Sample records for fracture permeability maintained

  1. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  2. Fracture permeability and seismic wave scattering ŒPoroelastic ...

    E-Print Network [OSTI]

    Seiji Nakagawa

    2010-02-03T23:59:59.000Z

    Jun 18, 2010 ... The new model contains fracture permeability in the plan-parallel direction. ... Division of Chemical Sciences of the U.S. Department of Energy ...

  3. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley,...

  4. Permeability and Dispersion Coefficients in Rocks with Fracture Network - 12140

    SciTech Connect (OSTI)

    Lee, C.K.; Htway, M.Z. [Handong Global University, 3 Namsong-ri, Heunghae-eub, Buk-gu, Pohang, Kyungbuk, 791-708 (Korea, Republic of); Yim, S.P. [Korea Atomic Energy Research Institute, P.O.Box 150, Yusong, Daejon, 305-600 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    Fluid flow and solute transport are considered for a rock medium with a fracture network with regard to the effective permeability and the dispersion coefficients. To investigate the effects of individual fractures a three-fracture system is chosen in which two are parallel and the third one connects the two at different angles. Specifically the micro-cell boundary-value problems(defined through multiple scale analysis) are solved numerically by using finite elements to calculate the permeability and dispersion coefficients. It is shown that the permeability depends significantly on the pattern of the fracture distribution and the dispersion coefficient is influenced by both the externally imposed pressure gradient (which also reflects the flow field) and the direction of the gradient of solute concentration on the macro-scale. From the calculations of the permeability and dispersion coefficients for solute in a rock medium with a fracture network the following conclusions are drawn. 1. The permeability of fractured medium depends on the primary orientation of the fracture network and is influenced by the connecting fractures in the medium. 2. The cross permeability, e.g., permeability in the direction normal to the direction of the external pressure gradient is rather insensitive to the orientation of the fracture network. 3. Calculation of permeability is most efficiently achieved with optimal discretization across individual fractures and is rather insensitive to the discretization along the fracture.. 4. The longitudinal dispersion coefficient Dxx of a fractured medium depends on both the macro-scale concentration gradient and the direction of the flow (pressure gradient). Hence both features must be considered when investigating solute transport in a fractured medium. (authors)

  5. Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures

    SciTech Connect (OSTI)

    Nakagawa, S.; Myer, L.R.

    2009-06-15T23:59:59.000Z

    Schoenberg's Linear-slip Interface (LSI) model for single, compliant, viscoelastic fractures has been extended to poroelastic fractures for predicting seismic wave scattering. However, this extended model results in no impact of the in-plane fracture permeability on the scattering. Recently, we proposed a variant of the LSI model considering the heterogeneity in the in-plane fracture properties. This modified model considers wave-induced, fracture-parallel fluid flow induced by passing seismic waves. The research discussed in this paper applies this new LSI model to heterogeneous fractures to examine when and how the permeability of a fracture is reflected in the scattering of seismic waves. From numerical simulations, we conclude that the heterogeneity in the fracture properties is essential for the scattering of seismic waves to be sensitive to the permeability of a fracture.

  6. Low permeability gas reservoir production using large hydraulic fractures

    E-Print Network [OSTI]

    Holditch, Stephen A

    1970-01-01T23:59:59.000Z

    extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

  7. Property measurement and correlation for homogeneous and naturally fractured low permeability cores

    E-Print Network [OSTI]

    Fan, Jin

    1993-01-01T23:59:59.000Z

    pseudopressures for fracture permeabilities of I, 10, 100, and 1000 md are plotted versus time, with other parameters being constant. Fig, 6. 3 shows that as fracture permeability increases, the convergence time decreases because the rate of gas flow from...

  8. Determination of formation permeability using back-pressure test data from hydraulically-fractured, low-permeability gas wells

    E-Print Network [OSTI]

    Krawtz, John Paul

    1984-01-01T23:59:59.000Z

    DETERMINATION OF FORMATION PERMEABILITY USING BACX-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ Submitted to the Graduate College of Texas AsJ4 University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1984 Major subject: petroleum Engineering DETERMINATION OF FORMATION PERMEABILITY USING BACK-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ...

  9. Modelling effective permeability of fracture networks in permeable rock formation by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    such as underground nuclear waste disposal in claystone, geological CO2 storage or hydrocabure reservoir in a fractured porous rock are used to investigate its effective permeability. If the far field inflow is uniform, the theoretical solution shows that the pressure field in the matrix is a function of the discharge

  10. STRUCTURE OF THE LOW PERMEABLE NATURALLY FRACTURED GEOTHERMAL RESERVOIR Chrystel Dezayes*, Albert Genter** & Benot Valley ***

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 STRUCTURE OF THE LOW PERMEABLE NATURALLY FRACTURED GEOTHERMAL RESERVOIR AT SOULTZ Chrystel cluster appears as a fractured reservoir developed within a low permeable matrix. Fracture zones represent) where reservoir development involved the reactivation of the pre- existing fractures in the granite [16

  11. The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

  12. Structural Settings Of Hydrothermal Outflow- Fracture Permeability

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault Propagation And Interaction | Open Energy

  13. A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction

    E-Print Network [OSTI]

    Liu, Hui-Hai; Rutqvist, Jonny

    2010-01-01T23:59:59.000Z

    L. : Adsorption-induced coal swelling and stress:acid gas sequestration into coal seams. J Geophys. Res. (fracturing on permeability of coal. Min. Sci. Technol. 3,

  14. 3.3 NUMERICAL MODELING OF SOLID DEFORMATION AND STRESS-DEPENDENT PERMEABILITY IN NATURALLY FRACTURED

    E-Print Network [OSTI]

    Schechter, David S.

    permeability. When the pore pressure depletes due to oil/gas production rates in highly stress FRACTURED RESERVOIRS During the first year of this project, we analyzed the productivity behavior was demonstrated. 3.3.1 Introduction Fractures are the main fluid flow paths in naturally fractured reservoirs

  15. Stress-dependent permeability of fractured rock masses: A numerical study

    SciTech Connect (OSTI)

    Min, Ki-Bok; Rutqvist, J.; Tsang, Chin-Fu; Jing, Lanru

    2004-04-30T23:59:59.000Z

    We investigate the stress-dependent permeability issue in fractured rock masses considering the effects of nonlinear normal deformation and shear dilation of fractures using a two-dimensional distinct element method program, UDEC, based on a realistic discrete fracture network realization. A series of ''numerical'' experiments were conducted to calculate changes in the permeability of simulated fractured rock masses under various loading conditions. Numerical experiments were conducted in two ways: (1) increasing the overall stresses with a fixed ratio of horizontal to vertical stresses components; and (2) increasing the differential stresses (i.e., the difference between the horizontal and vertical stresses) while keeping the magnitude of vertical stress constant. These numerical experiments show that the permeability of fractured rocks decreases with increased stress magnitudes when the stress ratio is not large enough to cause shear dilation of fractures, whereas permeability increases with increased stress when the stress ratio is large enough. Permeability changes at low stress levels are more sensitive than at high stress levels due to the nonlinear fracture normal stress-displacement relation. Significant stress-induced channeling is observed as the shear dilation causes the concentration of fluid flow along connected shear fractures. Anisotropy of permeability emerges with the increase of differential stresses, and this anisotropy can become more prominent with the influence of shear dilation and localized flow paths. A set of empirical equations in closed-form, accounting for both normal closure and shear dilation of the fractures, is proposed to model the stress-dependent permeability. These equations prove to be in good agreement with the results obtained from our numerical experiments.

  16. Analytical and Numerical Solutions for the Case of a Horizontal Well with a Radial Power-Law Permeability Distribution--Comparison to the Multi-Fracture Horizontal Case

    E-Print Network [OSTI]

    Broussard, Ryan Sawyer

    2013-02-08T23:59:59.000Z

    . The unstimulated outer region has homogeneous reservoir properties. The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic fracturing. The process of hydraulic fracturing creates thin, high permeability fractures...

  17. Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

    2009-03-30T23:59:59.000Z

    This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

  18. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2009-10-01T23:59:59.000Z

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

  19. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.

    2009-10-01T23:59:59.000Z

    We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

  20. Fracture Propagation Driven by Fluid Outflow from a Low-permeability Reservoir

    E-Print Network [OSTI]

    Gor, Gennady Yu

    2012-01-01T23:59:59.000Z

    Fracturing of the caprock during CO2 storage in deep saline aquifers can lead to leakage. Estimation of the rate of fracture propagation allows one to assess the leakage risk. Here we propose an analytical model for calculating the length of the fracture, which propagates due to the fluid outflow from a low-permeability aquifer. We present a self-similar solution of the pressure diffusion equation in the system of reservoir and fracture, allowing us to get the analytical expression for the fracture length as a function of time. We calculate the evolution of the fracture length for a characteristic aquifer. We show that the analytical solution provides an estimate from below for the fracture length, since the driving force for propagation grows with elevation.

  1. An experimental study of the permeability of fracture intersections in Sioux quartzite

    E-Print Network [OSTI]

    Juddo, Edward Paul

    1986-01-01T23:59:59.000Z

    ) experiment (If26). 26 I. OO 0. 80 co IO V 0. 60 OAO Second Loading 0. 20 First Loading 26 (2) 24 0 0 20 40 60 80 IOO P (MPa) Figure 5. Normalized fracture permeability (kf/kf3 6) versus confin- ing pressure (PC) for fractured cohesive... specimens (FCS), second-loading cycle. (2) indicates two-intersecting-fractures (TIF) experiments (f26 5 38). 33 I. OO 0. 80 co ro 0. 60 0. 40 40 FCS 0. 20 1' FNCS 38 (2) 37 42 0 0 20 40 60 80 [00 Pc (MPa Figure 10. Normalized fracture...

  2. Multiporosity Flow in Fractured Low-Permeability Rocks

    E-Print Network [OSTI]

    Kuhlman, Kristopher L; Heath, Jason E

    2015-01-01T23:59:59.000Z

    A multiporosity extension of classical double and triple porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo-steady-state and transient interporosity flow double porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semi-analytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice ...

  3. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media

    SciTech Connect (OSTI)

    Eric P. Robertson; Richard L. Christiansen

    2006-10-01T23:59:59.000Z

    This paper describes the derivation of a new equation that can be used to model the permeability behavior of a fractured, sorptive-elastic media, such as coal, under variable stress conditions commonly used during measurement of permeability data in the laboratory. The model is derived for cubic geometry under biaxial or hydrostatic confining pressures. The model is also designed to handle changes in permeability caused by adsorption and desorption of gases from the matrix blocks. The model equations can be used to calculate permeability changes caused by the production of methane from coal as well as the injection of gases, such as carbon dioxide, for sequestration in coal. Sensitivity analysis of the model found that each of the input variables can have a significant impact on the outcome of the permeability forecast as a function of changing pore pressure; thus, accurate input data are essential. The permeability model can also be used as a tool to determine input parameters for field simulations by curve-fitting laboratory-generated permeability data. The new model is compared to two other widely used coal permeability models using a hypothetical coal with average properties.

  4. Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures

    E-Print Network [OSTI]

    Makoju, Charles Adoiza

    1978-01-01T23:59:59.000Z

    FRACTURED GAS WELL ANALYSIS - EVALUATION OF IN SITU RESERVOIR PROPERTIES OF LOW PERMEABILITY GAS WELLS STIMULATED BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Submitted to the Graduate College of Texas AQ1... BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Approved as to style and content by: C a~ an o ommsttee Member Member em er Hea o Department December 1978 ABSTRACT FRACTURED GAS HELL ANALYSIS - EVALUATION OF IN SITU...

  5. Stimulation results in the low-permeability Wasatch formation - An evolution to foam fracturing

    SciTech Connect (OSTI)

    Harris, P.C.; Bailey, D.E.; Evertz, G.L.

    1984-05-01T23:59:59.000Z

    The Wasatch Formation of the Uinta Basin in eastern Utah is typical of many formations in the Rocky Mountains, having low permeability and high sensitivity to water. Stimulation treatments with several types of fracturing fluids, including oilwater emulsion fluids, complex gel fluids and foam fluids, have been generally successful. Production decline curves from twenty four wells in the field were used for comparison of the different stimulation methods. Although foam fracturing has been used for the shortest period of time, comparison of the production histories show the relatively higher efficiency of the foam fracturing treatments compared to other stimulation methods in the Wasatch formation. Foam fluids gave higher production rates and higher flowing pressures than offset wells fractured with complex gel fluids. A stimulation model for oil and gas production was used to match the production history from this reservoir. The model allowed a projection of gas production based on early production from the wells and knowledge of the reservoir.

  6. Modeling Mud-Filtrate Invasion Effects on Resistivity Logs to Estimate Permeability of Vuggy and Fractured Carbonate Formations

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    measurements with conventional and non- conventional well logs to calculate static and dynamic petrophysical/or fractures in the displacement of hydrocarbons by mud filtrate. Introduction Permeability estimation is one

  7. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect (OSTI)

    Poston, S.W.

    1991-12-31T23:59:59.000Z

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  8. Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs

    SciTech Connect (OSTI)

    Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

    2008-09-30T23:59:59.000Z

    Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

  9. Critical Chemical-Mechanical Couplings that Define Permeability Modifications in Pressure-Sensitive Rock Fractures

    SciTech Connect (OSTI)

    Derek Elsworth; Abraham Grader; Susan Brantley

    2007-04-25T23:59:59.000Z

    This work examined and quantified processes controlling changes in the transport characteristics of natural fractures, subjected to coupled thermal-mechanical-chemical (TMC) effects. Specifically, it examined the effects of mineral dissolution and precipitation mediated by mechanical effects, using laboratory through-flow experiments concurrently imaged by X-ray CT. These were conducted on natural and artificial fractures in cores using water as the permeant. Fluid and mineral mass balances are recorded and are correlated with in-sample saturation, porosity and fracture aperture maps, acquired in real-time by X-ray CT-imaging at a maximum spatial resolution of 15-50 microns per pixel. Post-test, the samples were resin-impregnated, thin-sectioned, and examined by microscopy to define the characteristics of dissolution and precipitation. The test-concurrent X-ray imaging, mass balances, and measurements of permeability, together with the post-test microscopy, were used to define dissolution/precipitation processes, and to constrain process-based models. These models define and quantify key processes of pressure solution, free-face dissolution, and shear-dilation, and the influence of temperature, stress level, and chemistry on the rate of dissolution, its distribution in space and time, and its influence on the mechanical and transport properties of the fracture.

  10. Modelling of steady-state fluid flow in 3D fractured isotropic porous media: Application to effective permeability calculation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -Est, Laboratoire Navier (ENPC-IFSTTAR-CNRS) 77455 Marne la Vallée, France 2 BRGM, Risks Division, F-45060 Orléans, geological CO2 storage, geothermal energy, etc. However, determining effective permeability for fractured reservoirs for a long time [1-4]. DFN is introduced in several commercial softwares as UDEC (Itasca) [5

  11. Numerical Modeling of Fracture Permeability Change in Naturally Fractured Reservoirs Using a Fully Coupled Displacement Discontinuity Method.

    E-Print Network [OSTI]

    Tao, Qingfeng

    2010-07-14T23:59:59.000Z

    finite difference method to solve the fluid flow in fractures, a fully coupled displacement discontinuity method to build the global relation of fracture deformation, and the Barton-Bandis model of fracture deformation to build the local relation...

  12. Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface

    E-Print Network [OSTI]

    Stanford University

    Transformation and Surface Roughness Chih-Ying Chen June 2005 Financial support was provided through the Stanford permeabilities, accounting for phase transformations, the inviscid bubble train models coupled with relative permeability concepts were developed. The phase transformation effects were evaluated by accounting

  13. Permeability Estimation from Fracture Calibration Test Analysis in Shale and Tight Gas

    E-Print Network [OSTI]

    Xue, Han 1988-

    2012-12-13T23:59:59.000Z

    to these two tests, a step-rate test is sometimes conducted before a mini-fracture test to determine fracture extension pressure. (Figure 2. 1) In tight gas or shale gas formation the short and low rate injection-fall off test using slick water as injection...

  14. Predicting flow through low-permeability, partially saturated, fractured rock: A review of modeling and experimental efforts at Yucca Mountain

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.; Glass, R.J.

    1989-11-01T23:59:59.000Z

    Current interest in storing high-level nuclear waste in underground repositories has resulted in an increased effort to understand the physics of water flow through low-permeability rock. The US Department of Energy is investigating a prospective repository site located in volcanic ash (tuff) hundreds of meters above the water table at Yucca Mountain, Nevada. Consequently, mathematical models and experimental procedures are being developed to provide a better understanding of the hydrology of this low-permeability, partially saturated, fractured rock. Modeling water flow in the vadose zone in soils and in relatively permeable rocks such as sandstone has received considerable attention for many years. The treatment of flow (including nonisothermal conditions) through materials such as the Yucca Mountain tuffs, however, has not received the same level of attention, primarily because it is outside the domain of agricultural and petroleum technology. This paper reviews the status of modeling and experimentation currently being used to understand and predict water flow at the proposed repository site. Several areas of research needs emphasized by the review are outlined. The extremely nonlinear hydraulic properties of these tuffs in combination with their heterogeneous nature makes it a challenging and unique problem from a computational and experimental view point. 101 refs., 14 figs., 1 tab.

  15. Mechanical and transport properties of rocks at high temperatures and pressures. Task II: fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The primary objective is to measure and understand the variation of the fracture permeability of quartzite subjected to hydrothermal conditions. Pore fluids will consist of distilled water and aqueous Na/sub 2/CO/sub 3/ solutions at temperatures to 250/sup 0/C, fluid pressures to 20 MPa and effective normal stresses to 70 MPa. Fluid flow rates will be controllable to rates at least as small as 0.2 ml/day (approx. 4 fracture volumes). Experiments are designed to assess what role, if any, pressure solution may play at time scales of those of the experiments (less than or equal to 2 weeks). Secondary objectives are: (1) continue simulated fracture studies, incorporating inelastic deformation into model and characterize the nature of inelastic deformation occurring on loaded tensile fractures in quartzite; (2) continue dissolution experiment, with emphasis on dissolution modification of tensile fracture surfaces on quartzite; and (3) study natural fractures in a quartzite exhibiting hydrothermal dissolution features.

  16. Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure

    E-Print Network [OSTI]

    Liu, Weiqun; Li, Yushou; Wang, Bo

    2010-01-01T23:59:59.000Z

    argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

  17. Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities

    E-Print Network [OSTI]

    Métiers ParisTech, France Abstract A two scales numerical analysis is set up in order to upscale, in the spirit of sequential multi-scale methods [7]. The latter tend to build macroscopic models from a sequence discon- tinuities) representing fine scale cracks to the fine scale permeability tensor. The latter may

  18. Property measurement and correlation for homogeneous and naturally fractured low permeability cores 

    E-Print Network [OSTI]

    Fan, Jin

    1993-01-01T23:59:59.000Z

    pulse method. The principles of pressure pulse test are reviewed and the new laboratory equipment is described in this thesis. The new laboratory technique can be used to determine (1) the porosity of the matrix, (2) the permeability of the matrix, (3...

  19. OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE

    E-Print Network [OSTI]

    Schechter, David S.

    OVERBURDEN PRESSURE AFFECTS FRACTURE APERTURE AND FRACTURE PERMEABILITY IN A FRACTURED RESERVOIR are in integrated reservoir study, reservoir charac- terization, naturally fractured reservoirs, waterflooding in Hydraulically and Naturally Fractured Reservoirs." His research areas include experimental analysis

  20. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    hydrothermomechanical design of nuclear waste repositories.Associated with Nuclear Waste Repositories, Academic Press,rock permeability around nuclear waste repositories Jonny

  1. The effects of damage in and around a fracture upon the analysis of pressure data from low permeability gas wells

    E-Print Network [OSTI]

    Fox, Thomas Lee

    1980-01-01T23:59:59.000Z

    Buildup Data for a 100 Foot Fracture in an Unbounded Reservoir 15 16 Horner Plot of Pressure Buildup Data for a 100 Foot Fracture in an Unbounded Reservoir--Closure and non- Darcy Flow Included 17 Horner Plot of Pressure Buildup Data for a 100 Foot... Fracture in an Unbounded Reservoir--Closure and non- Darcy Flow Included--500 MCFPD Rate 18 10 Horner Plot of Pressure Buildup Data for a 100 Foot Fracture in an Unbounded Reservoir--Closure and non- Darcy Flow Included--1000 MCFPD Rate...

  2. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect (OSTI)

    Siegrist, R.L. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States); [Colorado School of Mines, Golden, CO (United States). Environmental Science and Engineering Div.; Lowe, K.S. [Oak Ridge National Lab., Grand Junction, CO (United States). Life Sciences Div.] [Oak Ridge National Lab., Grand Junction, CO (United States). Life Sciences Div.; Murdoch, L.D. [FRx, Inc., Cincinnati, OH (United States)] [FRx, Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Slack, W.W. [FRx, Inc., Cincinnati, OH (United States)] [FRx, Inc., Cincinnati, OH (United States); Houk, T.C. [Lockheed Martin Energy Systems, Piketon, OH (United States)] [Lockheed Martin Energy Systems, Piketon, OH (United States)

    1998-03-01T23:59:59.000Z

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  3. Simulation of fluid flow mechanisms in high permeability zones (Super-K) in a giant naturally fractured carbonate reservoir

    E-Print Network [OSTI]

    Abu-Hassoun, Amer H.

    2009-05-15T23:59:59.000Z

    and fractures were treated as two systems. Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better...

  4. Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    are drawn into the fractured reservoir rock under vacuum.equivalent fractured rock permeability in the reservoir is

  5. Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length

    E-Print Network [OSTI]

    Lolon, Elyezer P.

    2006-04-12T23:59:59.000Z

    Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

  6. Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length 

    E-Print Network [OSTI]

    Lolon, Elyezer P.

    2006-04-12T23:59:59.000Z

    Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

  7. Interaction between Injection Points during Hydraulic Fracturing Kjetil M. D. Hals1,

    E-Print Network [OSTI]

    Santos, Juan

    fluid to create fracture networks in rock layers with low permeabilities. A fracking fluid is injected

  8. Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming

    SciTech Connect (OSTI)

    Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

    1996-08-01T23:59:59.000Z

    Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

  9. Method for directional hydraulic fracturing

    DOE Patents [OSTI]

    Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

    1994-01-01T23:59:59.000Z

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  10. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30T23:59:59.000Z

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  11. A Global Model for Fracture Falloff Analysis

    E-Print Network [OSTI]

    Marongiu-Porcu, Matteo

    2014-10-29T23:59:59.000Z

    The reservoir permeability is an essential input for the optimum design of modern hydraulic fracture treatments, which are undeniably the crucial technology involved in the development of tight and/or unconventional gas reservoirs. The fracture...

  12. The effect of various states of stress on the permeability of Berea sandstone

    E-Print Network [OSTI]

    Gatto, Henrietta G

    1984-01-01T23:59:59.000Z

    . . EXPERIMENTAL PROCEDURES. Rock Samples. Specimen Preparation. Triaxial Apparatus. Permeability Measurements. Data Reduction. Performance of the Tests. TEST RESULTS. Hydrostatic Stress Conditions. Triaxial Test Results; Stress vs. Permeability.... . Uniaxial Strain Data Triaxial Test Results; Stress-Strain Data. . . . . . . Observational Results. . . . . . . . . . . . . . . . . , . . . . . . . . . DISCUSSION. Whole Rock Permeability. Fracture (Pre-cut Specimen) Permeability. . . Significance...

