone, containing striations and slickensides. We discuss the fractal and geostatistical analysis of these two fractures in the context of what information is most helpful for making predictions about fluid flow in single fractures.

Cox, B.L.; Wang, J.S.Y.

1993-01-01T23:59:59.000Z

199

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method  

E-Print Network (OSTI)

In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under this circumstance relies on generation and stimulation of a fracture network. This thesis presents numerical simulation of the response of a fractured rock to injection and extraction considering the role of poro-thermoelasticity and joint deformation. Fluid flow and heat transport in the fracture are treated using a finite difference method while the fracture and rock matrix deformation are determined using the displacement discontinuity method (DDM). The fractures response to fluid injection and extraction is affected both by the induced stresses as well as by the initial far-field stress. The latter is accounted for using the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in equilibrium with the in-situ stress state. The fully coupled DDM simulation has been used to carry out several case studies to model the fracture response under different injection/extractions, in-situ stresses, joint geometries and properties, for both equilibrium and non-equilibrium conditions. The following observations are made: i) Fluid injection increases the pressure causing the joint to open. For non-isothermal injection, cooling increases the fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-equilibrium condition), permanent shear slip is encountered on all fracture segments when the shear strength is overcome by shear stress in response to fluid injection. With cooling operation, the fracture segments in the vicinity of the injection point are opened due to cooling-induced tensile stress and injection pressure, and all the fracture segments experience slip. iii) Fluid pressure in fractures increases in response to compression. The fluid compressibility and joint stiffness play a role. iv) When there are injection and extraction in fractured reservoirs, the cooler fluid flows through the fracture channels from the injection point to extraction well extracting heat from the warmer reservoir matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures and thus increases the fracture conductivity. v) Injection decreases the amount of effective stress due to pressure increase in fracture and matrix near a well. In contrast, extraction increases the amount of effective stress due to pressure drop in fracture and matrix.

Lee, Byungtark

2011-08-01T23:59:59.000Z

200

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

Science Conference Proceedings (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method and apparatus for determining two-phase flow in rock fracture  

DOE Patents (OSTI)

One object of the present invention to provide an improved method and apparatus for measuring the relative permeability of a rock fracture to multiple phases in a manner which will provide even more uniform delivery of both wetting and non-wetting phases to the fracture edge. It is another object of the invention to provide an improved method and apparatus for measuring the permeability of multiple phases through a rock fracture which comprises delivering the respective phases through manifold means to uniformly deliver the respective phases to and from opposite edges of the rock fracture in a distributed manner across the gap of the fracture wherein the manifold means for delivering the wetting phase comprises porous block means having a side facing the rock fracture edge and bore means therein for providing uniform distribution of the wetting phase to the porous block surfaces, and the manifold means for delivering the non-wetting phase include a plenum in communication with parallel grooves disposed on a surface of the porous means facing perpendicular to the rock fracture edge. These and other objects of the invention will be apparent from the following description and accompanying drawings.

Persoff, P.; Pruess, K.; Myer, L.

1992-12-31T23:59:59.000Z

202

Fluid flow analysis in a rough fracture (type II) using complex networks and lattice Boltzmann method  

E-Print Network (OSTI)

Complexity of fluid flow in a rough fracture is induced by the complex configurations of opening areas between the fracture planes. In this study, we model fluid flow in an evolvable real rock joint structure, which under certain normal load is sheared. In an experimental study, information regarding about apertures of the rock joint during consecutive 20 mm displacements and fluid flow (permeability) in different pressure heads have been recorded by a scanner laser. Our aim in this study is to simulate the fluid flow in the mentioned complex geometries using the lattice Boltzmann method (LBM), while the characteristics of the aperture field will be compared with the modeled fluid flow permeability To characterize the aperture, we use a new concept in the graph theory, namely: complex networks and motif analysis of the corresponding networks. In this approach, the similar aperture profile along the fluid flow direction is mapped in to a network space. The modeled permeability using the LBM shows good correlat...

Ghaffari, H; Sharifzadeh, M; Young, R P

2011-01-01T23:59:59.000Z

203

A Rare Isolated Trapezoid Fracture  

E-Print Network (OSTI)

Toh S, Tsubo K, et al. An occult fracture of the trapezoiddue to concern for an occult fracture revealed a comminuted

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

204

Hydraulic Fracturing in Particulate Materials .  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

205

Studies of the uniqueness of solutions of pressure transient responses and the effects of fracture skin and wellbore storage, fracture geometry, and flowback of fracture fluid  

Science Conference Proceedings (OSTI)

The purpose of this work to investigate the ability to match observed pressure transient responses with a simulation model and the certainty of whether the simulation results are unique. To perform this work, INTERCOMP's Radial Single Well Gas Model (RADGAS) was used to establish a base case on which the uniqueness studies would be performed. Once the base cases were established, attempts were made to match their pressure transient responses, using RADGAS, with reservoir models having different characteristics; i.e., different fracture lengths, reservoir permeabilities, etc. The results of the study indicate that when certain parameters are accurately known through rock analysis and pressure studies, the simulations are unique, but that when a few key parameters are unknown and must be determined by matching the simulator response to the well's pressure transient behavior, uncertainty arises as to whether the solution is indeed unique. In addition to the uniqueness study, three additional exercises were performed to study the effects of fracture skin and wellbore storage, fracture geometry, and fracture fluid remaining in and around the fracture on the pressure transient responses and production forecasts of a well. 37 figures, 2 tables.

Bixel, H.C.; Christiansen, D.H.

1982-10-01T23:59:59.000Z

206

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

207

Establishment of Stress-Permeabilty relationship of fractured rock mass by numerical modeling  

Office of Scientific and Technical Information (OSTI)

Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Accepted for publication in International Journal of Rock Mechanics & Mining Sciences Stress-Dependent Permeability of Fractured Rock Masses: A Numerical Study Ki-Bok Min *1 , J Rutqvist 2 , Chin-Fu Tsang 2 , and Lanru Jing 1 1 Engineering Geology and Geophysics Research Group, Royal Institute of Technology (KTH), Stockholm, Sweden 2 Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA * corresponding author. Tel.: +46-8-790-7919; fax: +46-8-790-6810. E-mail address: kibok@kth.se (Ki-Bok Min) 1 Abstract We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional

208

Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing  

DOE Green Energy (OSTI)

Two, 3-km-deep boreholes have been drilled into hot (approximately 200/sup 0/C) graphite in northern New Mexico in order to extract geothermal energy from hot dry rock. Both boreholes were hydraulically fractured to establish a flow connection. Presently this connection has a large flow impedance which may be improved with further stimulation. Fracture-to-borehole intersection locations and in situ thermal conductivity were determined from flowing temperature logs. In situ measurements of permeability show an extremely strong dependence upon pore pressure--the permeability increased by a factor of 80 as the pressure was increased 83 bars (1200 psi). An estimate of the minimum horizontal earth stress was derived from fracture extension pressures and found to be one-half the overburden stress.

Murphy, H.D.; Lawton, R.G.; Tester, J.W.; Potter, R.M.; Brown, D.W.; Aamodt, R.L.

1976-01-01T23:59:59.000Z

209

A Two-Dimensional Theory of Fracture Propagation  

E-Print Network (OSTI)

A basic theory of two-dimensional (2D) fracture propagation has been developed with a Lagrangian formulation combined with a virtual work analysis. Fluid leakoff is included by the assumption that an incompressible filtrate produces a piston-like displacement of a compressible reservoir fluid with a moving boundary between the two. Poiseuille flow is assumed in the fracture. We consider both Newtonian and non-Newtonian fluids with and without wall building. For non-Newtonian fluids, we assume the usual power-law relation between shear stress and shear rate. The Lagrangian formulation yields a pair of nonlinear equations in Lf and bf, the fracture length and half-width. By introducing a virtual work analysis, we obtain a single equation that can be solved numerically. For non-wall-building fluids, it predicts much higher leakoff rates than existing methods. The Lagrangian method also allows nonelastic phenomena, such as plasticity, to be included. A practical computer program developed from this theory has been used for more than 10 years to design fracturing treatments in oil and gas reservoirs in Canada, California, the midcontinent and Rocky Mountain areas, the U.S. gulf coast, the North Sea, and in northern Germany. In most of these applications, it has predicted fracture dimensions that have been in line with production experience. Optimization methods based on this program led to very large fracturing treatments in low-permeability gas sands that were forerunners of ’ massive fracturing treatments in tight gas sands. Specific examples in which this method was used to design fracturing programs in large gas fields in Kansas and Texas are discussed.

M. A. Biot; L. Massé; W. L. Medlin

1986-01-01T23:59:59.000Z

210

Fold Catastrophe Model of Fracture Propagation of Hydraulic Fracturing  

Science Conference Proceedings (OSTI)

According to energy conservation from the destruction of rock catastrophe, a new calculation method of the length of fracture propagation in hydraulic fracturing is proposed, and assuming the crack extends to approximate ellipse, the width calculation ... Keywords: hydraulic fracture, fold catastrophe, fracture parameters

Zhaowan Chun; Wan Tingting; Ai Chi; Ju Guoshuai

2010-05-01T23:59:59.000Z

211

Gas condensate damage in hydraulically fractured wells  

E-Print Network (OSTI)

This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.

Adeyeye, Adedeji Ayoola

2003-12-01T23:59:59.000Z

212

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

213

Phase II: Performance Evaluation of Permeable Reactive Barriers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase II: Performance Evaluation of Permeable Reactive Barriers and Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing U. S. Environmental Protection Agency Region 8 Support January 2004 Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing

214

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

215

Reliability and maintainability seminar: summary of proceedings  

DOE Green Energy (OSTI)

The following are described briefly: Overview of the Federal Reliability and Maintainability Program Plan, Summary of Proceedngs, Overview of Southern Solar Energy Center Programs, and Solar Domestic Hot Water Design Guidelines Handbook. Also included are the Seminar Agenda and the list of Seminar Attendees. (MHR)

Beek, C.R.

1981-04-01T23:59:59.000Z

216

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

217

Maintaining ideal body weight counseling sessions  

SciTech Connect

The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

Brammer, S.H.

1980-10-09T23:59:59.000Z

218

A new method for determining dominant fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a method that has been applied for many years to increase fracture permeability of reservoirs, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction fractures have propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells or for choosing a trajectory for a second well to drill through the fracture system, and thus create a hot dry rock geothermal energy reservoir. A method has been developed for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. The method has been applied to data collected during a massive hydraulic fracturing experiment carried out as part of the hot dry rock project. Planes with five different orientations were found in the data. The planes determined using the method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

219

Design and Implementation of Energized Fracture Treatment in Tight Gas Sands  

SciTech Connect

Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

Mukul Sharma; Kyle Friehauf

2009-12-31T23:59:59.000Z

220

Fracturing fluids -- then and now  

Science Conference Proceedings (OSTI)

Fracturing fluid provides the means by which the hydraulic fracturing process can take place. All applications of well stimulation by fracturing must include selection of fracturing fluid in the initial phases of fracture design and treatment planning. Fracturing fluid has two important purposes: (1) to provide sufficient viscosity to suspend and transport proppant deep into the created fracture system and (2) to decompose, or break, chemically to a low viscosity to allow flowback of a major part of the fluid to the surface for fracture cleanup after the treatment is completed. Because of the importance of its rheological properties and behavior in the fracture under reservoir conditions during (and immediately after) the treatment, service company research laboratories have spent millions of dollars on R and D of fracturing fluids.

