National Library of Energy BETA

Sample records for four-dimensional seismic surveying

  1. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt Et Al, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At...

  2. Geodetic Survey At Central Nevada Seismic Zone Region (Laney...

    Open Energy Info (EERE)

    Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Central Nevada Seismic Zone Region (Laney, 2005) Exploration...

  3. A Survey Of Seismic Activity Near Wairakei Geothermal Field,...

    Open Energy Info (EERE)

    Geothermal Field, New Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New...

  4. Multiple long-streamer technology speeds seismic survey off Brazil

    SciTech Connect (OSTI)

    Seeley, C.R.

    1995-09-18

    Now that 3D seismic is the survey of choice for most developing areas, the latest trend in conventional marine seismic acquisition has been pulling more streamers (sensor cables) behind each vessel. The goal behind the multi-streamer movement is obtaining the best data set as inexpensively as possible. PGS Exploration Inc. used its R/V Atlantic Explorer, pulling four seismic streamers measuring 4,000 m each with 160 recording channels/streamer, to complete a survey in 77 days--13 to 18 days earlier than planned--for Petroleo Brasileiro SA (Petrobras) in the Cabo Frio area of the Campos basin in Brazilian territorial waters. The survey was conducted from Jan. 19 to Apr. 4 in an area southeast of the existing Campos development, site of at least nine world records for deepwater production. It was performed in water depths ranging from 130 m to 2,000 m. Petrobras desired the 3D survey, the first int hat part of the Campos basin and the first turnkey 3D seismic contract signed by Petrobras, after its discovery of Guarajuba field last year in that region. The paper describes data acquisition and processing.

  5. Five Dimensional Minimal Supergravities and Four Dimensional Complex Geometries

    SciTech Connect (OSTI)

    Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A. R.; Sabra, Wafic

    2009-05-01

    We discuss the relation between solutions admitting Killing spinors of minimal supergravities in five dimensions and four dimensional complex geometries. In the ungauged case (vanishing cosmological constant {lambda} 0) the solutions are determined in terms of a hyper-Kaehler base space; in the gauged case ({lambda}<0) the complex geometry is Kaehler; in the de Sitter case ({lambda}>0) the complex geometry is hyper-Kaehler with torsion (HKT). In the latter case some details of the derivation are given. The method for constructing explicit solutions is discussed in each case.

  6. Four-dimensional characterization of a sheet-forming web

    DOE Patents [OSTI]

    Sari-Sarraf, Hamed; Goddard, James S.

    2003-04-22

    A method and apparatus are provided by which a sheet-forming web may be characterized in four dimensions. Light images of the web are recorded at a point adjacent the initial stage of the web, for example, near the headbox in a paperforming operation. The images are digitized, and the resulting data is processed by novel algorithms to provide a four-dimensional measurement of the web. The measurements include two-dimensional spatial information, the intensity profile of the web, and the depth profile of the web. These measurements can be used to characterize the web, predict its properties and monitor production events, and to analyze and quantify headbox flow dynamics.

  7. Astor Pass Seismic Surveys Preliminary Report (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Astor Pass Seismic Surveys Preliminary Report Citation Details In-Document Search Title: Astor Pass Seismic Surveys Preliminary Report In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT

  8. A Four-Dimensional Viscoelastic Deformation Model For Long Valley...

    Open Energy Info (EERE)

    spherical VE shell model of Newman et al. (Newman, A.V., Dixon, T.H., Ofoegbu, G., Dixon, J.E., 2001. Geodetic and seismic constraints on recent activity at Long Valley caldera,...

  9. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying...

    Gasoline and Diesel Fuel Update (EIA)

    Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 615 717 624 481...

  10. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12

  11. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number

    Gasoline and Diesel Fuel Update (EIA)

    of Elements) Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 2 3 3 3 1 1 0 0 0 0 2001 0 0 0 0 2 2 0 0 0 0 0 0 2002 2 2 2 2 2 2 2 2 2 2 2 1 2003 0 0 2 2 2 2 2 2

  12. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement...

    Office of Scientific and Technical Information (OSTI)

    SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator Citation Details In-Document Search Title: SU-E-CAMPUS-T-03: Four-Dimensional Dose ...

  13. Alaska Maximum Number of Active Crews Engaged in Four-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Delivered to Consumers 1,000 1,000 1,001 1,001 1,002 1,003 2013-2016

    0 0 36 16 0 2 1979-2014 Adjustments 0 0 1 0 0 0 2009-2014 Revision Increases 0 0 55 0 0 1 2009-2014 Revision Decreases 0 0 0 0 0 0 2009-2014 Sales 0 0 0 0 0 0 2009-2014 Acquisitions 0 0 0 0 0 1 2009-2014 Extensions 0 0 0 0 0 0 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 Estimated Production 0 0 20 20

  14. Pen Branch fault program: Consolidated report on the seismic reflection surveys and the shallow drilling

    SciTech Connect (OSTI)

    Stieve, A.L.; Stephenson, D.E.; Aadland, R.K.

    1991-03-23

    The Pen Branch fault was identified in the subsurface at the Savannah River Site (SRS) in 1989 based upon interpretation of earlier seismic reflection surveys and other geologic investigations (Seismorgraph Services Incorp., 1973; Chapman and DiStefano, 1989; Snipes, Fallaw and Price, 1989). A program was initiated at that time to determine the capability of the fault to release seismic energy (Price and others, 1989) as defined in the Nuclear Regulatory Commission regulatory guidelines, 10 CFR 100 Appendix A. This report presents the results of the Pen Branch fault investigation based on data acquired from seismic reflection surveys and shallow drilling across the fault completed at this time. The Earth Science Advisory Committee (ESAC) has reviewed the results of these investigations and unanimously agrees with the conclusion of Westinghouse Savannah River Company (WSRC) that the Pen Branch fault is a non-capable fault. ESAC is a committee of 12 earth science professionals from academia and industry with the charter of providing outside peer review of SRS geotechnical, seismic, and ground water modeling programs.

  15. Combined microbial, seismic surveys predict oil and gas occurrences in Bolivia

    SciTech Connect (OSTI)

    Lopez, J.P. ); Hitzman, D.; Tucker, J. )

    1994-10-24

    Microbial and geophysical surveys in the jungles of Bolivia's extensive Sub-Andean region have combined for three successful predictions of deep oil and gas reserves in as many tries. Hydrocarbon microseepage measured by microbial soil samples predicted the Carrasco, Katari, and Surubi structures of Bolivia's Chapare region in 1991--92, detecting traps with reserves at depths exceeding 4,500 m. Approximately 800 km of seismic lines covering 3,500 sq km was completed by Yacimientos Petroliferos Fiscales Bolivianos (YPFB) for evaluation of the YPFB reserve block. For 1 month each year at the end of the field season, seismic lines were quickly traversed by several microbial sampling teams. Using hand augers or shovels, the teams collected more than 3,200 samples approximately 20 cm (8 in.) deep at intervals of 250 m next to staked seismic locations. Microbial results were directly compared with seismic profiles for identification and ranking of traps and structures. The paper discusses the survey predictions and the microbial approach.

  16. U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) U.S. Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 62 63 59 63 58 61 59 63 62 65 2001 61 61 63 65 64 60 58 56 54 58 59 58 2002 54 57 54 50 51 50 52 50 56 57 50 43 2003 40 41 41 40 38 39 41 43 39 39 38 42 2004 43 45 45 45 44 49 48 49 48 48 49 50 2005 52 53 51 50 55 57 54 55 56 57 57 58 2006 55 57 59 58 58 57

  17. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    SciTech Connect (OSTI)

    Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  18. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    SciTech Connect (OSTI)

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch

    2009-03-30

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  19. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    SciTech Connect (OSTI)

    Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of

  20. High resolution, shallow seismic reflection survey of the Pen Branch fault

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  1. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment

    SciTech Connect (OSTI)

    Zupanski, M. )

    1993-08-01

    Four-dimensional variational data assimilation is applied to a regional forecast model as part of the development of a new data assimilation system at the National Meteorological Center (NMC). The assimilation employs an operational version of the NMC's new regional forecast model defined in eta vertical coordinates, and data used are operationally produced optimal interpolation (OI) analyses (using the first guess from the NMC's global spectral model), available every 3 h. Humidity and parameterized processes are not included in the adjoint model integration. The calculation of gradients by the adjoint model is approximate since the forecast model is used in its full-physics operational form. All experiments are over a 12-h assimilation period with subsequent 48-h forecast. Three different types of assimilation experiments are performed: (a) adjustment of initial conditions only (standard [open quotes]adjoint[close quotes] approach), (b) adjustment of a correction to the model equations only (variational continuous assimilation), and (c) simultaneous or sequential adjustment of both initial conditions and the correction term. Results indicate significantly better results when the correction term is included in the assimilation. It is shown, for a single case, that the new technique [experiment (c)] is able to produce a forecast better than the current conventional OI assimilation. It is very important to note that these results are obtained with an approximate gradient, calculated from a simplified adjoint model. Thus, it may be possible to perform an operational four-dimensional variational data assimilation of realistic forecast models, even before more complex adjoint models are developed. Also, the results suggest that it may be possible to reduce the large computational cost of assimilation by using only a few iterations of the minimization algorithm. This fast convergence is encouraging from the prospective of operational use. 37 refs., 10 figs., 1 tab.