  13. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  14. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  15. Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method

    E-Print Network [OSTI]

    Lee, Byungtark

    2011-10-21T23:59:59.000Z

    In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

  16. Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands

    E-Print Network [OSTI]

    Mazzini, Adriano

    Abstract Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands fluids escape from hydrocarbon reservoirs through permeable networks of fractures, injected sands. Within fractures and injected sands, oxidation of chained hydrocarbons supplies bicarbonate to the co

  17. Aligned fractures modeled as boundary conditions within saturated ...

    E-Print Network [OSTI]

    2015-03-30T23:59:59.000Z

    e di Geofisica Sperimentale, OGS. SUMMARY. Fractures in a fluid-saturated poroelastic -Biot- medium are very thin, compliant and highly permeable layers.

  18. Fractured reservoirs: An analysis of coupled elastodynamic and ...

    E-Print Network [OSTI]

    Daley, T., Schoenberg, M., Rutqvist, J., and Nihei, K.

    2006-08-28T23:59:59.000Z

    Aug 28, 2006 ... pliance and fluid-permeability tensors of a layer containing closely spaced ...... Coupled thermo-hydromechanical processes of fractured media.

  19. Three dimensional geologic modeling of a fractured reservoir, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G.A. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-11-01T23:59:59.000Z

    A geological assessment of a large carbonate reservoir in Saudi Arabia shows that it is a Type 2 fractured reservoir in which fractures provide the essential permeability. Intercrystalline microporosity, found within the basinally deposited mudstones and wackestones, is the dominant porosity type. Near-vertical, east-west-oriented extension fractures are preferentially localized in low-to-moderate porosities associated with stylolites. Porosity/fracture density relationships, combined with the results of structural curvature mapping, yielded a 3-dimensional model of fracture density. Fracture permeability and fracture porosity distributions were generated by integrating fracture density modeling results with average fracture aperture information derived from well test data. Dramatic differences exist between matrix- and fracture-related porosity, permeability models that help explain observed production behavior within the field. These models are being used by reservoir and simulation engineers for daily reservoir management, history matching, and long-term development drilling planning.

  20. Hydraulic Fracture Monitoring: A Jonah Field Case Study

    E-Print Network [OSTI]

    Seher, T.

    2011-01-01T23:59:59.000Z

    Hydraulic fracturing involves the injection of a fluid to fracture oil and gas reservoirs, and thus increase their permeability. The process creates numerous microseismic events, which can be used to monitor subsurface ...

  1. Use of fracture surface features to improve core description and fracture interpretation in Niobrara and Gallup formations, Colorado and New Mexico

    SciTech Connect (OSTI)

    Ward, B.J.; Petrusak, R.L.; Kulander, B.R. (Amoco Production Co. Research, Tulsa, OK (USA))

    1989-09-01T23:59:59.000Z

    The Niobrara formation in the Denver basin and the Gallup formation in the eastern San Juan Basin are very fine-grained, low-permeability reservoirs. Natural fracturing provides essential reservoir permeability. When natural and induced fractures are correctly identified in core, understanding of key fractured reservoir characteristics such as fracture spacing, fracture intensity, and fracture size improves greatly. For example, the Gallup has a significant amount of non-mineralized natural fractures which are generally difficult to identify in core as natural. If these fractures are misidentified as induced, fracture intensity may be underestimated and fracture spacing may be overestimated. Diagnostic fracture surface features are very well developed in the Gallup and Niobrara. Proper identification of induced fractures and nonmineralized natural fractures is done by examining these fracture surface features under oblique illumination. The Niobrara cores that were examined provide excellent examples of induced fractures. These cores have predominately mineral-filled and slickened natural fractures. Fracture surface features on the non-mineralized fractures positively identify these fractures as induced and demonstrate that nonmineralized natural fractures are a minor component of the reservoir. The Gallup cores provide excellent examples of the diagnostic surface features of natural fractures. Fractured intervals up to 20 ft long have been recovered in Gallup core. Multiple individual fractures which comprise the larger fractured intervals are identified using fracture surface morphology. This type of detailed fracture description improves evaluations of fractured reservoir quality in the Gallup formation.

  2. Structural Settings Of Hydrothermal Outflow- Fracture Permeability...

    Open Energy Info (EERE)

    deposits along fault zones can potentially provide a tool for studying fault-zone evolution. Authors Daniel Curewitz and Jeffrey A. Karson Published Journal Journal of...

  3. Laboratory-scale fracture conductivity created by acid etching 

    E-Print Network [OSTI]

    Pournik, Maysam

    2009-05-15T23:59:59.000Z

    Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

  4. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2008-10-10T23:59:59.000Z

    conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries... different or special methods for completion, stimulation, and/or production techniques to retrieve the resource. Natural gas from coal or coal bed methane, tight gas sands, shale gas, and gas hydrates are all examples of unconventional gas reservoirs...

  5. Characterization of natural fractures in Mesaverde core from the multiwell experiment

    SciTech Connect (OSTI)

    Finley, S.J.; Lorenz, J.C.

    1988-09-01T23:59:59.000Z

    Natural fractures dominate the permeability of tight sandstone reservoirs in the Mesaverde Formation of the Piceance Creek Basin, north-western Colorado. Roughly 1900 natural fractures, detected in 4200 ft of Mesaverde core from the US Department of Energy's Multiwell Experiment (MWX), have been differentiated into 10 different fracture types on the basis of fracture morphology, inclination, the presence of slickensides, the presence of dickite mineralization and/or host lithology. Approximately 75% of the MWX core fractures are dewatering planes in mudstone and are probably unimportant to reservoir permeability. The remaining 25% of the MWX core fractures include 275 mostly calcite-mineralized, vertical extension fractures, 61 irregular, dickite-mineralized extension fractures, 27 mostly calcite-mineralized, horizontal extension fractures, and 90 slickensided, occasionally mineralized shear fractures. These extension and shear fractures are all potentially important to reservoir permeability and consequently productivity. 13 refs., 61 figs., 2 tabs.

  6. A Triple-Porosity Model for Fractured Horizontal Wells

    E-Print Network [OSTI]

    Alahmadi, Hasan Ali H.

    2010-10-12T23:59:59.000Z

    . The model consists of three contiguous porous media: the matrix, less permeable micro-fractures and more permeable macro-fractures. Only the macro-fractures produce to the well while they are fed by the micro-fractures only. Consequently, the matrix feeds... the micro-fractures only. Therefore, the flow is sequential from one medium to the other. Four sub-models are derived based on the interporosity flow assumption between adjacent media, i.e., pseudosteady state or transient flow assumption. These are fully...

  7. Estimating Major and Minor Natural Fracture Patterns in Gas

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

  8. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs 

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  9. The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs

    E-Print Network [OSTI]

    Kamenov, Anton

    2013-04-11T23:59:59.000Z

    Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

  10. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  11. Slator Ranch fracture optimization study

    SciTech Connect (OSTI)

    Ventura, J.L.

    1985-07-01T23:59:59.000Z

    The Las Ovejas (Lobo) field in Zapata County, TX, is being developed actively. The field was discovered on Tenneco Oil EandP's Slator Ranch lease with the successful completion of the Sanchez-O'Brien Vaquillas Ranch Well 1. Tenneco operates all of the 17,712-acre (71 678 X 10/sup 3/-m/sup 2/) lease (with the exception of a 320-acre (1295 X 10/sup 3/-m/sup 2/) tract assigned to the Vaquillas Ranch Well 1) and has successfully completed five wells in the Lobo field subsequent to the discovery well. The Lobo interval in the Slator Ranch area is a tight gas sand, and all these wells require fracture stimulation. Because a successful fracture is essential for a good Lobo completion and because hydraulic fracturing represents a significant portion of the completed well cost, it is important to optimize this phase of the completion. The purpose of this study was to determine the following for Slator Ranch Lobo completions: an optimum fracture length as a function of permeability; whether wells should be tailed-in with bauxite, or fractured with all bauxite or sand (if an optimum tail-in does exist, to determine the optimum tail-in for a fixed fracture length as a function of permeability); the drainage area and abandonment pressure for Slator Ranch Well 2; the effect of compression on reserves; and closure pressure as a function of time and distance along the fracture for Slator Ranch Well 2.

  12. 2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in

    E-Print Network [OSTI]

    2006 GeoX Conference, pages 1 to 6 Characterisation of hydraulic fractures in limestones using X, France Jacques.Desrues@hmg.inpg.fr ABSTRACT: Hydraulic tension fractures were produced in porous, hydraulic fracture, permeability tensor MOTS-CLÃ?S: microtomographie, fracturation hydraulique, tenseur de

  13. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  14. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. (Saudi Aramco, Dhahran (Saudi Arabia))

    1996-01-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Comparisons of over 5000 fractures identified from core and borehole image data with open-hole log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. The effect of structural curvature on fracture intensity in the reservoir was estimated by mapping the derivative of structural dip. Incorporation of structural curvature explained variations in well test behavior not predicted by initial estimates of fracture density from porosity alone. Resultant fracture permeabilities compared favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix-related permeability contrasts sharply with highly variable and relatively high (>50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  15. The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin

    E-Print Network [OSTI]

    Tschirhart, Nicholas Ray

    2005-11-01T23:59:59.000Z

    operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled...

  16. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    SciTech Connect (OSTI)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01T23:59:59.000Z

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  17. Interaction between Injection Points during Hydraulic Fracturing

    E-Print Network [OSTI]

    Hals, Kjetil M D

    2012-01-01T23:59:59.000Z

    We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

  18. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Broader source: Energy.gov [DOE]

    Determine if fracturing could be used to enhance permeability; and whether dilution of existing fluids with injected water would lower corrosivity enough to allow economic production of power.

  19. A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks

    E-Print Network [OSTI]

    Serajian, Vahid

    2011-10-21T23:59:59.000Z

    fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale....

  20. Optimization of fractured well performance of horizontal gas wells

    E-Print Network [OSTI]

    Magalhaes, Fellipe Vieira

    2009-06-02T23:59:59.000Z

    In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

  1. Permeability of WIPP Salt During Damage Evolution and Healing

    SciTech Connect (OSTI)

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03T23:59:59.000Z

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  2. Dual-porosity reservoir modeling of the fractured Hanifa reservoir, Abqaiq Field, Saudi Arabia

    SciTech Connect (OSTI)

    Luthy, S.T. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    Fractures play a significant role in the transmissibility of the Hanifa reservoir at Abqaiq Field. The Hanifa is a Type 2 fractured reservoir characterized by a finely-crystalline carbonate matrix which contains most of the reservoir storage porosity, and a stylolitic fracture system which provides essential permeability. Integration of borehole imaging data with available open-hole log, core, and well-test data from horizontal and vertical wells allowed for the distribution of fracture parameters, including fracture density, aperture, porosity, and permeability throughout a geocellular model. Analysis of over 5000 fractures showed that changes in lithology, grain size, and/or bed thickness do not correlate with changes in fracture densities. Review of P- and S-wave log data showed that porosity is negatively correlated with fracture density and mechanical rock strength. From these relationships, it was possible to utilize additional wells where porosity log data was available to calculate fracture densities. These wells were used to generate matrix porosity and permeability as well as fracture density attributes in a 12-sequence, 29-layer geocellular model. Fracture permeabilities compare favorably with well-test derived productivity indices. Three-dimensional visualization of model attributes showed that a monotonous and low (<10 md) distribution of matrix- related permeability contrasts sharply with highly variable and relatively high (ER 50 md) permeabilities of the fracture system. Reliability of the geocellular model to predict fracture densities and associated permeabilities has been confirmed by subsequent drilling of high cost horizontal wells, and is being used in reservoir engineering and development drilling planning efforts.

  3. Poroelastic modeling of fracture-seismic wave interaction

    SciTech Connect (OSTI)

    Nakagawa, Seiji

    2008-08-15T23:59:59.000Z

    Rock containing a compliant, fluid-filled fracture can be viewed as one case of heterogeneous poroelastic media. When this fracture is subjected to seismic waves, a strong contrast in the elastic stiffness between the fracture itself and the background can result in enhanced grain-scale local fluid flow. Because this flow--relaxing the pressure building up within the fracture--can increase the dynamic compliance of the fracture and change energy dissipation (attenuation), the scattering of seismic waves can be enhanced. Previously, for a flat, infinite fracture, we derived poroelastic seismic boundary conditions that describe the relationship between a finite jump in the stress and displacement across a fracture, expressed as a function of the stress and displacement at the boundaries. In this paper, we use these boundary conditions to determine frequency-dependent seismic wave transmission and reflection coefficients. Fluid-filled fractures with a range of mechanical and hydraulic properties are examined. From parametric studies, we found that the hydraulic permeability of a fracture fully saturated with water has little impact on seismic wave scattering. In contrast, the seismic response of a partially water-saturated fracture and a heterogeneous fracture filled with compliant liquid (e.g., supercritical CO{sub 2}) depended on the fracture permeability.

  4. A Numerical Algorithm for Fluid Flow in 3D Naturally Fractured Porous Media

    E-Print Network [OSTI]

    Kentucky, University of

    . Such fractured reservoirs could be modeled by permitting the porosity and permeability to vary rapidly as if the reservoir has two porous structures, one for the fractures and the other for the matrix blocksA Numerical Algorithm for Fluid Flow in 3D Naturally Fractured Porous Media Seongjai Kim Abstract

  5. Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 New methods for maximising shale permeability and minimising risk

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    shale permeability and minimising risk during hydraulic fracturing Supervisor(s): Agust Gudmundsson-fracture mechanics, rock physics, and sedimentology there are three aspects of hydraulic fracturing of gas shales three relate to the composition and lamination/layering (fissility) of the shales and adjacent rocks

  6. Indirect fracture delineation in a carbonate reservoir: The Upper Jurassic Hanifa of Abqaiq field, Saudi Arabia

    SciTech Connect (OSTI)

    Bailey, D.L. (Saudi Aramco, Dhahran (Saudi Arabia))

    1991-03-01T23:59:59.000Z

    Abqaiq field is a northeast-trending anticline approximately 60 km long and 12 km wide and contains several reservoirs. The Hanifa Reservoir is approximately 100 m thick and consists of fine-grained, muddy limestone with subordinate dolomite and anhydrite. Since discovery of the Hanifa oil pool in 1947, pressure fluctuations have indicated communication with the overlying Arab-D Reservoir. Welltest permeability measurements are approximately 40 times higher than core permeability measurements of the Hanifa. This divergence of Hanifa permeability measurements combined with the indicated Arab-D communication suggests the presence of a natural fracture network. Direct observations of Hanifa cores reveal common, sub-vertical fractures with average apertures <200 microns. With limited core coverage and no oriented cores, a new technique was needed to delineate the areas affected by fractures. A technique combining indirect fracture indicators was devised for Abqaiq field and can be applied to other, similar fields. The actual flow system of the Abqaiq Hanifa is a complex interaction between matrix porosity/permeability and fracture permeability or enhanced permeability. Future development plans allow for low matrix permeability access to much of the Hanifa storage space and high fracture permeability both within the Hanifa and connecting to the Arab-D Reservoir.

  7. Maintain Combustion Systems 

    E-Print Network [OSTI]

    Fletcher, R. J.

    1979-01-01T23:59:59.000Z

    the lowest excess air possible, for example, can produce big savings. Maintaining combustion equipment - from fuel preparation equipment through burners and controls in optimum operating condition also can save large amounts of energy, and keep a plant...

  8. Maintain Combustion Systems

    E-Print Network [OSTI]

    Fletcher, R. J.

    1979-01-01T23:59:59.000Z

    Energy is consumed, and wasted, in liberal amounts in the combustion processes which supply heat energy to boilers and process heaters. Close attention to combustion systems can be extremely beneficial: Optimum air to fuel ratios, i.e., maintaining...

  9. Design and construction of an experiment for two-phase flow in fractured porous media

    SciTech Connect (OSTI)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01T23:59:59.000Z

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  10. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect (OSTI)

    Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

    2004-03-15T23:59:59.000Z

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  11. Hydraulic Fracturing (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

  12. Enthalpy transients in fractured two-phase geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

    1985-03-01T23:59:59.000Z

    Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

  13. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  14. STEWARDSHIP MAINTAINING NATURAL RICHES

    E-Print Network [OSTI]

    Ford, James

    ;Outstanding Results 5 Energy Conservation: Saved 240 Million KWH over last fifteen years. Green BuildingLAND STEWARDSHIP MAINTAINING NATURAL RICHES TRANSPORTATION GOING THE EXTRA MILE GREEN BUILDING SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING

  15. Advanced hydraulic fracturing methods to create in situ reactive barriers

    SciTech Connect (OSTI)

    Murdoch, L. [FRX Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States). Dept. of Geological Sciences; Siegrist, B.; Meiggs, T. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31T23:59:59.000Z

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed.

  16. Endothelial cell permeability to water and antipyrine

    SciTech Connect (OSTI)

    Garrick, R.A.

    1986-03-05T23:59:59.000Z

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  17. Quantified maintainability requirements 

    E-Print Network [OSTI]

    Morris, Ronald Scott

    1968-01-01T23:59:59.000Z

    , the system developer anci supporter. The res- ponsibility of each witi', regard to maintainability and the equipment life cycle is discussed in the iollowing paragraphs. The life cycle of a sys+em consists of six distinct phases; (1, ) +he Concept Phase...EI- IIICOi&I- E"IUCOil- TACOil- TECOii- MECOII- Aviation Cnw?and Electronics Command Ilecnani eel Equi pE?ent Co?G&and ;lissi le Co?Emand Ilun1tions Command Tank-Automotive Co?mand Test-Evaluation Commanci ';!eapons Command AR!Iv I'IATERIEL COIR1...

  18. A PKN Hydraulic Fracture Model Study and Formation Permeability Determination

    E-Print Network [OSTI]

    Xiang, Jing

    2012-02-14T23:59:59.000Z

    . Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also...

  19. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermal Field | Open Energy

  20. Hydraulic fracturing-1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

  1. Permeable Pavements, Green Roofs, and Cisterns

    E-Print Network [OSTI]

    Hunt, William F.

    Permeable Pavements, Green Roofs, and Cisterns Stormwater Treatment Practices for Low site planning and engineer- pavements, green roofs, and cisterns, are ing to reduce or prevent cooperating. #12;Permeable Pavements What are they? Permeable pavements provide alternatives to standard

  2. Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures

    E-Print Network [OSTI]

    Xue, Wenxu

    2011-02-22T23:59:59.000Z

    Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

  3. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01T23:59:59.000Z

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  4. In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

    1998-09-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

  5. In situ permeability modification using gelled polymer systems. Topical report, June 10, 1996--April 10, 1997

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.

    1997-10-01T23:59:59.000Z

    Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program is focused on five areas: gel treatment in fractured systems; gel treatment in carbonate rocks; in-depth placement of gels; gel systems for application in carbon dioxide flooding; and gel treatment in production wells. The research program is primarily an experimental program directed at improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the first 10 months of a 28 month program is described in the following sections.

  6. Effects of stress-dependent permeability on methane production from deep coal seams

    SciTech Connect (OSTI)

    McKee, C.R.; Bell, G.J.; Bumb, A.C.

    1984-05-01T23:59:59.000Z

    Methane resources are frequently associated with deeply buried coal seams which are also saturated with water; therefore, knowledge of their hydrologic properties is essential. As the formation pressure is lowered during dewatering, permeability may decline by one to two orders of magnitude. Theoretical relationships have been developed which fit laboratory data well for porosity and permeability as a function of effective stress. It was discovered that for practical purposes permeability is a function only of effective stress and the ratio of initial fracture porosity to matrix compressibility (fracture closure pressure). An approximate analytical solution for well testing has been obtained using the model developed. A new method for pump test analysis is then proposed.

  7. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    SciTech Connect (OSTI)

    Parra, J.; Collier, H.; Angstman, B.

    1997-08-01T23:59:59.000Z

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  8. Identification and quantification of fracture behavior through reservoir simulation

    SciTech Connect (OSTI)

    Cline, S. [Univ. of Oklahoma, Oklahoma City, OK (United States)]|[Hefner Corporation, Oklahoma City, OK (United States)

    1995-08-01T23:59:59.000Z

    This study demonstrated the use of reservoir simulation as a tool for quantifying and describing the relative significance of fracture and matrix flow units to overall reservoir storage capacity and transmissibility in a field development example. A high matrix porosity Pennsylvanian age sandstone oil reservoir, that is currently undergoing the early stages of secondary recovery by waterflood, was studied. Unexpected early water breakthrough indicated the presence of a high directional permeability fracture system superimposed on the high porosity matrix system. To further understand the reservoir behavior, improve field performance and to quantify the relative contributions of fracture and matrix units to permeability and storage capacity, a reservoir simulation and characterization project was initiated. Well test, well log, tracer and geologic data were integrated into the simulation project. The integrated study indicated that the fractures exhibited high directional permeability but low storage capacity relative to the matrix portion of the reservoir. Although fractures heavily influenced overall fluid flow behavior, they did not contain large storage capacity. The system had a low calculated fracture intensity index. Reservoir simulation enabled the quantification of the relative importance of the two flow systems which in turn had a large impact on total reserves estimates and production forecasting. Simulation results indicated a need to realign injector and producer patterns which improved production rates and ultimate recovery.

  9. Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage

    E-Print Network [OSTI]

    Luquot, Linda

    reactivate pre-existing weaknesses inherited from reservoir production periods and create new fracturesChanges in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 underground storage when residual CO2 gas reaches the reservoir top due to buoyancy. Permeability changes

  10. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2003-06-30T23:59:59.000Z

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

  11. Neo-tectonic fracturing after emplacement of quaternary granitic pluton in the Kakkonda geothermal field, Japan

    SciTech Connect (OSTI)

    Doi, N.; Kato, O. [JMC Goethermal Eng. Co., Ltd., Iwate-ken (Japan); Kanisawa, S.; Ishikawa, K. [Tohoku Univ., Sendai (Japan)

    1995-12-31T23:59:59.000Z

    The fracture which occurs in the Kakkonda geothermal system was formed by neo-tectonic stress after the emplacement of the neo-granite (Quaternary Kakkonda Granite) at middle Pleistocene to recent. The characteristic contrast in permeability at ca.1.5 km is strongly controlled by the contact metamorphic zone, especially cordierite and higher grade metamorphic zones, in which the high temperature (320{degrees}C<) and low permeable deep reservoir was created. The five geothermal wells 2.5-3.0 km deep have clarified that a microearthquake zone below -1.0 km shows high permeability especially at the margin of the Kakkonda Granite, and low permeability outside of a microearthquake zone. The Kakkonda Granite is a composite pluton which has very few fractures inside of it. Thus, neo-tectonic fracturing has developed in the non-metamorphosed Tertiary formations and the margin of the Kakkonda Granite.