Jennings, A.R. Jr. [Enhanced Well Stimulation Inc., Plano, TX (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Suspensions in hydraulic fracturing  

Science Conference Proceedings (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

222

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

Science Conference Proceedings (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

223

Fracture and Healing of Rock Salt Related to Salt Caverns  

Science Conference Proceedings (OSTI)

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01T23:59:59.000Z

224

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

225

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

226

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of BunterSP Monitoring during hydraulic fracturing using the TG-2

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

227

Hydraulic Fracturing Poster | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

228

Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada  

SciTech Connect

This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

2008-08-01T23:59:59.000Z

229

A new method for determining fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a popular method for increasing the productivity of oil and gas wells, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction a fracture has propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells. Determining the locations and orientations of permeable fractures is also important in studies of potential toxic waste repositories where it is critical to understand fluid flow paths. We have developed a method for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. By applying a pattern recognition technique to the locations of events from one hydraulic fracturing operation we find planes in the data along which we presume that the fluid has traveled. The planes determined using our method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

230

New model for well test analysis in a purely fractured medium  

DOE Green Energy (OSTI)

In a porous medium the flow conduits are small and a large number of conduits are connected to the well. For this reason the medium appears to behave like a continuum on the scale of the well test, and volumetric averaging and continuum approximations are justified. On the contrary, in a fractured medium, only a small number of fractures may intersect the pumping well. These particular fractures will be stressed by a large gradient under well test conditions. Consequently, the early time behavior will be dominated by these fractures. The volumetrically averaged permeability does not control flow in the vicinity of an active well. The individual fractures close to the well must be characterized in order to understand the well test behavior especially if the hydraulic parameters of these fractures are significantly different from the average values for the entire system. In the present study, a new analytical model is proposed for well test problems in fracture networks where the matrix is impermeable. The model accounts for the difference in the flow regime around the active well from that of the system as a whole. The analytical solutions are presented in a series of type curves for ranges of dimensionless parameters. The flow properties of the fracture system can be determined by curve matching.

Karasaki, K.; Long, J.C.S.; Witherspoon, P.A.

1985-01-01T23:59:59.000Z

231

Fracture detection and mapping for geothermal reservoir definition: an assessment of current technology, research, and research needs  

DOE Green Energy (OSTI)

The detection and mapping of fractures and other zones of high permeability, whether natural or manmade, has been a subject of considerable economic and scientific interest to the pertroleum industry and to the geothermal community. Research related to fractured geothermal reservoirs has been conducted under several past DOE geothermal energy development programs. In this paper we review the present state of technology in fracture detection and mapping. We outline the major problems and limitations of the ''conventional'' techniques, and current research in new technologies. We also present research needs.

Goldstein, N.E.

1984-11-01T23:59:59.000Z

232

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

233

Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction  

Science Conference Proceedings (OSTI)

Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

2011-11-01T23:59:59.000Z

234

Effect of temperature on oil/water relative permeabilities of unconsolidated and consolidated sands  

SciTech Connect

Over the last 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. However, some of the reported results have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperature. Laboratory dynamic displacement relative permeability measurements were made on unconsolidated and consolidated sand cores, using water and a refined white mineral oil. Experiments were run on 2 in. (51 mm) diameter, 20 in. (510 mm) long cores from room temperature to 300/sup 0/F (149/sup 0/C). Unlike the results of previous researchers, essentially no changes with temperatures were observed in either residual saturations or relative permeability relationships. It was concluded that previous results may have been affected by viscous instabilities, capillary end-effects, and/or difficulties in maintaining material balances.

Miller, M.A.; Ramey, H.J.

1983-10-01T23:59:59.000Z

235

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992  

Science Conference Proceedings (OSTI)

The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

Not Available

1993-04-01T23:59:59.000Z

236

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

237

Variation in sericite composition from fracture zones within the Coso Hot  

Open Energy Info (EERE)

Variation in sericite composition from fracture zones within the Coso Hot Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Variation in sericite composition from fracture zones within the Coso Hot Sprints geothermal system Details Activities (1) Areas (1) Regions (0) Abstract: Two types of white micas are found in drillhole samples within the geothermal system at Coso Hot Springs. Low-permeability zones of the crystalline basement contain coarse-grained relict muscovite, whereas rock alteration near fracture zones at temperatures > 150°C is characterized by abundant finegrained sericite in association with secondary calcite and quartz and unaltered relict microcline. In this hydrothermal sericite there

238

Toward More Accurate Wave-Permeable Boundary Conditions  

Science Conference Proceedings (OSTI)

This paper investigates several fundamental aspects of wave-permeable, or “radiation,” lateral boundary conditions. Orlanski (1976) proposed that approximate wave-permeable boundary conditions could be constructed by advecting disturbances out of ...

Dale R. Durran; Ming-Jen Yang; Donald N. Slinn; Randy G. Brown

1993-02-01T23:59:59.000Z

239

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

240

Breakthrough in fracture mechanics  

SciTech Connect

Fracture mechanics, the science of calculating material characteristics, stress, and flaws in plant equipment to evaluate structural integrity, usually spares the owners of nuclear power plants unnecessary expense. Instead of replacing equipment prematurely or waiting for costly, unscheduled materials failures that can take months to repair and cost thousands of dollars a day for replacement power, utilities use fracture mechanics techniques to carefully consider their options. If analyses show repair is unnecessary, plant operation can confidently be resumed. If repair is required, it can either be done immediately or, if deferrable, be scheduled for a later, more convenient outage.

Lihach, N.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Predicting the Permeability of Pervious Concretes from Planar ...  

Science Conference Proceedings (OSTI)

... Permeability predictions for sand- clogged Portland cement pervious concrete pavement systems,” Journal of Environmental Management 81, 42 ...

2009-05-26T23:59:59.000Z

242

Improving Baked Anode Density and Air Permeability Through ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improving Baked Anode Density and Air Permeability Through Process Optimization and Coke Blending. Author(s), Bienvenu Ndjom, ...

243

Fracturing fluid characterization: State-of-the-art facility and advanced technology  

Science Conference Proceedings (OSTI)

The petroleum industry has used hydraulic fracturing technique to stimulate low and high permeability oil and gas reservoirs to enhance their potential recoveries. Nevertheless, the design and implementation of a scientifically and economically sound fracturing job, due to the lack of knowledge of theological behavior of hydraulic fracturing fluids under field conditions, remains a challenge. Furthermore, as often the case, the current level of technical knowledge with research institutes, service companies, and operators does not translate to field applications. One of the principal reasons for this technology gap, is the lack of understanding of the theological behavior of hydraulic fracturing fluids under field conditions, which primarily relates to the limitations in scaling down the field conditions to the laboratory. The Fracturing Fluid Characterization Facility (FFCF) project was therefore, proposed with the intent of providing the industry with a better understanding of the behavior of these fracturing fluids and their proppant transport characteristics under downhole fracture condition. At the FFCF, a fully operational High Pressure Simulator (HPS), as seen in Figure 1, constitutes a vertical, variable width, parallel plate flow apparatus and is capable of operating at elevated temperatures (up to 2500F) and pressures (up to 1200 psi). The HPS simulates, to the maximum degree practical, all conditions experienced by a fracturing fluid from its formulation on the surface, its flow down the wellbore, through perforations, its injection into the fracture, and its leakage into the rock formation (Figure 1). Together with the onsite auxiliary equipment (Figure 2), such as Mixing and Pumping System, Pre-conditioning System, Data Acquisition System, and Rheology Measuring System (Figure 2), the HPS is the most advanced fracture simulator available to conduct research, mimicking field conditions, in the following areas: Rheology Characterization of Fracturing Fluids, Proppant Transport Simulations, Proppant Transport Measurements, Perforation Pressure Loss, Coiled Tubing Friction Loss, Dynamic Fluid Loss, and Heat Transfer Characterizations of Polymer Solutions.

Shah, S., Asadi, M.,

1997-10-01T23:59:59.000Z

244

Mapping acoustic emissions from hydraulic fracture treatments using coherent array processing: Concept  

DOE Green Energy (OSTI)

Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.

Harris, D.B.; Sherwood, R.J.; Jarpe, S.P.; Harben, P.E.

1991-09-01T23:59:59.000Z

245

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings An...

246

Well fracturing method using liquefied gas as fracturing fluid  

SciTech Connect

A method is described for fracturing an oil well or gas well with a mixture of liquid carbon dioxide and liquid petroleum gas. The objective is to be able to inject the liquid into the well bore at a relatively high pumping rate without causing the liquid to boil. Prior to injection, both the liquid CO/sub 2/ and the LPG are held in separate supply tanks at a temperature and pressure at which the liquid phase will not boil. The temperature of the LPG is substantially higher than the liquid CO/sub 2/. During the pumping operation, part of the liquid CO/sub 2/ and all of the LPG are fed through a heat exchanger. In the exchanger, the amount of heat transferred from the LPG to the liquid CO/sub 2/ is enough to vaporize the liquid. The CO/sub 2/ vapor is then circulated back into the CO/sub 2/ tank. The recycled vapor thus maintains the liquid-vapor phase in the tank at equilibrium, so that the liquid will not boil at the desired pumping rate. (4 claims)

Zingg, W.M.; Grassman, D.D.

1974-10-22T23:59:59.000Z

247

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS  

E-Print Network (OSTI)

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

Stanford University

248

Maintaining Quality in a Decommissioning Environment  

Science Conference Proceedings (OSTI)

The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping steady benefits to AECL and to its customers, the people of Canada.

Attas, Michael [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, R0E 1L0 (Canada)

2008-01-15T23:59:59.000Z

249

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network (OSTI)

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest. This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing. This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources.

Ahmed, Ibraheem 1987-

2012-12-01T23:59:59.000Z

250

Rigid Body Simulation with Local Fracturing Effects  

Science Conference Proceedings (OSTI)

Focusing on the real-time and interactive ability features in the Virtual Reality application, we propose a fracture pattern based on local fracture mechanism. Taking advantage of the experience analysis or the offline computation verified fracture characteristic, ... Keywords: Rigid Body, pre-fracture, fracture pattern, local fracture, dynamics

Wu Bo; Zeng Liang; Wu Yagang

2011-05-01T23:59:59.000Z

251

ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING  

Science Conference Proceedings (OSTI)

This report summarizes the work carried out during the period of September 29, 2000 to September 28, 2001 under DOE Research Contract No. DE-FC26-00BC15308. Our goal is to establish an integrated methodology of fractured reservoir characterization and show how that can be incorporated into fluid flow simulation. We have made progress in the characterization of mineral infilling of natural fractures. The main advancement in this regard was to recognize the strong interplay between diagenetic and mechanical processes. We accomplished several firsts in documenting and quantifying these processes, including documenting the range of emergent threshold in several formations and quantifying the internal structures of crack-seal bridges in fractures. These results will be the basis for an appreciation of fracture opening and filling rates that go well beyond our original goals. Looking at geochemical modeling of fracture infilling, our theoretical analysis addressed the problem of calcite precipitation in a fracture. We have built a model for the deposition of calcite within a fracture. The diagenetic processes of dissolution and partial cementation are key controls on the creation and distribution of natural fractures within hydrocarbon reservoirs. Even with extensive data collection, fracture permeability still creates uncertainty in reservoir description and the prediction of well performance. Data on the timing and stages of diagenetic events can provide explanation as to why, when and where natural fractures will be open and permeable. We have been pursuing the fracture mechanics testing of a wide range of rocks, particularly sandstone using a key rock property test that has hitherto not been widely applied to sedimentary rocks. A major accomplishment in this first year has been to identify sample suites available in the core repository at the University of Texas that represent a wide range of diagenetic alteration and to begin to test these samples. The basis for the fluid flow simulations to be carried out in this part of the project is the adequate spatial characterization of fracture networks. Our initial focus has been on the tendency of fracture sets to cluster into highly fracture zones that are often widely separated. Our preliminary modeling work shows the extent of this clustering to be controlled by the subcritical fracture index of the material. With continued progress, we move toward an integrated fracture characterization methodology that will ultimately be applied through detailed reservoir simulation.