  2. A 3D-3C Reflection Seismic Survey and Data Integration to Identify...

    Open Energy Info (EERE)

    geophysical and wellbore data for the area, and these data will be complemented with modern, state-of-the-art reflection seismic data. Three-component geophones will record...

  3. Comparison of microbial and sorbed soil gas surgace geochemical techniques with seismic surveys from the Southern Altiplano, Bolivia

    SciTech Connect (OSTI)

    Aranibar, O.R.; Tucker, J.D.; Hiltzman, D.C.

    1995-12-31

    Yacimientos Petroliferos Fiscales Bolivianos (YPFB) undertook a large seismic evaluation in the southern Altiplano, Bolivia in 1994. As an additional layer of information, sorbed soil gas and Microbial Oil Survey Technique (MOST) geochemical surveys were conducted to evaluate the hydrocarbon microseepage potential. The Wara Sara Prospect had 387 sorbed soil gas samples, collected from one meter depth, and 539 shallow soil microbial samples, collected from 15 to 20 centimeter depth. The sorbed soil gas samples were collected every 500 meters and microbial samples every 250 meters along geochemical traverses spaced 1 km apart. The presence of anmalous hydrocarbon microseepage is indicated by (1) a single hydrocarbon source identified by gas crossplots, (2) the high gas values with a broad range, (3) the high overall gas average, (4) the clusters of elevated samples, and (5) the right hand skewed data distributions.

  4. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOE Patents [OSTI]

    West, Phillip B.; Haefner, Daryl

    2004-08-17

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  5. Methods and apparatus of suppressing tube waves within a bore hole and seismic surveying systems incorporating same

    DOE Patents [OSTI]

    West, Phillip B.; Haefner, Daryl

    2005-12-13

    Methods and apparatus for attenuating waves in a bore hole, and seismic surveying systems incorporating the same. In one embodiment, an attenuating device includes a soft compliant bladder coupled to a pressurized gas source. A pressure regulating system reduces the pressure of the gas from the gas source prior to entering the bladder and operates in conjunction with the hydrostatic pressure of the fluid in a bore hole to maintain the pressure of the bladder at a specified pressure relative to the surrounding bore hole pressure. Once the hydrostatic pressure of the bore hole fluid exceeds that of the gas source, bore hole fluid may be admitted into a vessel of the gas source to further compress and displace the gas contained therein. In another embodiment, a water-reactive material may be used to provide gas to the bladder wherein the amount of gas generated by the water-reactive material may depend on the hydrostatic pressure of the bore hole fluid.

  6. Seismic Vulnerability Evaluations Within The Structural And Functional Survey Activities Of The COM Bases In Italy

    SciTech Connect (OSTI)

    Zuccaro, G.; Cacace, F.; Albanese, V.; Mercuri, C.; Papa, F.; Pizza, A. G.; Sergio, S.; Severino, M.

    2008-07-08

    The paper describes technical and functional surveys on COM buildings (Mixed Operative Centre). This activity started since 2005, with the contribution of both Italian Civil Protection Department and the Regions involved. The project aims to evaluate the efficiency of COM buildings, checking not only structural, architectonic and functional characteristics but also paying attention to surrounding real estate vulnerability, road network, railways, harbours, airports, area morphological and hydro-geological characteristics, hazardous activities, etc. The first survey was performed in eastern Sicily, before the European Civil Protection Exercise 'EUROSOT 2005'. Then, since 2006, a new survey campaign started in Abruzzo, Molise, Calabria and Puglia Regions. The more important issue of the activity was the vulnerability assessment. So this paper deals with a more refined vulnerability evaluation technique by means of the SAVE methodology, developed in the 1st task of SAVE project within the GNDT-DPC programme 2000-2002 (Zuccaro, 2005); the SAVE methodology has been already successfully employed in previous studies (i.e. school buildings intervention programme at national scale; list of strategic public buildings in Campania, Sicilia and Basilicata). In this paper, data elaborated by SAVE methodology are compared with expert evaluations derived from the direct inspections on COM buildings. This represents a useful exercise for the improvement either of the survey forms or of the methodology for the quick assessment of the vulnerability.

  7. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  8. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOE Patents [OSTI]

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  9. Full Reviews: Seismicity and Seismic

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer reviewer comments for Seismicity and Seismic.

  10. String or branelike solutions in four-dimensional Einstein gravity in the presence of a cosmological constant

    SciTech Connect (OSTI)

    Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai

    2011-10-15

    We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Banados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.

  11. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2006...

    Open Energy Info (EERE)

    Exploration Basis To assess the benefits of surface seismic surveys Notes Different migration procedures were applied to image a synthetic reservoir model and seismic data. After...

  12. SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information

    Open Energy Info (EERE)

    assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso...

  13. Impact of Four-Dimensional Computed Tomography Pulmonary Ventilation Imaging-Based Functional Avoidance for Lung Cancer Radiotherapy

    SciTech Connect (OSTI)

    Yamamoto, Tokihiro; Kabus, Sven; Berg, Jens von; Lorenz, Cristian; Keall, Paul J.

    2011-01-01

    Purpose: To quantify the dosimetric impact of four-dimensional computed tomography (4D-CT) pulmonary ventilation imaging-based functional treatment planning that avoids high-functional lung regions. Methods and Materials: 4D-CT ventilation images were created from 15 non-small-cell lung cancer patients using deformable image registration and quantitative analysis of the resultant displacement vector field. For each patient, anatomic and functional plans were created for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Consistent beam angles and dose-volume constraints were used for all cases. The plans with Radiation Therapy Oncology Group (RTOG) 0617-defined major deviations were modified until clinically acceptable. Functional planning spared the high-functional lung, and anatomic planning treated the lungs as uniformly functional. We quantified the impact of functional planning compared with anatomic planning using the two- or one-tailed t test. Results: Functional planning led to significant reductions in the high-functional lung dose, without significantly increasing other critical organ doses, but at the expense of significantly degraded the planning target volume (PTV) conformity and homogeneity. The average reduction in the high-functional lung mean dose was 1.8 Gy for IMRT (p < .001) and 2.0 Gy for VMAT (p < .001). Significantly larger changes occurred in the metrics for patients with a larger amount of high-functional lung adjacent to the PTV. Conclusion: The results of the present study have demonstrated the impact of 4D-CT ventilation imaging-based functional planning for IMRT and VMAT for the first time. Our findings indicate the potential of functional planning in lung functional avoidance for both IMRT and VMAT, particularly for patients who have high-functional lung adjacent to the PTV.

  14. TH-A-19A-10: Fast Four Dimensional Monte Carlo Dose Computations for Proton Therapy of Lung Cancer

    SciTech Connect (OSTI)

    Mirkovic, D; Titt, U; Mohan, R; Yepes, P

    2014-06-15

    Purpose: To develop and validate a fast and accurate four dimensional (4D) Monte Carlo (MC) dose computation system for proton therapy of lung cancer and other thoracic and abdominal malignancies in which the delivered dose distributions can be affected by respiratory motion of the patient. Methods: A 4D computer tomography (CT) scan for a lung cancer patient treated with protons in our clinic was used to create a time dependent patient model using our in-house, MCNPX-based Monte Carlo system (“MC{sup 2}”). The beam line configurations for two passively scattered proton beams used in the actual treatment were extracted from the clinical treatment plan and a set of input files was created automatically using MC{sup 2}. A full MC simulation of the beam line was computed using MCNPX and a set of phase space files for each beam was collected at the distal surface of the range compensator. The particles from these phase space files were transported through the 10 voxelized patient models corresponding to the 10 phases of the breathing cycle in the 4DCT, using MCNPX and an accelerated (fast) MC code called “FDC”, developed by us and which is based on the track repeating algorithm. The accuracy of the fast algorithm was assessed by comparing the two time dependent dose distributions. Results: The error of less than 1% in 100% of the voxels in all phases of the breathing cycle was achieved using this method with a speedup of more than 1000 times. Conclusion: The proposed method, which uses full MC to simulate the beam line and the accelerated MC code FDC for the time consuming particle transport inside the complex, time dependent, geometry of the patient shows excellent accuracy together with an extraordinary speed.

  15. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    SciTech Connect (OSTI)

    Kim, K; Kim, D; Kim, T; Kang, S; Cho, M; Shin, D; Suh, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array which have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A

  16. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    SciTech Connect (OSTI)

    Kipritidis, John Keall, Paul J.; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  17. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  18. A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchhill Co., NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Understanding geothermal reservoirs requires multi-discipline, integrated 3D GIS: Access down hole geophysical logs, surface geophysics, isotherms, isoresistivity surfaces, seismic data, cross-sections, etc. instantaneously; Wells tell where youve been; MT shows the direction to go; Seismic provides the map; & Be prepared for discoveries.

  19. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect (OSTI)

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  20. Four-Dimensional Data Assimilation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Atmospheric Radiation in the Generation and Maintenance of Circulations of ... Introduction It is well known that the radiation budget of the atmosphere is an important ...

  1. Four-Dimensional Data Assimilation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISS subsystems may include multiple-frequency UHF wind profiler(s) with radio acoustic ... Important aspects of the system are the synergistic interaction of data streams from the ...