  12. Measurement and analysis of fractures in vertical, slant, and horizontal core, with examples from the Mesaverde formation

    SciTech Connect (OSTI)

    Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Hill, R.E. (CER Corp., Las Vegas, NV (United States))

    1991-01-01T23:59:59.000Z

    Optimum analysis of natural fracture characteristics and distributions in reservoirs requires conscientious supervision of coring operations, on-site core processing, careful layout and marketing of the core, and detailed measurement of fracture characteristics. Natural fractures provide information on the in situ permeability system, and coring-induced fractures provide data on the in situ stresses. Fracture data derived from vertical core should include fracture height, type and location of fracture terminations with respect to lithologic heterogeneity, fracture planatary and roughness, and distribution with depth. Fractures in core from either a vertical or a deviated well will yield information on dip, dip azimuth, strike, mineralization, and the orientation of fractures relative to the in situ stresses. Only measurements of fractures in core from a deviated/horizontal well will provide estimates of fracture spacing and porosity. These data can be graphed and cross-plotted to yield semi-quantitative fracture characteristics for reservoir models. Data on the orientations of fractures relative to each other in unoriented core can be nearly as useful as the absolute orientations of fractures. A deviated pilot hole is recommended for fracture assessment prior to a drilling horizontal production well because it significantly enhances the chances of fracture intersection, and therefore of fracture characterization. 35 refs., 20 figs., 2 tabs.

  13. Permeability extraction: A sonic log inversion

    SciTech Connect (OSTI)

    Akbar, N.; Kim, J.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1994-12-31T23:59:59.000Z

    In this paper the authors provide the missing important link between permeability and acoustic velocities by generating a permeability-dependent synthetic sonic log in a carbonate reservoir. The computations are based on Akbar`s theory that relates wave velocity to frequency, rock properties (e.g., lithology, permeability, and porosity), and fluid saturation and properties (viscosity, density, and compressibility). An inverted analytical expression of the theory is used to extract permeability from sonic velocity. The synthetic sonic and the computed permeability are compared with the observed sonic log and with plug permeability, respectively. The results demonstrate, as predicted by theory, that permeability can be related directly to acoustic velocities.

  14. Transient pressure behavior of multiple-fractured gas wells

    E-Print Network [OSTI]

    Choo, Yew Kai

    1985-01-01T23:59:59.000Z

    -theta" coordinates will be developed. This simulator will then be employed to study the tr ansient pressure behavior of low-permeability gas wells with multiple finite-conductivity fractures. This thesis follows the form and style of the Journal of Petr oleum...

  15. Multi-Site Application of the Geomechanical Approach for Natural Fracture Exploration

    SciTech Connect (OSTI)

    R. L. Billingsley; V. Kuuskraa

    2006-03-31T23:59:59.000Z

    In order to predict the nature and distribution of natural fracturing, Advanced Resources Inc. (ARI) incorporated concepts of rock mechanics, geologic history, and local geology into a geomechanical approach for natural fracture prediction within mildly deformed, tight (low-permeability) gas reservoirs. Under the auspices of this project, ARI utilized and refined this approach in tight gas reservoir characterization and exploratory activities in three basins: the Piceance, Wind River and the Anadarko. The primary focus of this report is the knowledge gained on natural fractural prediction along with practical applications for enhancing gas recovery and commerciality. Of importance to tight formation gas production are two broad categories of natural fractures: (1) shear related natural fractures and (2) extensional (opening mode) natural fractures. While arising from different origins this natural fracture type differentiation based on morphology is sometimes inter related. Predicting fracture distribution successfully is largely a function of collecting and understanding the available relevant data in conjunction with a methodology appropriate to the fracture origin. Initially ARI envisioned the geomechanical approach to natural fracture prediction as the use of elastic rock mechanics methods to project the nature and distribution of natural fracturing within mildly deformed, tight (low permeability) gas reservoirs. Technical issues and inconsistencies during the project prompted re-evaluation of these initial assumptions. ARI's philosophy for the geomechanical tools was one of heuristic development through field site testing and iterative enhancements to make it a better tool. The technology and underlying concepts were refined considerably during the course of the project. As with any new tool, there was a substantial learning curve. Through a heuristic approach, addressing these discoveries with additional software and concepts resulted in a stronger set of geomechanical tools. Thus, the outcome of this project is a set of predictive tools with broad applicability across low permeability gas basins where natural fractures play an important role in reservoir permeability. Potential uses for these learnings and tools range from rank exploration to field-development portfolio management. Early incorporation of the permeability development concepts presented here can improve basin assessment and direct focus to the high potential areas within basins. Insight into production variability inherent in tight naturally fractured reservoirs leads to improved wellbore evaluation and reduces the incidence of premature exits from high potential plays. A significant conclusion of this project is that natural fractures, while often an important, overlooked aspect of reservoir geology, represent only one aspect of the overall reservoir fabric. A balanced perspective encompassing all aspects of reservoir geology will have the greatest impact on exploration and development in the low permeability gas setting.

  16. Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection

    E-Print Network [OSTI]

    Jamili, Ahmad

    2010-04-22T23:59:59.000Z

    Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

  17. Simulating infiltration tests in fractured basalt at the Box Canyon Site, Idaho

    SciTech Connect (OSTI)

    Unger, Andre J.A.; Faybishenko, Boris; Bodvarsson, Gudmundur S.; Simmons, Ardyth M.

    2003-04-01T23:59:59.000Z

    The results of a series of ponded infiltration tests in variably saturated fractured basalt at Box Canyon, Idaho, were used to build confidence in conceptual and numerical modeling approaches used to simulate infiltration in fractured rock. Specifically, we constructed a dual-permeability model using TOUGH2 to represent both the matrix and fracture continua of the upper basalt flow at the Box Canyon site. A consistent set of hydrogeological parameters was obtained by calibrating the model to infiltration front arrival times in the fracture continuum as inferred from bromide samples collected from fracture/borehole intersections observed during the infiltrating tests. These parameters included the permeability of the fracture and matrix continua, the interfacial area between the fracture and matrix continua, and the porosity of the fracture continuum. To calibrate the model, we multiplied the fracture-matrix interfacial area by a factor between 0.1 and 0.01 to reduce imbibition of water from the fracture continuum into the matrix continuum during the infiltration tests. Furthermore, the porosity of the fracture continuum, as calculated using the fracture aperture inferred from pneumatic-test permeabilities, was increased by a factor of 50 yielding porosity values for the upper basalt flow in the range of 0.01 to 0.02. The fracture-continuum porosity was a highly sensitive parameter controlling the arrival times of the simulated infiltration fronts. Porosity values are consistent with those determined during the Large-Scale Aquifer Pumping and Infiltration Test at the Idaho National Engineering and Environmental Laboratory.

  18. Fracture Properties From Seismic Scattering

    E-Print Network [OSTI]

    Burns, Daniel R.

    2007-01-01T23:59:59.000Z

    Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

  19. Seismic characterization of fractures

    E-Print Network [OSTI]

    JM Carcione

    2014-06-07T23:59:59.000Z

    Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

  20. Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test

    E-Print Network [OSTI]

    Marpaung, Fivman

    2009-05-15T23:59:59.000Z

    ) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

  1. Colloidosomes: Selectively Permeable Capsules Composed

    E-Print Network [OSTI]

    Weeks, Eric R.

    structures, which we call "col- loidosomes," are hollow, elastic shells whose permeability and elasticity can at the surface of water drops can be used to fabricate nano- or microporous capsules (1­5, 9); other fluid a flexible approach to the prep- aration of hollow, elastic capsules, with sizes ranging from micrometers

  2. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    SciTech Connect (OSTI)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-01T23:59:59.000Z

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  3. Review of hydrogen isotope permeability through materials

    SciTech Connect (OSTI)

    Steward, S.A.

    1983-08-15T23:59:59.000Z

    This report is the first part of a comprehensive summary of the literature on hydrogen isotope permeability through materials that do not readily form hydrides. While we mainly focus on pure metals with low permeabilities because of their importance to tritium containment, we also give data on higher-permeability materials such as iron, nickel, steels, and glasses.

  4. STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION

    E-Print Network [OSTI]

    Stanford University

    STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

  5. Maintaining Minnesota's Unique Bridge Inventory

    E-Print Network [OSTI]

    Minnesota, University of

    Maintaining Minnesota's Unique Bridge Inventory Laura M. Amundson, PE, Vice President Parsons? · There are only eight bridges in MnDOT's inventory with suspended decks · The deck area of the Blatnik and Bong

  6. Maintaining Subsurface Drip Irrigation Systems

    E-Print Network [OSTI]

    Enciso, Juan; Porter, Dana; Bordovsky, Jim; Fipps, Guy

    2004-09-07T23:59:59.000Z

    A subsurface drip irrigation system should last more than 20 years if properly maintained. Important maintenance procedures include cleaning the filters, flushing the lines, adding chlorine and injecting acids. Details of these procedures...

  7. Porosity and permeability of Eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1988-03-01T23:59:59.000Z

    High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

  8. Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology

    E-Print Network [OSTI]

    Moreno, Jose A

    2014-08-12T23:59:59.000Z

    -length and permeability, by assimilating data from downhole temperature sensors. The ensemble Kalman filter is implemented to assimilate DTS data and estimate fracture parameters. This inverse method is suitable for applications to non-linear assimilation problems and is...

  9. Geochemical and geomechanical effects on wellbore cement fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-01-01T23:59:59.000Z

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much lower than that of CO2-saturated brine. The study suggests that in deep geological reservoirs the geochemical and geomechanical processes have coupled effects on the wellbore cement fracture evolution and fluid flow along the fracture surfaces.

  10. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    SciTech Connect (OSTI)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01T23:59:59.000Z

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  11. Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs

    SciTech Connect (OSTI)

    Kelkar, Sharad [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

  12. Permeability enhancement using explosive techniques

    SciTech Connect (OSTI)

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01T23:59:59.000Z

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  13. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2008-01-01T23:59:59.000Z

    of Naturally Fractured Reservoirs, Society of Petroleumresources from fractured reservoirs (e.g. , Warren and Root,Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2008 SGP-TR-185 FRACTURE-FLOW-ENHANCED SOLUTE DIFFUSION INTO FRACTURED

  14. Naturally fractured tight gas reservoir detection optimization

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

  15. Spatial statistics for predicting flow through a rock fracture

    SciTech Connect (OSTI)

    Coakley, K.J.

    1989-03-01T23:59:59.000Z

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  16. Recent advances in hydraulic fracturing

    SciTech Connect (OSTI)

    Gidley, J.L.

    1989-01-01T23:59:59.000Z

    This book is a reference to the application of significant technological advances in hydraulic fracturing. It features illustrative problems to demonstrate specific applications of advanced technologies. Chapters examine pretreatment formation evaluation, rock mechanics and fracture geometry, 2D and 3D fracture-propagation models, propping agents and fracture conductivity, fracturing fluids and additives, fluid leakoff, flow behavior, proppant transport, treatment design, well completions, field implementation, fracturing-pressure analysis, postfracture formation evaluation, fracture azimuth and geometry determination, and economics of fracturing.

  17. Low-frequency fluid waves in fractures and pipes

    SciTech Connect (OSTI)

    Korneev, Valeri

    2010-09-01T23:59:59.000Z

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  18. High velocity impact fracture

    E-Print Network [OSTI]

    Teng, Xiaoqing

    2005-01-01T23:59:59.000Z

    An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture ...

  19. The Political History of Hydraulic Fracturing’s Expansion Across the West

    E-Print Network [OSTI]

    Forbis, Robert E.

    2014-01-01T23:59:59.000Z

    Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

  20. Characterisation of hydraulic fractures in limestones using X-ray microtomography

    E-Print Network [OSTI]

    Renard, Francois; Desrues, Jacques; Plougonven, Erwan; Ougier-Simonin, Audrey

    2006-01-01T23:59:59.000Z

    Hydraulic tension fractures were produced in porous limestones using a specially designed hydraulic cell. The 3D geometry of the samples was imaged using X-ray computed microtomography before and after fracturation. Using these data, it was possible to estimate the permeability tensor of the core samples, extract the path of the rupture and compare it to the heterogeneities initially present in the rock.

  1. Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Fineout, James Mark

    1992-01-01T23:59:59.000Z

    , they developed both a single matrix block model and a dual matrix block model with variable fracture width. These tests related imbibition theory with regard to matrix block size, permeability and fluid viscosity affects on oil recovery. They also determined... in naturally fractured reservoirs have relied upon material balance calculations to determine saturation changes. Through the use of Computed Tomography scanning, we have developed a technique not only to determine saturation changes but also positional...

  2. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    SciTech Connect (OSTI)

    Liou, T.S.

    1999-12-01T23:59:59.000Z

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

  3. New cement additives that eliminate cement body permeability

    SciTech Connect (OSTI)

    Talabani, S.; Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-10-01T23:59:59.000Z

    An experimental investigation was carried out replacing some currently used cement additives with three new additives. The experiments performed monitored the cement slurry pressure during the setting of the cement. During the setting period of the cement, two time cycles of cement expansion and contraction are observed. This is due to the individual contribution of each component in the cement mixture. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. In these studies optimum concentrations of the additives were obtained experimentally, where the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were; change in the applied pressure on the slurry with time, the compressive strength and permeability of the set cement. The major causes of the early microfractures are the in-complete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from liquid to a solid state. The fluid loss and free water content were measured and controlled for each sample. The results of this study is that proper amounts of X-C polymer, Anchorage clay, Ironite Sponge, and Synthetic Rubber can be used to optimize the compressive strength and eliminate both micro-fracture and micro-annulus. There are certain limits to the amount and type of Synthetic Rubber powder which cement will set and the micro-fractures are eliminated. This experimental approach can be used to eliminate gas migration through a cement design that is environmentally safe, inexpensive, and uses recyclable materials.

  4. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  5. Magma energy and geothermal permeability enhancement programs

    SciTech Connect (OSTI)

    Dunn, J.C.

    1985-01-01T23:59:59.000Z

    Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

  6. Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report

    SciTech Connect (OSTI)

    Detwiler, Russell

    2014-04-30T23:59:59.000Z

    Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

  7. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01T23:59:59.000Z

    potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

  8. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report for the period: 7/1/93--9/31/93

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-10-23T23:59:59.000Z

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical paths of production. During this eighth quarter of the seismic study of this area, work continued in processing seismic data, collecting additional geological information to aid in the interpretation, and integrating regional structural information and fracture trends with observations of structure in the study area.

  9. TRACER ANALYSIS IN A FRACTURED GEO'MERMAL RESERVOIR: FIELD RESULTS FROM WAIRAKEI, NEW ZEALAND

    E-Print Network [OSTI]

    Stanford University

    TRACER ANALYSIS IN A FRACTURED GEO'MERMAL RESERVOIR: FIELD RESULTS FROM WAIRAKEI, NEW ZEALAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 -V- #12;Chapter I INTRODUCTION Interwell tracers have been used extensively in oil reservoirs to detect reservoir heterogeneities. High permeability production zones can channel a disproportionate

  10. ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION

    SciTech Connect (OSTI)

    Mukul M. Sharma

    2005-03-01T23:59:59.000Z

    The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

  11. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08T23:59:59.000Z

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  12. State-of-the-art fracturing in the North Sea

    SciTech Connect (OSTI)

    Domelen, M.S. Van; Jacquier, R.C.; Sanders, M.W.

    1995-12-31T23:59:59.000Z

    This paper will focus on recent advances in hydraulic fracturing technology with emphasis on North Sea applications. Five generalized applications that will benefit most from advances in technology have been identified. Because North Sea oil and gas field development requires the use of platform facilities for wellhead and processing equipment, deviated and horizontal wells are often used to effectively drain the reservoirs. Many of these wells require fracture stimulation. The success rate of such wells has increased significantly in recent years as a result of the following: Researchers better understand how fractures initiate and grow; Pre-treatment diagnostic techniques have improved substantially; Engineers better understand how completion design affects well performance. With improved understanding of post-frac well performance, engineers can evaluate the feasibility of developing a reservoir through fractured, horizontal wells. In addition to a review of the advances in HPHT technology that would apply to North Sea applications, this paper will identify improvements necessary before these techniques are applied in the North Sea. Hydraulic fracturing is being used more frequently (1) in high-permeability reservoirs to improve the overall profitability of the project, and (2) as an alternative to traditional sand control applications in soft, weakly consolidated reservoirs. The effect of hydraulic fracturing operations on the North Sea environment must be recognized. The advances in fluid design and post-treatment flowback procedures that minimize these effects are discussed. 78 refs., 19 figs.

  13. Simulation of Hydraulic Fractures and their Interactions with Natural Fractures

    E-Print Network [OSTI]

    Sesetty, Varahanaresh

    2012-10-19T23:59:59.000Z

    Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

  14. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    SciTech Connect (OSTI)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-05-01T23:59:59.000Z

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  15. Experimental and Theoretical Investigation of Multiphase Flow in Fractured Porous media, SUPRI TR-116, Topical Report

    SciTech Connect (OSTI)

    Akin, Serhat; Castanier, Louis M.; German, Edgar Rene Rangel

    1999-08-09T23:59:59.000Z

    The fluid transfer parameters between rock matrix and fracture are not well known. Consequently, simulation of fractured reservoirs uses, in general, very crude and unproven hypotheses such as zero capillary pressure in the fracture and/or relative permeability linear with saturation. In order to improve the understanding of flow in fractured media, an experimental study was conducted and numerical simulations of the experiments were made. A laboratory flow apparatus was built to obtain data on water- air imbibition and oil-water drainage displacements in horizontal single-fractured block systems. For this purpose, two configurations have been used: a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. During the experiments, porosity and saturation measurements along the cores have been made utilizing an X-ray Computerized Tomography (CT) scanner. Saturation images were reconstructed in 3-D to observe matrix-fracture interactions. Differences in fluid saturations and relative permeabilities caused by changes in fracture width have also been analyzed.

  16. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

  17. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

  18. Sustainability of Shear-Induced Permeability for EGS Reservoirs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study Sustainability of Shear-Induced Permeability for EGS Reservoirs A Laboratory Study...

  19. Field Demonstration Of Permeable Reactive Barriers To Remove

    E-Print Network [OSTI]

    Field Demonstration Of Permeable Reactive Barriers To Remove Dissolved Uranium From Groundwater-001 November 2000 FIELD DEMONSTRATION OF PERMEABLE REACTIVE BARRIERS TO REMOVE DISSOLVED URANIUM FROM

  20. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials. Abstract: Uranium(VI) diffusion was investigated in...

  1. aqp1 water permeability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELATIVE PERMEABILITY A DISSERTATION Renewable Energy Websites Summary: STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM...

  2. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...

    Open Energy Info (EERE)

    OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE...

  3. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31T23:59:59.000Z

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for optimizing the recovery from naturally fractured reservoir systems. The next logical extension of this work is to apply the proposed methods to an actual field case study to provide information for verification and modification of the techniques and simulator. This report provides the details of the proposed techniques and summarizes the activities undertaken during the course of this project. Technology transfer activities were highlighted by a two-day technical conference held in Oklahoma City in June 2002. This conference attracted over 90 participants and included the presentation of seventeen technical papers from researchers throughout the United States.

  4. Correlation of hydrothermal sericite composition with permeability...

    Open Energy Info (EERE)

    zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic basement rocks which serve as the reservoir for the...

  5. Core analysis in a low permeability sandstone reservoir: Results from the Multiwell Experiment

    SciTech Connect (OSTI)

    Sattler, A.R.

    1989-04-01T23:59:59.000Z

    Over 4100 ft (1100 ft oriented) of Mesaverde core was taken during the drilling of the three Multiwell Experiment (MWX) wells, for study in a comprehensive core analysis program. This core traversed five separate depositional environments (shoreline/marine, coastal, paludal, fluvial, and paralic), and almost every major sand in the Mesaverde at the site was sampled. This paper summarizes MWX core analysis and describes the petrophysical properties at the MWX site; reservoir parameters, including permeabilities of naturally fractured core; and mechanical rock properties including stress-related measurements. Some correlations are made between reservoir properties and mineralogy/petrology data. Comparisons are made between the properties of lenticular and blanket sandstone morphologies existing at the site. This paper provides an overview of a complete core analysis in a low-permeability sandstone reservoir. 66 refs., 17 figs. , 9 tabs.

  6. HP-41 Calculates Dykstra-Parsons permeability

    SciTech Connect (OSTI)

    Bixler, B.

    1983-07-01T23:59:59.000Z

    A new program for the HP-41 programmable calculator has been written which will calculate the often used Dykstra-Parsons permeability variation factor, V. No longer must numerous individual permeability values be plotted on log probability paper as a first step in determining V. Input is simply these same permeability values selected at equal spacing along the interval in question. For most core analysis this spacing will be 1 ft. This program is labeled ''KVAR'' (for permeability variation) and is listed here, along with its bar code for those with optical wands. It requires only nine registers for program storage (since it uses HP built-in statistical functions) and eight registers for data storage. Also, it can be stored on one track of the standard two-track magnetic card. Data entry is terminated by entering ''O''. Lastly, it will run with or without a printer.

  7. Reservoir permeability from seismic attribute analysis

    E-Print Network [OSTI]

    Goloshubin, G.

    2008-01-01T23:59:59.000Z

    of the reservoir permeability based on seismic and log data.seismic reservoir response based on well and 3D seismic datadata analysis we suggest seismic imaging of the reservoir

  8. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01T23:59:59.000Z

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  9. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    SciTech Connect (OSTI)

    Mukul Sharma; Kyle Friehauf

    2009-12-31T23:59:59.000Z

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

  10. Continuous time random walk analysis of solute transport in fractured porous media

    SciTech Connect (OSTI)

    Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens

    2008-06-01T23:59:59.000Z

    The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.

  11. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01T23:59:59.000Z

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  12. Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability and Pore

    E-Print Network [OSTI]

    Petta, Jason

    Transport in Cement:Transport in Cement: Relating Permeability and PoreRelating Permeability, 2004 #12;OutlineOutline Cement Manufacturing and StructureCement Manufacturing and Structure ofofCalcinated in rotaryin rotary kiln at 1500 C for 30kiln at 1500 C for 30-- 40 minutes40 minutes Produces Cement

  13. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect (OSTI)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01T23:59:59.000Z

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

  14. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01T23:59:59.000Z

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  15. Suspensions in hydraulic fracturing

    SciTech Connect (OSTI)

    Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

    1996-12-31T23:59:59.000Z

    Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

  16. Naturally fractured tight gas reservoir detection optimization. Final report

    SciTech Connect (OSTI)

    NONE

    1997-11-19T23:59:59.000Z

    This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

  17. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01T23:59:59.000Z

    potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

  18. Can a fractured caprock self-heal?

    E-Print Network [OSTI]

    Elkhoury, JE; Elkhoury, JE; Detwiler, RL; Ameli, P

    2015-01-01T23:59:59.000Z

    characterization of fractured reservoirs. J. Geophys. Eng.fractured carbonates caused by flow of CO 2 -rich brine under reservoirreservoirs. We present results from two experiments in fractured

  19. Pressure grouting of fractured basalt flows

    SciTech Connect (OSTI)

    Shaw, P.; Weidner, J.; Phillips, S.; Alexander, J.

    1996-04-01T23:59:59.000Z

    This report describes a field trial of pressure grouting in basalt and the results of subsequent coring and permeability measurement activities. The objective was to show that the hydraulic conductivity of fractured basalt bedrock can be significantly reduced by pressure injection of cementitious materials. The effectiveness of the pressure grout procedure was evaluated by measuring the change in the hydraulic conductivity of the bedrock. The extent of grout penetration was established by analyzing postgrout injection drilling chips for the presence of a tracer in the grout and also by examining cores of the treated basalt. Downhole radar mapping was used to establish major lava flow patterns and follow water movement during a surface infiltration test. A site called Box Canyon, which is located northwest of the INEL, was chosen for this study due to the similarity of this surface outcrop geology to that of the underlying bedrock fracture system found at the Radioactive Waste Management Complex. This study showed that hydraulic conductivity of basalt can be reduced through pressure grouting of cementitious material.