Jon E. Olson; Larry W. Lake; Steve E. Laubach

2003-04-01T23:59:59.000Z

252

Liquid-permeable electrode. [Patent application  

SciTech Connect

This invention relates to electrodes for use in electrolytic cells and to a method for preparing the electrodes. It specifically relates to fluid-permeable electrodes suitable for use as anodes and cathodes in electrolytic hydrogen generation cells in which it is necessary to continuously remove the products of the electrochemical reaction. The electrode is prepared by mixing about 10 parts by weight of activated charcoal with from 6 to 10 parts by weight of a powdered thermosetting phenolic resin to form a mixture, compacting the mixture in a heated mold of the desired shape to melt the resin and form a green electrode and heating the green electrode to from about 550 to 750/sup 0/C in a nonoxidizing atmosphere for a period of time sufficient to pyrolyze the resin and volatilize from about 40 to 60 weight percent of the resin present in the green compact to form a porous, rigid, liquid-permeable structure.

Folser, G.R

1978-08-30T23:59:59.000Z

253

Rock matrix and fracture analysis of flow in western tight gas sands: 1986 annual report  

SciTech Connect

This report presents progress for the second year of a five-year project concerned with the pore structure and flow properties of low permeability gas sands. The main objective of work during the first year was to carry out advanced core analysis on cores recovered from the Multi-Well Field Experiment. In Phase 2, the properties of both fractured and non-fractured samples (hereafter referred to as matrix) have been studied. Special attention was given to the combined effect of overburden pressure and water saturation on gas flow. 11 refs., 18 figs., 4 tabs.

Morrow, N.R.; Buckley, J.S.; Cather, S.M.; Brower, K.R.; Dandge, V.; Graham, M.; Gonzales, B.

1987-02-01T23:59:59.000Z

254

Pressure oscillations caused by momentum on shut in of a high rate well in a fractured formation  

DOE Green Energy (OSTI)

Pressure transient testing techniques are an important part of reservoir and production testing procedures. These techniques are frequently used to determine practical information about underground reservoirs such as the permeability, porosity, liquid content, reservoir and liquid discontinuities and other related data. This information is valuable in helping to analyze, improve and forecast reservoir performance. This report is concerned with developing models for pressure transient well testing in high permeability, high flow rate, naturally fractured reservoirs. In the present work, a study was made of the effects of liquid inertia in the fractures and the wellbore on the pressure response obtained during a well test. The effects of turbulent flow and multi-phase flow effects such as gravitational segregation or anisotropic porous media effects were not considered. The scope of the study was limited to studying inertial effects on the pressure response of a fractured reservoir.

Bhatnagar, S.

1989-06-01T23:59:59.000Z

255

Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

Lorie M. Dilley

2011-03-30T23:59:59.000Z

256

Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models  

E-Print Network (OSTI)

A proper understanding of reservoir connectivity is essential to understanding the relationship between the porosity and the permeability within it. Additionally, the construction of an accurate reservoir model cannot be accomplished without this information. While a great deal is known about the connectivity in conventional sandstone systems, little is understood about the connectivity and its resultant properties within shale systems. Percolation theory is a method to describe the global properties of the shale system by understanding the nanometer scale interaction of pore space. In this study we use both analytical and empirical techniques to further understand shale pore scale interactions as well as global phenomena of the shale system. Construction of pore scale connectivity simulations on lattice and in the continuum allow for understanding relationships between pore topology, system porosity and system permeability. Additionally, questions regarding the role of Total Organic Carbon as well as natural fractures in contributing to shale permeability will be discussed. Analytical techniques are used to validate simulation results regarding the onset of percolation and related pore topology. Finally, time of flight simulation is used to further understand pressure transient behavior in the resulting topological models. High aspect ratio pores are shown to be the driver of shale permeability as opposed to the low aspect ratio pore space associated with organic matrix. Additionally, systems below the percolation threshold are likely able to produce because the wellbore will often encounter near infinite clusters. Finally, a characteristic volume growth profile is shown for a multi-porosity system whereby each level of porosity displays a corresponding stair step of volume growth in time.

Chapman, Ian

2012-08-01T23:59:59.000Z

257

Stress and Permeability Heterogeneity within the Dixie Valley Geothermal Reservoir: Recent Results from Well 82-5  

DOE Green Energy (OSTI)

We collected borehole televiewer, temperature and flowmeter logs and conducted a hydraulic fracturing test in a well (82-5) that penetrated the SFZ within the known boundaries of the geothermal field but which failed to encounter significant permeability. Although stuck drill pipe prevented direct access to the SFZ, borehole breakouts and cooling cracks indicated a {approximately}90 degree rotation in the azimuth of the least horizontal principal stress (Shmin) in well 82-5 at about 2.7 km depth. This rotation, together with the low (Shmin) magnitude measured at 2.5 km depth in well 82-5, is most readily explained through the occurrences of one or more normal faulting earthquakes in the hanging wall of the SFZ in the northern part of the reservoir. The orientation of (Shmin) below 2.7 km (i.e., {approximately}20 to 50 m above the top of the SFZ) is such that both the overall SFZ and natural fractures directly above the SFZ are optimally oriented for normal faulting failure. If these fracture and stress orient ations persist into the SFZ itself, then the existence of a local stress relief zone (i.e., anormalously high (Shmin) magnitude) is the most likely explanation for the very low fault zone permeability encountered in well 82-5.

S. H. Hickman; M. D. Zoback; C. A. Barton; R. Benoit; J. Svitek; R. Summers

1999-12-01T23:59:59.000Z

258

Performance Assessment and Recommendations for Rejuvenation of a Permeable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Recommendations for Rejuvenation of a Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

259

Water injection into a Low-Permeability Rock - 2: Control Model  

Science Conference Proceedings (OSTI)

In Part 1, we have demonstrated the inevitable growth of the fluid injection hydrofractures in low-permeability rocks. Thus, a smart controller that manages fluid injection in the presence of hydrofracture extension is highly desirable. Such a controller will be an essential part of automated waterflood project surveillance and control. Here we design an optimal injection controller using methods of optimal control theory. The controller inputs are the history of the injection pressure and the cumulative injection, along with the fracture size. The output parameter is the injection pressure and the control objective is the injection rate. We demonstrate that the optimal injection pressure depends not only on the instantaneous measurements, but it is determined by the whole history of the injection and of the fracture area growth. We show the controller robustness when the inputs are delayed and noisy and when the fracture undergoes abrupt extensions. Finally, we propose a procedure that allows estimation of the hydrofracture size at no additional cost.

Silin, Dmitriy B.; Patzek, Tad W.

1999-06-01T23:59:59.000Z

260

PERMEABILITY TESTING OF SIMULATED SALTSTONE CORE AND VAULT 4 CELL E SALTSTONE  

SciTech Connect

The Engineering Process Development Group (EPD) of the Savannah River National Laboratory (SRNL) prepared simulated saltstone core samples to evaluate the effect of sample collection by coring on the permeability of saltstone. The Environmental Restoration Technology Section (ERTS) of the SRNL was given the task of measuring the permeability of cores of simulated saltstone. Saltstone samples collected from Vault 4 Cell E using both dry and wet coring methods were also submitted for permeability analysis. The cores from Vault 4 Cell E were in multiple pieces when they were recovered (Smith, 2008 Cheng et.al, 2009). Permeability testing was only performed on the portions of the core sample that were intact, had no visible fractures or cracks, and met the specifications for 'undisturbed specimens' identified in Method ASTM D5084-03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter that was used for the testing. Permeability values for cores of simulated saltstone compared with values from permeability tests conducted on molded saltstone samples by an independent laboratory using the same method. All hydraulic conductivity results for Vault 4 samples exceeded results for both molded and cored saltstone simulant samples. The average hydraulic conductivity result for Vault 4 Cell E samples of 3.9 x 10{sup -7} cm/sec is approximately two orders of magnitude greater than that of the simulated saltstone with an average of 4.1 x 10{sup -9} cm/sec. Numerical flow and transport simulations of moisture movement through saltstone performed for the performance assessment of the Saltstone Disposal Facility (SDF) used 2.0 x 10{sup -9} cm/sec for the hydraulic conductivity of saltstone (Flach et al, 2009). The results for simulated versus actual saltstone were further compared using non-parametric statistics. The results from non-parametric statistical analysis of results indicate that there is at least a 98% probability that the hydraulic conductivity of saltstone samples collected from Vault 4 Cell E saltstone is greater than that of the baseline simulant mix.

Nichols, R.; Dixon, K.

2011-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Determination of the effect of formation water on fracture-fluid cleanup  

SciTech Connect

Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the only way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.

NONE

1998-03-01T23:59:59.000Z

262

Estimating large-scale fracture permeability of unsaturated rock using barometric pressure data  

E-Print Network (OSTI)

Studies Facility, Yucca Mountain, Nevada, U.S. GeologicalUnsaturated Zone, Yucca Mountain, Nevada, Water-Resourcesstudies facility, Yucca Mountain, Nevada, U.S. Geological

Wu, Yu-Shu; Zhang, Keni; Liu, Hui-Hai

2005-01-01T23:59:59.000Z

263

A new coal-permeability model: Internal swelling stress and fracture-matrix interaction  

E-Print Network (OSTI)

a 3D coalbed simulator. Paper CIM/SPE 90-1119. Internationalby the Petroleum Society of CIM and the Society of Petroleum

Liu, H.H.

2010-01-01T23:59:59.000Z

264

A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction  

E-Print Network (OSTI)

of a 3D coalbed simulator. Paper CIM/SPE 90-1119. In:by the Petroleum Society of CIM and the Society of Petroleum

Liu, Hui-Hai; Rutqvist, Jonny

2010-01-01T23:59:59.000Z

265

A new coal-permeability model: Internal swelling stress and fracture-matrix interaction  

E-Print Network (OSTI)

of carbon dioxide in coal with enhanced coalbed methaneL. Adsorption-induced coal swelling and stress: Implicationsand acid gas sequestration into coal seams. J Geophys Res. (

Liu, H.H.