  2. Surveys

    Broader source: Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  3. Using Supercomputers to Improve Seismic Hazard Maps | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility seismic hazard map This U.S. Geological Survey seismic hazard map shows the maximum level of shaking expected to occur once in about 500 years, with warmer red regions expected to experience the strongest shaking. SCEC's earthquake system science research program uses high-performance computing to improve probabilistic seismic hazard maps like these. U.S. Geological Survey Seismic Hazard Map (2008) showing Peak Ground Accelerations (PGA) with Probability of Exceedance of

  4. seismic margin

    Office of Scientific and Technical Information (OSTI)

    ... event tree SMA seismic margins analysis SNF spent nuclear fuel SRTC site rail transfer cart SSC ... Safeguards and Security System Safeguards and Security Entire NA NA NA NA System ...

  5. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect (OSTI)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  6. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: GDRHelp@EE.Doe.Gov Language: English Subject: 15 Geothermal Energy geothermal; seismic reflection survey; hot pot geothermal ...

  7. Integrated Seismic Studies At The Rye Patch Geothermal Reservoir...

    Open Energy Info (EERE)

    carbonate basement and the overlying sedimentary sequence, striking east-west. The geometry of the structure is corroborated by results from a seismic-reflection survey, and by...

  8. Four-Dimensional Measurement of the Displacement of Internal Fiducial and Skin Markers During 320-Multislice Computed Tomography Scanning of Breast Cancer

    SciTech Connect (OSTI)

    Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi

    2012-10-01

    Purpose: To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. Methods and Materials: This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Results: Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 {+-} 0.3 mm, 2.1 {+-} 0.6 mm, and 1.6 {+-} 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 {+-} 0.2 mm in left-right, 1.7 {+-} 0.5 mm in A/P, and 1.1 {+-} 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Conclusions: Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions.

  9. Reflection Survey | Open Energy Information

    Open Energy Info (EERE)

    (Gritto, Et Al.) Rye Patch Area Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Reflection Survey At Rye Patch Area (Laney, 2005) Rye Patch Area Federal...

  10. Seismic Studies

    SciTech Connect (OSTI)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  11. SU-E-T-520: Four-Dimensional Dose Calculation Algorithm Considering Variations in Dose Distribution Induced by Sinusoidal One-Dimensional Motion Patterns

    SciTech Connect (OSTI)

    Taguenang, J; Algan, O; Ahmad, S; Ali, I

    2014-06-01

    Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one

  12. TU-F-17A-09: Four-Dimensional Cone Beam CT Ventilation Imaging Can Detect Interfraction Lung Function Variations for Locally Advanced Lung Cancer Patients

    SciTech Connect (OSTI)

    Kipritidis, J; Keall, P; Hugo, G; Weiss, E; Williamson, J

    2014-06-15

    Purpose: Four-dimensional cone beam CT ventilation imaging (4D-CBCT VI) is a novel functional lung imaging modality requiring validation. We hypothesize that 4D-CBCT VI satisfies a necessary condition for validity: that intrafraction variations (e.g. due to poor 4D-CBCT image quality) are substantially different to interfraction variations (e.g. due to changes in underlying function). We perform the first comparison of intrafraction (pre/post fraction) and interfraction (week-to-week) 4D-CBCT VIs for locally advanced non small cell lung cancer (LA NSCLC) patients undergoing radiation therapy. Methods: A total of 215 4D-CBCT scans were acquired for 19 LA NSCLC patients over 4-6 weeks of radiation therapy, including 75 pairs of pre-/post-fraction scans on the same day. 4D-CBCT VIs were obtained by applying state-of-the-art, B-spline deformable image registration to obtain the Jacobian determinant of deformation between the end-exhale and end-inhale phases. All VIs were deformably registered to the corresponding first day scan, normalized between the 10th and 90th percentile values and cropped to the ipsilateral lung only. Intrafraction variations were assessed by computing the mean and standard deviation of voxel-wise differences between all same-day pairs of pre-/post-fraction VIs. Interfraction differences were computed between first-day VIs and treatment weeks 2, 4 and 6 for all 19 patients. We tested the hypothesis by comparing cumulative distribution functions (CDFs) of intrafraction and interfraction ventilation differences using two-sided Kolmogorov-Smirnov goodness-of-fit tests. Results: The (mean ± std. dev.) of intrafraction differences was (−0.007 ± 0.079). Interfraction differences for weeks 2, 4 and 6 were (−0.035 ± 0.103), (−0.006 ± 0.094) and (−0.019 ± 0.127) respectively. For week 2, the changes in CDFs for intrafraction and interfraction differences approached statistical significance (p=0.099). Conclusion: We have shown that 4D-CBCT VI

  13. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect (OSTI)

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation

  14. Hanford quarterly seismic monitoring report 96C

    SciTech Connect (OSTI)

    Reidel, S.P.

    1996-09-24

    Seismic monitoring at the Hanford Site was established in 1969 by the United States Geological Survey (USGS) under a contract with the U.S. Atomic Energy Commission. In 1975 the University of Washington assumed responsibility for and expanded the network. In 1979 the Basalt Waste Isolation Program (BWIP) became responsible for collecting seismic data for the site as part of site characterization. Rockwell International Operations followed by Westinghouse Hanford Company (WHC), Geosciences Group, operated the local network and were the contract technical advisors for the Eastern Washington Regional Network operated by the University of Washington. Funding ended for BWIP in December 1988. Seismic Monitoring and the University of Washington contract was then transferred WHC`s Environmental Division. Seismic Monitoring is currently assigned to WHC`s Hanford Technical Services (HTS), part of the Environmental Division. The Seismic Monitoring Analysis and Repair Team (SMART) operates, maintains, and analyzes data from the Hanford Seismic Network (HSN), extending the site historical seismic database and fulfilling U.S. Department of Energy, Richland Operations Office requirements and orders. The Seismic Monitoring Analysis and Repair Team also maintains the Eastern Washington Regional Network (EWRN). The University of Washington uses the data from the EWRN and other seismic networks in the Northwest to provide the SMART with necessary regional input for the seismic hazards analysis at the Hanford Site.

  15. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    SciTech Connect (OSTI)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs

  16. Seismic Monitoring - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Safety and Resource Protection (PSRP) Seismic Monitoring Public Safety and Resource Protection (PSRP) Public Safety and Resource Protection Home Cultural Resource Program and Curation Services Ecological Monitoring Environmental Surveillance Meteorology and Climatology Services Seismic Monitoring Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Seismic Monitoring Seismic Monitoring Hanford Site Seismic Monitoring provides an uninterrupted collection of

  17. Automating Shallow Seismic Imaging

    SciTech Connect (OSTI)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy-access environments, this device could

  18. Seismic, side-scan survey, diving, and coring data analyzed by a Macintosh II sup TM computer and inexpensive software provide answers to a possible offshore extension of landslides at Palos Verdes Peninsula, California

    SciTech Connect (OSTI)

    Dill, R.F. ); Slosson, J.E. ); McEachen, D.B. )

    1990-05-01

    A Macintosh II{sup TM} computer and commercially available software were used to analyze and depict the topography, construct an isopach sediment thickness map, plot core positions, and locate the geology of an offshore area facing an active landslide on the southern side of Palos Verdes Peninsula California. Profile data from side scan sonar, 3.5 kHz, and Boomer subbottom, high-resolution seismic, diving, echo sounder traverses, and cores - all controlled with a mini Ranger II navigation system - were placed in MacGridzo{sup TM} and WingZ{sup TM} software programs. The computer-plotted data from seven sources were used to construct maps with overlays for evaluating the possibility of a shoreside landslide extending offshore. The poster session describes the offshore survey system and demonstrates the development of the computer data base, its placement into the MacGridzo{sup TM} gridding program, and transfer of gridded navigational locations to the WingZ{sup TM} data base and graphics program. Data will be manipulated to show how sea-floor features are enhanced and how isopach data were used to interpret the possibility of landslide displacement and Holocene sea level rise. The software permits rapid assessment of data using computerized overlays and a simple, inexpensive means of constructing and evaluating information in map form and the preparation of final written reports. This system could be useful in many other areas where seismic profiles, precision navigational locations, soundings, diver observations, and core provide a great volume of information that must be compared on regional plots to develop of field maps for geological evaluation and reports.

  19. seismic | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    seismic What rock has the biggest impact on the San Andreas? The moon. Last year the subject of a Hollywood disaster movie, this year the San Andreas Fault is getting attention from geophysicists at NNSA's Los Alamos National Laboratory. U.S. Geological Survey and Los Alamos scientists have released a new study detailing how the gravitational tug of the sun and... NNSA administrator visits NNSS to meet team, see national security work Last month, Department of Energy Under Secretary for Nuclear

  20. Seismic sources

    DOE Patents [OSTI]

    Green, M.A.; Cook, N.G.W.; McEvilly, T.V.; Majer, E.L.; Witherspoon, P.A.

    1987-04-20

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Longitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements for more than about one minute. 9 figs.

  1. Seismic sources

    DOE Patents [OSTI]

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  2. Vertical Seismic Profiling At Rye Patch Area (Feighner, Et Al...

    Open Energy Info (EERE)

    reflectivity in the area and to obtain velocity information for the design and potential processing of the proposed 3-D seismic survey Feighner et al. (1998). Because the results...

  3. Seismic Design Expectations Report

    Broader source: Energy.gov [DOE]

    The Seismic Design Expectations Report (SDER) is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project seismic design activities prior to...