  20. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, November 1991-December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The purpose of the work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated.

  1. Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis

    E-Print Network [OSTI]

    Ahmed, Ibraheem 1987-

    2012-11-30T23:59:59.000Z

    Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

  2. UCHC POLICY FOR MAINTAINING A CHEMICAL INVENTORY

    E-Print Network [OSTI]

    Kim, Duck O.

    UCHC POLICY FOR MAINTAINING A CHEMICAL INVENTORY (4/14/2014) PURPOSE OF POLICY The goal of this policy is to create and maintain an ongoing inventory of hazardous materials present on the UCHC campus using inventory software program known as Vertere. At the present time, compressed gases are excluded

  3. Encapsulation method for maintaining biodecontamination activity

    DOE Patents [OSTI]

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.

    2006-04-11T23:59:59.000Z

    A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

  4. Encapsulation method for maintaining biodecontamination activity

    DOE Patents [OSTI]

    Rogers, Robert D. (Idaho Falls, ID); Hamilton, Melinda A. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Benson, Jennifer (Cockermouth, GB); Green, Martin J. (Wooton, GB); Milner, Timothy N. (Centerville, VA)

    2002-01-01T23:59:59.000Z

    A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

  5. Reservoir fracture characterizations from seismic scattered waves

    E-Print Network [OSTI]

    Fang, Xinding

    2012-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  6. INTRODUCTION Permeability is a critical geologic parameter,

    E-Print Network [OSTI]

    Manning, Craig

    a fundamental role in mass and heat transfer and crustal rheology (e.g., Ingebritsen and Sanford, 1998 result. In contrast, the primary data from studies of meta- morphic systems consist of time-integrated fluid- flux (Q, or qt) estimates, which must be trans- lated to time-averaged permeabilities through (2

  7. WINTER PERFORMANCE ASSESSMENT OF PERMEABLE PAVEMENTS

    E-Print Network [OSTI]

    WINTER PERFORMANCE ASSESSMENT OF PERMEABLE PAVEMENTS A COMPARATIVE STUDY OF POROUS ASPHALT, PERVIOUS CONCRETE, AND CONVENTIONAL ASPHALT IN A NORTHERN CLIMATE BY KRISTOPHER M. HOULE BS, Worcester the University of New Hampshire, the Northern New England Concrete Promotion Association (NNECPA), the Northeast

  8. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01T23:59:59.000Z

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

  9. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15T23:59:59.000Z

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  10. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-01-29T23:59:59.000Z

    This was the ninth quarter of the contract. During this quarter we (1) continued processing the seismic data, (2) collected additional logs to aid in the interpretation, and (3)began modeling some of the P-wave amplitude anomalies that we see in the data. The study area is located at the southern end of the powder river Basin in Converse county in east-central Wyoming. It is a low permeability fractured site, with both has and oil present. Reservoirs are highly compartmentalized due tot he low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara; a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier, a tight sandstone lying directly below the Niobrara, brought into contract with it by an unconformity.

  11. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1994-04-29T23:59:59.000Z

    The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara, a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock; and the Frontier, a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. This was the tenth quarter of the contract. During this quarter the investigators (1) continued processing the seismic data, and (2) continued modeling some of the P-wave amplitude anomalies that we see in the data.

  12. Fracture induced anisotropy in viscoelastic media

    E-Print Network [OSTI]

    santos,,,

    ... seismology and mining. Fractures constitute the sources of earthquakes, and hydrocarbon and geothermal reservoirs are mainly composed of fractured rocks.

  13. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

  14. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  15. Double torsion testing and finite element analysis for determining the electric fracture properties of piezoelectric ceramics

    SciTech Connect (OSTI)

    Shindo, Yasuhide; Narita, Fumio; Mikami, Masaru [Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-yama 6-6-02, Sendai 980-8579 (Japan)

    2005-06-01T23:59:59.000Z

    This paper presents the results of an experimental and numerical investigation in electric fracture behavior of composite [Pb(Zr,Ti)O{sub 3}] double torsion (DT) specimens. DT tests were conducted on a commercial piezoelectric ceramic bonded between two metals. Fracture loads under different electric fields were obtained from the experiment. Nonlinear three-dimensional finite element analysis was also employed to calculate the energy release rate for DT specimens based on the exact (permeable) and approximate (impermeable) crack models. The effects of applied electric field and domain switching on the energy release rate are discussed, and the model predictions are compared with the results of the experiments.

  16. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  17. Permeability anisotropy and resistivity anisotropy of mechanically compressed mudrocks

    E-Print Network [OSTI]

    Adams, Amy Lynn

    2014-01-01T23:59:59.000Z

    Permeability anisotropy (the ratio of the horizontal to vertical permeability) is an important parameter used in sedimentary basin models and geotechnical design to model fluid flow, locate hydrocarbon reserves and estimate ...

  18. Semi-analytical estimates of permeability obtained from capillary pressure 

    E-Print Network [OSTI]

    Huet, Caroline Cecile

    2006-04-12T23:59:59.000Z

    The objective of this research is to develop and test a new concept for predicting permeability from routine rock properties. First, we develop a model predicting permeability as a function of capillary pressure. Our model, ...

  19. Modeling of multiphase flow in permeable media: (1) Mathematical model; (2) Analysis of imbibition and drying experiments

    SciTech Connect (OSTI)

    Bixler, N.E.; Eaton, R.R.

    1986-12-31T23:59:59.000Z

    Calculating multiphase flow of water through fractured porous media, such as volcanic tuff, is a numerically challenging problem because of the highly nonlinear material characteristics of permeability and saturation which describe liquid and gas transport. Typically, the permeability of the fractured host rock being investigated for an underground nuclear waste repository at Yucca Mountain, Nevada increases by 15 orders of magnitude as the rock becomes saturated. Furthermore, permeability may vary by five orders of magnitude between geologic strata. Other nonlinear mechanisms - Knudsen diffusion, binary diffusion, vapor pressure lowering, and adsorption of vapor onto pore walls - may also strongly affect liquid and gas transport. In Part I of the presentation, the mathematical model and its computer implementation are presented. The application of these equations and solution procedures to problems related to underground waste repositories are addressed in Part II. Predicted results will be compared with the results of laboratory experiments in which a core of volcanic tuff has first undergone controlled imbibition, then drying. The importance of the various transport mechanisms is demonstrated by examining the predicted results. 14 figs.

  20. Characterization and simulation of an exhumed fractured petroleum reservoir. Final report, March 18, 1996--September 30, 1998

    SciTech Connect (OSTI)

    Forster, C.B.; Nielson, D.L.; Deo, M.

    1998-12-01T23:59:59.000Z

    An exhumed fractured reservoir located near Alligator Ridge in central Nevada provides the basis for developing and testing different approaches for simulating fractured petroleum reservoirs. The fractured analog reservoir comprises a 90 m thickness of silty limestone and shaly interbeds within the Devonian Pilot Shale. A period of regional compression followed by ongoing basin and range extension has created faults and fractures that, in tern, have controlled the migration of both oil and gold ore-forming fluids. Open pit gold mines provide access for observing oil seepage, collecting the detailed fracture data needed to map variations in fracture intensity near faults, build discrete fracture network models and create equivalent permeability structures. Fault trace patterns mapped at the ground surface provide a foundation for creating synthetic fault trace maps using a stochastic procedure conditioned by the outcrop data. Conventional simulations of petroleum production from a 900 by 900 m sub-domain within the reservoir analog illustrate the possible influence of faults and fractures on production. The consequences of incorporating the impact of different stress states (e.g., extension, compression or lithostatic) are also explored. Simulating multiphase fluid flow using a discrete fracture, finite element simulator illustrates how faults acting as conduits might be poorly represented by the upscaling procedures used to assign equivalent permeability values within reservoir models. The parallelized reservoir simulators developed during this project provide a vehicle to evaluate when it might be necessary to incorporate very fine scale grid networks in conventional reservoir simulators or to use finely gridded discrete fracture reservoir simulators.

  1. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Lorie M. Dilley

    2011-03-30T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

  2. Fracture prediction in metal sheets

    E-Print Network [OSTI]

    Lee, Young-Woong

    2005-01-01T23:59:59.000Z

    One of the most important failure modes of thin-walled structures is fracture. Fracture is predominantly tensile in nature and, in most part, is operated by the physical mechanisms of void nucleation, growth, and linkage. ...

  3. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, J R; Glaser, Steven D

    2007-01-01T23:59:59.000Z

    1968), Permeability of granite under high pressure, J.permeability of Westerly granite, J. Geophys. Res. , 80(5),resistivity during creep in granite, Pure Appl. Geophys. ,

  4. EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

  5. The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells

    E-Print Network [OSTI]

    Dickins, Mark Ian

    2008-10-10T23:59:59.000Z

    Solution for Uniform Influx................................. 28 2.5 Effect of Stress on Non-Darcy Flow with Uniform Influx............................. 40 2.6 Hydraulically Fractured Reservoir with Two-Phase Flow ............................. 45 2... ............................................................................................................... 21 2.6 Gas expansion factor divided by gas viscosity Eg/µg = 1/(Bµ), which is roughly constant at or above pressures of 6,000 psi. .................................... 22 2.7 Relative permeability functions from Table 2.1 normalized...

  6. Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow

    SciTech Connect (OSTI)

    Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

    2013-08-01T23:59:59.000Z

    Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

  7. PERMEABILITY TESTING OF SIMULATED SALTSTONE CORE AND VAULT 4 CELL E SALTSTONE

    SciTech Connect (OSTI)

    Nichols, R.; Dixon, K.

    2011-08-22T23:59:59.000Z

    The Engineering Process Development Group (EPD) of the Savannah River National Laboratory (SRNL) prepared simulated saltstone core samples to evaluate the effect of sample collection by coring on the permeability of saltstone. The Environmental Restoration Technology Section (ERTS) of the SRNL was given the task of measuring the permeability of cores of simulated saltstone. Saltstone samples collected from Vault 4 Cell E using both dry and wet coring methods were also submitted for permeability analysis. The cores from Vault 4 Cell E were in multiple pieces when they were recovered (Smith, 2008 Cheng et.al, 2009). Permeability testing was only performed on the portions of the core sample that were intact, had no visible fractures or cracks, and met the specifications for 'undisturbed specimens' identified in Method ASTM D5084-03 Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter that was used for the testing. Permeability values for cores of simulated saltstone compared with values from permeability tests conducted on molded saltstone samples by an independent laboratory using the same method. All hydraulic conductivity results for Vault 4 samples exceeded results for both molded and cored saltstone simulant samples. The average hydraulic conductivity result for Vault 4 Cell E samples of 3.9 x 10{sup -7} cm/sec is approximately two orders of magnitude greater than that of the simulated saltstone with an average of 4.1 x 10{sup -9} cm/sec. Numerical flow and transport simulations of moisture movement through saltstone performed for the performance assessment of the Saltstone Disposal Facility (SDF) used 2.0 x 10{sup -9} cm/sec for the hydraulic conductivity of saltstone (Flach et al, 2009). The results for simulated versus actual saltstone were further compared using non-parametric statistics. The results from non-parametric statistical analysis of results indicate that there is at least a 98% probability that the hydraulic conductivity of saltstone samples collected from Vault 4 Cell E saltstone is greater than that of the baseline simulant mix.

  8. A physically based numerical approach for modeling fracture-matrix interaction in fractured reservoirs

    E-Print Network [OSTI]

    Wu, Yu-Shu; Pruess, Karsten

    2004-01-01T23:59:59.000Z

    of naturally fractured reservoirs with uniform fracturefor naturally fractured reservoirs, SPE-11688, Presented atflow simulations in fractured reservoirs, Report LBL- 15227,

  9. Laboratory imaging of stimulation fluid displacement from hydraulic fractures

    SciTech Connect (OSTI)

    Tidwell, V. [Sandia National Lab., Albuquerque, NM (United States); Parker, M. [SPE, Richardson, TX (United States)

    1996-11-01T23:59:59.000Z

    Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

  10. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test 

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08T23:59:59.000Z

    EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by JUAN CARLOS CORREA CASTRO Submitted to the Office of Graduate Studies of Texas A... in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test Copyright 2011 Juan Carlos Correa Castro EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...

  11. Atrial natriuretic factor increases vascular permeability

    SciTech Connect (OSTI)

    Lockette, W.; Brennaman, B. (Wayne State Univ. School of Medicine, Detroit, MI (USA))

    1990-12-01T23:59:59.000Z

    An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinations of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.

  12. Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures

    SciTech Connect (OSTI)

    Mike L. Laue

    1997-05-08T23:59:59.000Z

    This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

  13. Wavelet Integrated System to Calculate Radionuclide Release from a Repository in Fractured Media

    SciTech Connect (OSTI)

    Nasif, Hesham R.; Neyama, Atsushi; Umeki, Hiroyuki [Nuclear Waste Management Organization of Japan (Japan); Suzuki, Atsuyuki [University of Tokyo (Japan)

    2003-03-15T23:59:59.000Z

    Radionuclides released from a vitrified waste package after overpack failure spread into the buffer material surrounding the waste package, then migrate through different pathways into the water-bearing fracture in the rock surrounding the high-level radioactive waste repository, and transport through the faults to the biosphere. The buffer material has low permeability and the solute is transported through the engineered barrier system by diffusion only. In the water-bearing fracture, the problem is of the convection diffusion type with highly varying parameters from one medium to the other due to the variability in length, transmissivity, and other transport-relevant properties of the transport paths. This complex geometry is modeled using the wavelet Galerkin approach. The Wavelet Integrated Repository System (WIRS) wavelet-based system is an integrated tool to calculate the transport of single or radionuclide chains in both near and far fields of the repository system. The model, which is a very coarsely discretized wavelet based, is devised to be very fast since the scaling functions, which are used as a basis function, are compactly supported. Only finite numbers of the connection coefficients are nonzero, and the resultant matrix has a block diagonal structure that can be inverted easily. One of the main problems encountered in solving the model for the radionuclide transport in the geospheric media is the treatment of the boundary and interface conditions. In order to maintain the integrity of the system, the boundaries of the wavelet series are shifted until the end is independent of any expansion coefficients of the scaling function that affect the solution within the real boundaries. WIRS agreed well with models using a very detailed discretization. Accuracy is gained with the proper selection of wavelet-dilation orders pair. WIRS has been applied to the Japanese high-level radioactive waste repository concept where the migration is through different barriers and pathways. Single and decay chain radionuclide release calculations have shown the capability of WIRS to handle different situations rapidly and easily.

  14. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    E-Print Network [OSTI]

    Liu, H.H.

    2010-01-01T23:59:59.000Z

    of carbon dioxide in coal with enhanced coalbed methaneL. Adsorption-induced coal swelling and stress: Implicationsand acid gas sequestration into coal seams. J Geophys Res. (

  15. Upscaling permeability for fractured concrete: meso-macro numerical approach coupled to strong discontinuities

    E-Print Network [OSTI]

    - cations in Civil engineering such as geological CO2 storage or civil nuclear industry. In France, the latter aims at extending its nuclear powerplants lifetime which requires accurate quantifications of the outflow through the concrete vessel along different cases and accounting for the long-term evolution

  16. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock

    E-Print Network [OSTI]

    Elkhoury, Jean E.; Niemeijer, Andre; Brodsky, Emily E.; Marone, Chris

    2011-01-01T23:59:59.000Z

    Istituto Nazionale di Geofisica e Vulcanologia, Via di VignaNow at Istituto Nazionale di Geofisica e Vulcanologia, Rome,

  17. EFFECTS OF SAMPLE SIZE ON THE STRESS-PERMEABILITY RELATIONSHIP FOR NATURAL FRACTURES

    E-Print Network [OSTI]

    Gale, J.E.

    2013-01-01T23:59:59.000Z

    APPENDIX B: REFORMATORY GRANITE AND CORE DEFORMATION DATAProperties of in situ Jointed Granite," Int Mech. Min. Sci.Whole and Jointed Barrier Granite," Int. J. Rock Mech. Min.

  18. A new coal-permeability model: Internal swelling stress and fracture-matrix interaction

    E-Print Network [OSTI]

    Liu, H.H.

    2010-01-01T23:59:59.000Z

    gas sequestration into coal seams. J Geophys Res. (2007)Reservoir engineering in coal seams: Part 1 – the physicaland movement in coal seams. SPE Reservoir engineering.

  19. A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction

    E-Print Network [OSTI]

    Liu, Hui-Hai; Rutqvist, Jonny

    2010-01-01T23:59:59.000Z

    gas sequestration into coal seams. J Geophys. Res. (2007).Reservoir engineering in coal seams: part 1—the physicalstorage and movement in coal seams. SPE Reserv. Eng. , 2(1),

  20. EFFECTS OF SAMPLE SIZE ON THE STRESS-PERMEABILITY RELATIONSHIP FOR NATURAL FRACTURES

    E-Print Network [OSTI]

    Gale, J.E.

    2013-01-01T23:59:59.000Z

    geology problems. Rock slope design, mine drainage, and the effective exploration and development of oil,

  1. In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing

    E-Print Network [OSTI]

    Demarchos, Andronikos Stavros

    1998-01-01T23:59:59.000Z

    in the petroleum industry, is the recommended technique. NORM are found throughout subterranean formations. Whenever fluids from petroleum or water reservoirs are produced NORM are present in varying quantities. NORM can only be sensed with radiation detectors...

  2. Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    or radioactive waste [30], geothermal Corresponding author Email address: benoit.carrier@enpc.fr (Benoit Carrier processes. During the last sixty years, numerous papers [3, 7, 14, 21, 35, 34, 41, 25, 27, 22, 38, 36, 1. In the recent years, a scaling and asymptotic framework was built to determine the influence of the physical

  3. Final Report Multiazimuth Seismic Diffraction Imaging for Fracture Characterization in Low-Permeability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 91, 20159,Final Reminder:Final

  4. Stresses and fractures in the Frontier Formation, Green River Basin, predicted from basin-margin tectonic element interactions

    SciTech Connect (OSTI)

    Lorenz, J.C.

    1996-01-01T23:59:59.000Z

    Natural fractures and in situ stresses commonly dictate subsurface reservoir permeability and permeability anisotropy, as well as the effectiveness of stimulation techniques in low-permeability, natural gas reservoirs. This paper offers an initial prediction for the orientations of the fracture and stress systems in the tight gas reservoirs of the Frontier Formation, in the Green River basin of southwestern Wyoming. It builds on a previous report that addressed fractures and stresses in the western part of the basin and on ideas developed for the rest of the basin, using the principle that thrust faults are capable of affecting the stress magnitudes and orientations in little-deformed strata several hundreds of kilometers in front of a thrust. The prediction of subsurface stresses and natural fracture orientations is an undertaking that requires the willingness to revise models as definitive data are acquired during drilling. The predictions made in this paper are offered with the caveat that geology in the subsurface is always full of surprises.

  5. Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks

    E-Print Network [OSTI]

    Ogbechie, Joachim Nwabunwanne

    2012-02-14T23:59:59.000Z

    Gen and NFflow) for fracture modeling of a shale gas reservoir and also studies the interaction of the different fracture properties on reservoir response. The most important results of the study are that a uniform fracture network distribution and fracture...

  6. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining the Stockpile Maintaining the Stockpile

  7. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E. (Kennewick, WA)

    1989-01-01T23:59:59.000Z

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  8. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    Not Available

    1999-01-01T23:59:59.000Z

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  9. EPA/ITRC-RTDF permeable reactive barrier short course. Permeable reactive barriers: Application and deployment

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    This report focuses on the following: Permeable Reactive Barriers: Application and Deployment; Introduction to Permeable Reactive Barriers (PRBs) for Remediating and Managing Contaminated Groundwater in Situ; Collection and Interpretation of Design Data 1: Site Characterization for PRBs; Reactive Materials: Zero-Valent Iron; Collection and Interpretation of Design Data 2: Laboratory and Pilot Scale Tests; Design Calculations; Compliance Monitoring, Performance Monitoring and Long-Term Maintenance for PRBs; PRB Emplacement Techniques; PRB Permitting and Implementation; Treatment of Metals; Non-Metallic Reactive Materials; Economic Considerations for PRB Deployment; and Bibliography.

  10. Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied by means of experimentally induced water-table fluctuations (Coaraze

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Hydraulic interactions between fractures and bedding planes in a carbonate aquifer studied high and low permeability regions are controlled by the hydraulic head gradient. Past studies have addressed this problem mainly considering steady- state hydraulic conditions. To study such exchanges during

  11. Coordinated studies in support of hydraulic fracturing of coalbed methane. Annual report, January 1993-April 1994

    SciTech Connect (OSTI)

    Penny, G.S.; Conway, M.W.

    1994-08-01T23:59:59.000Z

    The production of natural gas from coal typically requires stimulation in the form of hydraulic fracturing and, more recently, cavity completions. The results of hydraulic fracturing treatments have ranged from extremely successful to less than satisfactory. The purpose of this work is to characterize common and potential fracturing fluids in terms of coal-fluid interactions to identify reasons for less than satisfactory performance and to ultimately devise alternative fluids and treatment procedures to optimize production following hydraulic fracturing. The laboratory data reported herein has proven helpful in designing improved hydraulic fracturing treatments and remedial treatments in the Black Warrior Basin. Acid inhibitors, scale inhibitors, additives to improve coal relative permeability to gas, and non-damaging polymer systems for hydraulic fracturing have been screened in coal damage tests. The optimum conditions for creating field-like foams in the laboratory have been explored. Tests have been run to identify minimum polymer and surfactant concentrations for applications of foam in coal. The roll of 100 mesh sand in controlling leakoff and impairing conductivity in coal has been investigated. The leakoff and proppant transport of fluids with breaker has been investigated and recommendations have been made for breaker application to minimize damage potential in coal. A data base called COAL`S has been created in Paradox (trademark) for Windows to catalogue coalbed methane activities in the Black Warrior and San Juan Basins.

  12. WEB Maintainers Meetup Web Branding Committee

    E-Print Network [OSTI]

    Florida, University of

    WEB Maintainers Meetup UF/IFAS DEPARTMENT #12; Web Branding Committee Introduction and TERMINALFOUR (T4) recap Preparation Page layouts Questions #12;WEB BRANDING COMMITTEE what we heard #12;Some) is the new UF Web Content Management System (WCMS) chosen for the next five years. T4 allows non

  13. Web Maintainers Forum 29 August 2013

    E-Print Network [OSTI]

    Hickman, Mark

    1 Web Maintainers Forum 29 August 2013 Agenda Welcome and introduction Web team Update My Baker, WCMS Project Manager) Questions Web team update Web team site rebranded http://www.canterbury.ac.nz/web/ When was the last time you visited the web team site: August? June or July? 2013? 2012? Never

  14. Numerical simulation of hydraulic fracturing

    E-Print Network [OSTI]

    Warner, Joseph Barnes

    1987-01-01T23:59:59.000Z

    ~ared that the results of such treatments were not always adequately described by the two-dimensional models. With recent advances in hydraulic fracturing and computing technology, attempts have been made to formulate more realistic fracture models. These three...NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...