2010-01-01T23:59:59.000Z

266

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report, October 1, 1991--September 31, 1992  

Science Conference Proceedings (OSTI)

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1991-1992 year are summarized. Progress is described in: (i) geological characterization, (ii) development of the EOR imbibition process, (iii) transfer of technology, and (iv) field tests.

Poston, S.W.

1995-03-01T23:59:59.000Z

267

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media.

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

268

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

in modeling multiphase flow in porous and fractured media,multiphase tracer transport in heterogeneous fractured porousof multiphase flow through fractured or porous media. 3.

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

269

Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity  

DOE Green Energy (OSTI)

One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

1987-01-01T23:59:59.000Z

270

Fracturing controlled primary migration of hydrocarbon fluids during1 heating of organic-rich shales2  

E-Print Network (OSTI)

-rich shales2 3 Maya Kobchenko1 , Hamed Panahi1,2 , François Renard1,3 , Dag K. Dysthe1 , Anders Malthe-4 of slowly heating organic-rich Green River Shale15 from 60° to 400°C, in air without confinement, to better-like fracturing process in organic-rich shales. This process22 increases the permeability of the sample

271

Dynamic testing and characterization of pre-fractured ceramic  

SciTech Connect

Nearly all of the mechanical behavior studies of armor ceramics, to date, havc involved the characterization and testing of pristine ceramic material. However, balhstic impact causes a strong shock front to propagate rapidly through the ceramic before much penetration can occur. A strong shock wave can result in localized compressive failure and fragmentation of the ceramic before its amplitude is amnuated below the compressive strength of the ceramic. Goals of this effort were to creatc shock-fractured ceramic using test assemblies which maintain the intergranular coupling and high density of the ceramic, characterize the extent and homogeneity of the fragmentation and dilatation of the ceramic, and test the compressive dynamic behavior of the shock-fractured ceramic under conditions of confining pressure. This effort will provide data to support models of the penetration resistance of fractured ceramics including degraded moduli, failure strength-strain, and post-failure characterization of the erosive properties of comminuted ceramic and penetratot materials.

Zurek, A.K.; Hunter, D.A.

1993-01-01T23:59:59.000Z

272

Dynamic testing and characterization of pre-fractured ceramic  

Science Conference Proceedings (OSTI)

Nearly all of the mechanical behavior studies of armor ceramics, to date, havc involved the characterization and testing of pristine ceramic material. However, balhstic impact causes a strong shock front to propagate rapidly through the ceramic before much penetration can occur. A strong shock wave can result in localized compressive failure and fragmentation of the ceramic before its amplitude is amnuated below the compressive strength of the ceramic. Goals of this effort were to creatc shock-fractured ceramic using test assemblies which maintain the intergranular coupling and high density of the ceramic, characterize the extent and homogeneity of the fragmentation and dilatation of the ceramic, and test the compressive dynamic behavior of the shock-fractured ceramic under conditions of confining pressure. This effort will provide data to support models of the penetration resistance of fractured ceramics including degraded moduli, failure strength-strain, and post-failure characterization of the erosive properties of comminuted ceramic and penetratot materials.

Zurek, A.K.; Hunter, D.A.

1993-07-01T23:59:59.000Z

273

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network (OSTI)

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF) considering interaction between a hydraulic fracture (HF) and a pre-existing NF, has been investigated comprehensively using a two dimensional Displacement Discontinuity Method (DDM) Model in this thesis. The rock is first considered as an elastic impermeable medium (with no leakoff), and then the effects of pore pressure change as a result of leakoff of fracturing fluid are considered. A uniform pressure fluid model and a Newtonian fluid flow model are used to calculate the fluid flow, fluid pressure and width distribution along the fracture. Joint elements are implemented to describe different NF contact modes (stick, slip, and open mode). The structural criterion is used for predicting the direction and mode of fracture propagation. The numerical model was used to first examine the mechanical response of the NF to predict potential reactivation of the NF and the resultant probable location for fracture re-initiation. Results demonstrate that: 1) Before the HF reaches a NF, the possibility of fracture re-initiation across the NF and with an offset is enhanced when the NF has weaker interfaces; 2) During the stage of fluid infiltration along the NF, a maximum tensile stress peak can be generated at the end of the opening zone along the NF ahead of the fluid front; 3) Poroelastic effects, arising from fluid diffusion into the rock deformation can induce closure and compressive stress at the center of the NF ahead of the HF tip before HF arrival. Upon coalescence when fluid flows along the NF, the poroelastic effects tend to reduce the value of the HF aperture and this decreases the tension peak and the possibility of fracture re-initiation with time. Next, HF trajectories near a NF were examined prior to coalesce with the NF using different joint, rock and fluid properties. Our analysis shows that: 1) Hydraulic fracture trajectories near a NF may bend and deviate from the direction of the maximum horizontal stress when using a joint model that includes initial joint deformation; 2) Hydraulic fractures propagating with higher injection rate or fracturing fluid of higher viscosity propagate longer distance when turning to the direction of maximum horizontal stress; 3) Fracture trajectories are less dependent on injection rate or fluid viscosity when using a joint model that includes initial joint deformation; whereas, they are more dominated by injection rate and fluid viscosity when using a joint model that excludes initial joint deformation.

Xue, Wenxu

2010-12-01T23:59:59.000Z

274

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents (OSTI)

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

275

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network (OSTI)

Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurementreopening during hydraulic fracturing stress determinations.

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

276

Gas permeability measurements for film envelope materials  

DOE Patents (OSTI)

Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

Ludtka, Gerard M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Watkin, David C. (Clinton, TN); Walton, David G. (Knoxville, TN)

1998-01-01T23:59:59.000Z

277

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

Mike L. Laue

1997-05-08T23:59:59.000Z

278

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

Mike L. Laue

1998-05-29T23:59:59.000Z

279

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

Laue, M.L.

1999-11-01T23:59:59.000Z

280

Fracture patterns in graywacke outcrops at The Geysers geothermal field  

DOE Green Energy (OSTI)

The Geysers geothermal field covers an area of more than 35,000 acres and represents one of the most significant steam fields in the world. The heterogeneous nature of the reservoir, its fracture network and non-sedimentary rock distinguish it from ordinary sandstone reservoirs in terms of reservoir definition and evaluation (Stockton et al. 1984). Analysis of cuttings, record of steam entries, temperature and pressure surveys and spinner logs have contributed to an understanding of the subsurface geology and rock characteristics of the Geysers. Few conventional electrical log data are available for the main body of the reservoir. It is generally believed that while the fractures are the main conducts for fluid transport through the reservoirs, tight rocks between the major fractures contain the bulk of the fluid reserves. No independent measurement of liquid and vapor saturation can be made from the existing downhole tools. Pressure depletion in The Geysers geothermal field has become a major concern to the operators and utility companies in recent years. Plans for further development activities and future field management are contingent upon accurate computer modeling and definition of the field. The primary issues in reliable characterization of The Geysers field are the role of the rock matrix in holding liquid reserves and providing pressure support, the nature of fracture network, extent of liquid saturation in the reservoirs and injection pattern strategies to maximize heat recovery. Current modeling of The Geysers field is done through the use of general purpose geothermal reservoir simulators. Approaches employed include treating the reservoir as a single porosity equivalent or a dual porosity system. These simulators include formulation to represent transport of heat, steam and water. Heterogeneities are represented by spatial variations in formation or fracture permeability-thickness product, porosity or fluid saturations. Conceptual models based on dual porosity representations have been shown to duplicate the history. Prediction of future performance is, however, not reliable because of uncertainties in assumptions of the initial state of the reservoir, Specifically, several different initial state conditions have led to a fairly good match of the historical data. Selection of the exact initial conditions is a major dilemma. In dual porosity models, the complex nature of fracture network is formulated by a systematic, well-organized set of orthogonal fractures. Also, the exact nature of matrix-fracture interaction, and the role of adsorption and capillarity in pressure support are not well-defined.

Sammis, Charles G.; Lin Ji An; Ershaghi, I.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Practical simulation of hierarchical brittle fracture  

Science Conference Proceedings (OSTI)

A novel practical method for brittle fracture simulation is presented. Our fracture model is represented by a tree structure, and all elementary fracture pieces are hierarchically connected. Each node in a fracture tree has a glue table to define connections ... Keywords: fluid, fracture, rigid body

Seungtaik Oh; Seunghyup Shin; Hyeryeong Jun

2012-05-01T23:59:59.000Z

282

Laboratory experiments simulating fire flooding through a fractured reservoir  

SciTech Connect

Low-permeability heavy-oil reservoirs are considered to be poor prospects for in-situ-combustion recovery methods. The low-permeability, high-viscosity heavy oils, combined, make air injection through the formation insufficient to support combustion in the formation. The objective of this research is to show results obtained through burn tests on whole cores and fractured cores relating these results to heavy-oil reservoirs. These tests were performed to determine the technical feasibility of recovering heavy oil by the in-situ-combustion process from reservoirs which are shallow and contain no reservoir energy. These tests were conducted on cores obtained from a heavy-oil reservoir near Bartlett, Kansas. The tests were performed in a thin-walled core holder with a built-in heater to start combustion. Air was measured and injected through the heater and into the core. The produced fluids (oil and water) were obtained and measured and the resulting effluent gas was measured and analyzed on a chromatograph to determine the constituents of the produced gas. The injected air pressure was determined and temperature logs were plotted during the entire test. It was determined from the results of the tests on competent cores that 78 percent of the oil was removed from the cores as a result of the in-situ-combustion process on competent cores while 16 percent was used as fuel for combustion. The results from the tests on fractured cores show that 33 percent of the oil was removed from the cores as a result of the in-situ-combustion process while 45 percent was used as fuel for combustion. The results from the tests on fractured cores held apart by propping agents show that 16 percent of the oil was removed from the cores as a result of the in-situ-combustion process, while 38 percent was used as fuel to support combustion. 46 figures, 56 tables.

Miller, J.S.; Jones, R.

1983-04-01T23:59:59.000Z

283

Guide to Operating and Maintaining EnergySmart Schools | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide to Operating and Maintaining EnergySmart Schools Guide to Operating and Maintaining EnergySmart Schools This guide is a primary resource for developing and implementing a...

284

Y-12 Construction maintains 'superb' safety performance | Y-12...  

NLE Websites -- All DOE Office Websites (Extended Search)

Construction maintains ... Y-12 Construction maintains 'superb' safety performance Posted: March 6, 2013 - 6:03pm Tom Morris, B&W Y-12 vice president of projects, presents...

285

Wormhole formation in dissolving fractures  

E-Print Network (OSTI)

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.

Szymczak, P

2009-01-01T23:59:59.000Z

286

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements… (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

287

A Permeability-Porosity Relationship for Surface Deposition  

DOE Green Energy (OSTI)

The changes to porosity and permeability resulting from surface deposition and early dissolution in an initial rhombohedral array of uniform spheres are calculated. Very rapid decreases of permeability result from early deposition, with 48% reduction predicted in permeability from 8% reduction in porosity. After deposition has caused about a 1% increase in the radii of the spherical array, relative permeability reductions vary approximately as the square of relative changes in porosity. These theoretical results are matched with experimental data of Ioti et al. and shown to be satisfactory in some cases, but for others, a more complex model of the porous medium is needed.