  4. Seismic intrusion detector system

    DOE Patents [OSTI]

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  5. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    . An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified

  6. Four Dimensional Microphysical Data from Darwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2003 Profilers (a 50 MHz and a 920 MHz) collocated about 6 km from the ARCS site. These systems operate routinely and form part of the Atmospheric Radiation Measurement...

  7. Idaho National Laboratory (INL) Seismic Initiative | Department...

    Office of Environmental Management (EM)

    Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. INL Seismic ... Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI ...

  8. Reflection Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Finally, the gravity survey also shows anomalies that correlate with the seismic and microseismic data. All of these results will be integrated to obtain the most probable...

  9. Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...

    Open Energy Info (EERE)

    Finally, the gravity survey also shows anomalies that correlate with the seismic and microseismic data. All of these results will be integrated to obtain the most probable...

  10. Refraction Survey At Chena Geothermal Area (Wescott & Turner...

    Open Energy Info (EERE)

    Institute. Notes A seismic refraction survey confirmed the presence of fractured, water-saturated granitic bedrock, as indicated by the Schlumberger soundings measured in...

  11. Refraction Survey At Hot Sulphur Springs Area (Laney, 2005) ...

    Open Energy Info (EERE)

    Location Hot Sulphur Springs Area Exploration Technique Refraction Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley....

  12. Refraction Survey At Rye Patch Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    Activity Details Location Rye Patch Area Exploration Technique Refraction Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley....

  13. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie

    2012-07-09

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  14. Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Central Nevada Seismic Zone Region (Biasi, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  16. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  17. Seismic Emissions Surveys | Open Energy Information

    Open Energy Info (EERE)

    well with the location of productive wells or known geology. Authors Katz and Lewis J. Published Journal Geothermal Resources Council Transactions, 1984 DOI Not Provided...

  18. Short-Period Seismic Noise in Vorkuta (Russia)

    SciTech Connect (OSTI)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    2008-05-15

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design, construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic

  19. Reducing Uncertainty in the Seismic Design Basis for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Reidel, Steve; Gardner, Martin G.

    2007-02-27

    The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energys (DOE) Hanford Site near Richland was re-evaluated in 2005, resulting in an increase by up to 40% in the seismic design basis. The original seismic design basis for the WTP was established in 1999 based on a probabilistic seismic hazard analysis completed in 1996. The 2005 analysis was performed to address questions raised by the Defense Nuclear Facilities Safety Board (DNFSB) about the assumptions used in developing the original seismic criteria and adequacy of the site geotechnical surveys. The updated seismic response analysis used existing and newly acquired seismic velocity data, statistical analysis, expert elicitation, and ground motion simulation to develop interim design ground motion response spectra which enveloped the remaining uncertainties. The uncertainties in these response spectra were enveloped at approximately the 84th percentile to produce conservative design spectra, which contributed significantly to the increase in the seismic design basis.

  20. SEISMIC MODELING ENGINES PHASE 1 FINAL REPORT

    SciTech Connect (OSTI)

    BRUCE P. MARION

    2006-02-09

    Seismic modeling is a core component of petroleum exploration and production today. Potential applications include modeling the influence of dip on anisotropic migration; source/receiver placement in deviated-well three-dimensional surveys for vertical seismic profiling (VSP); and the generation of realistic data sets for testing contractor-supplied migration algorithms or for interpreting AVO (amplitude variation with offset) responses. This project was designed to extend the use of a finite-difference modeling package, developed at Lawrence Berkeley Laboratories, to the advanced applications needed by industry. The approach included a realistic, easy-to-use 2-D modeling package for the desktop of the practicing geophysicist. The feasibility of providing a wide-ranging set of seismic modeling engines was fully demonstrated in Phase I. The technical focus was on adding variable gridding in both the horizontal and vertical directions, incorporating attenuation, improving absorbing boundary conditions and adding the optional coefficient finite difference methods.

  1. Seismicity Protocol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismicity Protocol Seismicity Protocol Project objectives: Develop an updated protocolbest engineering practices to address public and industry issues associated with induced ...

  2. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  3. Seismic Hazard Assessment for Western Kentucky, Northeastern Kentucky and Southeastern Ohio

    SciTech Connect (OSTI)

    Cobb, James C; Wang, Zhenming; Woolery, Edward W; Kiefer, John D

    2002-07-01

    Earthquakes pose a seismic hazards and risk to the Commonwealth of Kentucky. Furthermore, the seismic hazards and risk vary throughout the Commonwealth. The US Nuclear Regulatory Commission uses the seismic hazard maps developed by the US Geological Survey for seismic safety regulation for nuclear facilities. Under current US Geological Survey's seismic hazard assessment it is economically unfeasible to build a new uranium plant near Paducah relative to the Portsmouth, Ohio site. This is not to say that the facility cannot be safely engineered to withstand the present seismic load, but enormously expensive to do so. More than 20 years observations and research at UK have shown that the US Geological Survey has overestimated seismic hazards in western Kentucky, particularly in the Jackson Purchase area that includes Paducah. Furthermore, our research indicates underestimated seismic hazards in northeastern Kentucky and southeastern Ohio. Such overestimation and underestimation could jeopardize possible site selection of PGDP for the new uranium plant. The existing database, research experience, and expertise in UK's Kentucky Geological Survey and Department of Geological Science put this institution in a unique position to conduct a comprehensive seismic hazard evaluation.

  4. Seismicity and Reservoir Fracture Characterization

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

  5. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... data (database building, seismic interferometry, interpretation) Previous seismic ... data (database building, seismic interferometry, interpretation) Previous seismic ...

  6. Method of migrating seismic records

    DOE Patents [OSTI]

    Ober, Curtis C.; Romero, Louis A.; Ghiglia, Dennis C.

    2000-01-01

    The present invention provides a method of migrating seismic records that retains the information in the seismic records and allows migration with significant reductions in computing cost. The present invention comprises phase encoding seismic records and combining the encoded seismic records before migration. Phase encoding can minimize the effect of unwanted cross terms while still allowing significant reductions in the cost to migrate a number of seismic records.

  7. BUILDING 341 Seismic Evaluation

    SciTech Connect (OSTI)

    Halle, J.

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  8. Category:Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Seismic Techniques page? For detailed information on Seismic...

  9. Seismic Consequence Abstraction

    SciTech Connect (OSTI)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  10. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Lane

    2010-01-01

    Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines.

  11. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Lane

    Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines.

  12. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS M&D Professional Services, Inc. (M&D) is under subcontract to Pacific ...

  13. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for ...

  14. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrel, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2014-08-19

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  15. Controllable seismic source

    DOE Patents [OSTI]

    Gomez, Antonio; DeRego, Paul Jeffrey; Ferrell, Patrick Andrew; Thom, Robert Anthony; Trujillo, Joshua J.; Herridge, Brian

    2015-09-29

    An apparatus for generating seismic waves includes a housing, a strike surface within the housing, and a hammer movably disposed within the housing. An actuator induces a striking motion in the hammer such that the hammer impacts the strike surface as part of the striking motion. The actuator is selectively adjustable to change characteristics of the striking motion and characteristics of seismic waves generated by the impact. The hammer may be modified to change the physical characteristics of the hammer, thereby changing characteristics of seismic waves generated by the hammer. The hammer may be disposed within a removable shock cavity, and the apparatus may include two hammers and two shock cavities positioned symmetrically about a center of the apparatus.

  16. Development of a hydraulic borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  17. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect (OSTI)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  18. Nonstructural seismic restraint guidelines

    SciTech Connect (OSTI)

    Butler, D.M.; Czapinski, R.H.; Firneno, M.J.; Feemster, H.C.; Fornaciari, N.R.; Hillaire, R.G.; Kinzel, R.L.; Kirk, D.; McMahon, T.T.

    1993-08-01

    The Nonstructural Seismic Restraint Guidelines provide general information about how to secure or restrain items (such as material, equipment, furniture, and tools) in order to prevent injury and property, environmental, or programmatic damage during or following an earthquake. All SNL sites may experience earthquakes of magnitude 6.0 or higher on the Richter scale. Therefore, these guidelines are written for all SNL sites.

  19. 3-D seismic benefits from exploration through development: An Exxon perspective

    SciTech Connect (OSTI)

    Johnson, M.G.; Gaskins, G.M. ); Greenlee, S.M. )

    1993-09-01

    Exxon has participated in over 370 three-dimensional (3-D) seismic surveys in 13 countries since the late-1970s. The world-wide distribution of our experience is led by western Europe, the Gulf of Mexico, and Canada. These surveys have added significant value to our upstream operations and we consider 3-D seismic to be the single most important technology to ensure the effective and cost-efficient exploration and development of our oil and gas fields. Exxon is applying 3-D seismic technology in established exploration trends, the early phases of field delineation, development decision making, and exploitation. Our use of 3-D seismic surveys has led to the addition of new reserves, drilling of fewer dry or marginal exploration wells, and optimization of the number and placement of delineation, development, and secondary recovery wells. These benefits are a result of superior structural definition, more detailed reservoir descriptions, reservoir fluid content characterizations, and quantitative interpretation methods. Although 3-D seismic surveys are expensive, when balanced against potential investments in nonproductive acreage, a costly dry hole or two, a misplaced platform, incorrect assumptions on reservoir extent and geometry, or perhaps premature field abandonment, 3-D seismic surveys in most areas are money well spent.