  15. Towards a characteristic equation for permeability

    E-Print Network [OSTI]

    Siddiqui, Adil Ahmed

    2008-10-10T23:59:59.000Z

    on a fractal-based derivation of permeability from porosity. The Pape et al. result is presented as an additive power law relation, typically of the form: k = a? + b? 2 + c? 10 . We do not believe that the Pape et al. model will find significant... utility in the petroleum industry, apart from unconsolidated materials and rocks of very uniform grain sizes. We do not wish to diminish the work of Pape et al. rather we just do not see the same behavior in our rock sample data (i.e., extremely well...

  16. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, Frank A. (Rancho Palos Verdes, CA); Townsend, Carl W. (Los Angeles, CA)

    1989-01-01T23:59:59.000Z

    An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

  17. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12T23:59:59.000Z

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  18. Gas permeability measurements for film envelope materials

    DOE Patents [OSTI]

    Ludtka, Gerard M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Watkin, David C. (Clinton, TN); Walton, David G. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  19. Osmotic water permeability of human red cells

    SciTech Connect (OSTI)

    Terwilliger, T.C.; Solomon, A.K.

    1981-05-01T23:59:59.000Z

    The osmotic water permeability of human red cells has been reexamined with a stopped-flow device and a new perturbation technique. Small osmotic gradients are used to minimize the systematic error caused by nonlinearities in the relationship between cell volume and light scattering. Corrections are then made for residual systematic error. Our results show that the hydraulic conductivity, Lp, is essentially independent of the direction of water flow and of osmolality in the range 184-365 mosM. the mean value of Lp obtained obtained was 1.8 +/- 0.1 (SEM) X 10-11 cm3 dyne -1 s-1.

  20. BTEX biodegradation in fractured shale

    SciTech Connect (OSTI)

    O`Cleirigh, D.; Coryea, H. [Roy F. Weston, Inc., Austin, TX (United States); Christopher, M.; Vaughn, C. [Roy F. Weston, Inc., Houston, TX (United States)

    1997-12-31T23:59:59.000Z

    A petroleum hydrocarbon groundwater plume was identified at a Federal Aviation Administration (FAA) facility in Oklahoma. The affected area had an average BTEX concentration of 3.8 mg/L. Previous aquifer tests indicated preferential groundwater flow paths resulting from natural fractures present in the aquifer formation (primarily shale). A pneumatic fracturing pilot study was performed to evaluate the technology`s effectiveness in creating a more isotropic aquifer. As part of the study, pre-fracture/post-fracture pump tests were performed. Pre-fracture and post-fracture graphs confirmed the study`s hypothesis that pneumatic fracturing would eliminate preferential flow paths and increase groundwater yield. Based on the successful pneumatic fracturing test, an area within the petroleum hydrocarbon plume was fractured and a pilot-scale biodegradation system was operated for four months. The remediation system provided groundwater circulation amended with nutrients and oxygen. Results of the study indicated a significant decrease in BTEX concentrations between the injection well and the observation wells. By Day 113, the benzene concentration (0.044 mg/L) at one of the observation wells was less than the desired state cleanup goal of 0.05 mg/L.

  1. Fracture model for cemented aggregates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

    2013-01-01T23:59:59.000Z

    A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

  2. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-05-19T23:59:59.000Z

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  3. Interferometric hydrofracture microseism localization using neighboring fracture

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir productivity. Microseismic event localization is used to locate created fractures. ...

  4. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  5. astrocyte water permeability: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19 Predicting relative permeability from water retention: A direct approach based on fractal geometry Environmental Management and Restoration Websites Summary: curves (e.g.,...

  6. arterioso permeable por: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mol% yttria-stabilized (more) Sweeney, Sean 2005-01-01 13 Permeability prediction from well log data using multiple regression analysis. Open Access Theses and Dissertations...

  7. "EFICIENCIA DE FUNCIONAMIENTO DE LA PRB (Barrera Permeable Reactiva)

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    "EFICIENCIA DE FUNCIONAMIENTO DE LA PRB (Barrera Permeable Reactiva) EN AZNALCOLLAR (ESPAÑA)" Autor Barrera Geoquímica Experimental (PRB)? ·Un emplazamiento subsuperficial de materiales reactivos ·Diseñado

  8. Mineral Precipitation Upgradient from a Zero-Valent Iron Permeable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: Core samples taken from a zero-valent iron permeable reactive barrier (ZVI PRB) at Cornhusker Army Ammunition Plant, Nebraska, were analyzed for physical and chemical...

  9. IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...

    Open Energy Info (EERE)

    USING MICROEARTHQUAKE DATA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES...

  10. A Film Depositional Model of Permeability for Mineral Reactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solid-aqueous phase reactions. Citation: Freedman VL, P Saripalli, DH Bacon, and PD Meyer.2004."A Film Depositional Model of Permeability for Mineral Reactions in Unsaturated...

  11. New additives for minimizing cement body permeability

    SciTech Connect (OSTI)

    Talabani, S. [Western Atlas International, Abu Dhabi (United Arab Emirates); Hareland, G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Petroleum Engineering; Islam, M.R. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1999-01-01T23:59:59.000Z

    An experimental investigation was carried out with a new array of cement additives, replacing some of the currently used ones. In this study, the cement slurry pressure was monitored during the setting of the element. To obtain the optimum tightness of the cement, final contraction in the cycle is crucial for blockage of gas migration. Concentrations of the additives were obtained experimentally in this study for which the cyclic pressure behavior of the cement was optimized and the permeability reduced for the best final cement results. The parameters investigated in this study were as follows: pressure applied on the slurry with time, compressive strength, and permeability of the set cement. The major causes of the early microfractures are the incomplete cement-water reaction, low compressive strength of the set cement, and the sudden change in the hydrostatic pressure as the cement changes its phase from a liquid to a solid state. This paper reports the appropriate amounts of X-C polymer, Anchorage clay, Ironite Sponge, and synthetic rubber needed to optimize the compressive strength and eliminate both microfracture and microannulus. There are certain limits to the amount and type of synthetic rubber powder for which microfractures are eliminated. The article reports an experimental approach that can be used to eliminate gas migration through a cement design that is environmentally safe and inexpensive, using recyclable materials.

  12. Highly porous aerogels of very low permeability *

    E-Print Network [OSTI]

    J. Phalippou; T. Woignier; R. Sempéré; P. Dieudonné

    In this paper, we firstly investigate the way the pores are created in silica gel during gelation. Then we show that the solid particle arrangement acts on the geometrical pore characteristics (pore volume and pore size distribution). According to the pore size value, the permeability of gels is quite low even if the value of the gel porosity exceeds 95%. Analogous properties can be extended to silica aerogels for which now the solvent is replaced by air. Consequently, and according to their low permeability, light weight aerogels exhibit very striking response to mechanical stresses. Here we report unusual experiments allowing us to estimate the mechanical properties of aerogels thanks to their low value of the average pore size. Moreover, one demonstrates that aerogels may be densified at room temperature using an external isostatic pressure. In that case, the pore size may be tailored with respect to the nature and the characteristics of the starting aerogel. The evolution of the textural properties such as the mean pore size and the specific surface area of these tailored aerogels is investigated as a function of isostatic pressure. 1.

  13. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01T23:59:59.000Z

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  14. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, April 1, 1993--June 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-07-26T23:59:59.000Z

    This was the seventh quarter of the contract. During this quarter we (1) continued the large task of processing the seismic data, (2) collected additional geological information to aid in the interpretation, (3) tied the well log data to the seismic via generation of synthetic seismograms, (4) began integrating regional structural information and fracture trends with our observations of structure in the study area, (5) began constructing a velocity model for time-to-depth conversion and subsequent AVO and raytrace modeling experiments, and (6) completed formulation of some theoretical tools for relating fracture density to observed elastic anisotropy. The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. A basemap is presented with the seismic lines being analyzed for this project plus locations of 13 wells that we are using to supplement the analysis. The arrows point to two wells for which we have constructed synthetic seismograms.

  15. METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA

    SciTech Connect (OSTI)

    Dixon, K.

    2013-09-30T23:59:59.000Z

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded datasets suitable for analysis (sample types 3 and 4). The intact saltstone sample (sample type 1) did not yield any measureable outflow over the pressure range of the outflow test (0-1000 cm H{sub 2}O). This was expected because the estimated air entry pressure for intact saltstone is on the order of 100,000 cm H{sub 2}O (Dixon et al., 2009). The intact saltstone sample with a single saw cut smooth surface fracture (sample type 2) did not produce useable data because the fracture completely drained at less than 10 cm H{sub 2}O applied pressure. The cumulative outflow data from sample types 3 and 4 were analyzed using an inverse solution of the Richard’s equation for water flow in variably saturated porous media. This technique was implemented using the computer code Hydrus-1D (Šim?nek et al., 2008) and the resulting output included the van Genuchten-Mualem water retention and relative permeability parameters and predicted saturated hydraulic conductivity (Van Genuchten, 1980; Van Genuchten et al., 1991). Estimations of relative permeability and saturated conductivity are possible because the transient response of the sample to pressure changes is recorded during the multi-step outflow extraction test. Characteristic curves were developed for sample types 3 and 4 based on the results of the transient outflow method and compared to that of intact saltstone previously reported by Dixon et al. (2009). The overall results of this study indicate that the outflow extraction method is suitable for measuring the hydraulic properties of micro-fractured porous media. The resulting cumulative outflow data can be analyzed using the computer code Hydrus-1D to generate the van Genuchten curve fitting parameters that adequately describe fracture drainage. The resulting characteristic curves are consistent with blended characteristic curves that combine the behaviors of low pressure drainage associated with fracture flow with high pressure drainage from the bulk saltstone matrix.

  16. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-06-01T23:59:59.000Z

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some detail, as are permeabilities of some of the simpler types of fractured materials.

  17. Exploring the physicochemical processes that govern hydraulic fracture through laboratory

    E-Print Network [OSTI]

    Belmonte A; Connelly P

    ) containing model boreholes as an analog to hydraulic fracturing with various fracture-driving fluids. The

  18. Issues in Purchasing and Maintaining Intrinsic Standards

    SciTech Connect (OSTI)

    PETTIT,RICHARD B.; JAEGER,KLAUS; EHRLICH,CHARLES D.

    2000-09-12T23:59:59.000Z

    Intrinsic standards are widely used in the metrology community because they realize the best level uncertainty for many metrology parameters. For some intrinsic standards, recommended practices have been developed to assist metrologists in the selection of equipment and the development of appropriate procedures in order to realize the intrinsic standard. As with the addition of any new standard, the metrology laboratory should consider the pros and cons relative to their needs before purchasing the standard so that the laboratory obtains the maximum benefit from setting up and maintaining these standards. While the specific issues that need to be addressed depend upon the specific intrinsic standard and the level of realization, general issues that should be considered include ensuring that the intrinsic standard is compatible with the laboratory environment, that the standard is compatible with the current and future workload, and whether additional support standards will be required in order to properly maintain the intrinsic standard. When intrinsic standards are used to realize the best level of uncertainty for a specific metrology parameter, they usually require critical and important maintenance activities. These activities can including training of staff in the system operation, as well as safety procedures; performing periodic characterization measurements to ensure proper system operation; carrying out periodic intercomparisons with similar intrinsic standards so that proper operation is demonstrated; and maintaining control or trend charts of system performance. This paper has summarized many of these important issues and therefore should be beneficial to any laboratory that is considering the purchase of an intrinsic standard.

  19. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

  20. Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses

    E-Print Network [OSTI]

    Cappa, F.

    2009-01-01T23:59:59.000Z

    an Engineered Fractured Geothermal Reservoir. Example of theinteractions in a fractured carbonate reservoir inferredwithin a shallow fractured carbonate reservoir. Fracture

  1. Dynamics of window glass fracture in explosions

    SciTech Connect (OSTI)

    Beauchamp, E.K.; Matalucci, R.V.

    1998-05-01T23:59:59.000Z

    An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

  2. Increasing Production from Low-Permeability Gas Reservoirs by Optimizing Zone Isolation for Successful Stimulation Treatments

    SciTech Connect (OSTI)

    Fred Sabins

    2005-03-31T23:59:59.000Z

    Maximizing production from wells drilled in low-permeability reservoirs, such as the Barnett Shale, is determined by cementing, stimulation, and production techniques employed. Studies show that cementing can be effective in terms of improving fracture effectiveness by 'focusing' the frac in the desired zone and improving penetration. Additionally, a method is presented for determining the required properties of the set cement at various places in the well, with the surprising result that uphole cement properties in wells destined for multiple-zone fracturing is more critical than those applied to downhole zones. Stimulation studies show that measuring pressure profiles and response during Pre-Frac Injection Test procedures prior to the frac job are critical in determining if a frac is indicated at all, as well as the type and size of the frac job. This result is contrary to current industry practice, in which frac jobs are designed well before the execution, and carried out as designed on location. Finally, studies show that most wells in the Barnett Shale are production limited by liquid invasion into the wellbore, and determinants are presented for when rod or downhole pumps are indicated.

  3. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05T23:59:59.000Z

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  4. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect (OSTI)

    Kershaw, D.S.; Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States)

    1997-12-31T23:59:59.000Z

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  5. Gas permeable electrode for electrochemical system

    DOE Patents [OSTI]

    Ludwig, F.A.; Townsend, C.W.

    1989-09-12T23:59:59.000Z

    An electrode apparatus is described which is adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments. 3 figs.

  6. Hydrogen-permeable composite metal membrane and uses thereof

    DOE Patents [OSTI]

    Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

    1993-06-08T23:59:59.000Z

    Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

  7. EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY

    E-Print Network [OSTI]

    Stanford University

    EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

  8. Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2009-01-01T23:59:59.000Z

    Modeling of Damage, Permeability Changes and Pressureof excavation-induced damage, permeability changes, andrange of approaches to model damage and permeability changes

  9. Maintain Pumping Systems Effectively | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |PrepareMOJAVE MOJAVEOfficesMaintain Pumping

  10. Maintaining System Air Quality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |PrepareMOJAVE MOJAVEOfficesMaintain

  11. Acid Fracture and Fracture Conductivity Study of Field Rock Samples 

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    carbonate reservoir were labeled A through F to protect proprietary information included in this research. A 2% potassium chloride solution was used for the acid system and fracture conductivity measurements to prevent clay swelling. Injection temperature...

  12. Optimization of fracture treatment designs

    E-Print Network [OSTI]

    Rueda, Jose Ignacio

    1992-01-01T23:59:59.000Z

    using the type curves published by Holditch et al2O. n f H r lic Fracture Pro a ation imula or In 1955, the first model to simulate the propagation of a vertical hydraulic fracture was developed by Khristianovitch and Zheltov O (K-Z model). This two... . . . . 93 97 LIST OF TABLES Table Page 5. I Reservoir and well data for base case example 54 5. 2 Fracture design data for base case example . 54 5. 3 Economic data for base case example . . 54 5. 4 Comparison of the methods used in STIMOP and LPOP...

  13. 4D imaging of fracturing in organic-rich shales during heating

    SciTech Connect (OSTI)

    Maya Kobchenko; Hamed Panahi; François Renard; Dag K. Dysthe; Anders Malthe-Sørenssen; Adriano Mazzini; Julien Scheibert1; Bjørn Jamtveit; Paul Meakin

    2011-12-01T23:59:59.000Z

    To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60 to 400 C) of organic-rich Green River shale. At about 350 C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at {approx}350 C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

  14. Analysis of a multiphase, porous-flow imbibition experiment in fractured volcanic tuff

    SciTech Connect (OSTI)

    Eaton, R.R.; Bixler, N.E.

    1986-12-31T23:59:59.000Z

    A sub-meter-scale imbibition experiment has been analyzed using a finite element, multiphase-flow code. In the experiment, an initially dry cylindrical core of fractured volcanic tuff was saturated by contacting the ends with pressurized water. Our model discretely accounts for three primary fractures that may be present in the core, as indicated by measurements of porosity and saturation. We show that vapor transport has a small (less than 5%) effect on the speed of the wetting front. By using experimental results to estimate apparent spatial variations in permeability along the core, good agreement with measured, transient, saturation data was achieved. The sensitivity of predicted transient wetting fronts to permeability data indicates a need for more extensive measurements. We conclude that it will be difficult to characterize an entire repository - where inhomogeneities due to variations in matrix and fracture properties are not well known - solely from the results of sub-meter-scale laboratory testing and deterministic modeling. 16 refs., 8 figs., 1 tab.

  15. Characterization and significance of a stylolitic fracture system determined from horizontal core and borehole imaging data, Hanifa Reservoir, Abqaiq Field (SA)

    SciTech Connect (OSTI)

    Luthy, S.T.; Grover, G. [Saudi Aramco, Dhahran (Saudi Arabia); Wiltse, E. [Schlumberger, Al-Khobar (Saudi Arabia)

    1995-08-01T23:59:59.000Z

    The Hanifa reservoir at Abqaiq Field, eastern Saudi Arabia, consists of microporous (up to 30% porosity) lime mudstones with low matrix permeability (< 10 md). SEM imagery reveals a crystal framework texture of micro-rhombic calcite crystals with 2-5 {mu}m-sized intercrystalline pore spaces. Fluid transmissibility was preliminarily identified as via fractures as indicated by no stratigraphic predictability to fluid flow, high flow over thin stratigraphic intervals, little relationship between high flow and high porosity intervals, large disparity between core Kh and well-test Kh, and observation offractures in cores and borehole imaging logs front horizontal Hanifa wells. Integration of descriptions from over 4000 fractures observed in borehole images together with descriptions of over 500 fractures identified from vertica1 and horizontal cores has resulted in further characterization of the fracture system. The fractures are open to partially-open, with an east-to northeast orientation, and they cluster in low porosity zones which are characterized by intense stylolitization. These sub-parallel, nearly vertical, discontinuous fractures terminate at stylolites, or pinchout locally into tight carbonate matrix, and contain appreciable amounts of dead oil and calcite cement. In zones of particularly intense stylolitization, fracturing may be locally pervasive, giving the rock a brecciated appearance. Together, the stylolites and stylolite-related fractures form the primary permeability system ofthe Hanifa reservoir. This fracture system architecture is critical to understanding the production characteristics of the reservoir, which include anomalously high fluid flow in low porosity zones or transition zones between high and low porosity, radial flow behavior from well tests, smaller than expected differences in well productivity between vertical and horizontal wells, and limited injection water breakthrough.

  16. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Unknown

    1999-12-01T23:59:59.000Z

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

  17. Characterization and estimation of permeability correlation structure from performance data

    SciTech Connect (OSTI)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01T23:59:59.000Z

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  18. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30T23:59:59.000Z

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

  19. Maintaining Quality in a Decommissioning Environment

    SciTech Connect (OSTI)

    Attas, Michael [Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, R0E 1L0 (Canada)

    2008-01-15T23:59:59.000Z

    The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping steady benefits to AECL and to its customers, the people of Canada.

  20. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01T23:59:59.000Z

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  1. Sensitivity analysis of fracture scattering

    E-Print Network [OSTI]

    Fang, Xinding, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

  2. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  3. Seismic anisotropy of fractured rock

    E-Print Network [OSTI]

    M. Schoenberg, C. M. Sayers

    2000-02-18T23:59:59.000Z

    of seismic anisotropy to determine the orientation of fracture sets is of ... this assumption of noninteraction does not imply that the ... conventional (2-subscript) condensed 6 x 6 matrix notation,. 11. 6, while ... have simple physical interpretations.

  4. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  5. The determination of permeability using a pulse decay technique

    E-Print Network [OSTI]

    Rowe, William Charlton

    1985-01-01T23:59:59.000Z

    pressures from 0 to 15, 000 psi and a maximum pore pressure of 16 psi. The core samples studied had permeabilities rang1ng from 40 to 319 md. They concluded that permeability of sandstone decreases with increase in overburden pressure. The major reduct1...on occurred over the range of 0 to 3000 psi overburden pressure. At 3000 psi overburden pressure, permeabilities ranged from 59 to 89 per cent of their orig1nal unstressed cond1tions, as illustrated in F1g. l. In 1969, Ritch and Kozik4 reported...

  6. Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2011-01-01T23:59:59.000Z

    Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

  7. Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir

    E-Print Network [OSTI]

    Mhiri, Adnene

    2014-08-10T23:59:59.000Z

    : ? Uniform distribution of heterogeneities that cause a variation of geomechanical properties such as: — In-situ stress — Fracture initiation pressure — Elastic moduli (Shear modulus and Poisson’s ratio) ? No interaction with natural fractures: — Natural... that are dynamically created due to the change in the geomechanical properties in the vicinity of the primary fracture these are referred to as secondary fractures and are thought to be orthogonal to primary fractures. ? The fractures that originate due...

  8. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Nur, A.

    1993-01-21T23:59:59.000Z

    This was the fifth quarter of the contract. During this quarter we (1) got approval for the NEPA requirements related to the field work, (2) placed the subcontract for the field data acquisition, (3) completed the field work, and (4) began processing the seismic data. As already reported, the field data acquisition was at Acomo`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  9. Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Mavko, G.; Nur, A.

    1993-04-26T23:59:59.000Z

    During this quarter we (1) received the last of the field tapes and survey information for the seismic field data acquisition which was finished at the very end of the previous quarter, (2) began the large task of processing the seismic data, (3) collected well logs and other informination to aid in the interpretation, and (4) initiated some seismic modeling studies. As already reported, the field data acquisition was at Amoco`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

  10. INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2014-01-01T23:59:59.000Z

    Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

  11. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02T23:59:59.000Z

    This unexpected result is caused by the wave-induced flow of fluids between pores and fractures. ..... For non-fractured rock setting fracture weaknesses. DN and ...

  12. GMINC - A MESH GENERATOR FOR FLOW SIMULATIONS IN FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Flow in Naturally Fractured Reservoirs, Society of Petroleumfor Naturally Fractured Reservoirs, paper SPE-11688,Determining Naturally Fractured Reservoir Properties by Well

  13. Analysis of flow behavior in fractured lithophysal reservoirs

    E-Print Network [OSTI]

    Liu, Jianchun; Bodvarsson, G.S.; Wu, Yu-Shu

    2002-01-01T23:59:59.000Z

    R. , 1980. Naturally Fractured Reservoirs, Petroleum, Tulsa,bounded naturally fractured reservoirs. Soc. Pet. Eng. J.test in a naturally fractured reservoir. J. Pet. Tech. 1295–

  14. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-01-01T23:59:59.000Z

    Heat Flow in Fractured Reservoirs, SPE Advanced TechnologyTransfer Area in Fractured Reservoirs Karsten Pruess 1 , Tonbehavior arises in fractured reservoirs. As cold injected

  15. asymmetric hydraulic fracture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the fractured shale 17 RPSEA UNCONVENTIONAL GAS CONFERENCE 2012: Geology, the Environment, Hydraulic Fracturing Engineering Websites Summary: Fracturing Experiment Overview...

  16. advanced hydraulic fracturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the fractured shale 18 RPSEA UNCONVENTIONAL GAS CONFERENCE 2012: Geology, the Environment, Hydraulic Fracturing Engineering Websites Summary: Fracturing Experiment Overview...