Weir, G.J.; White, S.P.

1995-01-01T23:59:59.000Z

288

Combined permeable pavement and ground source heat pump systems.  

E-Print Network (OSTI)

??The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in… (more)

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

289

TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER ...  

A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed ...

290

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

291

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

292

Gas flow behavior in extremely low permeability rock  

Science Conference Proceedings (OSTI)

This paper presents a numerical model and modeling study of gas flow through extremely low permeability unconventional reservoirs. In contrast to conventional reservoirs

Yu-Shu Wu; Cong Wang

2012-01-01T23:59:59.000Z

293

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network (OSTI)

water flow-through test (waterflood) was performed while thefrom a controlled waterflood experiment. We used x-rayand permeability. In the waterflood technique, however, only

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

294

Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System  

E-Print Network (OSTI)

It is important that homeowners maintain their septic systems properly. Otherwise, problems that develop could threaten human health and the environment. In this publication you will learn how to maintain all the components of a septic system. There are checklists to remind you of important steps in maintaining the safety and integrity of your system.

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

295

The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee  

E-Print Network (OSTI)

Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents a ground water flow model that incorporates lateral flow through parallel-to-strike fractures and thrust faults, and perpendicular-to-strike cross valley strike-slip faults. These latter cross-valley structures cause flow to be diverted to other strikeparallel zones of enhanced permeability towards the south side of the valley. Using core, geophysical and hydrologic data from five boreholes in the Bear Creek Burial Grounds three types of potential fluid-flow conduits were identified: fractures, faults, and shale shear zones. Open fractures decrease in abundance with depth and tend to occur most frequently in oolitic limestone beds relative to other carbonate lithologies. Fractures below 1 00 ft BGS in the Nolichucky Shale and below 250 ft in the Maynardville Limestone do not appear to be caused by dissolution; instead, they appear to be the result of a change in the local stress field due to erosion effects. Faults, both cross-valley and thrust faults, and sheared shale zones are interpreted to disrupt the lateral continuity of the bedding and increase the rock-mass permeability of the Nolichucky Shale, permitting ground water to flow these structural zones. This study provided opportunity to interpret DNAPL migration patterns from Burial Ground A-South. DNAPL migration parallel to the valley's axis is affected by parallel-to-strike fractures and thrust faults, and its lateral migration perpendicular to strike is influenced by cross valley strike-slip faults and decreasing collect at depth because of decreasing fracture occurrence and reduced permeability and then migrate laterally along the cross valley strike-slip faults until it encounters and enters a zone of higher permeability parallel to strike.

Hollon, Dwight Mitchell

1997-01-01T23:59:59.000Z

296

Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994  

SciTech Connect

The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

Penny, G.S.; Conway, M.W.

1994-08-01T23:59:59.000Z

297

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network (OSTI)

Hydraulic fracturing is a well-established technology of generating highly conductive flow path inside the rock by injecting massive amount of fracturing fluid and proppant with sufficient pressure to break the formation apart. But as the concern for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected in the form of solid pellets containing proppant, degrades in the presence of water to form a viscous gel fluid, leaving no gel residue or harmful material. This work develops a methodology and computer program to determine the best candidate wells for the field test of degradable biopolymer as fracturing fluid. The unique properties of degradable biopolymer is captured in the selection of decision criteria such as bottomhole temperature and treatment volume as well as traditional hydraulic fracturing candidate well selection criteria such as formation permeability, productivity index.

Hwang, Yun Suk

2011-12-01T23:59:59.000Z

298

A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas  

E-Print Network (OSTI)

-precision location technique to improve the image resolution of a hydraulic fracture treatment in a tight gas sand, another thick (~ 450-600 m) interval of productive, tight-gas sands interbedded with mudstones (Dutton in the Carthage Cotton Valley gas field of east Texas. Gas is produced from multiple, low-permeability sands

299

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network (OSTI)

Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

Poliannikov, Oleg V.

300

Fluid permeability measurement system and method  

DOE Patents (OSTI)

A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

2008-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Meshless animation of fracturing solids  

Science Conference Proceedings (OSTI)

We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while ... Keywords: elasticity, fracture, meshless methods, physics-based animation, plasticity

Mark Pauly; Richard Keiser; Bart Adams; Philip Dutré; Markus Gross; Leonidas J. Guibas

2005-07-01T23:59:59.000Z

302

NETL: Discrete Fracture Reservoir Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrete Fracture Reservoir Simulation FRACGENNFFLOW Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, a fractured reservoir modeling software developed by the...

303

Self-potential observations during hydraulic fracturing  

E-Print Network (OSTI)

and T. W. Keech (1977), Hydraulic fracture mapping usingpotential measurements during hydraulic fracturing of Bunterbetween electrical and hydraulic flow patterns from rock

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

304

Some Fundamental Mechanisms of Hydraulic Fracturing .  

E-Print Network (OSTI)

??This dissertation focuses mainly on three topics: (1) mixed-mode branching and segmentation of hydraulic fractures in brittle materials, (2) hydraulic fracture propagation in particulate materials,… (more)

Wu, Ruiting

2006-01-01T23:59:59.000Z

305

Shale Gas Development Challenges: Fracture Fluids | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Fracture Fluids Shale Gas Development Challenges: Fracture...

306

Hydraulic Permeability of Resorcinol-Formaldehyde Resin  

SciTech Connect

An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing the oxygenated simulant into the feed tank. The dissolved oxygen (DO) concentration of the recirculating simulant was monitored, and the amount of oxygen that reacted with the resin was determined from the change in the DO concentration of the recirculating simulant solution. Prior to hydraulic testing the resin for runs 2 and 3 was covered with the simulant solution and irradiated in a spent fuel element at the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Both batches of resin were irradiated to a total gamma dose of 177 Mrad, but the resin for run 2 reached a maximum temperature during irradiation of 51 C, while the resin for run 3 reached a temperature of 38 C. The different temperatures were the result of the operating status of HFIR at the time of the irradiation and were not part of the test plan; however, the results clearly show the impact of the higher-temperature exposure during irradiation. The flow rate and pressure drop data from the test loop runs show that irradiating the RF resin reduces both the void fraction and the permeability of the resin bed. The mechanism for the reduction in permeability is not clear because irradiation increases the particle size of the resin beads and makes them deform less under pressure. Microscopic examination of the resin beads shows that they are all smooth regular spheres and that irradiation or oxygen uptake did not change the shape of the beads. The resin reacts rapidly with DO in the simulant solution, and the reaction with oxygen reduces the permeability of a bed of new resin by about 10% but has less impact on the permeability of irradiated resin. Irradiation increases the toughness of the resin beads, probably by initiating cross-linking reactions in them. Oxygen uptake reduces the crush strength of both new and irradiated resin; however, the pressures that caused the beads to crush are much higher than would be expected during the operation of an ion exchange column. There was no visible evidence of broken beads in any of the resin samples taken from the test loop. Reaction with oxygen red

Taylor, Paul Allen [ORNL

2010-01-01T23:59:59.000Z

307

Dynamics of window glass fracture in explosions  

SciTech Connect

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

308

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network (OSTI)

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because it is the first factor decreasing propped pack permeability at in-situ conditions. Gel damage was also considered in order to evaluate the impact of incorporating more damaging factors on ultimate well performance and optimal geometry. Effective fracture permeability and optimal fracture geometry are calculated through an iterative process. This approach was implemented in a spreadsheet. Non-Darcy flow is described by the ? factor. All ? factor correlations available in the literature were evaluated. It is recommended to use the correlation developed specifically for the given type of proppant and mesh size, if available. Otherwise, the Pursell et al. or the Martins et al. equations are recommended as across the board reliable correlations for predicting non-Darcy flow effects in the propped pack. The proposed methodology was implemented in the design of 11 fracture treatments of 3 natural tight gas wells in South Texas. Results show that optimal fracture design might increase expected production in 9.64 MMscf with respect to design that assumes Darcy flow through the propped pack. The basic finding is that for a given amount of proppant shorter and wider fractures compensate the non-Darcy and/or gel damage effect. Dynamic programming technique was implemented in design of multistage fractures for one of the wells under study for maximizing total gas production. Results show it is a powerful and simple technique for this application. It is recommended to expand its use in multistage fracture designs.

Lopez Hernandez, Henry De Jesus

2004-08-01T23:59:59.000Z

309

“Hanging” Pelvic Gallbladder Simulating Occult Hip Fracture Versus Appendicitis  

E-Print Network (OSTI)

Pelvic Gallbladder Simulating Occult Hip Fracture Versuspossibility of either an occult hip fracture or a subacute

Dolbec, Katherine W D; Higgins, George L; Jung, Michale W

2010-01-01T23:59:59.000Z

310

Downhole tool sniffs out fractures  

SciTech Connect

This article reports that a new tool has been designed and successfully tested that can designate which direction from a borehole a particular fracture is located. Albuquerque-based Sandia National Laboratories tested the new tool. The prototype was built by Southwest Research Institute of San Antonio. During field tests, the tool detected simulated fractures more than 30 ft away from a test borehole. It determines fracture direction by transmitting highly directional and powerful radar pulses in a known direction. The pulses last eight billionths of a second and their frequency spectrum range up to the VHF (very high frequency) band. Discontinuities in the rock interrupt and reflect radar signals so that a signal's return to the tool indicates the presence of fractures. The return signal's time delay translates into distance from the borehole. The transmitter and receiver rotate in place, permitting the tool to scan for fractures in all directions.

Not Available

1987-05-01T23:59:59.000Z

311

Determination of Coal Permeability Using Pressure Transient Methods  

SciTech Connect

Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

McLendon, T.R.; Siriwardane, H. (West Virginia University, Morgantown, WV); Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

2007-05-01T23:59:59.000Z

312

Flow of a viscous liquid between moving permeable surfaces  

Science Conference Proceedings (OSTI)

Plane motion of a viscous incompressible liquid between rotating coaxial permeable vertical cylinders of infinite length and flow between moving horizontal permeable planes are considered. Exact solutions are obtained for the Navier-Stokes equation in the case of a constant volume flow rate of a liquid in the direction normal to the surface. The boundary layer and mainstream flows are investigated.

Volk, A.M. [Belarussian Technological Institute, Minsk (Belarus)

1994-02-01T23:59:59.000Z

313

Hydrogen-permeable composite metal membrane and uses thereof  

DOE Patents (OSTI)

Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

1993-06-08T23:59:59.000Z

314

EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY  

E-Print Network (OSTI)

EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

Stanford University

315

Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments  

Science Conference Proceedings (OSTI)

Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

Fred Sabins

2005-03-31T23:59:59.000Z

316

Faulting, fracturing, and sealing in foreland thrust belts: Examples from the subalpine chains  

SciTech Connect

The hydrocarbon potential of foreland thrust belts arises from source and reservoir rocks juxtaposed by the movement of thrust sheets, promoting maturation by loading and generating structural traps. Deformation in thrust belts can be localized on fault zones or distributed throughout thrust sheets; different deformation mechanisms operate to increase and decrease permeability. Migration and reservoir properties may be enhanced or reduced by faulting and fault-related deformation. These processes are examined in detail using examples from the northwest subalpine chains of France, a fold-and-thrust belt of well-differentiated Mesozoic shales and carbonates. Seeps of bitumen in foreland basin sediments indicate some migration of hydrocarbons along faults linking probable source and reservoir areas. Detailed examination of fault rocks and thrust sheets shows that fracture formation is an important strain mechanism which has the potential to form regions of enhanced permeability in structures such as hanging wall anticlines. However, the fractures observed are in general recemented, forming with crack-seal crystal growth. The faults themselves are complex zones up to tens of meters thick of subparallel anastomosing gouge, fractures, stylolites, and crystalline calcite, indicating synchronous cataclasis and pressure solution. The range of scales of fracturing suggests stick-slip (microseismic) fault activity. Permeability of the fault zones is enhanced during seismic fault slip and is otherwise steadily decreased by pressure solution and calcite deposition. The available migration pathways, and hence the location of potential reservoirs, is controlled by the timing, mechanisms, and extent of fault activity in this common and productive tectonic regime.