  20. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PPRP Closure Letter Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.1 Appendix B PPRP Closure Letter 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.2 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.3 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis B.4 Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 B.5

  1. High Order Seismic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing) Alexander Heinecke 1 , Alexander Breuer 2 , Michael Bader 3 , and Pradeep Dubey 1 1 Intel Corporation, 2200 Mission College Blvd., Santa Clara 95054, CA, USA 2 University of California, San Diego, 9500 Gilman Dr., La Jolla 92093, CA, USA 3 Technische Universit¨ at M¨ unchen, Boltzmannstr. 3, D-85748 Garching, Germany Abstract. We present a holistic optimization of the ADER-DG finite element software SeisSol targeting

  2. Seismic Structure And Seismicity Of The Cooling Lava Lake Of...

    Open Energy Info (EERE)

    Of The Cooling Lava Lake Of Kilauea Iki, Hawaii Abstract The use of multiple methods is indispensable for the determination of the seismic properties of a complex body...

  3. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect (OSTI)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  4. Induced Seismicity | Open Energy Information

    Open Energy Info (EERE)

    of Project DOE Funding Total Project Cost Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing California Lawrence Livermore National...

  5. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F - Seismicity Relocation Analyses Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 F.1 Appendix F Seismicity Relocation Analyses Final Report: High-Resolution Seismicity Study of the Yakima Fold and Thrust Belt Region, Washington Prepared by Clifford H. Thurber Department of Geoscience University of Wisconsin-Madison 1215 W. Dayton St. Madison, WI 53706 January 31, 2014 Final Report: Hanford Site-Wide Probabilistic Seismic Hazard Analysis (PSHA): High-Resolution Seismicity Analysis

  6. Development of the Multi-Level Seismic Receiver (MLSR)

    SciTech Connect (OSTI)

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.

    1995-02-01

    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  7. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  8. Alaska Maximum Number of Active Crews Engaged in Three-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    Surveying (Number of Elements) Three-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 2 11 6

  9. Alaska Maximum Number of Active Crews Engaged in Two-Dimensional Seismic

    Gasoline and Diesel Fuel Update (EIA)

    Surveying (Number of Elements) Two-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 4 2 12 6 0 0 0 0 NA 0 2010's 0

  10. Seismic & Natural Phenomena Hazards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to withstand the hazards. CNS maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE...

  11. Induced Seismicity Impact | Open Energy Information

    Open Energy Info (EERE)

    Seismicity Impact Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleInducedSeismicityImpact&oldid612409" Feedback Contact needs updating...

  12. Seismic Data Gathering and Validation

    SciTech Connect (OSTI)

    Coleman, Justin

    2015-02-01

    Three recent earthquakes in the last seven years have exceeded their design basis earthquake values (so it is implied that damage to SSC’s should have occurred). These seismic events were recorded at North Anna (August 2011, detailed information provided in [Virginia Electric and Power Company Memo]), Fukushima Daichii and Daini (March 2011 [TEPCO 1]), and Kaswazaki-Kariwa (2007, [TEPCO 2]). However, seismic walk downs at some of these plants indicate that very little damage occurred to safety class systems and components due to the seismic motion. This report presents seismic data gathered for two of the three events mentioned above and recommends a path for using that data for two purposes. One purpose is to determine what margins exist in current industry standard seismic soil-structure interaction (SSI) tools. The second purpose is the use the data to validated seismic site response tools and SSI tools. The gathered data represents free field soil and in-structure acceleration time histories data. Gathered data also includes elastic and dynamic soil properties and structural drawings. Gathering data and comparing with existing models has potential to identify areas of uncertainty that should be removed from current seismic analysis and SPRA approaches. Removing uncertainty (to the extent possible) from SPRA’s will allow NPP owners to make decisions on where to reduce risk. Once a realistic understanding of seismic response is established for a nuclear power plant (NPP) then decisions on needed protective measures, such as SI, can be made.

  13. Seismic properties of a Venezuelan heavy oil in water emulsion

    SciTech Connect (OSTI)

    Maldonado, F.; Liu, Y.; Mavko, G.; Mukerji, T.

    1996-08-01

    Several procedures for the production of low-viscosity, surfactant-stabilized, easy-transportable dispersions of heavy crude oil in water-briefly, oil in water (or o/w) emulsions - have been recently patented. Some of them propose to form the o/w emulsion in the reservoir, after the injection of a mixture of water and surfactants, increasing significantly the per well daily production. Progression of the o/w emulsion front, through the reservoir to the production wells, can be monitored in seismic planar slices with successive 3D seismic surveys (413 seismic), if enough contrast exists between the seismic velocity value of the o/w emulsion and the one of the oil in place. To facilitate the analysis of the contrast, this study presents high frequency acoustic velocity measurements performed in the laboratory. The experimental setup includes two reflectors and an ultrasonic transducer with double burst train emission. The estimated velocity precision is 0.02%. The measured samples are: a Venezuelan heavy o/w emulsion, a mixture of the same heavy oil and gasoil and a saturated sandstone core containing the o/w emulsion. Additionally, seismic velocities of the actual pore fluids - live oil and five o/w emulsion - and saturated sandstone are calculated using the above laboratory measurements, Wood`s equation, and Gassman`s and Biot`s models.

  14. Annual Hanford Seismic Report for Fiscal Year 1998

    SciTech Connect (OSTI)

    DC Hartshorn; SP Reidel; AC Rohay

    1998-12-22

    Seismic monitoring at the Hanford Site was established in 1969 by the United States Geological Survey (USGS) under a contract with theJ.J.S. Atomic Energy Commission. In 1975, the University of Washington (UW) assumed responsibility for the network and subsequently expanded it. In 1979, the Basalt Waste o Isolation Program (13WIP) became responsible for collecting seismic data for the Hdord Site as part of site " characterization activities. Rockwell Htiord Operations, followed by Westinghouse Ha&ord Company . (WHC), operated the local network and were the contract technical advisors for the Eastern Washington Regional Network @wRN) operated and maintained by the UW. Funding for BWIP ended in December 1988. Seismic Monitoring and responsibility for the University of Washington contract were then trans- ferred to WHC'S Environmental Division. Maintenance responsibilities for the EWRN were also Assigned to WHC, who made major upgrades to EWRN sites. Effective October 1,1996, Seismic Monitoring was transfemed to the Pacific Northwest National Laboratory (PI@lL*). Seismic Monitoring is part of PNNL's Applied Geology and Geochemistry Group, Energy Technology Division. The Hanford Strong Motion Accelerometer network was constructed during 1997 and came online in May 1997. It operated continuously until September 30, 1997, when it was mothballed due to can- . cellation of fimding. Funding was restored on October 1, 1998, by joint agreement between the U.S. Department of Energy (DOE) and PNNL. Operation of the free-field sites resumed on November 20, 1998.

  15. Wide aperture seismic recording in offshore west Sicily and Bolivia

    SciTech Connect (OSTI)

    Tilander, N.G.; Lattimore, R.K.

    1994-12-31

    Seismic operations using the Wide Aperture Recording (WAR) technique were carried out in offshore west Sicily (16.5 km offsets) and in the Sub-Andean Cordillera of Bolivia (9.0 km offsets) where conventional offset data have traditionally proved inadequate for imaging complex subsurface structures. In both cases, noise-free wide aperture events were visible at long offsets, and were successfully stacked using both hyperbolic and linear moveout. In the Sicily datasets, the resulting seismic images disagree with earlier structural interpretations, but the lack of reliable ``calibration`` data in terms of well control or usable conventional seismic data make final evaluation and interpretation of the Sicily wide aperture data ambiguous. In Bolivia good quality seismic data are present across a portion of the WAR survey; the results show that the wide aperture technique may produce a valid structural image, provided the subsurface geometries are sufficiently broad and shallow. For tight structures, the technique is unlikely to produce valid images. In general, the authors` studies show that considerable effort is required at the data processing and interpretation stage, including full waveform and ray-trace modeling, in order to identify event arrivals and to attempt to validate the wide aperture structural images. Reliable calibration data in the form of well control or conventional seismic data are needed in order to provide an understanding of the WAR results.

  16. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, Farid U.; Jarpe, Stephen P.; Maurer, William

    1994-01-01

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities.

  17. Seismic event classification system

    DOE Patents [OSTI]

    Dowla, F.U.; Jarpe, S.P.; Maurer, W.

    1994-12-13

    In the computer interpretation of seismic data, the critical first step is to identify the general class of an unknown event. For example, the classification might be: teleseismic, regional, local, vehicular, or noise. Self-organizing neural networks (SONNs) can be used for classifying such events. Both Kohonen and Adaptive Resonance Theory (ART) SONNs are useful for this purpose. Given the detection of a seismic event and the corresponding signal, computation is made of: the time-frequency distribution, its binary representation, and finally a shift-invariant representation, which is the magnitude of the two-dimensional Fourier transform (2-D FFT) of the binary time-frequency distribution. This pre-processed input is fed into the SONNs. These neural networks are able to group events that look similar. The ART SONN has an advantage in classifying the event because the types of cluster groups do not need to be pre-defined. The results from the SONNs together with an expert seismologist's classification are then used to derive event classification probabilities. 21 figures.

  18. Virtual and super - virtual refraction method: Application to synthetic data and 2012 of Karangsambung survey data

    SciTech Connect (OSTI)

    Nugraha, Andri Dian; Adisatrio, Philipus Ronnie

    2013-09-09

    Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties such as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.