  17. Chapter 10 Creating and Maintaining Geographic Databases 131 Creating and Maintaining

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    (DBMS), a specialist piece of software designed to handle multi-user access to an integrated set of data and versioning. 10 #12;Chapter 10 Creating and Maintaining Geographic Databases 132 KEY WORDS AND CONCEPTS DBMS.2 Database management systems 10.3 Storing data in DBMS tables 10.4 SQL 10.5 Geographic database types

  18. Multiwell experiment: Fracturing experiments

    SciTech Connect (OSTI)

    Warpinski, N.R.; Sattler, A.R.; Branagan, P.T.; Cipolla, C.

    1987-01-01T23:59:59.000Z

    Because of the complexity of the stimulation, no conventional analyses were useful, so we decided to concentrate on the minifrac to provide important fracture parameters. The minifrac was conducted in an identical manner to the pressure-up and pad stages of the stimulation. Figure 1 shows two initial pressure-history match calculations that were performed to model the minifrac. We found that the pressure behavior could not be matched with any normal behavior. Examining the field pressure data, we see that the interesting feature is the sudden flattening in the pressure at a level 1050 psi above the closure stress during pumping and the rapid drop to this same level at shut-in, after which the pressure decreases much more slowly. We first tried to match this behavior using enhanced height growth. While height growth can flatten the pressure during pumping, it also causes a very slow pressure decline at shut-in. We also tried additional leakoff height as height grew, but this could not flatten the pressure as much as needed. Finally, we tried an accelerated leakoff condition above 1050 psi. We did this by increasing the leakoff coefficient by a constant factor above some threshold value. To keep the results smooth and code convergent, we actually linearly phased in the increased leakoff between 1000 and 1100 psi. The final result of these calculations is shown in Figure 2; a factor of 50 increase in the leakoff coefficient was required to match the data for pressures above 1050 psi.

  19. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19T23:59:59.000Z

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  20. altered permeability states: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compounds: The effect of structure and pH on Caco-2 cell permeability University of Kansas - KU ScholarWorks Summary: A tetrazole ring is often used in drug discovery as a...

  1. Extended correlations of porosity, permeability, and formation resistivity factor

    E-Print Network [OSTI]

    Ellis, Keith Wade

    1987-01-01T23:59:59.000Z

    obtained through a literature search, and the remainder were obtained through donations by Shell and Tenneco. The complete data set consists of permeability, porosity and formation factor measurements for twenty formations. Of the twenty data sets, seven...

  2. Experimental Study on Rock Deformation and Permeability Variation

    E-Print Network [OSTI]

    Ding, Jihui

    2013-08-01T23:59:59.000Z

    The development of a petroleum reservoir would inevitably induce a rearrangement of the in-situ stress field. The rearrangement of the stress field would then bring about a deformation of the reservoir rock and a change of the permeability...

  3. Combined permeable pavement and ground source heat pump systems 

    E-Print Network [OSTI]

    Grabowiecki, Piotr

    2010-01-01T23:59:59.000Z

    The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

  4. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08T23:59:59.000Z

    The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

  5. Permeability, Resistivity and Strength of Fouled Railroad Ballast

    E-Print Network [OSTI]

    Rahman, A. J.

    2013-08-31T23:59:59.000Z

    particles between the ballast particles; therefore, permeability and resistivity were also correlated. The strength properties of clean and fouled ballast were also evaluated using large direct shear box and modified direct shear box (extension in height...

  6. Stress-dependent permeability on tight gas reservoirs 

    E-Print Network [OSTI]

    Rodriguez, Cesar Alexander

    2005-02-17T23:59:59.000Z

    People in the oil and gas industry sometimes do not consider pressure-dependent permeability in reservoir performance calculations. It basically happens due to lack of lab data to determine level of dependency. This thesis ...

  7. Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture

    E-Print Network [OSTI]

    Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

    2000-01-01T23:59:59.000Z

    reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

  8. Validity and limitations of gas-drive relative permeability measurement

    E-Print Network [OSTI]

    Gupta, Anand Kumar

    1971-01-01T23:59:59.000Z

    VALIDITY AND LIMITATIONS OF GAS-DRIVE RELA TI VE PERMEABILITY MEASUREMEN T A Thesis by ANAND KUMAR GUPTA Submitted to the Graduate College of Texas ARM University in partial fulfillxnent of the requirement for the degree of MASTER Ok SCIENCE... August, 1971 Major Subject: Petroleum Engineering VALIDITY AND LIMITATIONS OF GAS-DRIVE RELATIVE PERMEABILITY MEASUREMENT A Thesis by ANAND KUMAR GUPTA Approved as to style and content by: ( airman of Committee) ber) Head of Department) (Member...

  9. Water permeability and microstructure of three old concretes

    SciTech Connect (OSTI)

    Hearn, N.; Detwiler, R.J.; Sframeli, C. (Univ. of Toronto, Ontario (Canada). Dept. of Civil Engineering)

    1994-01-01T23:59:59.000Z

    Measurement of the permeability of concrete to water is complicated by the self-sealing phenomenon, the progressive reduction of flow during the test. Many researchers have attributed self sealing to the hydration of previously unreacted cement on exposure to water. This paper describes permeability tests on concretes continuously hydrated for 26 years. Backscattered electron images show that virtually no unhydrated cement remains in these specimens, yet they exhibit self-sealing behavior.

  10. Investigation of the rate sensitivity of pseudo relative permeabilities

    E-Print Network [OSTI]

    Brittain, Charles Finney

    1986-01-01T23:59:59.000Z

    of hypothetical reservoir stratifications were considered. Cross-sectional simulation runs were made using each stratification case for a range of waterflood injection rates and endpoint mobility ratios. Dynamic pseudo relative permeabilities were calculated... , These dynamic pseudo relative permeabilities were developed for those reservoirs that do not satisfy the assumptions of the vertical equilibrium or viscous-dominated pKr models. For waterflooding a stratified oil reservoir, fluid flow rate (velocity...

  11. FLOW CHARACTERISTICS AND RELATIVE PERMEABILITY FUNCTIONS FOR TWO

    E-Print Network [OSTI]

    Stanford University

    i s t i c s f o r a fractured geothermal reservoir have been obtained by m d e l l i n g the system fractured geothermal reservoirs. ii #12;. #12;TABLE OF CONTENTS -- ABSTRACT RESERVOIRS FROM A ONE DIMENSIONAL THERMODYNAMIC MODEL Anthony J. Menzies August 1982 A #12;#12;. Stanford

  12. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    SciTech Connect (OSTI)

    Luey, J.; Seiler, D.K. [Pacific Northwest Lab., Richland, WA (United States); Schuring, J.R.

    1995-02-01T23:59:59.000Z

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford.

  13. Method for the preparation of high surface area high permeability carbons

    DOE Patents [OSTI]

    Lagasse, R.R.; Schroeder, J.L.

    1999-05-11T23:59:59.000Z

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.

  14. Method for the preparation of high surface area high permeability carbons

    DOE Patents [OSTI]

    Lagasse, Robert R. (Albuquerque, NM); Schroeder, John L. (Albuquerque, NM)

    1999-05-11T23:59:59.000Z

    A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.

  15. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

  16. Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models

    E-Print Network [OSTI]

    Kim, Tae Hyung

    2009-05-15T23:59:59.000Z

    Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

  17. Y-12 Construction maintains 'superb' safety performance | Y-12...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction maintains ... Y-12 Construction maintains 'superb' safety performance Posted: March 6, 2013 - 6:03pm Tom Morris, B&W Y-12 vice president of projects, presents...

  18. A Simple Self-Maintaining Metabolic System: Robustness, Autocatalysis, Bistability

    E-Print Network [OSTI]

    Piedrafita1 , Francisco Montero1 , Federico Mora´n1 , Mari´a Luz Ca´rdenas2 , Athel Cornish-Bowden2 * 1-maintaining mode, the entire network being necessary to maintain the two catalysts. Citation: Piedrafita G, Montero

  19. Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23T23:59:59.000Z

    It is important that homeowners maintain their septic systems properly. Otherwise, problems that develop could threaten human health and the environment. In this publication you will learn how to maintain all the components of a septic system...

  20. Biodiversity and Ecosystem Functioning: Maintaining Natural Life Support Processes

    E-Print Network [OSTI]

    Minnesota, University of

    Biodiversity and Ecosystem Functioning: Maintaining Natural Life Support Processes Publishedbythe. ONeill, Harold A. Mooney, Osvaldo E. Sala, Amy J. Symstad, and David Tilman Biodiversity and Ecosystem Functioning: Maintaining Natural Life Support Processes Critical processes at the ecosystem level influence

  1. The Promise of Affordable Care: Maintaining Coverage During Life Transitions

    E-Print Network [OSTI]

    O'Leary, Ann; Capell, Elizabeth A.; Jacobs, Ken; Lucia, Laurel

    2011-01-01T23:59:59.000Z

    Id. DOI: 10.2202/1944-4370.1194 O'Leary et al. : MaintainingId. DOI: 10.2202/1944-4370.1194 O'Leary et al. : Maintainingreserved. www.bepress.com/cjpp O'Leary et al. : Maintaining

  2. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    SciTech Connect (OSTI)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01T23:59:59.000Z

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other continuum to the mass in the current continuum. Numerical examples show that this method is limited to certain ranges of parameters, due to an intrinsic assumption of an equilibrium concentration profile in the matrix blocks in building the transfer probability. Subsequently, this method fails in describing mass transfer for parameter combinations that violate this assumption, including small diffusion coefficients (i.e., the free-water molecular diffusion coefficient 1×10-11 meter2/second), relatively large fracture spacings (such as meter), and/or relatively large matrix retardation coefficients (i.e., ). These “outliers” in parameter range are common in UGTA applications. To address the above limitations, we then developed a Direct Numerical Simulation (DNS)-Reflective method. The novel DNS-Reflective method can directly track the particle dynamics across the fracture/matrix interface using a random walk, without any empirical assumptions. This advantage should make the DNS-Reflective method feasible for a wide range of parameters. Numerical tests of the DNS-Reflective, however, show that the method is computationally very demanding, since the time step must be very small to resolve particle transfer between fractures and matrix blocks. To improve the computational efficiency of the DNS approach, we then adopted Roubinet et al.’s method [2009], which uses first passage time distributions to simulate dual-domain mass transfer. The DNS-Roubinet method was found to be computationally more efficient than the DNS-Reflective method. It matches the analytical solution for the whole range of major parameters (including diffusion coefficient and fracture aperture values that are considered “outliers” for Liu et al.’s transfer probability method [2000]) for a single fracture system. The DNS-Roubinet method, however, has its own disadvantage: for a parallel fracture system, the truncation of the first passage time distribution creates apparent errors when the fracture spacing is small, and thus it tends to erroneously predict breakthrough curves (BTCs) for th

  3. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    SciTech Connect (OSTI)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30T23:59:59.000Z

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that has already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.

  4. Three Models for Water ooding in a Naturally Fractured Petroleum ...

    E-Print Network [OSTI]

    THREE MODELS FOR WATERFLOODING IN A NATURALLY. FRACTURED ... 1. Introduction. For the purposes of this paper a naturally fractured reservoir.

  5. CT measurements of two-phase flow in fractured porous media

    SciTech Connect (OSTI)

    Hughes, R.G.; Brigham, W.E.; Castanier, L.M.

    1997-06-01T23:59:59.000Z

    The simulation of flow in naturally fractured reservoirs commonly divides the reservoir into two continua - the matrix system and the fracture system. Flow equations are written presuming that the primary flow between grid blocks occurs through the fracture system and that the primary fluid storage is in the matrix system. The dual porosity formulation of the equations assumes that there is no flow between matrix blocks while the dual permeability formulation allows fluid movement between matrix blocks. Since most of the fluid storage is contained in the matrix, recovery is dominated by the transfer of fluid from the matrix to the high conductivity fractures. The physical mechanisms influencing this transfer have been evaluated primarily through numerical studies. Relatively few experimental studies have investigated the transfer mechanisms. Early studies focused on the prediction of reservoir recoveries from the results of scaled experiments on single reservoir blocks. Recent experiments have investigated some of the mechanisms that are dominant in gravity drainage situations and in small block imbibition displacements. The mechanisms active in multiphase flow in fractured media need to be further illuminated, since some of the experimental results appear to be contradictory. This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner.

  6. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01T23:59:59.000Z

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  7. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  8. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01T23:59:59.000Z

    during hydraulic fracturing Moore and Glaser, in press JGR,press JGR, B – 2006JB004373 where m is the average hydraulichydraulic fracturing with water. Moore and Glaser, in press

  9. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    E-Print Network [OSTI]

    Lu, Zhiming

    Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

  10. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    Seismic wave propagation through fractures and cracks is an important subject in exploration and production geophysics, earthquake seismology and mining.

  11. Discrete fracture modeling for fractured reservoirs using Voronoi grid blocks

    E-Print Network [OSTI]

    Gross, Matthew Edward

    2007-09-17T23:59:59.000Z

    or pseudofracture groups modeled in their own grid blocks. Discrete Fracture Modeling (DFN) is still a relatively new field, and most research on it up to this point has been done with Delaunay tessellations. This research investigates an alternative approach using...

  12. Self-potential observations during hydraulic fracturing

    E-Print Network [OSTI]

    Moore, Jeffrey R.; Glaser, Steven D.

    2008-01-01T23:59:59.000Z

    1968), Permeability of granite under high pressure, J.resistivity during creep in granite, Pure Appl. Geophys. ,properties of westerly granite with applications, J.

  13. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

  14. Hydraulic Fracture: multiscale processes and moving

    E-Print Network [OSTI]

    Peirce, Anthony

    Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

  15. RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    RATE DECLINE ANALYSIS FOR NATURALLY FRACTURED RESERVOIRS A REPORT SUBMITTED TO THE DEPARTMENT analylsiis for constant pressure production in a naturally fractured reservoir is presented. The solution, the Warren and Root model which assumes fracturing is perfectly unifom, provides an upper bound of reservoir

  16. Regulation of Hydraulic Fracturing in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

  17. Fractured shale reservoirs: Towards a realistic model

    SciTech Connect (OSTI)

    Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

  18. Hydromechanical modeling of pulse tests that measure both fluidpressure and fracture-normal displacement of the Coaraze Laboratory site,France

    SciTech Connect (OSTI)

    Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C-F.; Thoraval, A.

    2006-04-22T23:59:59.000Z

    In situ fracture mechanical deformation and fluid flowinteractions are investigated through a series of hydraulic pulseinjection tests, using specialized borehole equipment that cansimultaneously measure fluid pressure and fracture displacements. Thetests were conducted in two horizontal boreholes spaced one meter apartvertically and intersecting a near-vertical highly permeable faultlocated within a shallow fractured carbonate rock. The field data wereevaluated by conducting a series of coupled hydromechanical numericalanalyses, using both distinct-element and finite-element modelingtechniques and both two- and three-dimensional model representations thatcan incorporate various complexities in fracture network geometry. Oneunique feature of these pulse injection experiments is that the entiretest cycle, both the initial pressure increase and subsequent pressurefall-off, is carefully monitored and used for the evaluation of the insitu hydromechanical behavior. Field test data are evaluated by plottingfracture normal displacement as a function of fluid pressure, measured atthe same borehole. The resulting normal displacement-versus-pressurecurves show a characteristic loop, in which the paths for loading(pressure increase) and unloading (pressure decrease) are different. Bymatching this characteristic loop behavior, the fracture normal stiffnessand an equivalent stiffness (Young's modulus) of the surrounding rockmass can be back-calculated. Evaluation of the field tests by couplednumerical hydromechanical modeling shows that initial fracture hydraulicaperture and normal stiffness vary by a factor of 2 to 3 for the twomonitoring points within the same fracture plane. Moreover, the analysesshow that hydraulic aperture and the normal stiffness of the pulse-testedfracture, the stiffness of surrounding rock matrix, and the propertiesand geometry of the surrounding fracture network significantly affectcoupled hydromechanical responses during the pulse injection test. Morespecifically, the pressure-increase path of the normaldisplacement-versus-pressure curve is highly dependent on thehydromechanical parameters of the tested fracture and the stiffness ofthe matrix near the injection point, whereas the pressure-decrease pathis highly influenced by mechanical processes within a larger portion ofthe surrounding fractured rock.

  19. Preliminary relative permeability estimates of methanehydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

    2006-05-08T23:59:59.000Z

    The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

  20. Geomechanical Simulation of Fluid-Driven Fractures

    SciTech Connect (OSTI)

    Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

    2012-11-30T23:59:59.000Z

    The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

  1. Effects of Water Injection into Fractured Geothermal Reservoirs: A Summary of Experience Worldwide

    SciTech Connect (OSTI)

    Horne, Roland N.

    1982-06-01T23:59:59.000Z

    Reinjection of water into fractured geothermal reservoirs holds potential both for improvement and degradation of total energy recovery. The replacement of reservoir fluid can mean support of placement of reservoir pressures and also more efficient thermal energy recovery, but at the same time the premature invasion of reinjected water back into production wells through high permeability fractures can reduce discharge enthalpy and hence deliverability and useful energy output. Increases in reservoir pressure and maintenance of field output have been observed in operating fields, but unfortunately so too have premature thermal breakthroughs. The design of reinjection schemes, therefore, requires careful investigation into the likely effects, using field experimentation. This paper summarizes field experience with reinjection around the world, with the intention of elucidating characteristics of possible problems. The results summarized in this paper fall into three categories of interest: permeability changes dye to injection (both increases and decreases); the path followed by injected water (as indicated by tracer tests); and the thermal and hydraulic influences of injection on the reinjection well itself and on surrounding producers. [DJE-2005

  2. RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2002-04-12T23:59:59.000Z

    Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.

  3. Upscaling verticle permeability within a fluvio-aeolian reservoir

    SciTech Connect (OSTI)

    Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-08-01T23:59:59.000Z

    Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

  4. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  5. EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining...

    Broader source: Energy.gov (indexed) [DOE]

    facility management strategies that pay for themselves and result in energy savings. essquick-winsfs.pdf More Documents & Publications Guide to Operating and Maintaining...

  6. Acid Fracture and Fracture Conductivity Study of Field Rock Samples

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    (Black and Hower 1965). Clays consist of negatively charged aluminosilicate layers kept together by cations. The most characteristic property is their ability to adsorb water between the layers, resulting in strong repulsive forces and clay expansion... chemicals used in water fracturing such as friction reducers, fluid-loss additives, and surfactants (Black and Hower 1965). The samples used in this study had significant clay-like content. To prevent swelling, a 2% KCl solution was used throughout...

  7. Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture

    E-Print Network [OSTI]

    Nelson, J.T.

    2009-01-01T23:59:59.000Z

    responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

  8. VisualizationandHierarchicalAnalysisofFlowinDiscreteFractureNetworkModels Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of ow and transport in fractured rock has impor

    E-Print Network [OSTI]

    Hamann, Bernd

    . A steady-state ow solution for saturated water is obtained using FEHM (Finite Element Heat and Mass resource management, and hydrocarbon extraction. We have developed methods to explicitly model ow ective use of traditional visualization methods. We would also like quantitative analysis methods

  9. Remediation of a fractured clay soil contaminated with gasoline containing MTBE

    SciTech Connect (OSTI)

    Johnson, R.L.; Grady, D.E. [Oregon Graduate Institute, Portland, OR (United States); Walden, T. [BP Oil Europe, Brussels (Belgium)

    1997-12-31T23:59:59.000Z

    Gasoline and other light non-aqueous phase liquids (LNAPLs) released into fractured clay soils initially move by advection of the LNAPL through the fractures. Once advective movement of the LNAPL ceases, dissolution of the gasoline components into the pore water and diffusion into the intact blocks of clay becomes an important transport process. The aqueous-phase flux of each compound in the mixture depends in large part upon its aqueous solubility. For example, a low-solubility compound like isooctane remains primarily in the fracture in the LNAPL. A high-solubility compound, like methyl-tert-butyl ether (MTBE), dissolves readily and may move almost entirely into the clay matrix. The distribution of compounds between the matrix and the fractures will have an important impact on the rate at which the gasoline contaminated soil can be remediated. In this context, the presence of soluble additives like MTBE can significantly impact the risk and remediation time for the, soil. Beginning in 1993 a field study to examine the applicability of air flushing for remediation of low-permeability soils was sponsored by API. The study focused on a variety of soil vapor extraction (SVE) and in situ air sparging (IAS) approaches for mass removal and risk reduction. The source of gasoline contamination in this study was a release of 50 liters of a mixture containing 14 gasoline hydrocarbons ranging from pentane to naphthalene, and including MTBE. The mixture was released into the shallow subsurface and allowed to redistribute for 10 months prior to air flushing startup. Numerical modeling indicated that essentially all of the MTBE should have dissolved into the matrix. In contrast, essentially all of the isooctane should have remained in the LNAPL in the fractures.

  10. Characterizing Curing-Cement Slurries by Permeability, Tensile Strength,

    E-Print Network [OSTI]

    Backe, Knut

    Characterizing Curing-Cement Slurries by Permeability, Tensile Strength, and Shrinkage K.R. Backe oilwell cements. The results show that the curing characteristics are a function of temperature and that there is a correlation between shrinkage and cement content. The paper also introduces a new mechanism for gas migration

  11. MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES

    E-Print Network [OSTI]

    Sarabandi, Kamal

    MULTILEVEL FAST MULTIPOLE METHOD FOR MODELING PERMEABLE STRUCTURES USING CONFORMAL FINITE ELEMENTS #12;Copyright c Kubilay Sertel All Rights Reserved 2003 #12;ABSTRACT MULTILEVEL FAST MULTIPOLE METHOD fast multipole method for impen- etrable targets in the context of flat-triangular geometry

  12. Permeable Interlocking Concrete Pavement (PICP) for Stormwater Management

    E-Print Network [OSTI]

    Permeable Interlocking Concrete Pavement (PICP) for Stormwater Management Benefits and Uses · Potential for Extended Pavement Life Due to Well Drained Base and Reduced Freeze-Thaw · No curing time Cost Can Be Comparable for PICP with Reduced Stormwater Infrastructure VS. Standard Pavement

  13. An asymptotic model of seismic reflection from a permeable layer

    SciTech Connect (OSTI)

    Silin, D.; Goloshubin, G.

    2009-10-15T23:59:59.000Z

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.

  14. "A 4-H tradition that has been maintained

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia 4-H All Stars "A 4-H tradition that has been maintained for over 80 years." Becoming an All Star By being active in your home 4-H community and maintaining a high interest in "Making the Best Better," you can apply to become a 4- H All Star in Virginia. Applications must be filled out

  15. LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST

    E-Print Network [OSTI]

    Lundstrom, L.

    2011-01-01T23:59:59.000Z

    PERMEABILITY TEST OF THE GRANITE' IN THE STRIPA MINE AND,PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE ANDPERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND

  16. Evaluation of a permeability-porosity relationship in a low permeability creeping material using a single transient test

    E-Print Network [OSTI]

    Ghabezloo, Siavash; Saint-Marc, Jérémie; 10.1016/j.ijrmms.2008.10.003

    2008-01-01T23:59:59.000Z

    A method is presented for the evaluation of the permeability-porosity relationship in a low-permeability porous material using the results of a single transient test. This method accounts for both elastic and non-elastic deformations of the sample during the test and is applied to a hardened class G oil well cement paste. An initial hydrostatic undrained loading is applied to the sample. The generated excess pore pressure is then released at one end of the sample while monitoring the pore pressure at the other end and the radial strain in the middle of the sample during the dissipation of the pore pressure. These measurements are back analysed to evaluate the permeability and its evolution with porosity change. The effect of creep of the sample during the test on the measured pore pressure and volume change is taken into account in the analysis. This approach permits to calibrate a power law permeability-porosity relationship for the tested hardened cement paste. The porosity sensitivity exponent of the power...