Bowler, S.; Butler, R.W.H.

1988-08-01T23:59:59.000Z

317

Permeability prediction and drainage capillary pressure simulation in sandstone reservoirs  

E-Print Network (OSTI)

Knowledge of reservoir porosity, permeability, and capillary pressure is essential to exploration and production of hydrocarbons. Although porosity can be interpreted fairly accurately from well logs, permeability and capillary pressure must be measured from core. Estimating permeability and capillary pressure from well logs would be valuable where cores are unavailable. This study is to correlate permeability with porosity to predict permeability and capillary pressures. Relationships between permeability to porosity can be complicated by diagenetic processes like compaction, cementation, dissolution, and occurrence of clay minerals. These diagenetic alterations can reduce total porosity, and more importantly, reduce effective porosity available for fluid flow. To better predict permeability, effective porosity needs to be estimated. A general equation is proposed to estimate effective porosity. Permeability is predicted from effective porosity by empirical and theoretical equations. A new capillary pressure model is proposed. It is based on previous study, and largely empirical. It is tested with over 200 samples covering a wide range of lithology (clean sandstone, shaly sandstone, and carbonates dominated by intergranular pores). Parameters in this model include: interfacial tension, contact angle, shape factor, porosity, permeability, irreducible water saturation, and displacement pressure. These parameters can be measured from routine core analysis, estimated from well log, and assumed. An empirical equation is proposed to calculate displacement pressure from porosity and permeability. The new capillary-pressure model is applied to evaluate sealing capacity of seals, calculate transition zone thickness and saturation above free water level in reservoirs. Good results are achieved through integration of well log data, production data, core, and geological concepts.

Wu, Tao

2004-12-01T23:59:59.000Z

318

Numerical Modeling of Hydraulic Fracture Propagation Using Thermo-hydro-mechanical Analysis with Brittle Damage Model by Finite Element Method  

E-Print Network (OSTI)

Better understanding and control of crack growth direction during hydraulic fracturing are essential for enhancing productivity of geothermal and petroleum reservoirs. Structural analysis of fracture propagation and impact on fluid flow is a challenging issue because of the complexity of rock properties and physical aspects of rock failure and fracture growth. Realistic interpretation of the complex interactions between rock deformation, fluid flow, heat transfer, and fracture propagation induced by fluid injection is important for fracture network design. In this work, numerical models are developed to simulate rock failure and hydraulic fracture propagation. The influences of rock deformation, fluid flow, and heat transfer on fracturing processes are studied using a coupled thermo-hydro-mechanical (THM) analysis. The models are used to simulate microscopic and macroscopic fracture behaviors of laboratory-scale uniaxial and triaxial experiments on rock using an elastic/brittle damage model considering a stochastic heterogeneity distribution. The constitutive modeling by the energy release rate-based damage evolution allows characterizing brittle rock failure and strength degradation. This approach is then used to simulate the sequential process of heterogeneous rock failures from the initiation of microcracks to the growth of macrocracks. The hydraulic fracturing path, especially for fractures emanating from inclined wellbores and closed natural fractures, often involves mixed mode fracture propagation. Especially, when the fracture is inclined in a 3D stress field, the propagation cannot be modeled using 2D fracture models. Hence, 2D/3D mixed-modes fracture growth from an initially embedded circular crack is studied using the damage mechanics approach implemented in a finite element method. As a practical problem, hydraulic fracturing stimulation often involves fluid pressure change caused by injected fracturing fluid, fluid leakoff, and fracture propagation with brittle rock behavior and stress heterogeneities. In this dissertation, hydraulic fracture propagation is simulated using a coupled fluid flow/diffusion and rock deformation analysis. Later THM analysis is also carried out. The hydraulic forces in extended fractures are solved using a lubrication equation. Using a new moving-boundary element partition methodology (EPM), fracture propagation through heterogeneous media is predicted simply and efficiently. The method allows coupling fluid flow and rock deformation, and fracture propagation using the lubrication equation to solve for the fluid pressure through newly propagating crack paths. Using the proposed model, the 2D/3D hydraulic fracturing simulations are performed to investigate the role of material and rock heterogeneity. Furthermore, in geothermal and petroleum reservoir design, engineers can take advantage of thermal fracturing that occurs when heat transfers between injected flow and the rock matrix to create reservoir permeability. These thermal stresses are calculated using coupled THM analysis and their influence on crack propagation during reservoir stimulation are investigated using damage mechanics and thermal loading algorithms for newly fractured surfaces.

Min, Kyoung

2013-08-01T23:59:59.000Z

319

Operating and Maintaining Your Heat Pump | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump Operating and Maintaining Your Heat Pump June 24, 2012 - 3:22pm Addthis Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos Changing filters regularly is an important part of maintaining a heat pump system. | Photo courtesy of ©iStockphoto/BanksPhotos What does this mean for me? Learn to operate and maintain your heat pump system properly to maximize energy and money savings. You can do many operational and maintenance tasks yourself. Proper operation of your heat pump will save energy. Do not set back the heat pump's thermostat if it causes the backup heating to come on -- backup heating systems are usually more expensive to operate. Continuous indoor

320

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

E-Print Network (OSTI)

not traditional hydraulic fracturing or fracture stimulationfar below the hydraulic fracturing pressure. The injectionpressure to avoid hydraulic fracturing, but aims at dilating

Rutqvist, J.

2010-01-01T23:59:59.000Z

322

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network (OSTI)

Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions.

Romero Lugo, Jose 1985-

2012-12-01T23:59:59.000Z

323

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary thermometry standards to assure...

324

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary standards to assure accurate...

325

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary acceleration and shock...

326

Maintaining History of the ARM Climate Research Facility Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Maintaining History of the ARM Climate Research Facility Data Koontz, Annette Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Martin,...

327

Section_201_Establishing_Maintaining_and_Deactivating_Limited...  

NLE Websites -- All DOE Office Websites (Extended Search)

201 Establishing, Maintaining, and Deactivating Limited Areas and Vault-Type Rooms Description Classified matter must be processed, discussed, handled, or stored in designated...

328

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network (OSTI)

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design an optimum stimulation treatment that leads to the maximum possible productivity. These considerations include, but not limited to, non-Darcy flow and multiphase flow effects inside the fracture. These effects reduce the fracture conductivity significantly. Failing to account for that results in overestimating the deliverability of the well and, consequently, to designing a fracture treatment that is not optimum. In this work a thorough investigation of non-Darcy flow and multi-phase flow effects on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective fracture permeability in an iterative way. Incorporating non-Darcy effects results in an optimum fracture that is shorter and wider than the fracture when only Darcy calculations are considered. That leads to a loss of production of 5, 18 percent due to dry and multiphase non-Darcy flow effects respectively. A comparison between the UFD and 3D simulators is also done to point out the differences in terms of methodology and results. Since UFD incorporated the maximum dimensionless productivity index in the fracture dimensions design, unlike 3D simulators, it can be concluded that using UFD to design the fracture treatment and then use the most important fracture parameters outputs (half length and CfDopt) as inputs in the simulators is a recommended approach.

Alarbi, Nasraldin Abdulslam A.

2011-08-01T23:59:59.000Z

329

SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION  

National Nuclear Security Administration (NNSA)

SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION IN NATURAL URANIUM IN NATURAL URANIUM UNDER SHOCK UNDER SHOCK - - WAVE LOADING WAVE LOADING O.A. O.A. Tyupanova Tyupanova , S.S. , S.S. Nadezhin Nadezhin , A.N. , A.N. Malyshev Malyshev , , O.N. O.N. Ignatova Ignatova , V.I. , V.I. Skokov Skokov , V.N. , V.N. Knyazev Knyazev , , V.A. V.A. Raevsky Raevsky , N.A. , N.A. Yukina Yukina Russian Federal Nuclear Center Russian Federal Nuclear Center - - VNIIEF, VNIIEF, Sarov Sarov , Russia , Russia Introduction Introduction  Nucleation and growth of defects inside a solid under pulse tensile stresses signify a necessity to consider it as a damaged medium.  A certain volume of experimental data, obtained in correct tests, which are sensitive to a characteristic under study, is necessary

330

IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY  

SciTech Connect

Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

Kishore K. Mohanty

2002-09-30T23:59:59.000Z

331

Improving dual-porosity simulation of waterflood performance in the naturally fractured Spraberry Trend area  

E-Print Network (OSTI)

In this thesis we have discussed the methods of analyzing the waterflood performance of the O'Daniel waterflood pilot in the Spraberry Trend Area with the help of reservoir simulation. Spraberry Trend Area is considered to be one of the richest oil fields in the world. However, out of 6-10 billion bbls of original oil only 700 million bbls have been produced. In an effort to increase recovery, several waterflood pilots were conducted in Spraberry beginning in the late 1950's. Because of profoundly complicated nature of the reservoir, waterflooding has been only moderately successful, and billions of barrels of hydrocarbons remain unrecovered. A recent waterflood pilot study started in 1995 with dramatically different results. The pilot was conducted in the O'Daniel unit of the Spraberry. The recovery in this lease has exceeded 25% of the original oil in place, compared to only 10% recovery in the entire Spraberry. Data from the current waterflood clearly shows that on-trend wells which are outside the pilot and along the major fracture trend responded favorably. In the previous waterflood pilots in Spraberry, the producer located off-trend from the water injectors received all the attention and the response in the on-trend wells was overlooked. In this study, we have developed a waterflood pattern for Spraberry where the target wells for waterflood response will be the on-trend producers. A successful waterflood depends on properly positioning the injectors and producers. In fractured reservoirs, fracture location, orientation and permeability dictates the placing of injection and production wells. So, to understand the fracture distribution, the main intention behind this thesis is to develop a method to determine location, orientation and permeability of fractures in Spraberry by using reservoir simulation. We performed three simulation studies: Humble pilot waterflood, O'Daniel tracer analysis and O'Daniel pilot waterflood. The first two simulation studies were performed with simple two-well models. The fracture orientation and permeability ratio obtained in these models were applied to the full field O'Daniel pilot that consists of 59 wells in about 8500-acre area. Our simulation model shows that a concept of fracture enhancement (grid-blocks with high fracture permeability) in the dual-porosity model is necessary to capture the effect of heterogeneity of fracture network. The major fracture orientation obtained from the simulation is very close to the one obtained from the interference test and horizontal core analysis. The results of this study could be used in determining an optimum waterflood pattern suitable for that area to forecast oil production with different scenarios such as, infill drilling, CO2 injection, horizontal wells etc. Finally, the results of this work will provide a method to assess the economic feasibility of large-scale water injection in the remainder of the field.