  19. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect (OSTI)

    Bob A. Hardage

    2005-07-31

    We have developed a numerical technique that will adjust 3-D S-wave seismic images so that they are depth equivalent to 3-D P-wave seismic images. The ability to make this type of P-SV to P-P depth registration is critical to our elastic wavefield seismic stratigraphy research because we now have higher confidence that depth-equivalent data windows are being used in the P-SV to P-P comparisons that we are making.

  20. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award:

    Office of Scientific and Technical Information (OSTI)

    DE-EE0002839, Phase 1 Report (Technical Report) | SciTech Connect Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report Citation Details In-Document Search Title: Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy)

  1. Seismic Readings from the Deepest Borehole in the New Madrid Seismic Zone

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming; Sturchio, Neil C

    2006-03-01

    Since the 1980s, the research associated with the UK network has been primarily strong-motion seismology of engineering interest. Currently the University of Kentucky operates a strong-motion network of nine stations in the New Madrid Seismic Zone. A unique feature of the network is the inclusions of vertical strong-motion arrays, each with one or two downhole accelerometers. The deepest borehole array is 260 m below the surfaces at station VASA in Fulton County, Kentucky. A preliminary surface seismic refraction survey was conducted at the site before drilling the hole at VSAS (Woolery and Wang, 2002). The depth to the Paleozoic bedrock at the site was estimated to be approximately 595 m, and the depth to the first very stiff layer (i.e. Porters Creek Clay) was found to be about 260 m. These depths and stratigraphic interpretation correlated well with a proprietary seismic reflection line and the Ken-Ten Oil Exploration No. 1 Sanger hole (Schwalb, 1969), as well as our experience in the area (Street et al., 1995; Woolery et al., 1999).

  2. Post-processing of seismic parameter data based on valid seismic event determination

    DOE Patents [OSTI]

    McEvilly, Thomas V.

    1985-01-01

    An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.

  3. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  4. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  5. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly

  6. Seismicity and seismic stress in the Coso Range, Coso geothermal...

    Open Energy Info (EERE)

    and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search OpenEI Reference LibraryAdd to...

  7. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  8. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOE Patents [OSTI]

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  9. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  10. Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    impedance boundary7 References (Majer, n.d.) "3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment- Summary" 2.0 2.1 2.2 (Dobrin and Savit, 1988)...

  11. Non-Linear Seismic Soil Structure Interaction (SSI) Method for...

    Office of Environmental Management (EM)

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for ...

  12. Seismic Analysis of Facilities and Evaluation of Risk | Department...

    Office of Environmental Management (EM)

    Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Seismic Analysis of Facilities and Evaluation of Risk Michael Salmon,...

  13. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region (Redirected from Central Nevada Seismic Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone...

  14. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  15. Category:Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    out of 2 total. S Single-Well And Cross-Well Seismic Imaging 1 pages V Vertical Seismic Profiling 1 pages Pages in category "Borehole Seismic...

  16. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  17. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  18. Four-Dimensional Data Assimilation Boundary-Layer Observations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The profiler was operated in Doppler beam swinging (DBS) mode while also processing the signal using interferometry . Radiosondes were launched from both the central facility and ...

  19. Four-Dimensional Data Assimilation S. Kinne and R. Bergstrom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinne and R. Bergstrom NASA-Ames Research Center Moffett Field. CA 94035-1000 T. Ackerman Pennsylvania State University University Park, PA 16802 Abstract Radiation measurements at ...

  20. Seismic assessment of buried pipelines

    SciTech Connect (OSTI)

    Al-Chaar, G.; Brady, P.; Fernandez, G.

    1995-12-31

    A structure and its lifelines are closely linked because the disruption of lifeline systems will obstruct emergency service functions that are vitally needed after an earthquake. As an example of the criticality of these systems, the Association of Bay Area Government (ABAG) recorded thousands of leaks in pipelines that resulted in more than twenty million gallons of hazardous materials being released in several recorded earthquakes. The cost of cleaning the spills from these materials was very high. This information supports the development of seismic protection of lifeline systems. The US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL) has, among its missions, the responsibility to develop seismic vulnerability assessment procedures for military installations. Within this mission, a preliminary research program to assess the seismic vulnerability of buried pipeline systems on military installations was initiated. Phase 1 of this research project resulted in two major studies. In the first, evaluating current procedures to seismically design or evaluate existing lifeline systems, the authors found several significant aspects that deserve special consideration and need to be addressed in future research. The second was focused on identifying parameters related to buried pipeline system vulnerability and developing a generalized analytical method to relate these parameters to the seismic vulnerability assessment of existing pipeline systems.

  1. Advanced Seismic Data Analysis Program- The "Hot Pot" Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Data Analysis Program - The "Hot Pot" Project Principal Investigator : Frank ... (2) * Innovative aspects Seismic data processing generally follows procedure ...

  2. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis

    Office of Environmental Management (EM)

    Committee (SSHAC) Level 1 Seismic Hazard Analysis | Department of Energy The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 Seismic Hazard Analysis Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. Seismic Hazard Definition: SSHAC Level 1 PSHA at MFC (416.86 KB) More Documents & Publications The INL Seismic Risk

  3. Seismic Lessons-Learned Panel Meetings

    Broader source: Energy.gov [DOE]

    The Chief of Nuclear Security (CNS) maintains a panel of experts known as the Seismic Lessons-Learned Panel, which meets periodically to discuss seismic issues impacting DOE facilities.

  4. LLNL-TR-400563 Seismic Data

    National Nuclear Security Administration (NNSA)

    Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site ... Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site ...

  5. Development of a HT Seismic Tool

    Broader source: Energy.gov [DOE]

    The program objective is to design; fabricate and field test two high temperature (HT) seismic tools in an EGS application.

  6. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  7. Vertical Seismic Profiling | Open Energy Information

    Open Energy Info (EERE)

    Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  8. Teleseismic-Seismic Monitoring | Open Energy Information

    Open Energy Info (EERE)

    Passive Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Map geothermal...

  9. Seismic Imaging Processing and Migration

    Energy Science and Technology Software Center (OSTI)

    2000-06-26

    Salvo is a 3D, finite difference, prestack, depth migration code for parallel computers. It is also capable of processing 2D and poststack data. The code requires as input a seismic dataset, a velocity model and a file of parameters that allows the user to select various options. The code uses this information to produce a seismic image. Some of the options available to the user include the application of various filters and imaging conditions. Themore » code also incorporates phase encoding (patent applied for) to process multiple shots simultaneously.« less

  10. Identifying High Potential Well Targets with 3D Seismic and Mineralogy

    SciTech Connect (OSTI)

    Mellors, R. J.

    2015-10-30

    Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and map permeable zones in a hydrothermal area.

  11. Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico

    SciTech Connect (OSTI)

    Huang, Lianjie; Albrecht, Michael

    2011-01-25

    A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

  12. Seismic, shock, and vibration isolation - 1988

    SciTech Connect (OSTI)

    Chung, H. ); Mostaghel, N. )

    1988-01-01

    This book contains papers presented at a conference on pressure vessels and piping. Topics covered include: Design of R-FBI bearings for seismic isolation; Benefits of vertical and horizontal seismic isolation for LMR nuclear reactor units; and Some remarks on the use and perspectives of seismic isolation for fast reactors.

  13. 2D Seismic Reflection Survey Crump Geyser Geothermal Prospect...

    Open Energy Info (EERE)

    Additional Info Field Value Author Nevada Geothermal Power Company Maintainer Nicole Smith bureaucode 019:20 Catalog DOE harvestobjectid 80f3a9f1-e224-4a02-951b-229cd8e273fd...

  14. Direct-Current Resistivity Survey At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoreticalcomputer simulation tests of various methods on eight hypothetical 'model' basing-and-range...

  15. An active seismic reconnaissance survey of the Mount Princeton...

    Open Energy Info (EERE)

    area, Chaffee County, ColoradoThesisDissertation Abstract Abstract unavailable. Author J.S. Crompton Organization Colorado School of Mines Published Publisher Not Provided, 1976...

  16. Geodetic Survey At Central Nevada Seismic Zone Region (Blewitt...

    Open Energy Info (EERE)

    Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The...

  17. Refraction Survey At Central Nevada Seismic Zone Region (Heimgartner...

    Open Energy Info (EERE)

    useful regional reconnaissance DOE-funding Unknown References Michelle Heimgartner, James B. Scott, Weston Thelen, Christopher R. Lopez, John N. Louie (2005) Variable Crustal...

  18. Functional performance requirements for seismic network upgrade

    SciTech Connect (OSTI)

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  19. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in

    Gasoline and Diesel Fuel Update (EIA)

    Four-Dimensional Seismic Surveying (Number of Elements) Four-Dimensional Seismic Surveying (Number of Elements) U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged in Four-Dimensional Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2000 0 0 1 1 1 1 1 1 1 1 1 1 2001 1 1 1 1 1 1 1 1 1 1 1 1 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 1 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

  20. Reflection Survey At Oceanic-Marine Systems (Singh, Et Al., 1999...

    Open Energy Info (EERE)

    Survey Activity Date Usefulness useful DOE-funding Unknown References S. C. Singh, J. S. Collier, A. J. Harding, G. M. Kent, J. A. Orcutt (1999) Seismic Evidence For A...