  17. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

    1999-08-10T23:59:59.000Z

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

  18. Apparatus and method for monitoring underground fracturing

    DOE Patents [OSTI]

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

    1999-08-10T23:59:59.000Z

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

  19. Research consortium on fractured petroleum reservoirs. Third quarterly report, July 1--September 30, 1993

    SciTech Connect (OSTI)

    Firoozabadi, A.; Markeset, T.

    1993-11-22T23:59:59.000Z

    Our 1993 third quarter report discusses the results of our work on: (1) gas-oil gravity drainage in layered media; and, (2) the influence of viscous forces on gas-oil flow in fractured porous media. For sometime, we have been working on the incorporation of reinfiltration and capillary continuity concepts in a dual-porosity model. A simple and accurate technique has been developed for this purpose. The experiments on gas-oil gravity drainage in layered media are intended to: (1) verify our theoretical analysis; (2) provide more insight; and, (3) provide a guide for the simulation of gas-oil gravity drainage at field scale. On the first objective, the experiments confirm that gas-oil gravity drainage could result in a downward gas fingering phenomenon. Without capillary pressure, downward gas fingering could not realize. The experiments also show that drainage from a less permeable layer would be an extremely slow process. This is similar to the drainage performance of matrix blocks in fractured porous media. Apparently, relative permeability to gas (i.e. gas mobility) may be important for flow in layered porous media. The project on the effect of viscous forces on gas-oil displacement in fractured porous media has taken longer than anticipated. For the first time, in gravity drainage experiments of the matrix-fracture configuration used in this project, we could not obtain reproducible results. After several tests, we teamed that the surface tension of the normal-decane/air system changes in the presence of the coating cover which was used in the experimental assembly of this project. We removed the coating. The experiments can now be reproduced. The data show that there is a strong effect of viscous forces on matrix/fracture flow. A small imposed pressure gradient results in a substantial amount of oil recovery. After performing 3-4 more tests, the data will be analyzed and an appropriate model will be developed to relate experimental data to field conditions.

  20. Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally

    E-Print Network [OSTI]

    Herbert, Bruce

    Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally; accepted 14 July 2004; published 14 October 2004. [1] Bedding-parallel permeability of illite-rich shale Geochemistry: Low-temperature geochemistry; KEYWORDS: permeability, shale, fluid chemistry Citation: Kwon, O

  1. I N F I N I T E CONDUCTIVITY FRACTURE NATURALLY FRACTURED RESERVOIR

    E-Print Network [OSTI]

    Stanford University

    I N F I N I T E CONDUCTIVITY FRACTURE I N A NATURALLY FRACTURED RESERVOIR A REPORT SUBMITTED How& #12;ABSTRACT This r e p o r t describes t h e behavior of a n a t u r a l l y fractured r e s e r v o i r when a well is producing a t constant rate through an i n f i n i t e conductivity fracture

  2. STRENGTH AND PERMEABILITY TESTS ON ULTRA-LARGE STRIPA GRANITE CORE

    E-Print Network [OSTI]

    Thorpe, R.

    2009-01-01T23:59:59.000Z

    granite • • • • • • • • • • • '. • • • • • • • • • • • • •· . . Mohr diagram for intact Stripa granite . .healed fractures in Stripa granite. · . · . . Key to figures

  3. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect (OSTI)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01T23:59:59.000Z

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  4. Modeling multiphase heat and mass transfer in consolidated, fractured, porous media

    SciTech Connect (OSTI)

    Bixler, N.E.; Eaton, R.R.

    1987-12-31T23:59:59.000Z

    A number of potential transport mechanisms are considered in this paper: Darcy flow due to pressure and density gradients in the liquid and gas phases; Knudsen diffusion in the gas phase; binary diffusion in the gas phase; heat conduction; energy convection; and evaporation/condensation and its associated latent heat effects. Most of these mechanisms are highly nonlinear, especially Darcy flow, where relative permeabilities often vary by orders of magnitude depending on local saturation, and evaporation/condensation, which depends strongly on local temperature, gas pressure, and saturation. As a consequence of the nonlinearities, it is essential to employ numerical methods if realistic modeling is to be performed. Here, the numerical model is of the standard Galerkin/finite element variety, which is convenient for handling irregular domains and a wide variety of boundary conditions. This numerical model is used to examine the relative effectiveness of each of the transport mechanisms in several one-dimensional and simple two-dimensional multiphase flows in fractured and unfractured porous materials. The importance of fracture orientation is also studied. Predictions are compared with experimental measurements for imbibition and drying of fractured volcanic tuff.

  5. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

    1990-01-01T23:59:59.000Z

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  6. Regional Analysis And Characterization Of Fractured Aquifers...

    Open Energy Info (EERE)

    Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Wave Propagation in Fractured Poroelastic Media

    E-Print Network [OSTI]

    2014-06-22T23:59:59.000Z

    Wave Propagation in Fractured. Poroelastic Media. WCCM, Barcelona, Spain, July 2014. Juan E. Santos,. 1. 1. Instituto del Gas y del Petr´oleo (IGPUBA), UBA,

  8. Fracturing technology poised for rapid advancement

    SciTech Connect (OSTI)

    Von Flatern, R.

    1993-10-01T23:59:59.000Z

    This paper summarizes the advances and current status of hydraulic fracturing and the industry's ability to design and predict the results. Although modeling techniques have improved over the years, there still is no model which can be considered very reliable. The paper considers alternatives to help improve the reliability of these models such as on-site quality control. This quality control aspect entails the site-specific tailoring of a fracturing fluid to be better suited for the target fracturing zone environment and adjusting the fluid properties accordingly. It also entails various methods for fluid injection and placement of propping agents. Some future trends in hydraulic fracturing are also discussed.

  9. Geothermal: Sponsored by OSTI -- Fracture Characterization in...

    Office of Scientific and Technical Information (OSTI)

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

  10. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

  11. Microseismic Tracer Particles for Hydraulic Fracturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The trend toward production of hydrocarbons from unconventional reservoirs (tight gas, shale oilgas) has caused a large increase in the use of hydraulic fracture stimulation of...

  12. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    European countries. The initial rock properties for the twoinduced changes in rock properties. The purpose of the model3. Some basic THM rock properties Parameter Bulk Density, [

  13. The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs

    E-Print Network [OSTI]

    Densirimongkol, Jurairat

    2010-10-12T23:59:59.000Z

    in fracture conductivity and unsuccessful stimulation treatment. In early years, because of the increase in the success of proppant fracturing, proppant partial monolayer has been put forward as a method that helps generate the maximum fracture conductivity...

  14. Seismic characterization of fractured reservoirs using 3D double beams

    E-Print Network [OSTI]

    Zheng, Yingcai

    2012-01-01T23:59:59.000Z

    We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

  15. Efficient Double-Beam Characterization for Fractured Reservoir

    E-Print Network [OSTI]

    Zheng, Yingcai

    We proposed an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. Based on the diffraction theory, the scattered wave ...

  16. Incorporating Rigorous Height Determination into Unified Fracture Design

    E-Print Network [OSTI]

    Pitakbunkate, Termpan

    2010-10-12T23:59:59.000Z

    to find the maximum productivity index for a given proppant amount. Then, the dimensionless fracture conductivity index corresponding to the maximum productivity index can be computed. The penetration ration, the fracture length, and the propped fracture...

  17. Studying Hydraulic Fracturing through Time-variant Seismic Anisotropy

    E-Print Network [OSTI]

    Liu, Qifan

    2013-10-01T23:59:59.000Z

    . Studying seismic anisotropy by shear wave splitting can help us better understand the relationship between hydraulic fracturing and fracture systems. Shear wave splitting can be caused by fracturing and also can naturally take place in most sedimentary...

  18. Ductile fracture modeling : theory, experimental investigation and numerical verification

    E-Print Network [OSTI]

    Xue, Liang, 1973-

    2007-01-01T23:59:59.000Z

    The fracture initiation in ductile materials is governed by the damaging process along the plastic loading path. A new damage plasticity model for ductile fracture is proposed. Experimental results show that fracture ...

  19. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01T23:59:59.000Z

    injection into a fractured reservoir system. A reservoirIn the case of fractured reservoirs, Equations (25) and (26)c ww q a >> For fractured reservoirs, the former expression

  20. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOE Patents [OSTI]

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04T23:59:59.000Z

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  1. Idaho Application for Permit to Construct Modify or Maintain...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- RegulationRegulation: Idaho Application for Permit to Construct Modify or Maintain an Injection Well - Form 42-39-1Legal Published NA...

  2. Mining, Using and Maintaining Source Statistics for Adaptive Data Integration

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    -Objective Optimization, Statistics Mining, Incremental Maintenance 1. INTRODUCTION The availability of structuredMining, Using and Maintaining Source Statistics for Adaptive Data Integration Jianchun Fan a framework for effectively mining multiple types of statistics including source coverage statistics, inter

  3. A Systematic Approach to Creating and Maintaining Software Documentation

    E-Print Network [OSTI]

    French, James C.

    and SODOS integrated database management systems with the software documentation associatedUVA A Systematic Approach to Creating and Maintaining Software Documentation Allison L. Powell CODE INTERFACE BROWSING INTERFACE STATUS FUTURE PLANS WHY SOFTWARE DOCUMENTATION AS AN APPLICATION AREA

  4. REVIEW ARTICLE Standard methods for maintaining adult Apis mellifera

    E-Print Network [OSTI]

    Shutler, Dave

    REVIEW ARTICLE Standard methods for maintaining adult Apis mellifera in cages under in vitro Research Unit (CRA-API), Bologna, Italy. 5 Institute for Wildlife Conservation, Szent István University

  5. Maintaining dynamic sequences under equalitytests in polylogarithmic time

    E-Print Network [OSTI]

    Maintaining dynamic sequences under equality­tests in polylogarithmic time K. Mehlhorn R. Sundar C. Uhrig January 16, 1996 Abstract We present a randomized and a deterministic data structure

  6. RRC - Supplemental Application Information for Permit to Maintain...

    Open Energy Info (EERE)

    Supplemental Application Information for Permit to Maintain and Use a Commercial Oil and Gas Waste Disposal Pit Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Field-Scale Effective Matrix Diffusion Coefficient for Fractured Rock: Results From Literature Survey

    E-Print Network [OSTI]

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    Dispersed fluid flow in fractured reservoirs: An analysis ofa hydraulically fractured granite geothermal reservoir, Soc.

  8. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    seismic parameters for fractured reservoirs when the crackin a naturally fractured gas reservoir, The Leading Edge,

  9. An analysis of the accuracy of relative permeability 

    E-Print Network [OSTI]

    Tao, Teh-Ming

    1982-01-01T23:59:59.000Z

    Properties Used in Sample Study. . . 2. Summary of Cases Run 34 3. Summary of Sample Properties. 36 4. Comparison of the Relative Error 51 5. Error in Water Infection Rate. 57 6. Influence of Different Magnitude of Measurement Error. 75 LIST QF FIGURES.... Pressure Variation. 27 8. Simulated Measurement Errors. 31 Estimation Deviation Distribution of k for Cases 1, 5, 6, 7. 41 10 Estimation Deviation Distribution of k for Cases 1, 5, 6, 7. 42 Standard Deviation Distribution of Oil Relative Permeability...

  10. Semi-analytical estimates of permeability obtained from capillary pressure

    E-Print Network [OSTI]

    Huet, Caroline Cecile

    2006-04-12T23:59:59.000Z

    ..............................................................................................................................................(2.7) Where ? is the pore size distribution index. This model is commonly used for consolidated porous media. In 1980, Van Genuchten26 adopted a capillary pressure model to predict the hydraulic conductivity of unsaturated soils. Van... on permeability and its prediction ? the first part of the derivation follows the work of Wyllie and Gardner.3 Their model describes the porous media as a bundle of capillary tubes featuring a random connection of pore spaces. Some of the assumptions made are...

  11. Test device for measuring permeability of a barrier material

    DOE Patents [OSTI]

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04T23:59:59.000Z

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  12. active fracture model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models Texas A&M University - TxSpace Summary: Determining fracture characteristics...

  13. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  14. Images of Fracture Sustainability Test on Stripa Granite

    SciTech Connect (OSTI)

    Tim Kneafsey

    2014-05-11T23:59:59.000Z

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  15. Detecting Fractures Using Technology at High Temperatures and...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.1 Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug...

  16. Images of Fracture Sustainability Test on Stripa Granite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Kneafsey

    Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.

  17. acetabular internal fracture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  18. age fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  19. alloys fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  20. applying fracture mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  1. advanced fracture characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stiness and uid ow L Lafayette, IN 47907-1397, USA Accepted 7 October 1999 Abstract Fracture specic stiness and uid ow through a single fracture under...

  2. Identification of MHF Fracture Planes and Flow Paths- a Correlation...

    Open Energy Info (EERE)

    flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the...

  3. Fracture Evolution Following a Hydraulic Stimulation within an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a...

  4. Monitoring of Fracture Cri0cal Steel Bridges

    E-Print Network [OSTI]

    Minnesota, University of

    #12;Monitoring of Fracture Cri0cal Steel Bridges: Acous0c Emission Sensors system on other fracture cri0cal steel bridges #12;Project Impact #12;Thank

  5. Characterizing Fractures in the Geysers Geothermal Field by Micro...

    Broader source: Energy.gov (indexed) [DOE]

    Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers...

  6. Joint inversion of electrical and seismic data for Fracture char...

    Broader source: Energy.gov (indexed) [DOE]

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

  7. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect (OSTI)

    Pruess, K.; Doughty, C.

    2010-01-15T23:59:59.000Z

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  8. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01T23:59:59.000Z

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  9. The averaging process in permeability estimation from well-test data

    SciTech Connect (OSTI)

    Oliver, D.S. (Saudi Aramco (SA))

    1990-09-01T23:59:59.000Z

    Permeability estimates from the pressure derivative or the slope of the semilog plot usually are considered to be averages of some large ill-defined reservoir volume. This paper presents results of a study of the averaging process, including identification of the region of the reservoir that influences permeability estimates, and a specification of the relative contribution of the permeability of various regions to the estimate of average permeability. The diffusion equation for the pressure response of a well situated in an infinite reservoir where permeability is an arbitrary function of position was solved for the case of small variations from a mean value. Permeability estimates from the slope of the plot of pressure vs. the logarithm of drawdown time are shown to be weighted averages of the permeabilities within an inner and outer radius of investigation.

  10. The effects of viscous forces on three-phase relative permeability

    SciTech Connect (OSTI)

    Maloney, D.R.; Mahmood, S.M.; Honarpour, M.M.

    1989-04-01T23:59:59.000Z

    The overall objective of Three-Phase Relative Permeability Project (BE9) is to develop guidelines for improving the accuracy of three-phase relative permeability determinations. This report summarizes previous studies and explains the progress made at NIPER on studying the effect of variations in viscous forces on three-phase relative permeabilities by changing the viscosity of both wetting and nonwetting phases. Significant changes were observed due to viscosity variations. An increase in oil viscosity reduced the relative permeability to gas; an increase in brine/(wetting-phase) viscosity reduced the relative permeability to brine. A slight increase in gas relative permeability was also observed. These observations suggest that the viscosities of both oil and water influence three-phase permeability data. During this study, data scatter was sometimes encountered which was comparable to that of published results. The causes of this scatter are outlined in this report and remedial attempts are discussed. 20 refs., 16 figs., 5 tabs.

  11. Modeling of Acid Fracturing in Carbonate Reservoirs

    E-Print Network [OSTI]

    Al Jawad, Murtada s

    2014-06-05T23:59:59.000Z

    equations are used to draw 3D velocity and pressure profiles. Part of the fluid diffuses or leaks off into the fracture walls and dissolves part of the fracture face according to the chemical reaction below. 2H^(+)(aq) + CO((2-)/3) ? H_(2 )CO_(3)(aq) ? CO...

  12. Accounting for Remaining Injected Fracturing Fluid 

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  13. Accounting for Remaining Injected Fracturing Fluid

    E-Print Network [OSTI]

    Zhang, Yannan

    2013-12-06T23:59:59.000Z

    The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

  14. Fracture of synthetic diamond M. D. Droty

    E-Print Network [OSTI]

    Ritchie, Robert

    of synthetic polycrystalline diamond make it a promising material for many structural applications studies on the fracture toughness of polycrystalline diamond,29 primarily due to the difficultiesFracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California

  15. Finite Conductivity Fractures in Elliptical Coordinates

    E-Print Network [OSTI]

    Stanford University

    TO THE DEPARTMENT OF PETROLEUM ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL well performance. Indeed, a large number of wells, which could not otherwise be operated economically, it is important that means be available to evaluate fracture effectiveness. The most widely used tool in fracture

  16. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect (OSTI)

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26T23:59:59.000Z

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to production-induced formation pressure drawdown). The Piceance Basin (Colorado) was chosen for this study because of the extensive set of data provided to us by federal agencies and industry partners, its remaining reserves, and its similarities with other Rocky Mountain basins. We focused on the Rulison Field to test our ability to capture details in a well-characterized area. In this study, we developed a number of general principles including (1) the importance of even subtle flexure in creating fractures; (2) the tendency to preserve fractures due to the compressibility of gases; (3) the importance of oscillatory fracture/flow cycles in the expulsion of natural gas from source rock; and (4) that predicting fractures requires a basin model that is comprehensive, all processes are coupled, and is fully 3-D. A major difficulty in using Basin RTM or other basin simulator has been overcome in this project; we have set forth an information theory technology for automatically integrating basin modeling with classical database analysis; this technology also provides an assessment of risk. We have created a relational database for the Piceance Basin. We have developed a formulation of devolatilization shrinkage that integrates organic geochemical kinetics into incremental stress theory, allowing for the prediction of coal cleating and associated enhancement of natural gas expulsion from coal. An estimation of the potential economic benefits of the technologies developed or recommended here is set forth. All of the above findings are documented in this report.

  17. Hydraulic fracturing slurry transport in horizontal pipes

    SciTech Connect (OSTI)

    Shah, S.N.; Lord, D.L. (Halliburton Services (US))

    1990-09-01T23:59:59.000Z

    Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

  18. Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells 

    E-Print Network [OSTI]

    Wang, Wenxin

    2006-04-12T23:59:59.000Z

    This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of ...

  19. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    SciTech Connect (OSTI)

    Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

  20. State-Of-The-Art in Permeability Determination From Well Log Data: Part 2-Verifiable, Accurate Permeability Predictions, the Touch-Stone of All Models

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 30979 State-Of-The-Art in Permeability Determination From Well Log Data: Part 2- Verifiable prediction from well log data, is accurate and verifiable prediction of permeability for wells from which only the well log data is available. So far all the available models and techniques have been tried

  1. Polymer/Silicate composites – New Materials for Subsurface Permeable Reactive Barriers

    SciTech Connect (OSTI)

    Mason K. Harrup; Michael G. Jones; Linda Polson; Byron White

    2008-09-01T23:59:59.000Z

    Investigations were performed into the suitability of novel nanocomposites to serve as materials for subsurface permeable reactive barriers (PRBs). These new materials are Type I nanocomposites – they are preformed organic polymers embedded in an inorganic matrix without significant covalent bonding between the components. The required properties for these materials to function efficiently are: 1) a tunable water passing rate to approximate the hydraulic conductivity of the subsurface environment where the PRB will be placed, 2) sufficient mechanical strength (both wet and dry) to maintain barrier integrity, 3) the ability to incorporate selective metal sequestration agents so that they remain active – yet do not leach from the barrier, and 4) to be deployable through direct injection methods such that trenching is not needed. Additionally, there is a need to keep the technology as low cost as possible, while remaining reliable. Results recently obtained in our laboratory show that our materials, remarkably, exhibit all of these properties and show great promise as vadose zone deployable PRBs.

  2. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    SciTech Connect (OSTI)

    Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

    2012-09-15T23:59:59.000Z

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  3. Performance of East Olkaria Power Plant and plans for maintaining steam supply in the future

    SciTech Connect (OSTI)

    Ouma, P.A.; Aloo, P.O. [Kenya Power Company, Naivasha (Kenya)

    1995-12-31T23:59:59.000Z

    Olkaria East geothermal power plant has been in operation since 1981. The wells that supply the plant produce two phase fluid from a 240-340{degrees}C hot, low gas, liquid dominated reservoir which is related to volcanic pile and fractures. Separated steam from twenty seven (27) wells, flows to 3 x 15 MWe Mitsubishi direct contact condensing units while the brine is disposed off through infiltration ponds. The plant performance has been excellent with the plant equipment remaining in good shape after fourteen (14) years of operation as a result of favourable chemistry of discharge fluid. As predicted in the Reservoir Simulation studies for this field, there has been gradual decline in steam production from the wells supplying the plant. In order to maintain adequate supply of steam to the plant in the future, two schemes are being advanced. The first scheme is to re-inject water into the reservoir to offset the reservoir pressure drawdown and steam decline and effectively, limit the number of make-up wells to be drilled and connected to the plant. Secondly, leave out re-injection and establish a scheme for drilling and connection of the make-up wells. The cost implication of either of the alternatives has been addressed.

  4. Fracture-resistant lanthanide scintillators

    DOE Patents [OSTI]

    Doty, F. Patrick (Livermore, CA)

    2011-01-04T23:59:59.000Z

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  5. High Energy Gas Fracturing Test

    SciTech Connect (OSTI)

    Schulte, R.

    2001-02-27T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  6. Coupling schemes for modeling hydraulic fracture propagation using the XFEM

    E-Print Network [OSTI]

    Peirce, Anthony

    Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

  7. Calibration of hydraulic and tracer tests in fractured media

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

  8. Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test

    E-Print Network [OSTI]

    Correa Castro, Juan

    2011-08-08T23:59:59.000Z

    make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a...

  9. Liquid Spills on Permeable Soil Surfaces: Experimental Confirmations

    SciTech Connect (OSTI)

    Simmons, Carver S.; Keller, Jason M.

    2005-09-29T23:59:59.000Z

    Predictive tools for assessing the quantity of a spill on a soil from the observed spreading area could contribute to improving remediation when it is necessary. On a permeable soil, the visible spill area only hints about the amount of liquid that might reside below the surface. An understanding of the physical phenomena involved with spill propagation on a soil surface is key to assessing the liquid amount possibly present beneath the surface. The objective of this study is an improved prediction capability for spill behavior.

  10. Permeability of CoNbZr amorphous thin films over a wide frequency range

    SciTech Connect (OSTI)

    Koyama, H.; Tsujimoto, H.; Shirae, K.

    1987-09-01T23:59:59.000Z

    CoNbZr amorphous films have attracted the attention of many researchers because of their high saturation magnetization, high permeability, low coercivity, and nearly zero magnetostriction. For these films to be used, one of the important magnetic properties is the behavior of the permeability over a wide frequency range. We have measured the permeability of a square-shaped magnetic film (13 mm x 55 mm) sputtered on a glass substrate from 1 MHz to 400 MHz using a stripline. Over 400 MHz, the permeability of the magnetic film was measured using a ring-shaped sample mounted in a coaxial fixture. The wall motion permeability of CoNbZr amorphous films decreases from 1 kHz to nearly zero at 1 MHz. The rotation permeability is constant to 100 MHz and ferromagnetic resonance is observed near 1 GHz.