Chowdhury, Tanvir

2002-01-01T23:59:59.000Z

332

Fracture of aluminum naval structures  

E-Print Network (OSTI)

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

333

Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones  

SciTech Connect

We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

1998-12-01T23:59:59.000Z

334

Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

1997-09-01T23:59:59.000Z

335

Regional Analysis and Characterization of Fractured Aquifers in the Virginia Blue Ridge and Piedmont Provinces  

SciTech Connect

Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that conduct water. The exploration for new groundwater resources is considered by many to be the new frontier in the general field of hydrology. The availability of adequate groundwater resources in fractured rocks is a major concern in many areas of the eastern US as well as in the other parts of the world. A geothermal database can therefore become an important source of basic data that can be used to help characterize the nature and extent of hydraulic conductivity in fractured rocks. We plan to continue to augment our web site (http://rglsun1.geol.vt.edu) with new geothermal data as the data become available, and to advertise the increasing residential uses of geothermal energy in the eastern US. This work was originally titled ''Archival of Geothermal Exploration Data,'' and was initiated to make available to the public the extensive geothermal database for the southeastern US. These data include plots of temperature and geothermal gradient logs, scans of 7.5-min quadrangles where appropriate, and annotated location maps.

Costain, J.K.

2000-07-25T23:59:59.000Z

336

Validation studies for assessing unsaturated flow and transport through fractured rock  

SciTech Connect

*The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

1994-08-01T23:59:59.000Z

337

Temporary Sealing of Fractures | Open Energy Information  

Open Energy Info (EERE)

Temporary Sealing of Fractures Temporary Sealing of Fractures Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Temporary Sealing of Fractures 2 Geothermal ARRA Funded Projects for Temporary Sealing of Fractures Geothermal Lab Call Projects for Temporary Sealing of Fractures Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

338

Ductile Fracture Handbook: Volume 2  

Science Conference Proceedings (OSTI)

The three-volume Ductile Fracture Handbook provides the structural analyst with computational methods for evaluating the integrity of flawed structures that are fabricated from ductile materials or have loads that may produce significant plasticity, specifically easy-to-use fracture mechanics solutions for a wide range of problems dealing with cylinders subjected to several types of elastic-plastic loading. Volume 2 presents new solutions and significant expansion of previous solutions, typically in the ...

1990-09-01T23:59:59.000Z

339

Ductile Fracture Handbook: Volume 3  

Science Conference Proceedings (OSTI)

The three-volume Ductile Fracture Handbook provides the structural analyst with computational methods for evaluating the integrity of flawed structures that are fabricated from ductile materials or have loads that may produce significant plasticity, specifically easy-to-use fracture mechanics solutions for a wide range of problems dealing with cylinders subjected to several types of elastic-plastic loading. Volume 3 presents solutions for axial part-throughwall cracks, cracks in elbows, tees, and nozzles...

1990-09-01T23:59:59.000Z

340

4D imaging of fracturing in organic-rich shales during heating  

Science Conference Proceedings (OSTI)

To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60 to 400 C) of organic-rich Green River shale. At about 350 C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at {approx}350 C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

Maya Kobchenko; Hamed Panahi; François Renard; Dag K. Dysthe; Anders Malthe-Sørenssen; Adriano Mazzini; Julien Scheibert1; Bjørn Jamtveit; Paul Meakin

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS  

SciTech Connect

Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

Unknown

1999-12-01T23:59:59.000Z

342

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells Multiple Hydraulic Fractures  

SciTech Connect

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

Mike L. Laue

1997-10-30T23:59:59.000Z

343

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

Mike L. Laue

1998-11-06T23:59:59.000Z

344

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

345

Preliminary relative permeability estimates of methanehydrate-bearing sand  

Science Conference Proceedings (OSTI)

The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

2006-05-08T23:59:59.000Z

346

THE PERMEABILITY OF HYDROGEN THROUGH THIN-FILM SUPPORTED MEMBRANES...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract for Session - 3 Hydrogen from Coal The Influence of Copper Concentration on the Permeability of Pd-Cu Alloy Membranes Bryan D. Morreale 1 , Bret H. Howard US Department of...

347

Hydrogen permeable protective coating for a catalytic surface  

DOE Patents (OSTI)

A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

2007-06-19T23:59:59.000Z

348

Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997  

SciTech Connect

Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

NONE

1997-12-31T23:59:59.000Z

349

Permeability decrease in argillaceous sandstone; experiments and modelling  

Science Conference Proceedings (OSTI)

Core flooding experiments on argillaceous sandstone are carried out showing that for high injection flow rates permeability reduction occurs. The decrease of permeability is a consequence of the migration of insitu particles. Two models are used to simulate the observed phenomena. The so-called network model is able to give insight in the physics behind the particle migration. The other model based on mass balance and constitutive laws is used for quantitative and qualitative comparison with the experiments.

Egberts, Paul; van Soest, Lennard; Vernoux, Jean-Francois

1996-01-24T23:59:59.000Z

350

Effect of cyclic formation-pressure changes on permeability  

SciTech Connect

Unconsolidated sandpacks of various mesh sizes and consolidated Berea sandstone cores were subjected to repeated pressurization/depressurization cycles under constant confining pressure, after which their absolute and relative permeabilities were measured during the relaxation periods. The permeabilities of the sandpacks decreased as a result of the pressurization, and the reduction in permeability increased as the magnitude and duration of the applied net core pressure increased. The permeabilities continued to decrease with successive pressurization/depressurization cycles, albeit at a decreasing rate. After a finite number of cycles, no further reduction was observed. The number of cycles needed for stabilization was inversely proportional to the duration of the pressurization cycles and was found to be lower for fine sand than for coarser sand. Some recovery in permeability was achieved after the cores were allowed to relax; however, the cores were permanently damaged. Two models are proposed for explaining the mechanisms of permeability reduction under the present test conditions for both unconsolidated sand and consolidated cores.

Aggour, M.A.; Malik, S.A.; Harari, Z.Y.

1989-02-01T23:59:59.000Z

351

A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pruess, Karsten

2004-01-01T23:59:59.000Z

352

A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.flow through unsaturated fractured porous media, Proceedings of the Second International Symposium on Dynamics of Fluids

Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

2004-01-01T23:59:59.000Z

353

The Essential Work of Fracture Method Applied to Mode II Interlaminar Fracture in Fiber Reinforced Polymers.  

E-Print Network (OSTI)

??This thesis presents a new method for determining mode II interlaminar fracture toughness in fiber reinforced polymers (FRP) using the essential work of fracture (EWF)… (more)

McKinney, Scott D

2013-01-01T23:59:59.000Z

354

Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing  

DOE Green Energy (OSTI)

Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

Not Available

1980-07-01T23:59:59.000Z

355

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a variety of primary mass and force standards to assure...

356

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Nuclear Security Administration under contract DE-AC04-94AL85000 The Primary Standards Laboratory (PSL) maintains a variety of primary optical standards to assure accurate...

357

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the US Department of Energy under contract DE-ACO4-94AL85000. The Primary Standards Laboratory (PSL) and Sandia's Radiation Protection organization maintain a variety...

358

Installing and Maintaining a Small Wind Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small Wind Electric System What does this mean for me? When installing a wind system, the location of the system, the energy budget for the site, the size of the system, and the height of the tower are important elements to consider. Deciding whether to connect the system to the electric grid or not is also an important decision. If you went through the planning steps to evaluate whether a small wind electric system will work at your location, you will already have a general idea about: The amount of wind at your site The zoning requirements and covenants in your area The economics, payback, and incentives of installing a wind system

359

Weatherization Assistance for Low-Income Persons: Maintaining the Privacy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Assistance for Low-Income Persons: Maintaining the Weatherization Assistance for Low-Income Persons: Maintaining the Privacy of Applicants for and Recipients of Services Weatherization Assistance for Low-Income Persons: Maintaining the Privacy of Applicants for and Recipients of Services Amending regulations to require all States and other service providers that participate in the Weatherization Assistance Program (WAP) to treat all requests for information concerning applicants and recipients of WAP funds in a manner consistent with the Federal government's treatment of information requested under the Freedom of Information Act (FOIA), 5 U.S.C. 552, including the privacy protections contained in Exemption (b)(6) of the FOIA, 5 U.S.C. 552(b)(6). Weatherization Assistance for Low-Income Persons: Maintaining the Privacy

360

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-Assisted Fracture: Materials Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to high-pressure H 2 gas * Six-year program in 1970s focused on feasibility of using natural gas pipeline network for H 2 gas - Materials testing in high-pressure H 2 gas using laboratory specimens and model pipeline - Examined fusion zone and heat affected zones of welds * Active SNL staff have authored 70+ papers and organized 6

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method for the preparation of high surface area high permeability carbons  

DOE Patents (OSTI)

A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

Lagasse, R.R.; Schroeder, J.L.

1999-05-11T23:59:59.000Z

362

Method for the preparation of high surface area high permeability carbons  

DOE Patents (OSTI)

A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

Lagasse, Robert R. (Albuquerque, NM); Schroeder, John L. (Albuquerque, NM)

1999-05-11T23:59:59.000Z

363

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

364

Monitoring hydraulic fracture growth: Laboratory experiments  

Science Conference Proceedings (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

365

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah  

Energy.gov (U.S. Department of Energy (DOE))

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

366

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

367

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

368

The use of tracers to analyze the effects of reinjection into fractured geothermal reservoirs  

DOE Green Energy (OSTI)

This paper discusses the use of tracers as a reservoir engineering tool in fractured geothermal reservoirs. The principle concern in injecting cooler spent fluids into a fractured reservoir is that the fluids may move through high permeability channels and return to the production wells after contacting a relatively small volume of rock. As a consequence of this rapid transport, the fluids will be only partially reheated and after a short period time will effectively mine the heat from the limited volume of rock. The production wells will then experience a rapid and premature reduction in thermal output. Tracers can be used to infer the existence of high mobility conduits between injection and production wells and to monitor chemical changes of an injected fluid. Since tracer arrival precedes thermal breakthrough, tracer tests are a very useful forecasting tool.

Horne, R.N.; Johns, R.A.; Adams, M.C.; Moore, J.N.; Stiger, S.G.