  1. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect (OSTI)

    Widdoes, D.; Verteuil, N. de; Hitzman, D.

    1996-12-31

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  2. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect (OSTI)

    Widdoes, D. ); Verteuil, N. de ); Hitzman, D. )

    1996-01-01

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  3. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  4. Seismic Isolation Working Meeting Gap Analysis Report

    SciTech Connect (OSTI)

    Justin Coleman; Piyush Sabharwall

    2014-09-01

    The ultimate goal in nuclear facility and nuclear power plant operations is operating safety during normal operations and maintaining core cooling capabilities during off-normal events including external hazards. Understanding the impact external hazards, such as flooding and earthquakes, have on nuclear facilities and NPPs is critical to deciding how to manage these hazards to expectable levels of risk. From a seismic risk perspective the goal is to manage seismic risk. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components (SSCs)). There are large uncertainties associated with evolving nature of the seismic hazard curves. Additionally there are requirements within DOE and potential requirements within NRC to reconsider updated seismic hazard curves every 10 years. Therefore opportunity exists for engineered solutions to manage this seismic uncertainty. One engineered solution is seismic isolation. Current seismic isolation (SI) designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed, in the American Society of Civil Engineers (ASCE) 4 standard, to be released in 2014, for Light Water Reactors (LWR) facilities using commercially available technology. However, there is a lack of industry application to the nuclear industry and uncertainty with implementing the procedures outlined in ASCE-4. Opportunity exists to determine barriers associated with implementation of current ASCE-4 standard language.

  5. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  6. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  7. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  8. Feasibility of High Resolution P- and S-Wave Seismic Reflection to Detect Methane Hydrate

    SciTech Connect (OSTI)

    Hunter, J.A.

    2000-08-02

    In March, 1999, a combined geophysical field team from the Kansas Geological Survey, Oak Ridge National Laboratory, and the Geological Survey of Canada, performed some experimental high resolution seismic testing at the Mallik drill site in the Mackenzie Delta, Northwest Territories, where drilling and sampling had previously identified gas hydrates at depth beneath a thick permafrost zone. In this information document, we show data from this seismic test, along with comparisons and observations significant to the effective use of high resolution imaging and important considerations about high resolution operations in this environment. Included are discussions and examples based on previous studies at this site, data acquisition, processing, correlation of results with other data sets and some recommendations for future surveying.

  9. Digital Surveying Directional Surveying Specialists | Open Energy...

    Open Energy Info (EERE)

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  10. Seismic Fracture Characterization Methodologies for Enhanced Geothermal

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems Citation Details In-Document Search Title: Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both

  11. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D - Final Hazard Input Documents Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 D.1 Appendix D Final Hazard Input Documents Appendixes D.1 and D.2, respectively, contain the final hazard input documents (HIDs) for the seismic source and ground motion characterization models for the Hanford sitewide Probabilistic Seismic Hazard Analysis project. Each provides sufficient information for the hazard analyst to input the characterization models into the hazard code for calculations. Each

  12. 3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

    SciTech Connect (OSTI)

    Eckels, Marc T.

    2002-09-09

    The objectives of this North Hill Creek 3-D seismic survey were to: (1) cover as large an area as possible with available budget; (2) obtain high quality data throughout the depth range of the prospective geologic formations of 2,000' to 12,000' to image both gross structures and more subtle structural and stratigraphic elements; (3) overcome the challenges posed by a hard, reflective sandstone that cropped out or was buried just a few feet below the surface under most of the survey area; and (4) run a safe survey.

  13. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS ... Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Seismic ...

  14. StatesFirst Releases Induced Seismicity Primer

    Broader source: Energy.gov [DOE]

    A recent primer released by the state-level StatesFirst initiative provides guidance on mitigating seismic risks associated with waste water disposal wells.

  15. Opportunities for improving regulations governing the seismic...

    Office of Environmental Management (EM)

    Support DOE NPH Design AN APPLICATION OF THE SSHAC LEVEL 3 PROCESS TO THE PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA...

  16. Hanford Sitewide Probabilistic Seismic Hazard Analysis - Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sitewide Probabilistic Seismic Hazard Analysis Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site...

  17. TGLO - Seismic Permitting webpage | Open Energy Information

    Open Energy Info (EERE)

    Permitting webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: TGLO - Seismic Permitting webpage Abstract This is the Texas General Land...

  18. Seismic modal analysis and system interaction (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Conference: Seismic modal analysis and system interaction Citation Details In-Document ... many pressing subjects concerning the design and analysis of nuclear and waste facilities. ...

  19. Code System for Seismic Probabilistic Risk Assessment.

    Energy Science and Technology Software Center (OSTI)

    2001-03-27

    Version 00 SEISIM1 calculates the probabilities of seismically induced failures for components and systems and propagates these calculations to determine the probability of accident sequences and the resulting total risk, which is quantified as an expected value of radiation release and exposure from a given nuclear power plant. SEISIM1 was developed as a fundamental tool for the systems analysis portion of the NRC's Seismic Safety Margins Research Program (SSMRP). The SSMRP provides a complete, self-containedmore » methodology to assess and quantify the risk to nuclear power plants from seismic events and seismically induced failures.« less

  20. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  1. Active Seismic Methods | Open Energy Information

    Open Energy Info (EERE)

    Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Methods Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration...

  2. Comparison of lower-frequency (<1000 Hz) downhole seismic sources for use at environmental sites

    SciTech Connect (OSTI)

    Elbring, G.J.

    1995-03-01

    In conjunction with crosswell seismic surveying being done at the Hanford Site in south-central Washington, four different downhole seismic sources have been tested between the same set of boreholes. The four sources evaluated were the Bolt airgun, the OYO-Conoco orbital vibrator, and two Sandia-developed vertical vibrators, one pneumatically-driven, and the other based on a magnetostrictive actuator. The sources generate seismic energy in the lower frequency range of less than 1000 Hz and have different frequency characteristics, radiation patterns, energy levels, and operational considerations. Collection of identical data sets with all four sources allows the direct comparison of these characteristics and an evaluation of the suitability of each source for a given site and target.

  3. Methods and apparatus for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  4. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  5. Monument Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs from the WIPP Permanent Marker Monument Survey John Hart & Associates, 2000 Photograph of the Gnome Marker located about 10 miles SW of the WIPP site For more...

  6. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  7. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  8. Hostile wells: the borehole seismic challenge | Open Energy Informatio...

    Open Energy Info (EERE)

    Web Site: Hostile wells: the borehole seismic challenge Author William Wills Published Oil and Gas Engineer - Subsea & Seismic, 2013 DOI Not Provided Check for DOI availability:...

  9. NNSA conducts second seismic source physics experiment | National...

    National Nuclear Security Administration (NNSA)

    conducts second seismic source physics experiment | National Nuclear Security ... Home NNSA Blog NNSA conducts second seismic source physics experiment NNSA conducts ...

  10. Characteristics of seismic waves from Soviet peaceful nuclear...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt Citation Details In-Document Search Title: Characteristics of seismic waves from...

  11. Understanding seismic design criteria for Japanese nuclear power...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Citation Details In-Document Search Title: Understanding seismic design criteria for Japanese nuclear power ...

  12. Seismic Monitoring a Critical Step in EGS Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Monitoring a Critical Step in EGS Development Seismic Monitoring a Critical Step in EGS Development December 3, 2013 - 1:33pm Addthis The Energy Department's Sandia ...

  13. Application of Random Vibration Theory Methodology for Seismic...

    Energy Savers [EERE]

    Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Application of Random Vibration Theory Methodology for Seismic Soil-Structure...

  14. Non-linear Seismic Soil Structure Interaction Method for Developing...

    Office of Environmental Management (EM)

    Non-Linearity in Seismic SSI Analysis Commercial Software Elements Commercial Software Non-Linear Constitutive Models Non-Linear Seismic SSI Damping ...

  15. Teleseismic-Seismic Monitoring At New River Area (DOE GTP) |...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At New...

  16. Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Kilauea Summit Area (Chouet & Aki, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic...

  17. Central Nevada Seismic Zone Geothermal Region | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Central Nevada Seismic Zone Geothermal Region Details Areas (3) Power...

  18. Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At Rye...

  19. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP...

    Open Energy Info (EERE)

    Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Seismic Profiling At...

  20. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved seismic imaging of geology across high-velocity Earth surfaces will allow more rigorous evaluation of geothermal prospects beneath volcanic outcrops. Seismic-based ...

  1. Joint inversion of electrical and seismic data for Fracture char...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char. ...

  2. Seismic design evaluation guidelines for buried piping for the...

    Office of Scientific and Technical Information (OSTI)

    Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities Citation Details In-Document Search Title: Seismic design evaluation guidelines for buried piping ...

  3. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid ...

  4. Application of the Computer Program SASSI for Seismic SSI Analysis...

    Office of Environmental Management (EM)

    the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Application of the...

  5. Teleseismic-Seismic Monitoring At Coso Geothermal Area (2011...

    Open Energy Info (EERE)

    Date 2011 - 2012 Usefulness not indicated DOE-funding Unknown Exploration Basis Map hydraulic structure within the field from seismic data Notes 2011: 16 years of seismicity were...

  6. Idaho National Laboratory (INL) Seismic Risk Assessment Project...

    Office of Environmental Management (EM)

    Seismic Risk Assessment Project: Implementation of Proposed Methodology at INL and Associated Risk Studies Presentation from the May 2015 Seismic Lessons-Learned Panel Meeting. ...