  11. A Systematic Approach to Creating and Maintaining Software Documentation

    E-Print Network [OSTI]

    French, James C.

    & Williamson) ­ Both DIF and SODOS integrated database management systems with the software documentationUVA A Systematic Approach to Creating and Maintaining Software Documentation Allison L. Powell SOURCE CODE INTERFACE BROWSING INTERFACE STATUS FUTURE PLANS WHY SOFTWARE DOCUMENTATION AS AN APPLICATION

  12. A UPF3-mediated regulatory switch that maintains RNA surveillance

    E-Print Network [OSTI]

    Wilkinson, Miles F.

    A UPF3-mediated regulatory switch that maintains RNA surveillance Wai-Kin Chan1, Angela D Bhalla1RNAs. The regulation of NMD is poorly understood. Here we identify a regulatory mechanism acting on two related UPF (up-frameshift) factors crucial for NMD: UPF3A and UPF3B. This regulatory mechanism, which reduces the level of UPF3A

  13. Nuclear policy impacts at the national laboratories: maintaining the deterrence

    SciTech Connect (OSTI)

    Beck, James Bradley [Los Alamos National Laboratory

    2010-08-24T23:59:59.000Z

    In this presentation, the author will discuss recent nuclear policy impacts, including the 2010 Nuclear Posture Review, and the impacts they have on maintaining the nuclear deterrent. Specifically, he will highlight some of the remaining questions and challenges that remain to the nation and to the national laboratories. (auth)

  14. RESTORING AND MAINTAINING RIPARIAN HABITAT ON PRIVATE PASTURELAND1

    E-Print Network [OSTI]

    Standiford, Richard B.

    RESTORING AND MAINTAINING RIPARIAN HABITAT ON PRIVATE PASTURELAND1 Nancy Reichard2 1 Presented Resources. Redwood Community Action Agency. Eureka, Calif. Abstract: Protecting riparian habitat from livestock grazing on private land is a complex task that requires paying attention to sociological

  15. Maintaining Trajectory Privacy in Mobile Wireless Sensor Networks

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    based and analytical performance evaluations for the proposed scheme. The results show that a network, the location privacy of the collectors of mobile companies is a security concern. Drastically, the networkMaintaining Trajectory Privacy in Mobile Wireless Sensor Networks Osman Kiraz Sabanci University

  16. TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwater 4aSyntheticTAU SolarTDKCOSO

  17. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01T23:59:59.000Z

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  18. Percutaneous Vertebroplasty for Osteoporotic Compression Fracture: Multivariate Study of Predictors of New Vertebral Body Fracture

    SciTech Connect (OSTI)

    Komemushi, Atsushi, E-mail: kome64@yo.rim.or.jp; Tanigawa, Noboru; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo [Kansai Medical University, Department of Radiology (Japan); Komemushi, Sadao [Kinki University, Schoool of Agriculture (Japan); Sawada, Satoshi [Kansai Medical University, Department of Radiology (Japan)

    2006-08-15T23:59:59.000Z

    Purpose. To investigate the risk factors and relative risk of new compression fractures following vertebroplasty. Methods. Initially, we enrolled 104 consecutive patients with vertebral compression fractures caused by osteoporosis. A total of 83 of the 104 patients visited our hospital for follow-up examinations for more than 4 weeks after vertebroplasty. Logistic regression analysis of the data obtained from these 83 patients was used to determine relative risks of recurrent compression fractures, using 13 different factors. Results. We identified 59 new fractures in 30 of the 83 patients: 41 new fractures in vertebrae adjacent to treated vertebrae; and 18 new fractures in vertebrae not adjacent to treated vertebrae. New fractures occurred in vertebrae adjacent to treated vertebrae significantly more frequently than in vertebrae not adjacent to treated vertebrae. Only cement leakage into the disk was a significant predictor of new vertebral body fracture after vertebroplasty (odds ratio = 4.633). None of the following covariates were associated with increased risk of new fracture: age, gender, bone mineral density, the number of vertebroplasty procedures, the number of vertebrae treated per procedure, the cumulative number of vertebrae treated, the presence of a single untreated vertebra between treated vertebrae, the presence of multiple untreated vertebrae between treated vertebrae, the amount of bone cement injected per procedure, the cumulative amount of bone cement injected, cement leakage into the soft tissue around the vertebra, and cement leakage into the vein.

  19. Universal asymptotic umbrella for hydraulic fracture modeling

    E-Print Network [OSTI]

    Linkov, Aleksandr M

    2014-01-01T23:59:59.000Z

    The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

  20. Gas condensate damage in hydraulically fractured wells

    E-Print Network [OSTI]

    Adeyeye, Adedeji Ayoola

    2004-09-30T23:59:59.000Z

    Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant...

  1. Geomechanical review of hydraulic fracturing technology

    E-Print Network [OSTI]

    Arop, Julius Bankong

    2013-01-01T23:59:59.000Z

    Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

  2. Fracture induced anisotropy in viscoelastic media

    E-Print Network [OSTI]

    santos,,,

    pp = 28 MPa, Z. ?1. N. = (14.4+3.6i) GPa, Z. ?1. T. = (21 + 2.6i) GPa,. We consider a set of equispaced fractures with L = 1 cm and 80 % binary fractal variations ...

  3. Multiphase flow in fractured porous media

    SciTech Connect (OSTI)

    Firoozabadi, A.

    1995-02-01T23:59:59.000Z

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  4. Dynamic Fracture Toughness of Polymer Composites

    E-Print Network [OSTI]

    Harmeet Kaur

    2012-02-14T23:59:59.000Z

    bar with required instrumentation to obtain load-history and initiation of crack propagation parameters followed by finite element analysis to determine desired dynamic properties. Single edge notch bend(SENB) type geometry is used for Mode-I fracture...

  5. Infiltration and Seepage Through Fractured Welded Tuff

    SciTech Connect (OSTI)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20T23:59:59.000Z

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  6. Anomalous transport through porous and fractured media

    E-Print Network [OSTI]

    Kang, Peter Kyungchul

    2014-01-01T23:59:59.000Z

    Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

  7. anion-cation permeability correlates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outside cell High water Rose, Michael R. 16 Improved permeability prediction using multivariate analysis methods Texas A&M University - TxSpace Summary: . In statistics,...

  8. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect (OSTI)

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01T23:59:59.000Z

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  9. Techniques to Handle Limitations in Dynamic Relative Permeability Measurements, SUPRI TR-128

    SciTech Connect (OSTI)

    Qadeer, Suhail; Brigham, William E.; Castanier, Louis M.

    2002-10-08T23:59:59.000Z

    The objective of this work was to understand the limitations of the conventional methods of calculating relative permeabilities from data obtained from displacement experiments.

  10. Liquid CO2 Displacement of Water in a Dual-Permeability Pore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale...

  11. The role of geology in the behavior and choice of permeability predictors

    SciTech Connect (OSTI)

    Ball, L.D.; Corbett, P.W.M.; Jensen, J.L.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom)

    1997-03-01T23:59:59.000Z

    For effective flow-simulation models, it may be important to estimate permeability accurately over several scales of geological heterogeneity. Critical to the data analysis and permeability prediction are the volume of investigation and sampling interval of each petrophysical tool and how each relates to these geological scales. The authors examine these issues in the context of the As Sarah Field, Sirte Basin, Libya. A geological study of this braided fluvial reservoir has revealed heterogeneity at a series of scales. This geological hierarchy in turn possessed a corresponding hierarchy of permeability variation.The link between the geology and permeability was found to be very important in understanding well logs and core data and subsequent permeability upscaling. They found that the small scale (cm) permeability variability was better predicted using a flushed-zone resistivity, R{sub xo}, tool, rather than a wireline porosity measurement. The perm-resistivity correlation was strongest when the probe permeabilities were averaged to best match the window size of the wireline R{sub xo}. This behavior was explained by the geological variation present at this scale. For the larger scale geological heterogeneity, the production flowmeter highlighted discrepancies between flow data and averaged permeability. This yielded a layered sedimentological model interpretation and a change in averaging for permeability prediction at the bedset scale (ms-10 x ms).

  12. Semi-permeable vesicles composed of natural clay

    E-Print Network [OSTI]

    Anand B. Subramaniam; Jiandi Wan; Arvind Gopinath; Howard A. Stone

    2010-11-22T23:59:59.000Z

    We report a simple route to form robust, inorganic, semi-permeable compartments composed of montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Mechanical forces due to shear in a narrow gap assemble clay nanoplates from an aqueous suspension onto air bubbles. Translucent vesicles suspended in a single-phase liquid are produced when the clay-covered air bubbles are exposed to a variety of water-miscible organic liquids. These vesicles of clay are mechanically robust and are stable in water and other liquids. The formation of clay vesicles can be described by a physical mechanism that recognizes changes in the wetting characteristics of clay-covered air bubbles in organic liquids. The clay vesicles are covered with small pores and so intrinsically exhibit size-selective permeability, which allows spontaneous compartmentalization of self-assembling molecules in aqueous environments. The results we report here expand our understanding of potential paths to micro-compartmentalization in natural settings and are of relevance to theories of colloidal aggregation, mineral cycles, and the origins of life.

  13. Fracture Conductivity of the Eagle Ford Shale

    E-Print Network [OSTI]

    Guzek, James J

    2014-07-25T23:59:59.000Z

    , and rock geomechanical properties. Therefore, optimizing conductivity by tailoring a well’s fracturing treatment to local reservoir characteristics is important to the oil and gas industry for economic reasons. The roots of hydraulic fracturing can... of the formation. Sahoo et al. (2013) identified that mineralogy, hydrocarbon filled porosity, and total organic content are most prominent parameters that control Eagle Ford well productivity. Mineral composition determines several geomechanical properties...

  14. Poroelastic response of orthotropic fractured porous media

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-12-01T23:59:59.000Z

    An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

  15. FRACTURE TOUGHNESS VARIABILITY IN F82H

    SciTech Connect (OSTI)

    Gelles, David S.; Sokolov, M.

    2003-09-03T23:59:59.000Z

    The fracture toughness database for F82H displays some anomalous behavior. Metallographic examination reveals banding in the center of 25 mm thick F82H plate, which is more evident in transverse section. The banding is shown to arise because some grains are etched on a very fine scale whereas the remainder is etched more strongly and better delineates the martensite lath structure. However, the banding found does not provide explanation for the anomalous fracture toughness behavior.

  16. TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS

    SciTech Connect (OSTI)

    Morgan, M; Michael Tosten, M; Scott West, S

    2006-07-17T23:59:59.000Z

    The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

  17. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect (OSTI)

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01T23:59:59.000Z

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  18. HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN

    E-Print Network [OSTI]

    Doe, T.

    2010-01-01T23:59:59.000Z

    u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

  19. A triple-continuum pressure-transient model for a naturally fractured vuggy reservoir

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    simulation of naturally fractured reservoirs, Water Resour.model for fissured fractured reservoir, Soc. Pet. Eng. J. ,behavior of naturally fractured reservoirs, Soc. Pet. Eng.

  20. THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2013-01-01T23:59:59.000Z

    flow in naturally fractured reservoirs: Proceedings, 2ndliquid-dominated, fractured reservoir over a twenty- yeardrawdown. (c) Fractured Reservoir: The double-porosity

  1. An Analytical Solution for Slug-Tracer Tests in Fractured Reservoirs

    E-Print Network [OSTI]

    Shan, Chao; Pruess, Karsten

    2005-01-01T23:59:59.000Z

    Tracer Tests in Fractured Reservoirs Chao Shan and Karstenof chemicals or heat in fractured reservoirs is stronglyin a water-saturated fractured reservoir. The solution shows

  2. Aligned vertical fractures, HTI reservoir symmetry, and Thomsen seismic anisotropy parameters for polar media

    E-Print Network [OSTI]

    Berryman, James G.

    2008-01-01T23:59:59.000Z

    waves in such fractured reservoirs (Hsu and Schoenberg,i.e. , for cracked/fractured reservoirs), the vertical phasemore closely. FRACTURED RESERVOIRS AND CRACK-INFLUENCE

  3. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    E-Print Network [OSTI]

    Geiger, S.

    2012-01-01T23:59:59.000Z

    behavior of naturally fractured reservoirs. SPE Journal, R.the Bristol Channel fractured reservoir analogue (a), ?uidfor naturally fractured reservoirs. These simulations are

  4. Brief Guide to the MINC-Method for Modeling Flow and Transport in Fractured Media

    E-Print Network [OSTI]

    Pruess editor, K.

    2010-01-01T23:59:59.000Z

    Simulating Naturally Fractured Reservoirs Using a SubdomainModels of Naturally Fractured Reservoirs, In Situ, 15, (2),for Naturally Fractured Reservoirs, papr,r SPE-11688,

  5. Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.; Gaulke, Scott

    1986-01-01T23:59:59.000Z

    Simu- lations in Fractured Reservoirs,” Lawrence Berkeleyfrom a twctphase fractured reservoir. T h e results obtainedRecovery in Fractured Geothermal Reservoirs Gudmundur S.

  6. Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir 

    E-Print Network [OSTI]

    Mhiri, Adnene

    2014-08-10T23:59:59.000Z

    The fundamental behavior of fluid production from shale/ultra-low permeability reservoirs that are produced under a constant wellbore pressure remains difficult to quantify, which is believed to be (at least in part) due to the complexity...

  7. Modeling interfacial fracture in Sierra.

    SciTech Connect (OSTI)

    Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.

    2013-09-01T23:59:59.000Z

    This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.

  8. Compact, maintainable 80-KeV neutral beam module

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA); Molvik, Arthur W. (Livermore, CA)

    1980-01-01T23:59:59.000Z

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  9. Drying analysis of a multiphase, porous-flow experiment in fractured volcanic tuff

    SciTech Connect (OSTI)

    Bixler, N.E.; Eaton, R.R.; Russo, A.J.

    1987-12-31T23:59:59.000Z

    A submeter-scale drying experiment has been analyzed using a finite element, multiphase-flow code. In the experiment, an initially wet cylindrical core of fractured volcanic tuff was dried by blowing dry nitrogen over the ends. Our model discretely accounts for three primary fractures that may be present in the core, as indicated by measurements of porosity and saturation. We show that vapor transport is unimportant in the interior of the core; the rate of drying is controlled by transport of liquid water to the ends of the core, where it can evaporate and escape into the dry environment outside. By using previous experimental results to estimate apparent spatial variations in permeability along the core, good agreement between measured and calculated drying rates was achieved. However, predicted saturation profiles were much smoother that those measured experimentally, presumably because of centimeter-scale inhomogeneities in the core sample. Our results indicate that water is transported chiefly as liquid from the interior to the edges of the core, where it evaporates and escapes out the ends. Thus, liquid-phase transport controls the overall drying rate. 18 refs., 8 figs., 1 tab.

  10. Reliability, Availability and Maintainability Considerations for Gas Turbine Cogeneration Systems

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1984-01-01T23:59:59.000Z

    RELIABILITY, AVAILABILITY AND MAINTAINABILITY CONSIDERATIONS FOR GAS TURBINE COGENERATION SYSTEMS Gyrus B. Meher-Homji and Alfred B. Focke Boyce Engineering International, Inc. Houston, Texas ABSTRACT The success of a cogeneration system... the choice of the number of gas turbines and waste heat recovery units to be utilized down to small components, such as pumps, dampers, hea t exchangers and auxiliary systems. . Rand M studies must be initiated in the conceptual phases of the project...

  11. Evaluation of acid fracturing based on the "acid fracture number" concept

    E-Print Network [OSTI]

    Alghamdi, Abdulwahab

    2006-08-16T23:59:59.000Z

    ................................................................................................. 29 4.2.1 Initial Pad Volume ........................................................................... 29 4.2.2 Acid Strength and Volume...............................................................30 V... stages of pad fluids and acids.11 The reaction of HCl with carbonate formations is fast, especially at high temperatures. This means that the acid will not be able to penetrate deeply down the fracture, which may affect the outcome of acid fracturing...

  12. Fractured: Experts examine the contentious issue of hydraulic fracturing water use

    E-Print Network [OSTI]

    Wythe, Kathy

    2013-01-01T23:59:59.000Z

    of Fracture Fluid Performance in Oil Shale with Surfactant Additives by X-Ray Tomography Methods (Crisman Institute: Schechter) Re-Use of Produced Waters as Hydraulic Fracturing Fluids (Crisman Institute: Nasr-El-Din) In a joint House Commi#20;ee...

  13. System and method for measuring permeability of materials

    SciTech Connect (OSTI)

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09T23:59:59.000Z

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  14. Report on Hydrologic Flow in Low-Permeability Media

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Birkholzer, Jens

    2013-11-13T23:59:59.000Z

    We demonstrate that under normal conditions (under which there are no intersections between tunnels/drifts and conductive geological structures, such as faults), the water flow velocity in the damage zone, as a result of non-Darcian flow behavior, is extremely small such that solute transport is dominated by diffusion, rather than advection. We show that unless non-Darcian flow behavior is considered, significant errors can occur in the “measured” relative-permeability values. We propose a hypothesis to consider the temperature impact based on limited test results from the petroleum literature. To consider the bedding effects, we present an empirical relationship between water flux and hydraulic gradient for non-Darcian water flow in anisotropic cases.

  15. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect (OSTI)

    Schuon, S R; Misencik, J A

    1981-01-01T23:59:59.000Z

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  16. Oil and Gas CDT Predicting fault permeability at depth: incorporating natural

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

  17. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect (OSTI)

    Urgelli, D.; Ding, Yu [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01T23:59:59.000Z

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  18. How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model

    E-Print Network [OSTI]

    pressure falloff and matrix shrinkage because of gas desorption together in one equation. The matrixHow Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model Ian Palmer, SPE, permeability is sensitive to changes in stress or pore pressure (i.e., changes in effective stress). This paper

  19. Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading

    E-Print Network [OSTI]

    Herbert, Bruce

    Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading-rich shale recovered from the Wilcox formation and saturated with 1 M NaCl solution varies from 3 Ã? 10Ã?22 transport; KEYWORDS: permeability, shale, connected pore space Citation: Kwon, O., A. K. Kronenberg, A. F

  20. CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied. . . . . . . . . . . . . . . . . . . . . . . 1 PRZVIOUS PIETHODS OF CALCLXATING STEAM/TtJATER RELATIVE PERPlEX3ILITIES IN GEOTHE?XAL XZSERVOIFG

  1. Porosity and permeability of eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1986-01-01T23:59:59.000Z

    High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

  2. Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection

    SciTech Connect (OSTI)

    Siriwardane, Hema J.; Gondle, Raj K.; Bromhal, Grant S.

    2013-08-01T23:59:59.000Z

    Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of smart technologies to monitor safe CO{sub 2} storage and understand CO{sub 2} transport, with limited field instrumentation.

  3. Stable catalyst layers for hydrogen permeable composite membranes

    DOE Patents [OSTI]

    Way, J. Douglas; Wolden, Colin A

    2014-01-07T23:59:59.000Z

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  4. A robust method for fracture orientation and density detection from seismic scattered energy

    E-Print Network [OSTI]

    Fang, Xinding

    2011-01-01T23:59:59.000Z

    The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

  5. Experimental analysis of the extension to shear fracture transition in Berea Sandstone

    E-Print Network [OSTI]

    Bobich, Jennifer Kay

    2005-11-01T23:59:59.000Z

    and follows Coulomb behavior; however, the angle between the fracture surface and ??1 increases continuously with Pc. Fracture surfaces characteristic of the extension to shear fracture transition appear as linked, stepped extension fractures; the length...

  6. Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and 76 Field, Clinton Co., KY.

    E-Print Network [OSTI]

    SPE 36651 Reservoir Fracture Mapping using Microearthquakes: Austin Chalk, Giddings Field, TX and enhanced recovery, production operations in fracture- dominated oil and gas reservoirs. Borehole geophones to study reservoir fracture systems. Methods currently applied to study fracture systems include tilt

  7. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  8. Oscillatory nonohomic current drive for maintaining a plasma current

    DOE Patents [OSTI]

    Fisch, N.J.

    1984-01-01T23:59:59.000Z

    Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

  9. Installing and Maintaining a Home Solar Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1Energy Maintaining a Home Solar

  10. Installing and Maintaining a Small Wind Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy1Energy Maintaining a Home

  11. Energy Dissipation Properties of Cementitious Materials: Applications in Mechanical Damping and Characterization of Permeability and Moisture State

    E-Print Network [OSTI]

    Leung, Chin

    2012-10-19T23:59:59.000Z

    variety of frequency ranges. Composite model prediction indicated that permeability of saturated cementitious materials studied in this research is likely dependent on the amount of free water in the pores. Permeability can be inferred from the pore...

  12. Three Dimensional Controlled-source Electromagnetic Edge-based Finite Element Modeling of Conductive and Permeable Heterogeneities

    E-Print Network [OSTI]

    Mukherjee, Souvik

    2010-10-12T23:59:59.000Z

    ordnance, is often highly conductive and magnetically permeable. Interpretation of the CSEM response in the presence of cultural noise requires an understanding of electromagnetic field diffusion and the effects of anomalous highly conductive and permeable...

  13. Probabilistic analysis of air void structure and its relationship to permeability and moisture damage of hot mix asphalt

    E-Print Network [OSTI]

    Castelblanco Torres, Adhara

    2006-04-12T23:59:59.000Z

    of the studies primarily focused on relating permeability to the average percent air voids in the mix. Such relationships cannot predict permeability accurately due to the different distributions of air void structures at a given average percent of air voids...

  14. The Effect of Acid Additives on Carbonate Rock Wettability and Spent Acid Recovery in Low Permeability Gas Carbonates

    E-Print Network [OSTI]

    Saneifar, Mehrnoosh

    2012-10-19T23:59:59.000Z

    Spent acid retention in the near-wellbore region causes reduction of relative permeability to gas and eventually curtailed gas production. In low-permeability gas carbonate reservoirs, capillary forces are the key parameters that affect the trapping...

  15. ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY OF THE ULTRASOUND-INDUCED BLOOD-BRAIN BARRIER OPENING

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY cavitation can be potentially used to assess the reversibility and permeability of the induced BBB opening. Method: This study links the microbubble dynamics, represented by the cavitation dose, as monitored

  16. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01T23:59:59.000Z

    cooling of the fracture surfaces results in a significant opening of the fracture, which would influence the rate of geothermal

  17. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  18. Final Report- Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

    Broader source: Energy.gov [DOE]

    Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

  19. Fractional Diffusion Modeling of Electromagnetic Induction in Fractured Rocks

    E-Print Network [OSTI]

    Ge, Jianchao

    2014-08-11T23:59:59.000Z

    -2 km, a zone where pores and fractures over various length scales are highly complicated. Spatial confinement of fluid or electric charge transport by the fractal geometry gives rise to interesting dynamic processes within the pore space and fractures...

  20. Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao

    E-Print Network [OSTI]

    never asked for anything back. First is Professor Wolfgang Knauss, who guided me in the solid to be consistent with fracture under mixed-mode loading. High-speed movies of the fracture events and blast wave