1987-01-01T23:59:59.000Z

369

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network (OSTI)

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

370

Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media  

SciTech Connect

Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for th

Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

2012-07-01T23:59:59.000Z

371

Effects of dry fractures on matrix diffusion in unsaturated fractured rocks  

E-Print Network (OSTI)

Symposium on Multiphase Transport in Porous Media, ASMEmultiphase heat and mass flow in unsaturated fractured porous

Seol, Yongkoo; Liu, Hui Hai; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

372

Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction  

Science Conference Proceedings (OSTI)

Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively ... Keywords: Dissipative particle dynamics (DPD), Fracture, Fracture flow, Smoothed particle hydrodynamics (SPH), Weight functions

Moubin Liu; Paul Meakin; Hai Huang

2007-03-01T23:59:59.000Z

373

Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs  

Science Conference Proceedings (OSTI)

The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

2007-09-30T23:59:59.000Z

374

Summary of Linear Elastic Fracture Mechanics Concepts  

Science Conference Proceedings (OSTI)

...in this Volume."Stress Intensity Factors"A brief summary of linear elastic fracture mechanics (LEFM) concepts

375

Development of a fixation device for robot assisted fracture reduction of femoral shaft fractures: A biomechanical study  

Science Conference Proceedings (OSTI)

Robot assisted fracture reduction of femoral shaft fractures provides precise alignment while reducing the amount of intraoperative imaging. The connection between the robot and the fracture fragment should allow conventional intramedullary nailing, ... Keywords: Robot, femur shaft, fracture reduction, interface

T. S. Weber-Spickschen; M. Oszwald; R. Westphal; C. Krettek; F. Wahl; T. Gosling

2010-08-01T23:59:59.000Z

376

Determining Reserves in Low Permeability and Layered Reservoirs Using the Minimum Terminal Decline Rate Method: How Good are the Predictions?  

E-Print Network (OSTI)

This thesis evaluates the applicability of forecasting production from low permeability and layered tight gas wells using the Arps hyperbolic equation at earlier times and then switching to the exponential form of the equation at a predetermined minimum decline rate. This methodology is called the minimum terminal decline rate method. Two separate completion types have been analyzed. The first is horizontal completions with multi-stage hydraulic fractures while the second is vertical fractured wells in layered formations, completed with hydraulic fractures. For both completion types both simulated data and real world well performance histories have been evaluated using differing minimum terminal decline rates and the benefit of increasing portions of production history to make predictions. The application of the minimum terminal decline rate method to the simulated data in this study (3 percent minimum decline applied to multiple fractured horizontal wells MFHW- and 7 percent applied to vertical fractured layered wells) gave high errors for some simulations within the first two years. Once additional production data is considered in making predictions, the errors in estimated ultimate recovery and in remaining reserves is significantly reduced. This result provides a note of caution, when using the minimum decline rate method for forecasting using small quantities of production history. The evaluation of real world data using the minimum terminal decline rate method introduces other inaccuracies such as poor data quality, low data frequency, operational changes which affect the production profile and workovers / re-stimulations which require a restart of production forecasting process. Real well data for MFHW comes from the Barnett Shale completions of the type which have been widely utilized since 2004. There is insufficient production history from real wells to determine an appropriate minimum terminal decline rate. In the absence of suitable analogs for the determination of the minimum terminal decline rate it would be impossible to correctly apply this methodology. Real well data for vertical fractured layered wells from the Carthage Cotton Valley field indicate that for wells similar to Conoco operated Panola County wells a feasible decline rate is between 5 percent and 10 percent. Further if a consistent production trend and with more than 2 years of production history are used to forecast, the EUR can be predicted to within plus/minus 10 percent and remaining reserves to within plus/minus 15 percent.

McMillan, Marcia Donna

2011-05-01T23:59:59.000Z

377

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

Science Conference Proceedings (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

378

Installing and Maintaining a Home Solar Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System July 2, 2012 - 8:21pm Addthis When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. How does it work? Making sure your home solar electric or PV system is sized, sited, and installed correctly is essential for maximizing its energy performance. As with any mechanical or electrical appliance, PV systems require routine, periodic maintenance.

379

Installing and Maintaining a Home Solar Electric System | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System Installing and Maintaining a Home Solar Electric System July 2, 2012 - 8:21pm Addthis When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. How does it work? Making sure your home solar electric or PV system is sized, sited, and installed correctly is essential for maximizing its energy performance. As with any mechanical or electrical appliance, PV systems require routine, periodic maintenance.

380

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles  

DOE Green Energy (OSTI)

A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

J.T. Birkholzer

2005-02-14T23:59:59.000Z

382

Effect of Rock Transverse Isotropy on Stress Distribution and Wellbore Fracture  

E-Print Network (OSTI)

Unconventional oil and gas, which is of major interest in petroleum industry, often occur in reservoirs with transversely isotropic rock properties such as shales. Overlooking transverse isotropy may result in deviation in stress distribution around wellbore and inaccurate estimation of fracture initiation pressure which may jeopardize safe drilling and efficient fracturing treatment. In this work, to help understand the behavior of transversely isotropic reservoirs during drilling and fracturing, the principle of generalized plane-strain finite element formulation of anisotropic poroelastic problems is explained and a finite element model is developed from a plane-strain isotropic poroelastic model. Two numerical examples are simulated and the finite element results are compared with a closed form solution and another FE program. The validity of the developed finite element model is demonstrated. Using the validated finite element model, sensitivity analysis is carried out to evaluate the effects of transverse isotropy ratios, well azimuth, and rock bedding dip on pore pressure and stress distribution around a horizontal well. The results show that their effect cannot be neglected. The short term pore pressure distribution is sensitive to Young’ modulus ratio, while the long term pore pressure distribution is only sensitive to permeability ratio. The total stress distribution generally is not sensitive to transverse isotropy ratios. The effective stress and fracture initiation are very sensitive to Young’ modulus ratio. As the well rotates from minimum horizontal in-situ stress to maximum horizontal in-situ stress, the pore pressure and stress distributions tend to be more unevenly distributed around the wellbore, making the wellbore easier to fracture. The pore pressure and stress distributions tend to "rotate" in correspondence with the rock bedding plane. The fracture initiation potential and position will alter when rock bedding orientation varies.

Lu, Chunyang

2013-08-01T23:59:59.000Z

383

Guide to Operating and Maintaining EnergySmart Schools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operating Operating and Maintaining EnergySmart Schools ACKNOWLEDGMENTS The U.S. Department of Energy would like to thank the Council of Educational Facility Planners International (CEFPI) for assisting in the development of this guide as a participating sponsor. DOE also acknowledges the invaluable contributions of the working group members and case study subjects listed on the inside back cover. This constructive and informative document would not have been possible without their active engagement. Guide to Operating and Maintaining EnergySmart Schools Table of Contents Executive Summary & Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Chapter 1. Identifying Energy Savings and Getting Started. . . . . . . . . . . . . . . . .

384

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal microearthquakes, and the seismic waves they generate, provide a rich source of information about physical processes associated with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we are developing several software packages to enhance the utility of microearthquake data in geothermal operations and EGS experiments. Two of these are: 1. Enhanced

385

The Interfacial-Area-Based Relative Permeability Function  

SciTech Connect

CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

Zhang, Z. F.; Khaleel, Raziuddin

2009-09-25T23:59:59.000Z

386

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

387

Flow and permeability structure of the Beowawe, Nevada hydrothermal system  

DOE Green Energy (OSTI)

A review of past geologic, geochemical, hydrological, pressure transient, and reservoir engineering studies of Beowawe suggests a different picture of the reservoir than previously presented. The Beowawe hydrothermal contains buoyant thermal fluid dynamically balanced with overlying cold water, as shown by repeated temperature surveys and well test results. Thermal fluid upwells from the west of the currently developed reservoir at the intersection of the Malpais Fault and an older structural feature associated with mid-Miocene rifting. A tongue of thermal fluid rises to the east up the high permeability Malpais Fault, discharges at the Geysers area, and is in intimate contact with overlying cooler water. The permeability structure is closely related to the structural setting, with the permeability of the shallow hydrothermal system ranging from 500 to 1,000 D-ft, while the deeper system ranges from 200 to 400 D-ft.

Faulder, D.D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Johnson, S.D.; Benoit, W.R. [Oxbow Power Services, Inc., Reno, NV (United States)

1997-05-01T23:59:59.000Z

388

Preliminary relative permeability estimates of methanehydrate-bearing sand  

SciTech Connect

The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

2006-05-08T23:59:59.000Z

389

Determining the 3-D fracture structure in the Geysers geothermal reservoir  

DOE Green Energy (OSTI)

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Sammis, Charles G.; Linji An; Iraj Ershaghi

1992-01-01T23:59:59.000Z

390

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

391

Multifunctional robot to maintain boiler water-cooling tubes  

Science Conference Proceedings (OSTI)

A robot has been developed to maintain boiler water-cooling tubes. This robot has a double tracked moving mechanism, an ash cleaning device, a slag purging device, a tubes' thickness measurement device, a marking device, and a control system. This robot ... Keywords: Boiler maintenance, Boiler water-cooling tube, Climbing robot, Mobile robot

Xueshan Gao; Dianguo Xu; Yan Wang; Huanhuan Pan; Weimin Shen

2009-10-01T23:59:59.000Z

392

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability  

E-Print Network (OSTI)

Identifying Transformer Incipient Events for Maintaining Distribution System Reliability Karen L events in single-phase distribution transformers. This analysis will aid in the development of an automatic detection method for internal incipient faults in the transformers. The detection method can

393

Soup to nuts: affordable tools for building and maintaining labs  

Science Conference Proceedings (OSTI)

Limited IT funds are a fact of life at most institutions. You may be surprised by how much you can do with what you have though. Using new products in conjunction with tried and true existing technologies you can take steps to maintain both your bottom ... Keywords: classroom technology, computer classrooms, computer labs, deployment, imaging, management, printing, security

Jason Wagner

2004-10-01T23:59:59.000Z

394

Establishing and maintaining long-term human-computer relationships  

Science Conference Proceedings (OSTI)

This research investigates the meaning of “human-computer relationship” and presents techniques for constructing, maintaining, and evaluating such relationships, based on research in social psychology, sociolinguistics, communication and ... Keywords: Human-computer interaction, embodied conversational agent, relational agent, social interface

Timothy W. Bickmore; Rosalind W. Picard

2005-06-01T23:59:59.000Z

395

A Weighted Freshness Metric for Maintaining Search Engine Local Repository  

Science Conference Proceedings (OSTI)

Current search engines maintain a local repository to improve the search efficiency. A crawler is used to periodically poll the remote web pages to update the contents of the local repository. Due to the resource limitations, some local pages may be ...

Jianchao Han; Nick Cercone; Xiaohua Hu

2004-09-01T23:59:59.000Z

396

EIA - AEO2010 -Importance of low-permeability natural gas reservoirs  

Gasoline and Diesel Fuel Update (EIA)

Importance of low-permeability natural gas reservoirs Importance of low-permeability natural gas reservoirs Annual Energy Outlook 2010 with Projections to 2035 Importance of low-permeability natural gas reservoirs Introduction Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40 percent of natural gas production and about 35 percent of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in “darcies.”)

397

Geomechanical Simulation of Fluid-Driven Fractures  

SciTech Connect

The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

2012-11-30T23:59:59.000Z

398

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

Science Conference Proceedings (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

Mike L. Laue

2001-09-28T23:59:59.000Z

399

RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS  

Science Conference Proceedings (OSTI)

Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

Abbas Firoozabadi

2002-04-12T23:59:59.000Z

400

Microseismic Tracer Particles for Hydraulic Fracturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

Note: This page contains sample records for the topic "fracture permeability maintained" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fracturing of simulated high-level waste glass in canisters  

SciTech Connect

Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters.

Peters, R.D.; Slate, S.C.

1981-09-01T23:59:59.000Z

402

Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)  

Reports and Publications (EIA)

Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40 percent of n