  7. Category:Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Active Seismic Techniques page? For detailed information...

  8. Category:Passive Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed...

  9. Advance Seismic Data Analysis Program: (The "Hot Pot Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    method for interpreting seismic data to locate deep geothermal structures. validationmoorehotpot.pdf (263.32 KB) More Documents & Publications Advanced Seismic Data Analysis ...

  10. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  11. Seismic hazard methodology for the central and Eastern United...

    Office of Scientific and Technical Information (OSTI)

    Title: Seismic hazard methodology for the central and Eastern United States: Volume 1, Part 1: Theory: Final report The NRC staff concludes that SOGEPRI Seismic Hazard Methodology...

  12. Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Rucker J. ...

  13. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  14. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  15. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 Seismic Source Characterization .................................................................................................. 8.1 8.1 Building the SSC Model: Overview and Approach ............................................................ 8.1 8.1.1 Criteria for Defining Seismic Sources ....................................................................... 8.1 8.1.2 Data Evaluation Process ............................................................................................ 8.3

  16. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (OSTI)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  17. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

    Broader source: Energy.gov [DOE]

    Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

  18. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    SciTech Connect (OSTI)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.

  19. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    SciTech Connect (OSTI)

    Lin, Youzuo; Huang, Lianjie

    2015-01-26

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.

  20. Method for determining formation quality factor from well log data and its application to seismic reservoir characterization

    DOE Patents [OSTI]

    Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

    2006-08-08

    A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

  1. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  2. Development of a magnetostrictive borehole seismic source

    SciTech Connect (OSTI)

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  3. Code for Calculating Regional Seismic Travel Time

    Energy Science and Technology Software Center (OSTI)

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  4. Natural fracture characterization using passive seismic illumination

    SciTech Connect (OSTI)

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  5. Seismic reflection imaging at a Shallow Site

    SciTech Connect (OSTI)

    Milligan, P.; Rector, J.; Bainer, R.

    1997-01-01

    The objective of our studies was to determine the best seismic method to image these sediments, between the water table at 3 m depth to the basement at 35 m depth. Good cross-correlation between well logs and the seismic data was also desirable, and would facilitate the tracking of known lithological units away from the wells. For instance, known aquifer control boundaries may then be mapped out over the boundaries, and may be used in a joint inversion with reflectivity data and other non-seismic geophysical data to produce a 3-D image containing quantitative physical properties of the target area.

  6. Seismic Retrofit for Electric Power Systems

    SciTech Connect (OSTI)

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection, where seismic hazard stems from the New Madrid seismic zone.

  7. Initial results from seismic monitoring at the Aquistore CO2 storage site, Saskatchewan, Canada

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, D. J.; Roach, L. A.N.; Roberts, B.; Daley, T. M.

    2014-12-31

    The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO2 storage projects in the world that is designed to demonstrate CO2 storage in a deep saline aquifer. Starting in 2014, CO2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will host the injected CO2 hasmore » been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO2. Prior to the onset of CO2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data

  8. Seismic waveform viewer, processor and calculator

    Energy Science and Technology Software Center (OSTI)

    2015-02-15

    SWIFT is a computer code that is designed to do research level signal analysis on seismic waveforms, including visualization, filtering and measurement. LLNL is using this code, amplitude and global tomography efforts.

  9. Seismic estimation of porosity in the Permian San Andres carbonate reservoir, Welch Field, Dawson, County, Texas

    SciTech Connect (OSTI)

    Watts, G.P.; Hinterlong, G.D. )

    1996-01-01

    OXY and the DOE Are partners in a advanced technology demonstration project at OXY's West Welch Unit. Production is from a low permeability San Andres reservoir of Permian age similar to many shallow shelf carbonate reservoirs in the Permian Basin. The project involves the construction of a detailed geological model for numerical simulation to design and then conduct a CO[sub 2] flood of the reservoir. Depositional textures of the reservoir rock are highly variable from diagenesis, mostly anhydritic cementing, creating a highly complex pore system. Identification of the interwell reservoir continuity and flow units present the greatest challenge to the reservoir description. A 1993 vintage 3-D seismic survey with a bin spacing of 110[prime] by 165[prime] has been used to assist with the interwell reservoir description. The structure definition at the top and base of the reservoir have been accurately mapped with respect to the well data. Core and well log measurements of porosity, permeability and water saturation were computed and summed across the seismic reservoir interval. Measurements of amplitude, frequency and phase within the 3-D volume were summed across the reservoir interval. All seismic attributes were sampled to the wells and compared through scatterplots to the well log and core measurements. Excellent correlation between three seismic attributes and porosity has been documented. A deterministic method has been used to estimate porosity values at each seismic bin location. The method uses the seismic measurements to shape the geology between the wells while maintaining agreement with the well data at the well locations.

  10. Seismic estimation of porosity in the Permian San Andres carbonate reservoir, Welch Field, Dawson, County, Texas

    SciTech Connect (OSTI)

    Watts, G.P.; Hinterlong, G.D.

    1996-12-31

    OXY and the DOE Are partners in a advanced technology demonstration project at OXY`s West Welch Unit. Production is from a low permeability San Andres reservoir of Permian age similar to many shallow shelf carbonate reservoirs in the Permian Basin. The project involves the construction of a detailed geological model for numerical simulation to design and then conduct a CO{sub 2} flood of the reservoir. Depositional textures of the reservoir rock are highly variable from diagenesis, mostly anhydritic cementing, creating a highly complex pore system. Identification of the interwell reservoir continuity and flow units present the greatest challenge to the reservoir description. A 1993 vintage 3-D seismic survey with a bin spacing of 110{prime} by 165{prime} has been used to assist with the interwell reservoir description. The structure definition at the top and base of the reservoir have been accurately mapped with respect to the well data. Core and well log measurements of porosity, permeability and water saturation were computed and summed across the seismic reservoir interval. Measurements of amplitude, frequency and phase within the 3-D volume were summed across the reservoir interval. All seismic attributes were sampled to the wells and compared through scatterplots to the well log and core measurements. Excellent correlation between three seismic attributes and porosity has been documented. A deterministic method has been used to estimate porosity values at each seismic bin location. The method uses the seismic measurements to shape the geology between the wells while maintaining agreement with the well data at the well locations.

  11. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis ...

  12. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Earthquake Catalog Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 C.1 Appendix C Earthquake Catalog This appendix describes the uniform moment magnitude catalogs of crustal and subduction earthquakes, and the databases of earthquakes that were assembled as part of the Hanford Probabilistic Seismic Hazard Analysis (PSHA) project to obtain these catalogs. Section C.4 describes the database of earthquakes used to derive the magnitude conversion relations used to obtain a uniform

  13. Hanford Sitewide Probabilistic Seismic Hazard Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G - SSC Data Summary Tables Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 G.1 Appendix G SSC Data Summary Tables This appendix presents the data summary tables that were developed by the seismic source characterization (SSC) Technical Integration Team. As discussed in Section 8.1.2.1, data tables are used to assist in the documentation of the SSC data evaluation process. The data tables begin with the basic reference information for data that were identified by the TI Team and

  14. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  15. U.S.Lower 48 States Onshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 10 12 0 1 0 0 0 0 NA 0 2010's 0...

  16. U.S.Lower 48 States Offshore Maximum Number of Active Crews Engaged...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Four-Dimensional Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 9 NA 0 2010's 0...

  17. Final Report: Seismic Hazard Assessment at the PGDP

    SciTech Connect (OSTI)

    Wang, Zhinmeng

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  18. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  19. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2012-01-01

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  20. Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations

    SciTech Connect (OSTI)

    Brian Toelle

    2008-11-30

    This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted

  1. A Study of SSI Effects Incorporating Seismic Wave Incoherence...

    Office of Environmental Management (EM)

    A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of SSI Effects Incorporating Seismic Wave Incoherence within the DOE Complex A Study of...

  2. Regional Seismic Travel Time Node Get and Set

    Energy Science and Technology Software Center (OSTI)

    2012-10-24

    RSTT_NOGS allows users to easily get and set seismic velocity vs. depth profiles at specified model tessellation nodes. RSTT_NOGS uses the Sandia Seismic Location Baseline Model code that was released under BSD license in 2009.

  3. Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993...

    Open Energy Info (EERE)

    4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers...

  4. A Probabilistic Seismic Hazard Analysis Update Review for Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  5. The INL Seismic Risk Assessment Project: Requirements for Addressing...

    Office of Environmental Management (EM)

    The INL Seismic Risk Assessment Project: Requirements for Addressing DOE Order 420.1C & A Proposed Generic Methodology Presentation from the May 2015 Seismic Lessons-Learned Panel ...

  6. Seismic Retrofit for Electric Power Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Romero, Natalia; Nozick, Linda K.; Dobson, Ian; Xu, Ningxiong; Jones, Dean A.

    2015-05-01

    Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less

  7. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect (OSTI)

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  8. Optical seismic sensor systems and methods

    DOE Patents [OSTI]

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  9. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic Work in Geothermal Areas; Characterize Fractures/Faults. seismic_queen_seismic_fracture.pdf (1.38 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model Imaging,

  10. Towards the Understanding of Induced Seismicity in Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity Microearthquake Technology for EGS Fracture Characterization